WO2023162190A1 - 鋼板、部材、それらの製造方法、冷延鋼板用熱延鋼板の製造方法及び冷延鋼板の製造方法 - Google Patents
鋼板、部材、それらの製造方法、冷延鋼板用熱延鋼板の製造方法及び冷延鋼板の製造方法 Download PDFInfo
- Publication number
- WO2023162190A1 WO2023162190A1 PCT/JP2022/008145 JP2022008145W WO2023162190A1 WO 2023162190 A1 WO2023162190 A1 WO 2023162190A1 JP 2022008145 W JP2022008145 W JP 2022008145W WO 2023162190 A1 WO2023162190 A1 WO 2023162190A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- steel sheet
- hot
- rolling
- ferrite
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 223
- 239000010959 steel Substances 0.000 title claims abstract description 223
- 238000000034 method Methods 0.000 title claims abstract description 68
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 37
- 239000010960 cold rolled steel Substances 0.000 title claims description 12
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 114
- 238000005096 rolling process Methods 0.000 claims abstract description 90
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 24
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000000203 mixture Substances 0.000 claims abstract description 19
- 238000005452 bending Methods 0.000 claims description 69
- 229910000734 martensite Inorganic materials 0.000 claims description 69
- 229910001566 austenite Inorganic materials 0.000 claims description 45
- 230000008569 process Effects 0.000 claims description 41
- 238000000137 annealing Methods 0.000 claims description 39
- 230000000717 retained effect Effects 0.000 claims description 39
- 229910001563 bainite Inorganic materials 0.000 claims description 35
- 230000009467 reduction Effects 0.000 claims description 22
- 238000005097 cold rolling Methods 0.000 claims description 20
- 238000001816 cooling Methods 0.000 claims description 20
- 238000005098 hot rolling Methods 0.000 claims description 18
- 238000003466 welding Methods 0.000 claims description 18
- 230000001186 cumulative effect Effects 0.000 claims description 17
- 238000010791 quenching Methods 0.000 claims description 17
- 230000000171 quenching effect Effects 0.000 claims description 17
- 238000005496 tempering Methods 0.000 claims description 17
- 238000007747 plating Methods 0.000 claims description 16
- 239000011800 void material Substances 0.000 claims description 16
- 238000005246 galvanizing Methods 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims description 9
- 238000005554 pickling Methods 0.000 claims description 7
- 238000003303 reheating Methods 0.000 claims description 7
- 239000013078 crystal Substances 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 6
- 238000004804 winding Methods 0.000 claims description 5
- 238000005244 galvannealing Methods 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 239000002245 particle Substances 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 58
- 230000000694 effects Effects 0.000 description 26
- 230000015572 biosynthetic process Effects 0.000 description 12
- 238000005728 strengthening Methods 0.000 description 12
- 230000009466 transformation Effects 0.000 description 10
- 239000010410 layer Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 238000003825 pressing Methods 0.000 description 8
- 238000005275 alloying Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 6
- 229910052750 molybdenum Inorganic materials 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- 229910052758 niobium Inorganic materials 0.000 description 6
- 229910052718 tin Inorganic materials 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- 229910052720 vanadium Inorganic materials 0.000 description 6
- 229910052787 antimony Inorganic materials 0.000 description 5
- 229910001567 cementite Inorganic materials 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 5
- 229910001562 pearlite Inorganic materials 0.000 description 5
- 238000009864 tensile test Methods 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 230000002411 adverse Effects 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 230000003749 cleanliness Effects 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 150000001247 metal acetylides Chemical class 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 229910001335 Galvanized steel Inorganic materials 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000008397 galvanized steel Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 230000006911 nucleation Effects 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 230000000593 degrading effect Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 238000005482 strain hardening Methods 0.000 description 2
- 150000003568 thioethers Chemical class 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910000797 Ultra-high-strength steel Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/22—Electroplating: Baths therefor from solutions of zinc
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Definitions
- the present invention relates to high-strength steel sheets and members with excellent collision characteristics, methods for manufacturing them, methods for manufacturing hot-rolled steel sheets for cold-rolled steel sheets, and methods for manufacturing cold-rolled steel sheets.
