WO2019003450A1 - 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板 - Google Patents

熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板 Download PDF

Info

Publication number
WO2019003450A1
WO2019003450A1 PCT/JP2017/024260 JP2017024260W WO2019003450A1 WO 2019003450 A1 WO2019003450 A1 WO 2019003450A1 JP 2017024260 W JP2017024260 W JP 2017024260W WO 2019003450 A1 WO2019003450 A1 WO 2019003450A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
hot
rolled steel
steel plate
Prior art date
Application number
PCT/JP2017/024260
Other languages
English (en)
French (fr)
Inventor
克利 ▲高▼島
崇 小林
船川 義正
中島 清次
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to PCT/JP2017/024260 priority Critical patent/WO2019003450A1/ja
Priority to PCT/JP2018/013725 priority patent/WO2019003542A1/ja
Priority to JP2018550486A priority patent/JP6540908B2/ja
Priority to MX2019015322A priority patent/MX2019015322A/es
Priority to EP18825409.8A priority patent/EP3647450B1/en
Priority to US16/620,615 priority patent/US11236406B2/en
Priority to KR1020197038381A priority patent/KR102356747B1/ko
Priority to CN201880042603.4A priority patent/CN110832097B/zh
Publication of WO2019003450A1 publication Critical patent/WO2019003450A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a hot pressed member, a method of manufacturing the same, and a cold rolled steel sheet for hot pressing, and in particular, to improve projection weldability of a nut with respect to a hot pressed member.
  • the cold rolled steel sheet of the present invention is not only a cold rolled steel sheet, but also a hot-dip galvanized cold rolled steel sheet (including an alloyed hot-dip galvanized cold rolled steel sheet) and an electrogalvanized cold rolled steel sheet (electro zinc nickel alloy plated cold rolled steel sheet Includes aluminum), cold-rolled steel sheet, etc.
  • steel plates used for structural members and reinforcing members for automobiles are required to be excellent in formability
  • steel plates having a TS of 1780 MPa or more have low ductility, so cracking occurs during cold press forming.
  • the high dimensional accuracy can not be obtained after cold press forming because a large spring back occurs due to the occurrence or high yield strength.
  • press forming by hot press also referred to as hot stamp, die quench, press quench, etc.
  • hot pressing after heating a steel plate to the temperature range of austenite single phase, forming (processing) with high temperature enables forming with high dimensional accuracy, and quenching by cooling after forming This is a molding method that enables high strength.
  • Patent Document 1 discloses a technique for improving the indentation peel strength by controlling welding conditions.
  • Patent Document 2 discloses a technique in which the indentation peel strength is improved by controlling the solid solution Si concentration and the solid solution Al concentration on the surface of the steel sheet.
  • JP 2012-157900 A JP, 2012-126943, A
  • Patent Document 1 for controlling welding conditions, in addition to the limitation on the welding machine, a control timer or the like is required, which increases the cost. Furthermore, even if applied to a steel plate having a tensile strength of 1780 MPa or more, the improvement in indentation peel strength is insufficient.
  • Patent Document 2 is directed to a steel plate having a tensile strength of about 1000 MPa, and in this component range, melting occurs between the nut and the steel plate in resistance welding, and a nugget is formed.
  • the steel plate component has a tensile strength of more than 1780 MPa, deformation resistance is increased, and welding is performed by pressure bonding, not by welding which forms nuggets. Therefore, in such a case, the technique of Patent Document 2 can not be expected to improve the indentation peel strength.
  • the thickness direction is 20 to 100 ⁇ m from the steel sheet surface. It is effective to finely disperse carbonitrides of Nb or Ti in the depth range of (1), which makes it possible to refine the prior austenite grain size after welding and to improve the toughness, as a result, the nut It has been found that the indentation peel strength after projection welding can be improved.
  • the present invention is based on the above findings.
  • the gist configuration of the present invention is as follows. 1.
  • the microstructure of the steel plate is such that the former austenite average crystal grain size within 50 ⁇ m from the steel plate surface in the thickness direction is 7 ⁇ m or less and the volume fraction of martensite is 90% or more, and the depth in the thickness direction 20 to 100 ⁇ m from the steel plate surface
  • a hot pressed member having a particle diameter of less than 0.10 ⁇ m and an average interparticle distance of carbonitrides of Nb and Ti in a range of 5 ⁇ m or less and a tensile strength of 1780 MPa or more.
  • the chemical composition of the steel plate is, in mass%, C: 0.28% or more and less than 0.42%, Si: 1.5% or less, Mn: 1.1% or more and 2.4% or less, P: 0.05% or less, S: 0.005% or less, Al: 0.01%
  • the steel sheet is, in mass%, further B: 0.0050% or less, Mo: 0.50% or less, Cr: 0.50% or less, Sb: 0.001% or more and 0.020% or less, Ca: 0.005% or less, Mg: 0.005% or less, REM: 0.005% or less, V: 0.15% or less, Cu: 0.50% or less, Ni: 0.50% or less, Sn: 0.50% or less, Zn: 0.10% or less, Co: 0.10% or less, Zr: 0.10% or less, Ta: 0.10%
  • Microstructure of the steel sheet, perlite contains more than 30% by volume fraction, further from the surface of the steel sheet is grain size in the range up to 150 ⁇ m in the thickness direction of less than 0.10 ⁇ m of Nb and Ti carbonitrides steel section 100 [mu] m 2
  • the chemical composition of the steel plate is, in mass%, C: 0.28% or more and less than 0.42%, Si: 1.5% or less, Mn: 1.1% or more and 2.4% or less, P: 0.05% or less, S: 0.005% or less, Al: 0.01% More than 0.50% or less, N: 0.010% or less, Nb: 0.005% or more and 0.15% or less, Ti: 0.005% or more and 0.15% or less are contained, and the balance is made of Fe and unavoidable impurities. Cold rolled steel plate.
  • the steel sheet is, in mass%, further B: 0.0050% or less, Mo: 0.50% or less, Cr: 0.50% or less, Sb: 0.001% or more and 0.020% or less, Ca: 0.005% or less, Mg: 0.005% or less, REM: 0.005% or less, V: 0.15% or less, Cu: 0.50% or less, Ni: 0.50% or less, Sn: 0.50% or less, Zn: 0.10% or less, Co: 0.10% or less, Zr: 0.10% or less, Ta: 0.10%
  • a method for producing a hot pressed member wherein the cold rolled steel sheet for hot pressing according to any one of 5 to 8 is heated at a temperature range of Ac 3 transformation point to 1000 ° C. and then hot pressed.
  • a hot pressed member having extremely high tensile strength after hot pressing and at the same time excellent projection weldability of a nut.
  • the microstructure of the hot pressed member is such that the former austenite average crystal grain size within 50 ⁇ m from the steel sheet surface in the thickness direction is 7 ⁇ m or less and the volume fraction of martensite is 90% or more
  • the steel sheet has an average interparticle distance of Nb and Ti carbonitride having a particle diameter of less than 0.10 ⁇ m and a particle diameter of 5 ⁇ m or less in the depth range
  • the volume fraction mentioned here is a volume fraction with respect to the whole steel plate, and so on.
  • the former austenite average crystal grain size within 50 ⁇ m from the surface in the plate thickness direction is more than 7 ⁇ m, the toughness deteriorates and the indentation peel strength after projection welding decreases, so the upper limit thereof is 7 ⁇ m.
  • the upper limit thereof is 7 ⁇ m.
  • it is 6 micrometers or less, More preferably, it is 5.5 micrometers or less.
  • the volume fraction of martensite within 50 ⁇ m from the surface in the thickness direction is 90% or more. Preferably it is 93% or more, more preferably 95% or more. It may be 100%.
  • a ferrite, a bainite, a pearlite, etc. can be considered as residual structure
  • the toughness in the vicinity of the interface between the nut and the steel plate after projection welding is improved, and the indentation peel strength is improved.
  • the interparticle distance between adjacent Nb carbonitrides, the interparticle distance between Ti carbonitrides, and the interparticle particles between Nb carbonitride and Ti carbonitride Target all of the distances.
  • the cross section of the steel sheet to be measured is not particularly limited, and any cross section may be used.
  • carbonitrides of Nb include, for example, NbC, NbN, Nb (C, N) and the like
  • carbonitrides of Ti include, for example, TiC, TiN, Ti (C, N) and the like.
  • the microstructure of the cold rolled steel sheet for hot pressing contains 30% or less of pearlite by volume fraction, and further, Nb having a particle diameter of less than 0.10 ⁇ m in the range of 150 ⁇ m in the thickness direction from the steel sheet surface At least 10 carbonitrides of Ti are present per 100 ⁇ m 2 of the steel plate cross section on average, and the average interparticle distance is 5 ⁇ m or less.
  • the volume fraction of pearlite exceeds 30%, the average interparticle distance of Nb and Ti carbonitrides with a particle diameter of less than 0.10 ⁇ m in the range from 150 ⁇ m in the thickness direction to the surface from the surface becomes more than 5 ⁇ m. Indented peel strength is reduced. This is because pearlite has precipitated cementite composed of Fe and C, so the amount of C bonded to Nb or Ti is insufficient.
  • the volume fraction of pearlite is preferably 25% or less, more preferably 20% or less.
  • ferrite, martensite or the like can be considered, but if these are respectively ferrite: 30 to 90% and martensite: 1 to 50%, there is no problem.
  • the number of Nb and Ti carbonitrides having a particle diameter of less than 0.10 ⁇ m in the range from 150 ⁇ m in the thickness direction from the steel plate surface is less than 10 on average per 100 ⁇ m 2 of steel plate cross section.
  • the desired Nb and Ti carbonitride distribution patterns can not be obtained, and the indentation peel strength after projection welding is reduced. Therefore, as cold-rolled steel sheets before hot pressing, the number of carbonitrides of Nb and Ti with a particle diameter of less than 0.10 ⁇ m in the range from 150 ⁇ m in the thickness direction from the steel sheet surface is an average per 100 ⁇ m 2 of steel sheet cross section 10 or more. Preferably it is 15 or more.
  • limiting in particular about the steel plate cross section to measure Either what is called a C cross section or L cross section may be sufficient.
  • the microstructure of the cold rolled steel sheet before hot pressing contains 20% or more by volume fraction of ferrite having an average crystal grain size of 7 ⁇ m or less Is preferred.
  • the preferred upper limit of this volume ratio is 85%. The reason is that C and Mn are concentrated in hard phases other than ferrite, and the desired grain size of prior austenite can not be obtained in the surface layer after hot pressing.
  • the requirement that pearlite is in the range of 30% or less by volume fraction is mainly from the surface in the thickness direction by the second annealing process during the manufacturing process of the cold rolled steel sheet described later.
  • carbonitrides of Nb and Ti with a particle size of less than 0.10 ⁇ m are present on average at least 10 per 100 ⁇ m 2 of steel plate cross section, and the requirement that the distance between particles is 5 ⁇ m or less is mainly hot rolling , And the first and second annealing steps.
  • C 0.28% or more and less than 0.42% C is an element effective for strengthening the steel sheet and is an important element for strengthening martensite after hot pressing to increase the strength of the steel. However, if the content of C is less than 0.28%, the hardness of martensite after hot pressing is insufficient, so that tensile strength of 1780 MPa or more can not be obtained. The preferred C content is 0.30% or more. On the other hand, when 0.42% or more of C is added, the hardness of the steel plate in the vicinity of the interface between the nut and the steel plate after projection welding becomes hard, the toughness decreases, and the indentation peel strength decreases. The preferred amount of C is less than 0.40%, more preferably less than 0.39%.
  • Si 1.5% or less Si solid-solution strengthens ferrite and is an element effective for strengthening.
  • excessive addition of Si makes the hardness of the steel plate in the vicinity of the interface between the nut and the steel plate after projection welding hard and the toughness decreases and the indentation peel strength decreases, so the Si content is made 1.5% or less .
  • the lower limit of Si is not particularly defined, it is preferable to set it as 0.005% because extremely low Si formation causes an increase in cost.
  • Mn 1.1% or more and 2.4% or less Mn is an element that contributes to the formation of martensite after hot pressing, that is, high strength, in order to improve the hardenability during hot pressing.
  • the amount of Mn needs to be 1.1% or more. Preferably, it is 1.3% or more.
  • the amount of Mn is 2.4% or less. Preferably it is 2.2% or less, more preferably less than 2.0%.
  • P 0.05% or less P contributes to high strength by solid solution strengthening, but when it is added excessively, segregation to the grain boundary becomes remarkable to embrittle the grain boundary, so after projection welding
  • the P content is made 0.05% or less because the indentation peel strength decreases.
  • it is 0.04% or less, More preferably, it is 0.03% or less.
  • the lower limit of P is not particularly defined, it is preferable to set it to 0.0005% because extremely low P results in an increase in steelmaking cost.
  • the upper limit of the S content is made 0.005%. Preferably it is 0.0045% or less.
  • the lower limit of S is not particularly defined, it is preferable to set it as 0.0002% because the extremely low S, like P, causes an increase in steelmaking cost.
  • Al 0.01% or more and 0.50% or less Al is an element necessary for deoxidation, and in order to obtain this effect, it is necessary to contain 0.01% or more. On the other hand, since the effect is saturated even if it contains Al exceeding 0.50%, the amount of Al is made 0.50% or less. Preferably it is 0.40% or less.