- the steel sheet of the present invention can be suitably used mainly as a steel sheet for automobiles.
- high-strength steel plates of 780 MPa or more are likely to cause member breakage starting at the point where they have undergone primary processing by forming at the time of collision, and the problem is that they cannot stably exhibit collision energy absorption capacity.
- materials of 590 MPa or less are mainly applied. Therefore, there is room for contributing to environmental conservation through weight reduction while ensuring safety in the event of a collision by suppressing breakage of members in the event of a collision and stably exhibiting high absorbed energy. From the above, it is necessary to apply a high-strength steel sheet having a TS of 780 MPa or more, which is excellent in collision characteristics, to the energy absorbing member.
- Patent Document 1 discloses a technique related to an ultra-high strength steel sheet with a TS of 1200 MPa or more, which is excellent in formability and impact resistance.
- Patent Document 2 discloses a technique related to a high-strength steel sheet that has a maximum tensile strength of 780 MPa or more and can be applied to a shock-absorbing member at the time of collision.
- Patent Document 1 Although the collision characteristics are studied, the impact resistance is studied on the premise that the members do not break at the time of collision, and the collision characteristics from the viewpoint of member breakage resistance are studied. not
- the present invention has been made in view of such circumstances, and has a tensile strength (TS) of 780 MPa or more, which is suitable for use as an energy absorbing member for automobiles, and has excellent crash characteristics. intended to provide
- TS tensile strength
- the inventors of the present invention found the following as a result of extensive research in order to solve the above problems.
- the steel sheet has a chemical composition satisfying a carbon equivalent (CE) of 0.46% or more, and the area ratio is ferrite: 10 to 50%, the sum of tempered martensite and bainite: 30% or more, and retained austenite: 3 to 20%. , fresh martensite: 15% or less, the total of ferrite, tempered martensite, bainite, retained austenite and fresh martensite: 85% or more, and a steel structure in which the average grain size of ferrite is 25 ⁇ m or less.
- CE carbon equivalent
- the coefficient of variation of ferrite grain size (CV) ⁇ carbon equivalent (CE) is 0.28 or less, the radius of curvature / plate thickness is 4.2, and the width (C) direction is the axis and the rolling (L) direction is 90 °
- the ratio of ferrite grains having voids at the interface to all ferrite grains in the L cross section within the region of 0 to 50 ⁇ m from the steel plate surface on the compression-tensile deformation side (NF void /NF) is 15% or less, and the tensile strength is 780 MPa or more. It was found that a steel sheet having high strength and excellent collision resistance can be obtained by these methods.
- the component composition is in mass %, C: 0.07 to 0.20%, Si: 0.10 to 2.00%, Mn: 1.5-4.0%, P: 0.100% or less, S: 0.050% or less, Sol.
- the component composition further includes, in % by mass, The component composition is further, in mass %, Cr: 1.000% or less, Mo: 0.500% or less, V: 0.500% or less, Ti: 0.500% or less, Nb: 0.500% or less, B: 0.0050% or less, Ni: 1.000% or less, Cu: 1.000% or less, Sb: 1.000% or less, Sn: 1.000% or less, As: 1.000% or less, Ca: 0.0050% or less, W: 0.500% or less, Ta: 0.100% or less, Mg: 0.050% or less, The steel sheet according to [2], containing at least one selected from Zr: 0.050% or less and REM: 0.005% or less.
- [4] The steel sheet according to any one of [1] to [3], which has an electro-galvanized layer, a hot-dip galvanized layer, or an alloyed hot-dip galvanized layer on the surface of the steel sheet.
- a steel slab having a carbon equivalent (CE) of 0.46 or more and having the chemical composition described in [2] or [3] is heated to a temperature range of 1100 to 1300 ° C., and the finish rolling temperature is set to 800.
- CE carbon equivalent
- Hot rolling at ⁇ 950 ° C., the cumulative rolling reduction of finish rolling is 60% or more, and the residence time in the temperature range of 750 to 600 ° C. is 10 seconds or less in the cooling process from the delivery side of finish rolling to coiling,
- a method of manufacturing a steel plate comprising: [7] A steel slab having a carbon equivalent (CE) of 0.46 or more and having the chemical composition described in [2] or [3] is heated to a temperature range of 1100 to 1300 ° C., and the finish rolling delivery side temperature is hot rolled at 800 to 950 ° C., the cumulative reduction rate of finish rolling is set to 60% or more, and the residence time in the temperature range of 750 to 600 ° C. is 10 seconds or less in the cooling process from the delivery side of finish rolling to coiling. and coiled at a coiling temperature of 600 ° C.
- CE carbon equivalent
- a method for manufacturing a hot-rolled steel sheet for cold-rolled steel including a hot-rolling process.
- a steel sheet having a tensile strength (TS) of 780 MPa or more and excellent collision resistance can be obtained.
- a member obtained by molding or welding the steel plate of the present invention can be suitably used as an energy absorbing member used in the field of automobiles.
- the steel sheet of the present invention has a chemical composition satisfying a carbon equivalent (CE) of 0.46% or more and an area ratio of ferrite: 10 to 50%, a total of tempered martensite and bainite: 30% or more, and retained austenite: 3. ⁇ 20%, fresh martensite: 15% or less, total of ferrite, tempered martensite, bainite, retained austenite and fresh martensite: 90% or more, and the average grain size of ferrite: 25 ⁇ m
- the coefficient of variation (CV) of the ferrite grain size x the carbon equivalent (CE) is 0.28 or less, and the radius of curvature/sheet thickness is 4.2, and the rolling (L) direction is centered on the width (C) direction.
- the carbon equivalent CE is an index of the strength of steel, and is obtained by converting the effects of elements other than C into the amount of C.
- the carbon equivalent CE is preferably 0.48% or more.
- the carbon equivalent CE is preferably 0.85% or less, more preferably 0.82% or less, in consideration of the balance between weldability and formability.
- Carbon equivalent CE can be calculated by the following formula (1).
- Carbon equivalent CE [C%] + ([Si%] / 24) + ([Mn%] / 6) + ([Ni%] / 40) + ([Cr%] / 5) + ([Mo%] /4) + ([V%]/14)
- [element symbol %] in the above formula represents the content (% by mass) of each element, and elements not contained are set to 0.
- Area ratio of ferrite 10 to 50% If the area ratio of ferrite exceeds 50%, it becomes difficult to achieve both tensile strength (TS) of 780 MPa or more and crashworthiness. If the area ratio of ferrite is less than 10%, stress concentrates on the ferrite during deformation, which may promote the formation of voids at the interface. Therefore, the area ratio of ferrite is 10 to 50%.
- the area ratio of ferrite is preferably 15% or more. Further, the area ratio of ferrite is preferably 45% or less.
- Total area ratio of tempered martensite and bainite 30% or more Tempered martensite is effective in improving the energy absorption and strength during impact while improving impact characteristics by suppressing breakage of members during impact deformation. be. If the total area ratio of tempered martensite and bainite is less than 30%, these effects cannot be sufficiently obtained. Therefore, the total area ratio is 30% or more, preferably 40% or more. Although the upper limit of the total area ratio is not limited, the total area ratio is preferably 80% or less in consideration of the balance with other structures.
- Fresh martensite 15% or less Fresh martensite is effective for increasing strength. However, voids are likely to occur at the grain boundary with the soft phase, and if the area ratio of fresh martensite exceeds 15%, the formation of voids is promoted at the interface with ferrite, which may reduce the collision characteristics. Therefore, the area ratio of fresh martensite is 15% or less, preferably 10% or less, and more preferably 5% or less. The lower limit of the area ratio of fresh martensite may be 0%.
- the total area percentage may be 100%.
- the total area ratio of pearlite and cementite, which constitute the structure of the remainder other than the above, is 10% or less.