  • N 0.010% or less N forms a coarse nitride, and this nitride acts as a starting point after projection welding to cause generation of a crack, and hence the indentation peel strength is deteriorated, so the content needs to be suppressed. .
  • the N content exceeds 0.010%, this tendency becomes remarkable, so the N content is made 0.010% or less. Preferably it is 0.008% or less.
  • Nb 0.005% or more and 0.15% or less
  • Nb is an element that contributes to the increase in strength by forming a fine carbonitride.
  • fine Nb-based precipitates carbonitrides of Nb
  • the indentation peel strength after projection welding can be improved.
  • it is necessary to contain Nb 0.005% or more.
  • it is 0.010% or more.
  • the Nb content is made 0.15% or less.
  • it is 0.12% or less, More preferably, it is 0.10% or less.
  • Ti 0.005% or more and 0.15% or less Ti is an element that contributes to the increase in strength by forming a fine carbonitride. Furthermore, in the present invention, fine Ti-based precipitates (carbonitrides of Ti) suppress the coarsening of the prior austenite grain size, so that the indentation peel strength after projection welding can be improved. In order to acquire such an effect, it is necessary to contain Ti 0.005% or more. Preferably, it is 0.010% or more. On the other hand, even if a large amount of Ti is added, the above effect is saturated and the cost is increased, so the Ti content is made 0.15% or less. Preferably it is 0.12% or less, More preferably, it is 0.10% or less.
  • B 0.0050% or less
  • B is an element that contributes to the formation of martensite after hot pressing, that is, to high strength, in order to enhance the hardenability during hot pressing.
  • B in order to improve grain boundary strength by segregating to grain boundaries, it is effective to improve the indentation peel strength after projection welding.
  • the B content is made 0.0040% or less. Preferably it is 0.0035% or less.
  • Mo 0.50% or less
  • Mo is an element that contributes to the formation of martensite after hot pressing, that is, high strengthening, in order to enhance the hardenability during hot pressing.
  • it is preferable to contain Mo 0.005% or more. More preferably, it is 0.01% or more.
  • the Mo content is made 0.50% or less. Preferably it is 0.35% or less.
  • Cr 0.50% or less Cr, like Mo, is also an element that contributes to the formation of martensite after hot pressing, that is, high strength, in order to enhance the hardenability during hot pressing. In order to acquire the effect, it is preferable to contain 0.005% or more. More preferably, it is 0.01% or more. On the other hand, even if a large amount of Cr is added, the above effect is saturated and the surface oxide is formed to further deteriorate the plating property, so the Cr content is made 0.50% or less. Preferably it is 0.35% or less.
  • Sb 0.001% or more and 0.020% or less
  • Sb has the effect of suppressing the decarburized layer formed in the surface layer portion of the steel plate before heating the steel plate before hot pressing and then cooling the steel plate by a series of treatments of hot pressing . Therefore, the hardness distribution of the plate surface becomes uniform, and the delayed fracture resistance is improved.
  • the addition amount of Sb is preferably 0.001% or more.
  • the Sb amount is preferably made 0.020% or less.
  • REM 0.005% or less
  • Ca 0.005% or less
  • Mg 0.005% or less
  • REM controls the shapes of sulfides and oxides, and suppresses the formation of coarse inclusions, so delayed fracture resistance The characteristics are improved. In order to express such an effect, it is preferable to add 0.0005% or more of each. On the other hand, excessive addition causes an increase in inclusions to lower the toughness after projection welding and lower the indentation peel strength, so each addition amount is preferably made 0.005% or less.
  • REM is an element containing Sc, Y and a lanthanoid.
  • V 0.15% or less
  • V is an element that contributes to the increase in strength by forming fine carbonitrides. In order to acquire such an effect, it is preferable to contain V 0.01% or more. On the other hand, since a large amount of V addition lowers the toughness at the time of resistance spot welding and the tensile shear stress deteriorates, it is preferable that the V addition amount be 0.15% or less. More preferably, it is 0.05% or less.
  • Cu 0.50% or less Cu not only contributes to high strength by solid solution strengthening, but also improves the corrosion resistance and can improve delayed fracture resistance, and therefore can be added as necessary. In order to exhibit these effects, it is preferable to contain Cu 0.05% or more. On the other hand, even if Cu is contained in excess of 0.50%, the effect is saturated, and surface defects resulting from Cu are easily generated. Therefore, the Cu content is preferably 0.50% or less.
  • Ni 0.50% or less
  • Ni can improve corrosion resistance and improve delayed fracture resistance, and therefore can be added as necessary.
  • it since it has the effect of suppressing the surface defect caused by Cu when it is added simultaneously with Cu, it is effective at the time of Cu addition.
  • it is preferable to contain Ni 0.05% or more.
  • the Ni content is preferably made 0.50% or less.
  • Sn 0.50% or less Sn, like Cu and Ni, can improve corrosion resistance and improve delayed fracture resistance, and therefore can be added as necessary. In order to exhibit these effects, it is preferable to contain Sn 0.05% or more. However, the addition of a large amount of Sn lowers the toughness after projection welding and reduces the indentation peel strength, so the Sn content is preferably 0.50% or less.
  • Zn 0.10% or less
  • Zn is an element that contributes to the formation of martensite after hot pressing, that is, high strength, in order to enhance the hardenability during hot pressing. In order to exhibit these effects, it is preferable to contain Zn 0.005% or more. However, since the addition of a large amount of Zn lowers the toughness after projection welding and reduces the indentation peel strength, the Zn content is preferably 0.10% or less.
  • Co 0.10% or less Co, like Cu and Ni, can improve the corrosion resistance by improving the hydrogen overvoltage and the corrosion resistance, and therefore can be added as needed. In order to exhibit these effects, it is preferable to contain Co 0.005% or more. However, since the addition of a large amount of Co lowers the toughness after projection welding to lower the indentation peel strength, the Co content is preferably 0.10% or less.
  • Zr 0.10% or less Zr, like Cu and Ni, can improve corrosion resistance and improve delayed fracture resistance, and therefore can be added as necessary. In order to exhibit these effects, it is preferable to contain Zr 0.005% or more. However, since a large amount of Zr addition lowers the toughness after projection welding and the indentation peel strength decreases, the Zr content is preferably 0.10% or less.
  • Ta 0.10% or less Ta, like Ti, forms alloy carbides and alloy nitrides and contributes to high strength. In order to acquire the effect, it is preferable to add 0.005% or more. On the other hand, even if Ta is added excessively, the addition effect is saturated and the alloy cost also increases. Therefore, the addition amount is made 0.10% or less.
  • W 0.10% or less W, like Cu and Ni, can improve corrosion resistance and improve delayed fracture resistance, and therefore can be added as necessary. In order to exhibit these effects, it is preferable to contain W 0.005% or more. However, since a large amount of W addition lowers the toughness after projection welding to make the indentation peel strength, the W content is preferably 0.10% or less.
  • the balance other than the above is Fe and unavoidable impurities.
  • the cold rolled steel sheet for hot pressing according to the present invention may be a cold rolled steel sheet to which a plating layer is not applied, but in order to prevent oxidation by hot pressing or to improve corrosion resistance, A plated layer may be provided on the surface of the cold rolled steel sheet.
  • an Al-based plating layer or a Zn-based plating layer is suitable.
  • an Al-based plating layer for example, an Al-Si plating layer formed by hot-dip plating is exemplified.
  • the Zn-based plating layer for example, a hot-dip Zn plating layer formed by hot-dip plating, an alloyed hot-dip Zn plating layer formed by alloying this, an electric Zn plating layer formed by electroplating, A Ni alloy plating layer etc. are illustrated.
  • the Al-based plating layer or the Zn-based plating layer is not limited to the above-mentioned plating layer, and in addition to Al or Zn which is the main component, Si, Mg, Ni, Fe, Co, Mn, Sn, Pb,
  • the plating layer may contain one or more of Be, B, P, S, Ti, V, W, Mo, Sb, Cd, Nb, Cr, Sr, and the like.
  • the method for forming the Al-based plating layer or the Zn-based plating layer is not limited at all, and any known hot-dip plating method, electroplating method, vapor deposition plating method, etc. can be applied.
  • the Al-based plating layer or the Zn-based plating layer may be a plating layer subjected to an alloying treatment after the plating step.
  • the Zn-based plating layer is a Zn-Ni alloy plating layer in order to further improve the corrosion resistance of the hot pressed member or to prevent liquid metal embrittlement cracking caused by molten Zn during hot press forming. Is more preferable.
  • the adhesion amount of the plating layer is not particularly limited, and may be a general one. For example, it is preferable to have a plating layer with a plating adhesion amount of 5 to 150 g / m 2 per one side. If the amount of plating adhesion is less than 5 g / m 2 , it may be difficult to ensure corrosion resistance, while if it exceeds 150 g / m 2 , the peel resistance to plating may deteriorate.
  • the plating layer is changed to a plating layer mainly composed of an Fe—Al intermetallic compound containing Si.
  • a plating layer mainly composed of an Fe—Al intermetallic compound containing Si when the hot-dip Zn plating layer, the alloyed hot-dip Zn plating layer, the electric Zn plating layer and the like are heated, an FeZn solid solution phase in which Zn is dissolved in Fe, a ZnFe intermetallic compound, a surface ZnO layer etc. are formed.
  • the electric Zn-Ni alloy plating layer is heated, a solid solution layer containing Ni in which a plating layer component is dissolved in Fe, an intermetallic compound mainly composed of ZnNi, a surface ZnO layer, etc. are formed. Ru.
  • a plating layer containing Al formed by heating a cold rolled steel sheet for hot press to which an Al-based plating layer is applied is referred to as an Al-based plating layer, and a Zn-based
  • the plated layer containing Zn formed by heating the cold rolled steel sheet for hot press to which the plated layer is applied is referred to as a Zn-based plated layer.
  • the preferable manufacturing method of the cold rolled steel sheet for hot presses of this invention is demonstrated.
  • the steel material (slab) having the above-described predetermined composition is first heated at a temperature of 1200 ° C. or more for 30 minutes or more before the start of hot rolling.
  • the hot rolling is carried out under the conditions where the finish rolling finish temperature is 860 to 950.degree.
  • the first average cooling rate to the cooling stop temperature is set to 70 ° C./s or more, and primary cooling is performed to cool the cooling stop temperature to 700 ° C. or less.
  • the second average cooling rate to the winding temperature is set to 5 to 50 ° C./s, and secondary cooling is performed at a winding temperature of 500 ° C. or less.
  • the hot rolled steel sheet which has been wound up is pickled and cold-rolled, and then kept within 600 seconds in a temperature range of 850 to 950 ° C. as soaking temperature, and then cooled to room temperature by water cooling;
  • a first annealing tempering in the range of ° C. for 60 to 1800 seconds is applied. After the above first annealing, the substrate is heated to a temperature range of 720 to 850 ° C.
  • a second annealing is performed to set the third average cooling rate to 5 ° C./s or more and to a cooling stop temperature of 600 ° C. or less.
  • Finishing temperature 860 to 950 ° C Since hot rolling needs to be finished in the austenite single phase region in order to improve resistance weld cracking resistance characteristics after annealing by uniforming the structure in the steel sheet and reducing the anisotropy of the material, the finish rolling finish temperature Above 860 ° C. On the other hand, when the finish rolling finish temperature exceeds 950 ° C., the hot-rolled structure becomes coarse, and the crystal grains after annealing are also coarsened, so the upper limit of the finish rolling finish temperature is set to 950 ° C.
  • Primary cooling step cooling to 700 ° C. or less at a first average cooling rate of 70 ° C./s or more During the cooling process after the end of hot rolling, austenite transforms into ferrite, but at high temperatures, ferrite coarsens, so hot After the end of rolling, quenching is performed to homogenize the structure as much as possible and at the same time suppress the formation of Nb-based precipitates. Therefore, first, as primary cooling, cooling is performed to 700 ° C. or less at a first average cooling rate of 70 ° C./s or more.
  • the first average cooling rate is less than 70 ° C./s, the ferrite is coarsened, so the steel sheet structure of the heat-rolled steel sheet becomes inhomogeneous, resulting in a decrease in indentation peel strength after projection welding.
  • the cooling stop temperature in the primary cooling exceeds 700 ° C., pearlite is excessively formed in the steel sheet structure of the hot rolled steel sheet, the final steel sheet structure becomes inhomogeneous, and the indentation peel strength after projection welding also decreases. .
  • Secondary cooling step cooling to 500 ° C. or less at a second average cooling rate of 5 to 50 ° C./s If the average cooling rate in this secondary cooling is less than 5 ° C./s, the steel sheet structure of the hot rolled steel sheet is ferrite or pearlite In addition, the final steel sheet structure becomes inhomogeneous, and the carbonitrides of Nb and Ti also become coarse, so the indentation peel strength after projection welding decreases. On the other hand, if the average cooling rate in the secondary cooling exceeds 50 ° C./s, pearlite is excessively generated in the steel sheet structure of the hot rolled steel sheet, so the element distribution of C becomes uneven, and after projection welding after hot pressing Indented peel strength is reduced. Furthermore, since cooling to temperatures above 500 ° C. causes excessive formation of ferrite or pearlite in the steel sheet structure of the hot-rolled steel sheet and coarsening of carbonitrides of Nb and Ti, the indentation peel strength after projection welding is also descend.
  • Winding temperature 500 ° C. or less
  • the upper limit of the winding temperature is 500 ° C.
  • the lower limit of the coiling temperature is not particularly specified, but if the coiling temperature is too low, hard martensite is excessively formed to increase the cold rolling load, so 300 ° C. or more is preferable. .
  • pickling is performed to remove the scale of the surface of the hot-rolled sheet.
  • the pickling treatment is not particularly limited, and may be carried out according to a conventional method.
  • Cold rolling process A cold rolling process is performed to roll a cold-rolled sheet having a predetermined thickness.
  • the cold rolling process is not particularly limited and may be performed according to a conventional method.
  • First annealing step This annealing is carried out to promote recrystallization after cold rolling and to control the steel sheet structure after hot pressing and the state of intergranular particles of Nb and Ti carbonitrides. Nb and Ti which are solid-solved after hot rolling are finely precipitated by annealing and quenching in the austenite single phase region. Moreover, since a nucleation site increases in a 2nd annealing process by setting it as a martensitic single phase, steel plate structure
  • the soaking temperature is a temperature range in the austenite range. If the temperature is less than 850 ° C., the steel sheet structure formed in the second annealing step becomes coarse, so that the desired austenite grain size after hot pressing can not be obtained. Therefore, the lower limit of the soaking temperature is set to 850 ° C. On the other hand, if the soaking temperature is too high, carbonitrides of Nb and Ti become coarse, and a desired precipitation state can not be obtained after hot pressing, so the soaking temperature is made 950 ° C. or less. Preferably it is 900 degrees C or less.
  • Soaking holding time Within 600 seconds When the holding time exceeds 600 seconds at the above soaking temperature, the carbonitrides of Nb and Ti coarsen, and the desired precipitation state can not be obtained after hot pressing. Heat holding time shall be less than 600 seconds. Preferably, it is within 300 seconds. On the other hand, when the holding time is too short, Nb and Ti remain solid-solved, so the soaking holding time is preferably 5 seconds or more.
  • Tempering temperature 150 to 300 ° C
  • tempering is performed at 150 to 300.degree. If it is less than 150 ° C., the nucleation site is insufficient, and the desired austenite grain size can not be obtained after hot pressing. On the other hand, if the temperature exceeds 300 ° C., carbonitrides of Nb and Ti are coarsened, so that a desired precipitation state can not be obtained after hot pressing.
  • Tempering time 60 to 1800 seconds
  • tempering is performed for 60 to 1800 seconds. If it is less than 60 seconds, nucleation sites are insufficient, and the desired austenite grain size can not be obtained after hot pressing. On the other hand, if it exceeds 1800 seconds, carbonitrides of Nb and Ti will coarsen, so that the desired precipitation state can not be obtained after hot pressing
  • the recrystallization does not easily proceed if the heating is too rapid, so the upper limit of the average temperature rising rate is set to 30 ° C./s.
  • the temperature rising rate is too small, ferrite and martensite grains become coarsened, and a desired steel sheet structure after hot pressing can not be obtained, so an average temperature rising rate of 3 ° C./s or more is required.
  • it is 8 degrees C / s or more.
  • the soaking temperature is a temperature range of two phases of ferrite and austenite. If the temperature is less than 720 ° C., coarse cementite precipitates, so the lower limit of the soaking temperature is set to 720 ° C. On the other hand, if the soaking temperature is too high, the austenite grain growth becomes remarkable, the grains and carbonitrides of Ti and Nb become coarse, and the indentation peel strength after projection welding decreases, so the soaking temperature is 850 It shall be below ° C Preferably it is 830 degrees C or less.
  • Soaking holding time 15 seconds or more For the progress of recrystallization and austenite transformation of part or all of the structure at the above soaking temperature, it is necessary to hold for at least 15 s. On the other hand, if the holding time is excessively long, microsegregation of Mn is promoted and bending workability is deteriorated, so the holding time is preferably within 600 seconds.
  • Cooling conditions after soaking cooling to a temperature range of 600 ° C. or less at a third average cooling rate of 5 ° C./s or more After the above soaking treatment (annealing treatment), a temperature range of 600 ° C. or less It is necessary to cool at an average cooling rate of 5 ° C./s or more to the cooling stop temperature). If the average cooling rate is less than 5 ° C./s, the ferrite transformation proceeds during cooling, the volume fraction of martensite of the cold rolled steel sheet decreases, and the Nb and Ti carbonitrides become coarse, so after projection welding Indented peel strength is reduced.
  • the upper limit of the average cooling rate is not particularly defined, but is preferably 30 ° C./s or less from the viewpoint of equipment and cost.
  • the cooling stop temperature exceeds 600 ° C., pearlite is excessively generated and a predetermined volume fraction in the microstructure of the steel sheet can not be obtained, so that the indentation peel strength after projection welding is reduced.
  • plating treatment such as hot-dip galvanization may be performed, or the cold-rolled steel plate may be used as it is without performing such plating treatment.
  • the cold rolled steel sheet for hot press of the present invention may be used as the cold rolled steel sheet manufactured by the above-described manufacturing process, but depending on the purpose, it may be used to apply an Al-based plating layer or a Zn-based plating layer.
  • a plating step may be performed.
  • the plating process is not limited in any way, and any known hot-dip plating method, electroplating method, vapor deposition plating method and the like can be applied.
  • an alloying treatment may be performed after the plating step.
  • the preferred elongation at this time is 0.05 to 2.0%.
  • the cold-rolled steel sheet obtained as described above is hot-pressed to form a hot-pressed member, but the hot-pressing method at this time is not particularly limited and may be performed according to a conventional method. Although an example is shown below, it is not limited to this.
  • a cold-rolled steel plate for hot press which is a material, is heated to a temperature range of Ac 3 transformation point to 1000 ° C. using an electric furnace, a gas furnace, an electric heating furnace, a far infrared heating furnace, etc. After holding in the range for 0 to 600 seconds, the steel sheet may be transported to a press and hot pressed at a temperature of 550 to 800 ° C.
  • the heating rate at the time of heating the cold rolled steel sheet for hot pressing may be 3 to 200 ° C./s.
  • Ac 3 transformation point can be determined by the following equation.
  • Ac 3 transformation point (° C.) 881-206 C + 53 Si-15 Mn-20 Ni-1 Cr-27 Cu + 41 Mo
  • the symbol of the element in a formula represents content (mass%) of each element. For elements not contained, it is calculated as zero.
  • the steels with the component compositions shown in Table 1 are melted and cast continuously into slabs, then heated to the temperature range shown in Table 2 and then hot rolled under the conditions shown in Table 2 for the finish rolling finish temperature (FDT). went.
  • the hot rolled steel sheet is cooled to the cooling stop temperature (first cooling temperature) at a first average cooling rate (cold rate 1) shown in Table 2, the winding temperature is obtained at a second average cooling temperature (cold rate 2) It cooled to (CT) and wound up to the coil.
  • CT second average cooling temperature
  • the obtained hot-rolled sheet was pickled and then cold-rolled at a rolling reduction shown in Table 2 to obtain a cold-rolled sheet (plate thickness: 1.4 mm).
  • the cold-rolled steel sheet thus obtained was subjected to a first annealing treatment under the conditions shown in Table 2 in a continuous annealing line (CAL) to obtain a cold-rolled steel sheet. Then, in the continuous annealing line (CAL) or the continuous hot-dip plating line (CGL), the second annealing treatment was performed under the conditions shown in Table 2.
  • the steel sheet which passed through CAL passed through cold rolled steel plate (CR) and CGL.
  • the hot-dip galvanized steel sheet (GI) was obtained for the steel sheet.
  • the alloying process was further performed at 550 degreeC and the alloying hot dip galvanized steel plate (GA) was obtained.
  • a hot-dip aluminizing treatment was performed to obtain a hot-dip aluminized steel sheet (AS). Furthermore, after being partially annealed by CAL, an electrogalvanized nickel plated steel plate (EZN) was obtained in an electrogalvanizing line (EGL).
  • AS hot-dip aluminized steel sheet
  • EZN electrogalvanized nickel plated steel plate
  • the mold used in the hot press has a punch width of 70 mm, a punch shoulder R4 mm, and a die shoulder R4 mm, and a forming depth is 30 mm.
  • Heating of the cold-rolled steel sheet was performed in the atmosphere using either an infrared heating furnace or an atmosphere heating furnace depending on the heating rate.
  • cooling after pressing was performed by combining the sandwiching of the steel plate between the punch and the die and air cooling on the die opened from the sandwiching, and cooling was performed from the press (start) temperature to 150 ° C. At this time, the cooling rate was adjusted by changing the holding time of the punch at the bottom dead center in the range of 1 to 60 seconds.
  • a JIS No. 5 tensile test specimen was collected from the position of the hat bottom portion of the hot pressed member thus obtained, and a tensile test was performed according to JIS Z 2241 to measure the tensile strength (TS).
  • the indentation peel strength after projection welding is obtained by collecting test specimens of 50 mm ⁇ 150 mm from various hot pressed steel plates, making a hole with a diameter of 10 mm at the center, and using the M6 welding nut having four projection parts as described above. It set to the AC welding machine so that the center of the hole of a piece and the center of the hole of the said nut might correspond.
  • the conditions of resistance welding were welding using a servomotor pressurization type single phase alternating current (50 Hz) resistance welding machine attached to a welding gun, and a test piece having a projection welding portion was produced.
  • the pair of electrode tips used were flat 30 mm ⁇ electrodes.
  • the welding conditions were a pressing force of 3000 N, an energization time of 7 cycles (50 Hz), a welding current of 12 kA, and a hold time of 10 cycles (50 Hz).
  • the load when the nut was peeled from the steel plate was measured by the indentation peel test according to JIS B 1196: 2001.
  • the load at that time is 8 kN or more
  • the indentation peel strength of the projection weld is good ( ⁇ )
  • the load is 6.5 kN or more and less than 8 kN
  • the indentation peel strength of the projection weld is appropriate ( ⁇ ).
  • the indentation peel strength of the weld was considered poor ( ⁇ ).
  • the volume fraction of martensite and pearlite of the cold rolled steel plate after annealing and the member after hot pressing is corroded with 3 vol% nital after polishing the plate thickness section parallel to the rolling direction of the steel plate, SEM (scanning electron electron microscopy)
  • SEM scanning electron electron microscopy
  • the observation was made at a magnification of 5000 using a microscope, and the area ratio was measured by a point count method (based on ASTM E562-83 (1988)), and the area ratio was regarded as a volume fraction.
  • the average crystal grain size of prior austenite and ferrite can be calculated by taking in a picture of each prior austenite and ferrite crystal grain identified from the steel plate structure picture using Image-Pro of Media Cybernetics, Inc. The circle equivalent diameter was calculated, and those values were averaged.
  • the particle diameter of carbonitrides of Nb and Ti is observed at a magnification of 10000 using an TEM (transmission electron microscope) for the L cross section, and the lower limit is set to 0.005 ⁇ m using Image-Pro.
  • the particle diameter was determined by calculating the equivalent circle diameter.
  • the number of carbonitrides of Nb and Ti was observed at a magnification of 10000 with a TEM (transmission electron microscope), and the average number of 10 spots was determined.
  • the interparticle distance ( ⁇ ) of Nb and Ti carbonitrides was measured as follows. That is, the L cross section was observed at a magnification of 10000 using a TEM (transmission electron microscope), and it was determined according to the conventionally reported equation (1).
  • (0.9 Vp- 1/ 2-0.8) x dp (1)
  • Vp is a volume fraction (%) of particles
  • dp is a particle size.
  • the volume fraction of particles was taken as the area fraction obtained from the observation results of TEM.
  • Table 4 shows the measurement results of the tensile properties of the hot pressed member and the indentation peel strength after projection welding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