- the total area percentage of this residual tissue is 7% or less, more preferably 5% or less, more preferably 3% or less.
- the area ratio of each structure is the ratio of the area of each phase to the observed area.
- the area ratio of each tissue is measured as follows. After polishing the thickness cross-section of the steel plate cut perpendicular to the rolling direction, it was corroded with 3% by volume nital, and the 1/4 position of the thickness was photographed with a SEM (scanning electron microscope) at a magnification of 1500 times in three fields. , the area ratio of each tissue is determined from the obtained image data using Image-Pro manufactured by Media Cybernetics. The average value of the area ratios of the three fields of view is used as the area ratio of each tissue in the present invention.
- ferrite is black
- bainite is black containing island-shaped retained austenite, or gray containing oriented carbide
- tempered martensite is light gray containing fine non-oriented carbide
- retained austenite is white.
- the fresh martensite also exhibits white color, and it is difficult to distinguish between the fresh martensite and the retained austenite in the SEM image. Therefore, the area ratio of fresh martensite is obtained by subtracting the area ratio of retained austenite obtained by the method described later from the total area ratio of fresh martensite and retained austenite.
- the volume ratio of retained austenite was obtained by measuring the X-ray diffraction intensity, and the volume ratio was regarded as the area ratio of retained austenite.
- the volume fraction of retained austenite is the (200), (220), (311) Determined by the ratio of X-ray diffraction integrated intensity of the surface.
- Average grain size of ferrite 25 ⁇ m or less
- the average grain size of ferrite 25 ⁇ m or less
- high collision resistance can be obtained.
- Fracture at collision which causes deterioration of crash characteristics, originates from the generation and propagation of cracks. It is considered that cracks are more likely to occur due to a decrease in work hardening ability and formation and connection of voids in the high hardness difference region.
- the part subjected to the primary working at the time of molding deforms so as to be bent back in the direction perpendicular to the primary working.
- the average grain size of ferrite is 25 ⁇ m or less, preferably 20 ⁇ m or less. Although the lower limit of the average crystal grain size of ferrite is not particularly defined, it is preferably 3 ⁇ m or more.
- the average crystal grain size of ferrite is obtained by photographing 10 or more fields of view of a 40 ⁇ m ⁇ 50 ⁇ m region at a magnification of 2000 times with a SEM (scanning electron microscope) at a position of 1/4 of the plate thickness, and from the obtained image data, the above-mentioned Image- It is measured by calculating the equivalent circle diameter from the area ratio of each ferrite grain using Pro and averaging them. Further, the standard deviation of the ferrite grain size, which will be described later, can be calculated from each ferrite grain size obtained using Image-Pro described above.
- CV Coefficient of Variation
- CE Carbon Equivalent
- the variation coefficient CV of the ferrite grain size can be obtained by the following formula (2).
- Carbon equivalent CE can be calculated by the following formula (1).
- CE [C%] + ([Si%] / 24) + ([Mn%] / 6) + ([Ni%] / 40) + ([Cr%] / 5) + ([Mo%] / 4 ) + ([V%]/14)
- [element symbol %] in the above formula represents the content (% by mass) of each element, and elements not contained are set to 0.
- the hot rolled structure is mainly composed of fresh martensite and bainite.
- the desired ferrite average grain size and CV ⁇ CE are obtained.
- the hot-rolled structure when a structure mainly composed of fine fresh martensite and bainite is used, the nucleation sites when ferrite is generated in the annealing process and the cooling process after annealing increase, resulting in uniform and fine ferrite grains. becomes a decentralized organization.
- Curvature radius/plate thickness 4.2 After bending 90° in the rolling (L) direction with the width (C) direction as the axis, when it is bent back flat again, 0 from the steel plate surface on the compression-tensile deformation side Number ratio of ferrite grains having voids at the interface to all ferrite grains (NF void /NF): 15% or less In the steel sheet of the present invention, NF void /NF is 15% or less. (NF has a radius of curvature/thickness of 4.2, and after bending 90° in the rolling (L) direction around the width (C) direction, it is bent back flat again.