熱間プレス部材について、その成分組成を適正に調整した上で、そのミクロ組織を、鋼板表面から板厚方向50μm以内の旧オーステナイト平均結晶粒径が7μm以下かつマルテンサイトの体積分率が90%以上で、鋼板表面から板厚方向20~100μmの深さ範囲における、粒径が0.10μm未満のNbおよびTiの炭窒化物の平均粒子間距離が5μm以下とすることにより、熱間プレス後にTS:1780MPa以上という極めて高い引張強度を有するだけでなく、優れたプロジェクション溶接部の押込剥離強度を兼備させることができる。

Description

熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板
 本発明は、熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板に関し、特に熱間プレス部材について、ナットのプロジェクション溶接性の向上を図ろうとするものである。
 本発明の冷延鋼板は、冷延鋼板だけでなく、溶融亜鉛めっき冷延鋼板(合金化溶融亜鉛めっき冷延鋼板を含む)や電気亜鉛めっき冷延鋼板(電気亜鉛ニッケル合金めっき冷延鋼板を含む)、アルミめっき冷延鋼板等を含む。
 近年、環境問題の高まりからCO2排出規制が厳格化しており、自動車分野においては燃費向上に向けた車体の軽量化が課題となっている。そのために自動車部品への高強度鋼板の適用による薄肉化が進められており、引張強さ(TS)が1780MPa以上の鋼板の適用が検討されている。
 しかし、自動車の構造用部材や補強用部材に使用される高強度鋼板は、成形性に優れることが要求されるが、TS:1780MPa以上の鋼板は延性が低いため、冷間プレス成形時に割れが発生したり、降伏強度が高いことに起因して大きなスプリング・バックが発生するため、冷間プレス成形後に高い寸法精度が得られない。
 このような状況で、高強度を得る手法として、最近は、熱間プレス(ホットスタンプ、ダイクエンチ、プレスクエンチ等とも呼称される)でのプレス成形が着目されている。熱間プレスとは、鋼板をオーステナイト単相の温度域まで加熱した後に、高温のままで成形(加工)することにより、高い寸法精度での成形を可能とし、成形後の冷却により焼き入れを行うことで高強度化を可能とした成型方法である。
 しかしながら、自動車組立工程の多くは抵抗スポット溶接により組立てられるが、一部、抵抗スポット溶接機のガンが入り込めない場所ではボルト締結によって組立てられる。この場合は、鋼板にプロジェクション部を有するナットを抵抗溶接し、その後に他の板とボルトで組み立てられる。しかし、1780MPa以上の引張強さを確保するためには合金元素(例えばCなど)を多く含有する必要があるが、これによりナットと鋼板とのプロジェクション溶接部(溶接継手)の押込剥離強度が著しく低下することが懸念される。
 従来、ナットのプロジェクション溶接性を向上させる手段はいくつか報告されている。
 例えば、特許文献1では、溶接条件を制御することで、押込剥離強度を改善する技術が開示されている。
 また、特許文献2では、鋼板表面の固溶Si濃度および固溶Al濃度を制御することで、押込剥離強度が向上する技術が開示されている。
特開2012-157900号公報 特開2012-126943号公報
 しかしながら、溶接条件を制御する特許文献1の技術では、溶接機に制限がかかる他、制御タイマー等が必要となるため、コストが増加する。さらに、引張強さが1780MPa以上の鋼板に適用しても押込剥離強度の改善は不十分である。
 また、特許文献2の技術は、引張強度が1000MPa程度の鋼板を対象とするものであり、この成分範囲では抵抗溶接の際にナットと鋼板との間で溶融が生じてナゲットが形成されるものの、引張強度が1780MPaを超える鋼板成分になると変形抵抗が増大し、ナゲット形成をするような溶接ではなく、圧着する溶接となる。従って、このような場合には、特許文献2の技術では、押込剥離強度の改善効果は期待できない。
 上述したように、溶接条件に関係なく、TS:1780MPa以上の熱間プレス部材のナットとのプロジェクション溶接後の押込剥離強度を改善することは困難とされ、その他の鋼板を含めても、これらの特性を兼備する鋼板は開発されていないのが実情である。
 そこで、本発明者らは、上記の実情に鑑み鋭意検討を重ねた結果、熱間プレス部材のナットのプロジェクション溶接後の押込剥離強度を向上させるためには、鋼板表面から板厚方向20~100μmの深さ範囲にNbまたはTiの炭窒化物を微細に分散させることが有効で、これにより溶接後の旧オーステナイト粒径を微細化させると共に、靭性を向上させることが可能となり、その結果、ナットのプロジェクション溶接後の押込剥離強度を向上させ得ることを見出した。
 また、前述したように、引張強度が1780MPa以上となる鋼板成分では、変形抵抗が高くなるため、極表層を除いて、抵抗スポット溶接のように鋼板が溶融してナゲットを形成することで溶接する形態ではなく、アプセット溶接のようなナットのプロジェクション部および鋼板の極表層のみが溶融して、圧着することで溶接される。このとき、鋼板の極表面は溶融し、鋼板からはじかれ、新生面で溶接されて部材となる。この後にボルトで締結され、そのボルトを押込んだ際の剥離強度(押込剥離強度)が重要となる。
 そこで、さらに鋭意検討を重ねた結果、この押込剥離強度には、熱間プレス後の鋼板の表面から板厚方向に20~100μmの範囲における鋼板組織が強く影響していることを突き止めた。
 具体的には、微細なNbまたはTiの炭窒化物を鋼板表面から板厚方向に20~100μmの深さ範囲に分散させることで、旧オーステナイト平均結晶粒径が微細化し、かつNbおよびTiの炭窒化物の析出強化により降伏強度が向上するため、押込剥離強度が向上する。
 本発明は、上記の知見に立脚するものである。
 すなわち、本発明の要旨構成は次のとおりである。
1.鋼板のミクロ組織が、鋼板表面から板厚方向に50μm以内の旧オーステナイト平均結晶粒径が7μm以下かつマルテンサイトの体積分率が90%以上で、鋼板表面から板厚方向20~100μmの深さ範囲における、粒径が0.10μm未満のNbおよびTiの炭窒化物の平均粒子間距離が5μm以下であり、引張強さが1780MPa以上である、熱間プレス部材。
2.鋼板の化学成分が、質量%で、C:0.28%以上0.42%未満、Si:1.5%以下、Mn:1.1%以上2.4%以下、P:0.05%以下、S:0.005%以下、Al:0.01%以上0.50%以下、N:0.010%以下、Nb:0.005%以上0.15%以下およびTi:0.005%以上0.15%以下を含有し、残部はFeおよび不可避的不純物からなる前記1に記載の熱間プレス部材。
3.前記鋼板が、質量%で、さらにB:0.0050%以下、Mo:0.50%以下、Cr:0.50%以下、Sb:0.001%以上0.020%以下、Ca:0.005%以下、Mg:0.005%以下、REM:0.005%以下、V:0.15%以下、Cu:0.50%以下、Ni:0.50%以下、Sn:0.50%以下、Zn:0.10%以下、Co:0.10%以下、Zr:0.10%以下、Ta:0.10%以下およびW:0.10%以下から選択される一種または二種以上を含有する前記2に記載の熱間プレス部材。
4.前記鋼板の表層に、Al系めっき層またはZn系めっき層を有する前記1乃至3のいずれか1項に記載の熱間プレス部材。
5.鋼板のミクロ組織が、パーライトを体積分率で30%以下含有し、さらに鋼板表面から板厚方向に150μmまでの範囲に粒径が0.10μm未満のNbおよびTiの炭窒化物が鋼板断面100μm2当たり平均で10個以上存在し、かつその平均粒子間距離が5μm以下である、熱間プレス用冷延鋼板。
6.鋼板の化学成分が、質量%で、C:0.28%以上0.42%未満、Si:1.5%以下、Mn:1.1%以上2.4%以下、P:0.05%以下、S:0.005%以下、Al:0.01%以上0.50%以下、N:0.010%以下、Nb:0.005%以上0.15%以下およびTi:0.005%以上0.15%以下を含有し、残部はFeおよび不可避的不純物からなる前記5に記載の熱間プレス用冷延鋼板。
7.前記鋼板が、質量%で、さらにB:0.0050%以下、Mo:0.50%以下、Cr:0.50%以下、Sb:0.001%以上0.020%以下、Ca:0.005%以下、Mg:0.005%以下、REM:0.005%以下、V:0.15%以下、Cu:0.50%以下、Ni:0.50%以下、Sn:0.50%以下、Zn:0.10%以下、Co:0.10%以下、Zr:0.10%以下、Ta:0.10%以下およびW:0.10%以下から選択される一種または二種以上を含有する前記6に記載の熱間プレス用冷延鋼板。
8.前記鋼板が、表面にAl系めっき層またはZn系めっき層を有する前記5乃至7のいずれか1項に記載の熱間プレス用冷延鋼板。
9.前記5乃至8のいずれかに記載の熱間プレス用冷延鋼板を、Ac3変態点~1000℃の温度域で加熱後、熱間プレスを行う熱間プレス部材の製造方法。
 本発明によれば、熱間プレス後に極めて高い引張強さを有すると同時に、優れたナットのプロジェクション溶接性を兼ね備えた熱間プレス部材を得ることができる。例えば、引張強さが1780MPa以上で、M6ナットを溶接した後の押込剥離強度が6.5kN以上(好ましくは8kN以上)を示すナットのプロジェクション溶接性が優れた熱間プレス部材を安定して得ることができる。
 以下、本発明を具体的に説明する。
 まず、本発明の熱間プレス部材および熱間プレス用冷延鋼板のミクロ組織について詳細に説明する。
〔熱間プレス部材のミクロ組織〕
 熱間プレス部材のミクロ組織は、鋼板表面から板厚方向に50μm以内の旧オーステナイト平均結晶粒径が7μm以下かつマルテンサイトの体積分率が90%以上で、鋼板表面から板厚方向20~100μmの深さ範囲における、粒径が0.10μm未満のNbおよびTiの炭窒化物の平均粒子間距離が5μm以下の鋼組織とする。なお、ここで述べる体積分率は、鋼板の全体に対する体積分率であり、以下同様である。
 表面から板厚方向に50μm以内の旧オーステナイト平均結晶粒径が7μm超では、靭性が劣化してプロジェクション溶接後の押込剥離強度が低下するため、その上限は7μmとする。好ましくは6μm以下であり、さらに好ましくは5.5μm以下である。
 また、表面から板厚方向に50μm以内のマルテンサイトの体積分率が90%未満では、引張強度:1780MPa以上を達成することが困難になる。従って、表面から板厚方向に50μm以内のマルテンサイトの体積分率は90%以上とする。好ましくは93%以上であり、さらに好ましくは95%以上である。100%であっても良い。
 なお、残部組織としては、フェライト、ベイナイトおよびパーライト等が考えられるが、これらは合計で4%以下であれば、問題はない。
 また、本発明では、熱間プレス後の鋼板断面内において、鋼板表面から板厚方向20~100μmの深さ範囲における、粒径が0.10μm未満のNbおよびTiの炭窒化物の平均粒子間距離を5μm以下とする必要がある。好ましくは4μm以下である。かように微細なNbおよびTiの炭窒化物が分散することで、プロジェクション溶接後のナットと鋼板との界面近傍の靭性が向上するため、押込剥離強度が向上する。ここに、粒子間距離の確保は、近接するNbの炭窒化物同士の粒子間距離、Tiの炭窒化物同士の粒子間距離およびNbの炭窒化物とTiの炭窒化物の間の粒子間距離のすべてを対象とする。
 なお、測定する鋼板断面については特に制限はなく、いずこであっても良い。