- NF void is the curvature radius / plate thickness: 4.2 and the width (C) direction
- the ferrite grains having voids at the interface. is the number of ).
- tempered martensite and bainite are used to reduce the high hardness difference region, and if necessary, retained austenite is used to suppress the macro stress concentration in the primary processed part during deformation, thereby controlling the ferrite grain size.
- NF void /NF is set to 15% or less in order to obtain these effects. Preferably, it is 10% or less.
- NF void /NF shall be 1 or more as a lower limit industrially obtained.
- a method for measuring NF void /NF is as follows.
- the steel plate is bent 90° in the rolling (L) direction with the width (C) direction as the axis at a curvature radius/plate thickness of 4.2, and after being flattened again, the thickness cross section is polished and compressed.
- - Observe the L cross section within a 0 to 50 ⁇ m region from the surface of the steel sheet on the tension side.
- the L section was photographed with a SEM (scanning electron microscope) at a magnification of 2000 times for 3 fields of view, and from the obtained image data, Image-Pro manufactured by Media Cybernetics was used to determine the number of all ferrite grains in the field of view and voids at the interface. count the number of ferrite grains having Let NF void /NF be the average value of the three fields of view.
- the voids are darker black than ferrite and can be clearly distinguished from each structure.
- bending 90° in the rolling (L) direction about the width (C) direction means that when the steel plate is viewed in the width (C) direction (see symbol D1 in FIG. 1) (width direction In the view of the steel plate (vertical cross section in the width direction), one of the steel plate surfaces is perpendicular to the width direction and the rolling direction (see symbols D1 and D2 in FIG. 1) so that the distance between both ends becomes short. It refers to bending by pressing from the side and pressing until the angle formed by the flat portions that are not bent at both ends becomes 90°.
- the steel plate surface on the compression-tensile deformation side refers to the steel plate surface on one side that is pressed (the steel plate surface on the side that comes into contact with a pressing portion such as a punch that presses).
- the L cross section after bending back is a cross section formed by cutting parallel to the direction of deformation due to bending and perpendicular to the steel plate surface, and is a cross section perpendicular to the width direction. point to
- the measurement position of the ferrite grains after bending back is the area including the corners formed by bending and extending in the width (C) direction (see symbol D1 in FIG. 1). More specifically, the number of ferrite grains within a region of 0 to 50 ⁇ m in the plate thickness direction in the lowermost region in the direction perpendicular to the width direction and the rolling direction (the pressing direction of the pressing portion such as a punch) due to bending. to measure.
- the steel sheet of the present invention may have an electrogalvanized layer, a hot-dip galvanized layer, or an alloyed hot-dip galvanized layer on the surface of the steel sheet.
- the steel sheet of the present invention has a tensile strength (TS) of 780 MPa or more.
- the high strength referred to in the present invention means that the tensile strength (TS) is 780 MPa or more.
- the upper limit of the tensile strength (TS) is not particularly limited, it is preferably 1470 MPa or less from the viewpoint of harmony with other properties.
- the tensile strength (TS) is measured by taking a JIS No. 5 tensile test piece (JIS Z2201) from the steel plate in the direction perpendicular to the rolling direction, and setting the strain rate to 10 -3 /s JIS Z2241 (2011). Perform a tensile test in accordance with the provisions of and determine the tensile strength (TS).
- the thickness of the steel sheet of the present invention is preferably 0.2 mm or more. Moreover, the thickness of the steel sheet of the present invention is preferably 3.2 mm or less from the viewpoint of effectively obtaining the effects of the present invention.
- the steel sheet of the present invention has excellent collision properties.
- excellent collision resistance means good rupture resistance and good absorbed energy.