 ここで、Nbの炭窒化物とは例えばNbC、NbN、Nb(C,N)等が、またTiの炭窒化物とは例えばTiC, TiN、Ti(C,N)等が挙げられる。
〔熱間プレス用冷延鋼板のミクロ組織〕
 熱間プレス部材として所望の特性を得るためには、熱間プレス用冷延鋼板のミクロ組織を制御することも重要である。すなわち、熱間プレス用冷延鋼板のミクロ組織としては、パーライトを体積分率で30%以下を含有し、さらに鋼板表面から板厚方向に150μmまでの範囲に粒径が0.10μm未満のNbおよびTiの炭窒化物が鋼板断面100μm2当たり平均で10個以上存在し、かつその平均粒子間距離が5μm以下とする。
 パーライトの体積分率が30%を超えると、表面から板厚方向に150μmまでの範囲における粒径が0.10μm未満のNbおよびTiの炭窒化物の平均粒子間距離が5μm超となり、プロジェクション溶接後の押込剥離強度が低下する。これは、パーライトはFeとCで構成されるセメンタイトが析出しているため、NbまたはTiと結合するC量が足りなくなるためである。パーライトの体積分率は、好ましくは25%以下であり、さらに好ましくは20%以下である。
 残部組織としては、フェライトやマルテンサイト等が考えられるが、これらはそれぞれ、フェライト:30~90%、マルテンサイト:1~50%であれば、問題はない。
 また、熱間プレスによって粗大化するNbおよびTiの炭窒化物も存在する。このため、鋼板表面から板厚方向に150μmまでの範囲における粒径0.10μm未満のNbおよびTiの炭窒化物の個数が、鋼板断面100μm2当たり平均で10個に満たないと、熱間プレス後に所望のNbおよびTi炭窒化物の分布形態が得られず、プロジェクション溶接後の押込剥離強度が低下する。このため、熱間プレス前の冷延鋼板としては、鋼板表面から板厚方向に150μmまでの範囲における粒径0.10μm未満のNbおよびTiの炭窒化物の個数は、鋼板断面100μm2当たり平均で10個以上とする。好ましくは15個以上である。なお、測定する鋼板断面については特に制限はなく、いわゆるC断面でもL断面いずれでも良い。
 さらに、熱間プレス後に所望の旧オーステナイト粒径を得るためには、熱間プレス前の冷延鋼板のミクロ組織としては、平均結晶粒径が7μm以下のフェライトを体積率で20%以上含有している方が好ましい。この体積率の好適な上限値は85%である。
 その理由は、フェライト以外の硬質相にCやMnが濃縮してしまい、熱間プレス後に所望の旧オーステナイトの結晶粒径が表層において得られなくなるからである。
 熱間プレス用冷延鋼板において、パーライトを体積分率で30%以下の範囲という要件は、後述する冷延鋼板の製造工程中、主に第2の焼鈍工程によって、また表面から板厚方向に150μmまでの範囲に粒径が0.10μm未満のNbおよびTiの炭窒化物が鋼板断面100μm2当たり平均で10個以上存在し、かつその粒子間距離が5μm以下という要件は、主に熱間圧延、第1および第2の焼鈍工程によって達成される。
 次に、本発明の熱間プレス部材および熱間プレス用冷延鋼板の好適成分組成について説明する。なお、成分についての「%」表示は「質量%」を意味する。
C:0.28%以上0.42%未満
 Cは、鋼板の高強度化に有効な元素であり、熱間プレス後にマルテンサイトを強化して鋼の強度を高めるのに重要な元素である。しかしながら、Cの含有量が0.28%未満では熱間プレス後のマルテンサイトの硬度が不十分のため、引張強さ:1780MPa以上が得られない。好ましいC量は0.30%以上である。一方、Cを0.42%以上添加すると、プロジェクション溶接後のナットと鋼板との界面近傍の鋼板の硬度が硬くなり、靭性が低下して、押込剥離強度が低下する。好ましいC量は0.40%未満であり、さらに好ましくは0.39%未満である。
Si:1.5%以下
 Siは、フェライトを固溶強化し、高強度化に有効な元素である。しかしながら、Siの過剰な添加はプロジェクション溶接後のナットと鋼板との界面近傍の鋼板の硬度が硬くなり、靭性が低下して、押込剥離強度が低下するため、Si含有量は1.5%以下とする。好ましくは1.0%以下、さらに好ましくは0.7%以下である。なお、Siの下限は特に規定されないが、極低Si化はコストの増加を招くため、0.005%とすることが好ましい。
Mn:1.1%以上2.4%以下
 Mnは、熱間プレス時の焼入れ性を高めるため、熱間プレス後のマルテンサイトの形成、すなわち高強度化に寄与する元素である。その効果を得るためには、Mn量を1.1%以上とする必要がある。好ましくは1.3%以上である。一方、Mnを過剰に含有した場合、プロジェクション溶接後にPがナットと鋼板との界面に偏析して押込剥離強度が低下する。そのため、Mn量は2.4%以下とする。好ましくは2.2%以下、さらに好ましくは2.0%未満である。
P:0.05%以下
 Pは、固溶強化により高強度化に寄与するが、過剰に添加された場合には、粒界への偏析が著しくなって粒界を脆化させるため、プロジェクション溶接後の押込剥離強度が低下することから、P含有量は0.05%以下とする。好ましくは0.04%以下であり、さらに好ましくは0.03%以下である。なお、Pの下限は特に規定されないが、極低P化は製鋼コストの上昇を招くため、0.0005%とすることが好ましい。
S:0.005%以下
 Sの含有量が多い場合には、MnSなどの硫化物が多く生成し、プロジェクション溶接後にかかる硫化物が起点となって割れの発生を招くため、押込剥離強度が低下する。そのため、S含有量の上限を0.005%とする。好ましくは0.0045%以下である。なお、Sの下限は特に規定されないが、極低S化はPと同様に、製鋼コストの上昇を招くため、0.0002%とすることが好ましい。
Al:0.01%以上0.50%以下
 Alは、脱酸に必要な元素であり、この効果を得るためには0.01%以上含有することが必要である。一方、0.50%を超えてAlを含有しても効果が飽和するため、Al量は0.50%以下とする。好ましくは0.40%以下である。
N:0.010%以下
 Nは、粗大な窒化物を形成し、プロジェクション溶接後にかかる窒化物が起点となって割れの発生を招くため、押込剥離強度を劣化させることから、含有量を抑える必要がある。特にN量が0.010%超になると、この傾向が顕著となることから、N含有量は0.010%以下とする。好ましくは0.008%以下である。
Nb:0.005%以上0.15%以下
 Nbは、微細な炭窒化物を形成することで、強度上昇に寄与する元素である。さらに、本発明においては、微細なNb系析出物(Nbの炭窒化物)が、旧オーステナイト粒径の粗大化を抑制するため、プロジェクション溶接後の押込剥離強度を向上させることができる。このような効果を得るためには、Nbを0.005%以上含有させる必要がある。好ましくは0.010%以上である。一方、Nbを多量に添加しても上記の効果は飽和し、かえってコスト増を招くため、Nb含有量は0.15%以下とする。好ましくは0.12%以下であり、さらに好ましくは0.10%以下である。
Ti:0.005%以上0.15%以下
 Tiは、微細な炭窒化物を形成することで、強度上昇に寄与する元素である。さらに、本発明においては、微細なTi系析出物(Tiの炭窒化物)が、旧オーステナイト粒径の粗大化を抑制するため、プロジェクション溶接後の押込剥離強度を向上させることができる。このような効果を得るためには、Tiを0.005%以上含有させる必要がある。好ましくは0.010%以上である。一方、Tiを多量に添加しても上記の効果は飽和し、かえってコスト増を招くため、Ti含有量は0.15%以下とする。好ましくは0.12%以下であり、さらに好ましくは0.10%以下である。
 また、本発明では、以下の成分を適宜含有させることもできる。
B:0.0050%以下
 Bは、熱間プレス時の焼入れ性を高めるため、熱間プレス後のマルテンサイトの形成、すなわち高強度化に寄与する元素である。また、粒界に偏析することで粒界強度を向上させるため、プロジェクション溶接後の押込剥離強度の向上に有効である。このような効果を得るためには、Bを0.0002%以上含有させるのが好ましい。しかし、過剰なB添加は靭性を劣化させ、プロジェクション溶接後の押込剥離強度を低下させるため、B含有量は0.0040%以下とする。好ましくは0.0035%以下である。
Mo:0.50%以下
 Moは、熱間プレス時の焼入れ性を高めるため、熱間プレス後のマルテンサイトの形成、すなわち高強度化に寄与する元素である。その効果を得るためには、Moを0.005%以上含有させるのが好ましい。より好ましくは0.01%以上である。一方、多量にMoを添加しても上記効果は飽和し、かえってコスト増を招き、さらに化成処理性が劣化するため、そのMo含有量は0.50%以下とする。好ましくは0.35%以下である。
Cr:0.50%以下
 Crも、Moと同様、熱間プレス時の焼入れ性を高めるため、熱間プレス後のマルテンサイトの形成、すなわち高強度化に寄与する元素である。その効果を得るためには0.005%以上含有させることが好ましい。より好ましくは0.01%以上である。一方、多量にCrを添加しても上記効果は飽和し、さらに表面酸化物を形成することからめっき性が劣化するため、Cr含有量は0.50%以下とする。好ましくは0.35%以下である。
Sb:0.001%以上0.020%以下
 Sbは、熱間プレス前に鋼板を加熱してから熱間プレスの一連の処理によって鋼板を冷却する前に、鋼板表層部に生じる脱炭層を抑制する効果を有する。そのため、板面の硬度分布が均一となり耐遅れ破壊特性が向上する。このような効果を発現するためには、Sbの添加量は0.001%以上とすることが好ましい。一方、Sbが0.020%を超えて添加されると、圧延負荷荷重が増大し、生産性を低下させることから、Sb量は0.020%以下とすることが好ましい。
Ca:0.005%以下、Mg:0.005%以下、REM:0.005%以下
 Ca、Mg、REMは、硫化物および酸化物の形状を制御し、粗大な介在物の生成を抑制することから、耐遅れ破壊特性が向上する。このような効果を発現するためには、それぞれ0.0005%以上添加するのが好ましい。一方、過度の添加は、介在物の増加を引き起こしプロジェクション溶接後における靭性が低下して押込剥離強度を低下させるため、それぞれの添加量は0.005%以下とすることが好ましい。ここでREMはSc、Yおよびランタノイドを含む元素である。
V:0.15%以下
 Vは、微細な炭窒化物を形成することで、強度上昇に寄与する元素である。このような効果を得るためには、Vを0.01%以上含有させることが好ましい。一方、多量のV添加は、抵抗スポット溶接時における靭性が低下して、引張せん断応力が劣化するため、V添加量は0.15%以下とすることが好ましい。より好ましくは0.05%以下である。
Cu:0.50%以下
 Cuは、固溶強化により高強度化に寄与するだけでなく、耐食性を向上させることから耐遅れ破壊特性を改善できるため、必要に応じて添加することができる。これら効果を発揮するためにはCuを0.05%以上含有させることが好ましい。一方、Cuを0.50%超含有させても効果が飽和し、またCuに起因する表面欠陥が発生しやすくなるため、Cu含有量は0.50%以下とすることが好ましい。
Ni:0.50%以下