- Good rupture resistance in the present invention means that the average stroke value ⁇ S 50 at the point where the load is 50% lower than the maximum load value when performing the bending-orthogonal bending test described below is 29 mm or more. It means that Good collision characteristics in the present invention means that the axial crush test described in the examples is carried out, and the average value F ave of the area in the stroke range of 0 to 100 mm in the stroke-load graph at the time of crush is 38000 N. It means that it is more than
- the above bend-perpendicular bend test is performed as follows. First, the steel plate is bent 90° in the rolling (L) direction with the width (C) direction as the axis at a curvature radius/plate thickness of 4.2, and then subjected to a flat bending process (primary bending process). , prepare the test piece.
- a punch B1 is pressed into a steel plate placed on a die A1 having a V-groove to obtain a test piece T1.
- the punch B2 is pushed into the test piece T1 placed on the support roll A2 so that the bending direction is perpendicular to the rolling direction (secondary bending).
- D1 indicates the width (C) direction
- D2 indicates the rolling (L) direction.
- FIG. 3 shows a test piece T1 obtained by subjecting a steel plate to 90° bending (primary bending).
- FIG. 4 shows a test piece T2 obtained by subjecting the test piece T1 to orthogonal bending (secondary bending).
- the position indicated by the dashed line on the test piece T2 in FIG. 4 corresponds to the position indicated by the dashed line on the test piece T1 in FIG. 3 before the orthogonal bending.
- ⁇ S50 be the average value of the stroke at the point where the load is reduced by 50% from the maximum load when the bending-perpendicular bending test is performed three times.
- the above axial crush test is performed as follows. First, in consideration of the influence of plate thickness, all axial crush tests are performed on steel plates with a plate thickness of 1.2 mm. A steel plate is cut out and formed (bent) to a depth of 40 mm using a die with a punch shoulder radius of 5.0 mm and a die shoulder radius of 5.0 mm. A hat-shaped member 10 shown in FIG. Also, the steel plate used as the material for the hat-shaped member is separately cut into a size of 200 mm ⁇ 80 mm. Next, the steel plate 20 after being cut out and the hat-shaped member 10 are spot-welded to produce a test member 30 as shown in FIGS. FIG.
- FIG. 5 is a front view of a test member 30 produced by spot-welding the hat-shaped member 10 and the steel plate 20.
- FIG. FIG. 6 is a perspective view of the test member 30.
- the position of the spot welded portion 40 is such that the distance between the edge of the steel plate and the welded portion is 10 mm, and the interval between the welded portions is 45 mm.
- the test member 30 is joined to the base plate 50 by TIG welding to prepare an axial crush test sample.
- the impactor 60 is made to collide with the produced sample for axial crush test at a constant velocity at a collision speed of 10 m/s to crush the sample for axial crush test by 100 mm.
- the crushing direction D3 is parallel to the longitudinal direction of the test member 30 .
- the area in the stroke range of 0 to 100 mm is obtained, and the average value of the area when the test is performed three times is taken as the absorbed energy (F ave ).
- C 0.07-0.20% C facilitates the formation of phases other than ferrite and also forms an alloy compound with Nb, Ti, etc., so it is an element necessary for strength improvement. If the C content is less than 0.07%, the desired strength may not be ensured even if the manufacturing conditions are optimized. Therefore, the C content is preferably 0.07% or more, more preferably 0.10% or more. On the other hand, if the C content exceeds 0.20%, the martensite strength increases excessively, and even if the manufacturing conditions are optimized, the collision characteristics of the present invention may not be obtained. Therefore, the C content is preferably 0.20% or less, more preferably 0.18% or less.
- Si 0.10-2.00%
- Si is a ferrite forming element and also a solid solution strengthening element. Therefore, it contributes to improving the balance between strength and ductility.
- the Si content is preferably 0.10% or more, more preferably 0.20% or more.
- the Si content is preferably 2.00% or less, more preferably 1.50% or less.
- Mn 1.5-4.0%
- Mn is an element that forms martensite and is also a solid-solution strengthening element. Also, it contributes to the stabilization of retained austenite. To obtain these effects, the Mn content is preferably 1.5% or more. The Mn content is more preferably 2.0% or more. On the other hand, when the Mn content exceeds 4.0%, the retained austenite fraction increases, and the crashworthiness may deteriorate. Therefore, the Mn content is preferably 4.0% or less, more preferably 3.5% or less.