 Niも、Cuと同様、耐食性を向上させることから耐遅れ破壊特性を改善できるため、必要に応じて添加することができる。また、Cuと同時に添加すると、Cu起因の表面欠陥を抑制する効果があるので、Cu添加時に有効である。これら効果を発揮するためにはNiを0.05%以上含有させることが好ましい。しかし、多量のNi添加は、プロジェクション溶接後における靭性が低下して押込剥離強度が低下するため、Ni含有量は0.50%以下とすることが好ましい。
Sn:0.50%以下
 Snも、CuやNiと同様、耐食性を向上させることから耐遅れ破壊特性を改善できるため、必要に応じて添加することができる。これら効果を発揮するためにはSnを0.05%以上含有させることが好ましい。しかし、多量のSn添加は、プロジェクション溶接後における靭性が低下して押込剥離強度が低下するため、Sn含有量は0.50%以下とすることが好ましい。
Zn:0.10%以下
 Znは、熱間プレス時の焼入れ性を高めるため、熱間プレス後のマルテンサイトの形成、すなわち高強度化に寄与する元素である。これら効果を発揮するためにはZnを0.005%以上含有させることが好ましい。しかし、多量のZn添加は、プロジェクション溶接後における靭性が低下して押込剥離強度が低下するため、Zn含有量は0.10%以下とすることが好ましい。
Co:0.10%以下
 Coも、CuやNiと同様、水素過電圧を向上させて耐食性を向上させることから耐遅れ破壊特性を改善できるため、必要に応じて添加することができる。これら効果を発揮するためにはCoを0.005%以上含有させることが好ましい。しかし、多量のCo添加は、プロジェクション溶接後における靭性が低下して押込剥離強度が低下するため、Co含有量は0.10%以下とすることが好ましい。
Zr:0.10%以下
 Zrも、CuやNiと同様、耐食性を向上させることから耐遅れ破壊特性を改善できるため、必要に応じて添加することができる。これら効果を発揮するためにはZrを0.005%以上含有させることが好ましい。しかし、多量のZr添加は、プロジェクション溶接後における靭性が低下して押込剥離強度が低下するため、Zr含有量は0.10%以下とすることが好ましい。
Ta:0.10%以下
 Taは、Tiと同様に、合金炭化物や合金窒化物を生成して高強度化に寄与する。その効果を得るためには0.005%以上添加することが好ましい。一方、Taを過剰に添加してもその添加効果が飽和する上、合金コストも増加する。そのため、その添加量は0.10%以下とする。
W:0.10%以下
 Wも、CuやNiと同様、耐食性を向上させることから耐遅れ破壊特性を改善できるため、必要に応じて添加することができる。これら効果を発揮するためにはWを0.005%以上含有させることが好ましい。しかし、多量のW添加は、プロジェクション溶接後における靭性が低下して押込剥離強度するため、W含有量は0.10%以下とすることが好ましい。
 以上述べた以外の残部はFeおよび不可避不純物とする。
 次に、本発明の熱間プレス用冷延鋼板および熱間プレス部材のめっき層について詳細に説明する。
〔熱間プレス用冷延鋼板のめっき層〕
 本発明の熱間プレス用冷延鋼板は、めっき層が付与されていない冷延鋼板ままでもよいが、熱間プレスによる酸化を防止するため、もしくは耐食性を向上させるために、熱間プレス前の冷延鋼板の表面にめっき層を付与してもよい。
 本発明において熱間プレス用冷延鋼板の表面に付与されるめっき層としては、Al系めっき層またはZn系めっき層が好適である。これらのめっき層を熱間プレス用冷延鋼板の表面に付与することにより、熱間プレスによる鋼板表面の酸化が防止され、さらに、熱間プレス部材の耐食性が向上する。
 Al系めっき層としては、たとえば、溶融めっき法により形成されたAl-Siめっき層が例示される。また、Zn系めっき層としては、たとえば、溶融めっき法により形成された溶融Znめっき層、これを合金化した合金化溶融Znめっき層、電気めっき法により形成された電気Znめっき層、電気Zn-Ni合金めっき層などが例示される。
 ただし、Al系めっき層またはZn系めっき層は上記のめっき層に限定されるものではなく、主成分であるAlまたはZn以外に、Si、Mg、Ni、Fe、Co、Mn、Sn、Pb、Be、B、P、S、Ti、V、W、Mo、Sb、Cd、Nb、Cr、Sr等の1種または2種以上を含有するめっき層であってもよい。Al系めっき層またはZn系めっき層の形成方法についても何ら限定されるものではなく、公知の溶融めっき法、電気めっき法、蒸着めっき法等がいずれも適用可能である。また、Al系めっき層またはZn系めっき層は、めっき工程後に合金化処理を施しためっき層であってもよい。
 本発明では、特に熱間プレス部材の耐食性をより一層向上させたり、熱間プレス成形時の溶融Znに起因する液体金属脆性割れを防止する上で、Zn系めっき層がZn-Ni合金めっき層であるとより好適である。
 めっき層の付着量は特に限定されず、一般的なものであればよい。例えば、片面当たりのめっき付着量が5~150g/m2のめっき層を有することが好ましい。めっき付着量が5g/m2未満では耐食性の確保が困難になる場合があり、一方150g/m2を超えると耐めっき剥離性が劣化する場合がある。
〔熱間プレス部材のめっき層〕
 Al系めっき層またはZn系めっき層が付与された熱間プレス用冷延鋼板を、加熱した後、熱間プレスを行うと、Al系めっき層またはZn系めっき層に含有されるめっき層成分の一部またはすべてが下地鋼板中に拡散して固溶相や金属間化合物を生成すると同時に、逆に、下地鋼板成分であるFeがAl系めっき層中またはZn系めっき層中に拡散して固溶相や金属間化合物を生成する。また、Al系めっき層の表面にはAlを含有する酸化物皮膜が生成し、Zn系めっき層の表面にはZnを含有する酸化物皮膜が生成する。
 一例を挙げると、Al-Siめっき層を加熱すると、めっき層は、Siを含有するFe-Al金属間化合物を主体とするめっき層へと変化する。また、溶融Znめっき層、合金化溶融Znめっき層、電気Znめっき層等を加熱すると、FeにZnが固溶したFeZn固溶相、ZnFe金属間化合物、表層のZnO層等が形成される。さらに、電気Zn-Ni合金めっき層を加熱した場合には、Feにめっき層成分が固溶したNiを含有する固溶層、ZnNiを主体とする金属間化合物、表層のZnO層等が形成される。
 なお、本発明においては、上述のとおり、Al系めっき層が付与された熱間プレス用冷延鋼板を加熱することにより形成されるAlを含有するめっき層をAl系めっき層と呼び、Zn系めっき層が付与された熱間プレス用冷延鋼板を加熱することにより形成されるZnを含有するめっき層をZn系めっき層と呼ぶこととする。
 次に、本発明の熱間プレス用冷延鋼板の好ましい製造方法について説明する。
 本発明では、上記冷延鋼板の製造に際し、まず前記した所定の成分組成を有する鋼素材(スラブ)を、熱間圧延開始前に1200℃以上の温度で30分以上加熱した後に熱間圧延を開始し、仕上げ圧延終了温度が860~950℃の条件で熱間圧延する。
 上記の熱間圧延後、冷却停止温度までの第1平均冷却速度を70℃/s以上とし、700℃以下の冷却停止温度まで冷却する1次冷却を施す。
 上記の1次冷却後、巻取温度までの第2平均冷却速度を5~50℃/sとし、500℃以下の巻取温度で巻取る2次冷却を施す。
 ついで、巻き取った熱延鋼板を酸洗後、冷間圧延を行ったのち、均熱温度として850~950℃の温度域で600秒以内保持した後、水冷により室温まで冷却し、150~300℃の範囲で60~1800秒焼戻しする第1の焼鈍を施す。
 上記の第1の焼鈍後、3~30℃/sの平均昇温速度で720~850℃の温度域まで加熱し、均熱温度として720~850℃の温度域で15秒以上保持した後、第3平均冷却速度を5℃/s以上とし、600℃以下の冷却停止温度まで冷却する第2の焼鈍を施す。
 以下、上記した製造工程を各工程毎に詳細に説明する。
〔加熱工程〕
 素材である鋼スラブは、鋳造後、再加熱することなく1200℃以上の温度で30分以上保持してから熱間圧延を開始するか、もしくは1200℃以上に再加熱したのち、30分以上保持してから熱間圧延を開始する。この処理は、鋳造中に析出したTiおよびNbを再固溶させるため重要である。
 本発明では、鋼スラブを製造したのち、一旦室温まで冷却し、その後再加熱する従来法に加え、冷却することなく温片のままで加熱炉に装入する、あるいは保熱を行った後に直ちに圧延する、あるいは鋳造後そのまま圧延する直送圧延・直接圧延などの省エネルギープロセスも問題なく適用できる。
〔熱間圧延工程〕
・仕上げ圧延終了温度:860~950℃
 熱間圧延は、鋼板内の組織均一化、材質の異方性低減により、焼鈍後の耐抵抗溶接割れ特性を向上させるため、オーステナイト単相域にて終了する必要があるので、仕上げ圧延終了温度は860℃以上とする。一方、仕上げ圧延終了温度が950℃超えでは、熱延組織が粗大になり、焼鈍後の結晶粒も粗大化するため、仕上げ圧延終了温度の上限は950℃とする。
〔熱間圧延後の冷却工程〕
・1次冷却工程:70℃/s以上の第1平均冷却速度で700℃以下まで冷却
 熱間圧延終了後の冷却過程でオーステナイトがフェライト変態するが、高温ではフェライトが粗大化するため、熱間圧延終了後は急冷することで、組織をできるだけ均質化すると同時に、Nb系析出物の生成を抑制する。そのため、まず、1次冷却として、70℃/s以上の第1平均冷却速度で700℃以下まで冷却する。この第1平均冷却速度が70℃/s未満ではフェライトが粗大化されるため、熱延鋼板の鋼板組織が不均質となり、プロジェクション溶接後の押込剥離強度の低下を招く。一方、1次冷却における冷却停止温度が700℃超えでは、熱延鋼板の鋼板組織にパーライトが過剰に生成し、最終的な鋼板組織が不均質となり、やはりプロジェクション溶接後の押込剥離強度が低下する。
・2次冷却工程:5~50℃/sの第2平均冷却速度で500℃以下まで冷却
 この2次冷却における平均冷却速度が5℃/s未満では、熱延鋼板の鋼板組織にフェライトもしくはパーライトが過剰に生成し、最終的な鋼板組織が不均質となり、またNbおよびTiの炭窒化物も粗大化するため、プロジェクション溶接後の押込剥離強度が低下する。一方、2次冷却における平均冷却速度が50℃/sを超えると、熱延鋼板の鋼板組織にパーライトを過剰に生成するため、Cの元素分布が不均一となり、熱間プレス後のプロジェクション溶接後の押込剥離強度が低下する。さらに、500℃超の温度までの冷却では、熱延鋼板の鋼板組織にフェライトもしくはパーライトが過剰に生成し、NbおよびTiの炭窒化物も粗大化するため、やはりプロジェクション溶接後の押込剥離強度が低下する。
・巻取り温度:500℃以下
 巻取り温度が500℃超では、熱延鋼板の鋼板組織にフェライトおよびパーライトが過剰に生成し、最終的な鋼板組織が不均質となり、プロジェクション溶接後の押込剥離強度が低下する。これを回避するには、ベイナイト変態を含んだ温度域で巻き取ることが重要である。また、高温で巻き取るとNbおよびTiの炭窒化物が粗大化し、プロジェクション溶接後の押込剥離強度が低下する。そのため、本発明では、巻取り温度の上限は500℃とした。好ましくは470℃以下である。なお、巻取り温度の下限については、特に規定はしないが、巻取り温度が低温になりすぎると、硬質なマルテンサイトが過剰に生成し、冷間圧延負荷が増大するため、300℃以上が好ましい。
〔酸洗工程〕
 熱間圧延工程後、酸洗を実施し、熱延板表層のスケールを除去する。この酸洗処理は特に限定されず、常法に従って実施すればよい。
〔冷間圧延工程〕
 所定の板厚の冷延板に圧延する冷間圧延工程を行う。この冷間圧延工程は特に限定されず常法に従って実施すればよい。
〔第1の焼鈍工程〕