- P 0.100% or less
- the P content is 0.100% or less, preferably 0.050% or less.
- the lower limit that is currently industrially practicable is about 0.002%, and it is preferably 0.002% or more.
- S 0.050% or less S becomes inclusions such as MnS and causes cracks along the metal flow of the weld zone, which may reduce the collision characteristics even if the steel structure of the present invention is satisfied. Therefore, the S content should be as low as possible, but the S content is preferably 0.050% or less from the viewpoint of production cost. The S content is more preferably 0.010% or less. Although there is no particular lower limit to the S content, the lower limit that is currently industrially practicable is about 0.0002%, preferably 0.0002% or more.
- Sol. Al acts as a deoxidizing agent and is also a solid-solution strengthening element. Sol. If the Al content is less than 0.005%, these effects may not be obtained, and the strength may decrease even if the steel structure of the present invention is satisfied. Therefore, Sol. The Al content is preferably 0.005% or more. On the other hand, Sol. If the Al content exceeds 0.100%, the slab quality deteriorates during steelmaking. Therefore, Sol. The Al content is preferably 0.100% or less, more preferably 0.04% or less.
- N 0.0100% or less N forms coarse inclusions of nitrides and carbonitrides such as TiN, (Nb, Ti) (C, N), AlN, etc. in the steel, thereby deteriorating the collision resistance. Therefore, it is necessary to reduce the content. If the N content exceeds 0.0100%, the collision resistance tends to deteriorate, so the N content is preferably 0.0100% or less. The N content is more preferably 0.007% or less, still more preferably 0.005% or less. Although the lower limit of the N content is not particularly limited, the currently industrially practicable lower limit is about 0.0003%, preferably 0.0003% or more.
- the steel sheet of the present invention has a chemical composition containing the above components, with the balance being Fe (iron) and unavoidable impurities.
- the steel sheet according to one embodiment of the present invention preferably has a chemical composition containing the above components with the balance being Fe and unavoidable impurities.
- the steel sheet of the present invention can contain the following components (arbitrary elements) according to desired properties.
- the Cr content is preferably 1.000% or less, the Mo content is preferably 0.500% or less, and the V content is preferably 0.500% or less. is. More preferably, the Cr content is 0.800% or less, the Mo content is 0.400% or less, and the V content is 0.400% or less. Since the effect of the present invention can be obtained even if the content of Cr, Mo, and V is small, the lower limit of each content is not particularly limited. In order to obtain the effect of hardenability more effectively, the contents of Cr, Mo and V are each preferably 0.005% or more.
- Ti and Nb are elements effective for precipitation strengthening of steel. However, if the Ti content and the Nb content each exceed 0.500%, the fracture resistance at the time of collision may deteriorate. Therefore, when either Ti or Nb is contained, the Ti content and Nb content are each preferably 0.500% or less. More preferably, the Ti content and Nb content are each 0.400% or less. Since the effect of the present invention can be obtained even if the contents of Ti and Nb are small, the lower limits of the respective contents are not particularly limited. In order to obtain the effect of precipitation strengthening of steel more effectively, the Ti content and the Nb content are preferably 0.005% or more, respectively.
- the B contributes to the improvement of hardenability by suppressing the formation and growth of ferrite from austenite grain boundaries, so it can be added as necessary.
- the B content is preferably 0.0050% or less. More preferably, the B content is 0.0040% or less. Since the effect of the present invention can be obtained even if the B content is small, the lower limit of the B content is not particularly limited. In order to obtain the effect of improving the hardenability more effectively, the B content is preferably 0.0003% or more.
- Ni and Cu are elements that are effective in strengthening steel. However, if each of Ni and Cu exceeds 1.000%, the fracture resistance at the time of collision may deteriorate. Therefore, when either Ni or Cu is contained, the contents of Ni and Cu are each preferably 1