 この焼鈍は、冷間圧延後の再結晶を進行させると共に、熱間プレス後の鋼板組織やNbやTiの炭窒化物の粒子間状態を制御するために実施する。熱間圧延後に固溶しているNbおよびTiをオーステナイト単相領域で焼鈍して急冷することで微細に析出させる。また、マルテンサイト単相とすることで第2の焼鈍工程で核生成サイトが増加するため、鋼板組織が微細化する。
・均熱温度:850~950℃
 均熱温度は、オーステナイト域の温度域とする。850℃未満では第2の焼鈍工程で生成する鋼板組織が粗大化するため、熱間プレス後の所望のオーステナイト粒径が得られない。そのため均熱温度の下限は850℃とする。一方、均熱温度が高すぎると、NbおよびTiの炭窒化物が粗大化し、熱間プレス後に所望の析出状態が得られないため、均熱温度は950℃以下とする。好ましくは900℃以下である。
・均熱保持時間:600秒以内
 上記の均熱温度において、保持時間が600秒を超えるとNbおよびTiの炭窒化物が粗大化し、熱間プレス後に所望の析出状態が得られないため、均熱保持時間は600秒以内とする。好ましくは300秒以内である。一方、保持時間があまりに短いとNbおよびTiが固溶したたままとなるため、均熱保持時間は5秒以上であることが好ましい。
・焼戻し温度:150~300℃
 後続の第2の焼鈍工程で核生成サイトを増加させるため、150~300℃で焼戻しする。150℃未満では核生成サイトが不十分であり、熱間プレス後に所望のオーステナイト粒径が得られない。一方、300℃を超えるとではNbおよびTiの炭窒化物が粗大化するため、熱間プレス後に所望の析出状態が得られない。
・焼戻し時間:60~1800秒
 後続の第2の焼鈍工程で核生成サイトを増加させるため、60~1800秒で焼戻しする。60秒未満では核生成サイトが不十分であり、熱間プレス後に所望のオーステナイト粒径が得られない。一方、1800秒を超えるとではNbおよびTiの炭窒化物が粗大化するため、熱間プレス後に所望の析出状態が得られない
〔第2の焼鈍工程〕
 この第2の焼鈍工程においては、あまりに急速に加熱すると再結晶が進行しにくくなるため、平均昇温速度の上限は30℃/sとする。一方、昇温速度が小さすぎるとフェライトやマルテンサイト粒が粗大化して、所望の熱間プレス後の鋼板組織が得られないため、3℃/s以上の平均昇温速度が必要である。好ましくは8℃/s以上である。この平均昇温速度を制御することによって、結晶粒の微細化が可能となる。
 そして、後述する720~850℃の均熱温度域まで加熱する。
・均熱温度:720~850℃
 均熱温度は、フェライトとオーステナイトの2相域の温度域とする。720℃未満では粗大なセメンタイトが析出するため、均熱温度の下限は720℃とする。一方、均熱温度が高すぎると、オーステナイトの結晶粒成長が顕著となり、結晶粒およびTiおよびNbの炭窒化物が粗大化し、プロジェクション溶接後の押込剥離強度が低下するため、均熱温度は850℃以下とする。好ましくは830℃以下である。
・均熱保持時間:15秒以上
 上記の均熱温度において、再結晶の進行および一部もしくは全ての組織のオーステナイト変態のためには、少なくとも15s保持する必要がある。一方、保持時間が過剰に長いと、Mnのミクロ偏析が助長され、曲げ加工性が劣化することから、保持時間は600秒以内が好ましい。
〔冷却工程〕
・均熱後の冷却条件:5℃/s以上の第3平均冷却速度で600℃以下の温度域まで冷却
 上記の均熱処理(焼鈍処理)後は、均熱温度から600℃以下の温度域(冷却停止温度)まで、5℃/s以上の平均冷却速度で冷却する必要がある。平均冷却速度が5℃/s未満では、冷却中にフェライト変態が進行して、冷延鋼板のマルテンサイトの体積分率が減少し、NbおよびTi炭窒化物が粗大化するため、プロジェクション溶接後の押込剥離強度が低下する。この平均冷却速度の上限については特に規定されないが、設備上の観点およびコストの面から、30℃/s以下が好適である。また、冷却停止温度が600℃を超える場合には、パーライトが過剰に生成し、鋼板のミクロ組織における所定の体積分率を得られないため、プロジェクション溶接後の押込剥離強度が低下する。
 その後、溶融亜鉛めっきなどのめっき処理を施してもよいし、かかるめっき処理を施さずに冷延鋼板のままで使用してもよい。
〔めっき工程〕
 本発明の熱間プレス用冷延鋼板は、上述の製造工程により製造された冷延鋼板ままで使用してもよいが、目的に応じて、Al系めっき層またはZn系めっき層を施すためのめっき工程を行ってもよい。
 めっき工程は何ら限定されるものではなく、公知の溶融めっき法、電気めっき法、蒸着めっき法等がいずれも適用可能である。また、めっき工程後に合金化処理を施してもよい。
 なお、冷延鋼板に対して調質圧延を実施しても良い。この際の好適な伸び率は0.05~2.0%である。
 上記のようにして得られた冷延鋼板に対して熱間プレスを行って熱間プレス部材とするが、この時の熱間プレス法については特に制限はなく常法に従って行えば良い。以下に一例を示すが、これに限定されるものではない。
 例えば、素材である熱間プレス用冷延鋼板を、電気炉、ガス炉、通電加熱炉、遠赤外線加熱炉等を使用して、Ac3変態点~1000℃の温度範囲に加熱し、この温度範囲で0~600秒間保持した後、鋼板をプレス機に搬送して、550~800℃の範囲で熱間プレスを行えばよい。熱間プレス用冷延鋼板を加熱する際の昇温速度は、3~200℃/sとすればよい。
 ここに、Ac3変態点は次式によって求めることができる。
  Ac3変態点(℃)=881-206C+53Si-15Mn-20Ni-1Cr-27Cu+41Mo
  ただし、式中の元素記号は各元素の含有量(質量%)を表す。含有しない元素については、0として計算する。
 以下、本発明の実施例について説明する。
 なお、本発明は、もとより以下に述べる実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲において適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。
 表1に示す成分組成の鋼を溶製し、連続鋳造してスラブとした後、表2に示す温度域まで加熱後、仕上げ圧延終了温度(FDT)を表2に示す条件で熱間圧延を行った。ついで、熱延鋼板を、表2に示す第1平均冷却速度(冷速1)で冷却停止温度(第1冷却温度)まで冷却した後、第2平均冷却温度(冷速2)で巻取り温度(CT)まで冷却し、コイルに巻取った。
 ついで、得られた熱延板を、酸洗後、表2に示す圧下率で冷間圧延を施して、冷延板(板厚:1.4mm)とした。
 ついで、かくして得られた冷延鋼板を、連続焼鈍ライン(CAL)で表2に示す条件で第1の焼鈍処理を行い、冷延鋼板を得た。その後、連続焼鈍ライン(CAL)もしくは連続溶融めっきライン(CGL)において、表2に示す条件で第2の焼鈍処理を行い、CALを通過した鋼板については冷延鋼板(CR)、CGLを通過した鋼板については溶融亜鉛めっき鋼板(GI)を得た。なお、CGLを通過した鋼板の一部については、溶融亜鉛めっき処理を施した後、さらに550℃で合金化処理を行い、合金化溶融亜鉛めっき鋼板(GA)を得た。また、溶融アルミめっき処理を施して、溶融アルミめっき鋼板(AS)を得た。さらに、一部はCALにて焼鈍した後に電気亜鉛めっきライン(EGL)において、電気亜鉛ニッケルめっき鋼板(EZN)を得た。
 ついで、得られた冷延鋼板(めっき鋼板を含む)に対し、表3に示す条件で熱間プレスを実施した。
 熱間プレスで使用した金型は、パンチ幅70mm、パンチ肩R4mm、ダイ肩R4mmで、成形深さは30mmである。冷延鋼板に対する加熱は、加熱速度に応じて赤外線加熱炉または雰囲気加熱炉のいずれかを用い、大気中で行った。また、プレス後の冷却は、鋼板のパンチ・ダイ間での挟み込みと挟み込みから開放したダイ上での空冷とを組み合わせて行い、プレス(開始)温度から150℃まで冷却した。このとき、パンチを下死点にて保持する時間を1~60秒の範囲で変えることで冷却速度を調整した。
 かくして得られた熱間プレス部材のハット底部の位置からJIS 5号引張試験片を採取し、JIS Z 2241に準拠して引張試験を行い、引張強さ(TS)を測定した。
 プロジェクション溶接後の押込剥離強度は、各種熱間プレス鋼板から、50mm×150mmの試験片を採取し、中央に直径10mmの穴をあけ、4点のプロジェクション部を有するM6溶接用ナットを、前記試験片の穴の中心と前記ナットの穴の中心とが一致するように交流溶接機にセットした。抵抗溶接の条件は、溶接ガンに取付けられたサーボモータ加圧式で単相交流(50Hz)の抵抗溶接機を用いて溶接を行い、プロジェクション溶接部を保有した試験片を作製した。なお、使用した一対の電極チップは、平型30mmφの電極とした。溶接条件は加圧力は3000N、通電時間は7サイクル(50Hz)、溶接電流は12kA、ホールド時間は10サイクル(50Hz)とした。
 このようにして得られた溶接体のナット穴にボルトを固定した後、JIS B 1196:2001に準拠した押込剥離試験によってナットが鋼板から剥離するときの荷重を測定した。その時の荷重が8kN以上の場合はプロジェクション溶接部の押込剥離強度が良好(○)、6.5kN以上8kN未満の場合はプロジェクション溶接部の押込剥離強度が適(△)、6.5kN未満の場合はプロジェクション溶接部の押込剥離強度が劣(×)とした。
 焼鈍後の冷延鋼板および熱間プレス後の部材のマルテンサイトおよびパーライトの体積分率は、鋼板の圧延方向に平行な板厚断面を研磨後、3vol%ナイタールで腐食し、SEM(走査型電子顕微鏡)を用いて5000倍の倍率で観察し、ポイントカウント法(ASTM E562-83(1988)に準拠)により、面積率を測定し、その面積率を体積分率とした。旧オーステナイトおよびフェライトの平均結晶粒径は、Media  Cybernetics社のImage-Proを用いて、鋼板組織写真から予め各々の旧オーステナイトおよびフェライト結晶粒を識別しておいた写真を取り込むことで面積が算出可能であり、その円相当直径を算出し、それらの値を平均して求めた。
 また、NbおよびTiの炭窒化物の粒径は、L断面について、TEM(透過型電子顕微鏡)を用いて10000倍の倍率で観察し、Image-Proを用いて、下限を0.005μmとして、その円相当直径を算出することで粒径を求めた。NbおよびTiの炭窒化物の個数はTEM(透過型電子顕微鏡)を用いて10000倍の倍率で観察し、10箇所の平均個数を求めた。
 さらに、NbおよびTiの炭窒化物の粒子間距離(λ)は次のようにして測定した。
 すなわち、L断面について、TEM(透過型電子顕微鏡)を用いて10000倍の倍率で観察し、従来報告されている(1)式に従い求めた。
  λ = (0.9Vp-1/2- 0.8) × dp    ・・・(1)
 ここで、Vpは粒子の体積率(%)、dpは粒径である。なお、粒子の体積率はTEMの観察結果から求めた面積率とした。
 かくして得られた冷延鋼板および熱間プレス部材の鋼板組織を表4に示す。また、熱間プレス部材の引張特性およびプロジェクション溶接後の押込剥離強度の測定結果を表5に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 表5に示したとおり、成分組成および熱間プレス後のミクロ組織が本発明の適正範囲を満足する発明例はいずれも、高い引張強度は言うまでもなく、優れたプロジェクション溶接部の押込剥離強度を併せて得ることができた。

Claims (9)

  1.  鋼板のミクロ組織が、鋼板表面から板厚方向に50μm以内の旧オーステナイト平均結晶粒径が7μm以下かつマルテンサイトの体積分率が90%以上で、鋼板表面から板厚方向20~100μmの深さ範囲における、粒径が0.10μm未満のNbおよびTiの炭窒化物の平均粒子間距離が5μm以下であり、引張強さが1780MPa以上である、熱間プレス部材。
  2.  鋼板の化学成分が、質量%で、C:0.28%以上0.42%未満、Si:1.5%以下、Mn:1.1%以上2.4%以下、P:0.05%以下、S:0.005%以下、Al:0.01%以上0.50%以下、N:0.010%以下、Nb:0.005%以上0.15%以下およびTi:0.005%以上0.15%以下を含有し、残部はFeおよび不可避的不純物からなる請求項1に記載の熱間プレス部材。
  3.  前記鋼板が、質量%で、さらにB:0.0050%以下、Mo:0.50%以下、Cr:0.50%以下、Sb:0.001%以上0.020%以下、Ca:0.005%以下、Mg:0.005%以下、REM:0.005%以下、V:0.15%以下、Cu:0.50%以下、Ni:0.50%以下、Sn:0.50%以下、Zn:0.10%以下、Co:0.10%以下、Zr:0.10%以下、Ta:0.10%以下およびW:0.10%以下から選択される一種または二種以上を含有する請求項2に記載の熱間プレス部材。
  4.  前記鋼板の表層に、Al系めっき層またはZn系めっき層を有する請求項1乃至3のいずれか1項に記載の熱間プレス部材。
  5.  鋼板のミクロ組織が、パーライトを体積分率で30%以下含有し、さらに鋼板表面から板厚方向に150μmまでの範囲に粒径が0.10μm未満のNbおよびTiの炭窒化物が鋼板断面100μm2当たり平均で10個以上存在し、かつその平均粒子間距離が5μm以下である、熱間プレス用冷延鋼板。
  6.  鋼板の化学成分が、質量%で、C:0.28%以上0.42%未満、Si:1.5%以下、Mn:1.1%以上2.4%以下、P:0.05%以下、S:0.005%以下、Al:0.01%以上0.50%以下、N:0.010%以下、Nb:0.005%以上0.15%以下およびTi:0.005%以上0.15%以下を含有し、残部はFeおよび不可避的不純物からなる請求項5に記載の熱間プレス用冷延鋼板。
  7.  前記鋼板が、質量%で、さらにB:0.0050%以下、Mo:0.50%以下、Cr:0.50%以下、Sb:0.001%以上0.020%以下、Ca:0.005%以下、Mg:0.005%以下、REM:0.005%以下、V:0.15%以下、Cu:0.50%以下、Ni:0.50%以下、Sn:0.50%以下、Zn:0.10%以下、Co:0.10%以下、Zr:0.10%以下、Ta:0.10%以下およびW:0.10%以下から選択される一種または二種以上を含有する請求項6に記載の熱間プレス用冷延鋼板。
  8.  前記鋼板が、表面にAl系めっき層またはZn系めっき層を有する請求項5乃至7のいずれか1項に記載の熱間プレス用冷延鋼板。
  9.  請求項5乃至8のいずれかに記載の熱間プレス用冷延鋼板を、Ac3変態点~1000℃の温度域で加熱後、熱間プレスを行う熱間プレス部材の製造方法。
PCT/JP2017/024260 2017-06-30 2017-06-30 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板 WO2019003450A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/JP2017/024260 WO2019003450A1 (ja) 2017-06-30 2017-06-30 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板
PCT/JP2018/013725 WO2019003542A1 (ja) 2017-06-30 2018-03-30 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法
JP2018550486A JP6540908B2 (ja) 2017-06-30 2018-03-30 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法
MX2019015322A MX2019015322A (es) 2017-06-30 2018-03-30 Miembro prensado en caliente y metodo para la fabricacion del mismo, y lamina de acero laminada en frio para prensado en caliente y metodo para la fabricacion de la misma.
EP18825409.8A EP3647450B1 (en) 2017-06-30 2018-03-30 Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing and method for manufacturing same
US16/620,615 US11236406B2 (en) 2017-06-30 2018-03-30 Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing and method for manufacturing same
KR1020197038381A KR102356747B1 (ko) 2017-06-30 2018-03-30 열간 프레스 부재 및 그 제조 방법 그리고 열간 프레스용 냉연 강판 및 그 제조 방법
CN201880042603.4A CN110832097B (zh) 2017-06-30 2018-03-30 热压构件及其制造方法以及热压用冷轧钢板及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/024260 WO2019003450A1 (ja) 2017-06-30 2017-06-30 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板

Publications (1)

Publication Number Publication Date
WO2019003450A1 true WO2019003450A1 (ja) 2019-01-03

Family

ID=64740456

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/024260 WO2019003450A1 (ja) 2017-06-30 2017-06-30 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板
PCT/JP2018/013725 WO2019003542A1 (ja) 2017-06-30 2018-03-30 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013725 WO2019003542A1 (ja) 2017-06-30 2018-03-30 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法

Country Status (7)

Country Link
US (1) US11236406B2 (ja)
EP (1) EP3647450B1 (ja)
JP (1) JP6540908B2 (ja)
KR (1) KR102356747B1 (ja)
CN (1) CN110832097B (ja)
MX (1) MX2019015322A (ja)
WO (2) WO2019003450A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3940091A4 (en) * 2019-03-12 2022-01-26 JFE Steel Corporation HOT PRESS ELEMENT, METHOD OF PRODUCTION OF A STEEL SHEET FOR A HOT PRESS AND METHOD OF PRODUCTION OF A HOT PRESS ELEMENT
WO2023047991A1 (ja) * 2021-09-22 2023-03-30 Jfeスチール株式会社 熱間プレス用鋼板、その製造方法、熱間プレス部材およびその製造方法
JP7512987B2 (ja) 2021-09-22 2024-07-09 Jfeスチール株式会社 熱間プレス用鋼板、その製造方法、熱間プレス部材およびその製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220186339A1 (en) * 2019-02-21 2022-06-16 Jfe Steel Corporation Hot-pressed member, cold-rolled steel sheet for hot pressing, and manufacturing methods therefor
JP7151871B2 (ja) * 2019-03-20 2022-10-12 日本製鉄株式会社 ホットスタンプ成形体
JP7255634B2 (ja) * 2020-05-15 2023-04-11 Jfeスチール株式会社 熱間プレス部材およびその製造方法
CN113352708B (zh) * 2021-07-06 2022-02-22 华北电力大学 一种轻质高强Mg-Ta复合金属板材及其室温轧制成形方法
WO2023214731A1 (ko) * 2022-05-06 2023-11-09 주식회사 포스코 열간 프레스 성형 부재 및 이의 제조방법
WO2024171172A1 (en) * 2023-06-30 2024-08-22 Arcelormittal Steel sheet and high strength press hardened steel part having excellent bending and method of manufacturing the same
WO2024171173A1 (en) * 2023-06-30 2024-08-22 Arcelormittal Steel sheet and high strength press hardened steel part having excellent bending anisotropy and method of manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314817A (ja) * 2006-05-23 2007-12-06 Sumitomo Metal Ind Ltd 熱間プレス用鋼板および熱間プレス鋼板部材ならびにそれらの製造方法
JP2010065295A (ja) * 2008-09-12 2010-03-25 Jfe Steel Corp 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法
JP2010174282A (ja) * 2009-01-28 2010-08-12 Jfe Steel Corp 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法
JP2010174283A (ja) * 2009-01-28 2010-08-12 Jfe Steel Corp 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4445095B2 (ja) * 2000-04-21 2010-04-07 新日本製鐵株式会社 バーリング加工性に優れる複合組織鋼板およびその製造方法
JP4464861B2 (ja) 2005-04-27 2010-05-19 株式会社神戸製鋼所 耐結晶粒粗大化特性と冷間加工性に優れた肌焼用鋼
JP5387073B2 (ja) * 2009-03-16 2014-01-15 新日鐵住金株式会社 熱間プレス用鋼板およびその製造方法ならびに熱間プレス用鋼板部材の製造方法
CN101713046B (zh) * 2009-12-14 2013-09-18 钢铁研究总院 纳米析出相强化及控制的超细晶粒马氏体钢的制备方法
WO2011158818A1 (ja) * 2010-06-14 2011-12-22 新日本製鐵株式会社 ホットスタンプ成形体、ホットスタンプ用鋼板の製造方法及びホットスタンプ成形体の製造方法
JP5516380B2 (ja) 2010-12-14 2014-06-11 新日鐵住金株式会社 抵抗溶接用冷延鋼板およびその製造方法
JP5708350B2 (ja) 2011-01-13 2015-04-30 新日鐵住金株式会社 プロジェクション溶接継手およびその製造方法
JP5626025B2 (ja) * 2011-03-02 2014-11-19 新日鐵住金株式会社 溶接部の遅れ破壊特性並びに静的強度特性に優れた自動車用構造部材、および、その製造方法
WO2013105631A1 (ja) 2012-01-13 2013-07-18 新日鐵住金株式会社 ホットスタンプ成形体及びその製造方法
KR20150029736A (ko) 2012-07-31 2015-03-18 제이에프이 스틸 가부시키가이샤 성형성 및 형상 동결성이 우수한 고강도 용융 아연 도금 강판, 그리고 그의 제조 방법
EP3101147B1 (en) * 2014-01-29 2018-08-15 JFE Steel Corporation High-strength cold-rolled steel sheet and method for manufacturing same
US10308996B2 (en) * 2015-07-30 2019-06-04 Hyundai Motor Company Hot stamping steel and producing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314817A (ja) * 2006-05-23 2007-12-06 Sumitomo Metal Ind Ltd 熱間プレス用鋼板および熱間プレス鋼板部材ならびにそれらの製造方法
JP2010065295A (ja) * 2008-09-12 2010-03-25 Jfe Steel Corp 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法
JP2010174282A (ja) * 2009-01-28 2010-08-12 Jfe Steel Corp 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法
JP2010174283A (ja) * 2009-01-28 2010-08-12 Jfe Steel Corp 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3940091A4 (en) * 2019-03-12 2022-01-26 JFE Steel Corporation HOT PRESS ELEMENT, METHOD OF PRODUCTION OF A STEEL SHEET FOR A HOT PRESS AND METHOD OF PRODUCTION OF A HOT PRESS ELEMENT
WO2023047991A1 (ja) * 2021-09-22 2023-03-30 Jfeスチール株式会社 熱間プレス用鋼板、その製造方法、熱間プレス部材およびその製造方法
JP7302756B1 (ja) * 2021-09-22 2023-07-04 Jfeスチール株式会社 熱間プレス用鋼板、その製造方法、熱間プレス部材およびその製造方法
JP7512987B2 (ja) 2021-09-22 2024-07-09 Jfeスチール株式会社 熱間プレス用鋼板、その製造方法、熱間プレス部材およびその製造方法

Also Published As

Publication number Publication date
EP3647450A1 (en) 2020-05-06
KR102356747B1 (ko) 2022-01-27
US11236406B2 (en) 2022-02-01
EP3647450A4 (en) 2020-05-06
MX2019015322A (es) 2020-02-17
KR20200013703A (ko) 2020-02-07
EP3647450B1 (en) 2021-04-28
CN110832097B (zh) 2021-10-29
US20200370140A1 (en) 2020-11-26
JP6540908B2 (ja) 2019-07-10
WO2019003542A1 (ja) 2019-01-03
CN110832097A (zh) 2020-02-21
JPWO2019003542A1 (ja) 2019-06-27

Similar Documents

Publication Publication Date Title
JP6540909B2 (ja) 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法
JP6501046B1 (ja) 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法
JP6540908B2 (ja) 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法
JP6504323B1 (ja) 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法
JP6501045B1 (ja) 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法
JP6540910B2 (ja) 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法
CN113490758B (zh) 热压部件、热压用冷轧钢板及其制造方法
WO2020158285A1 (ja) 熱間プレス部材、熱間プレス部材用冷延鋼板、およびそれらの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17916260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP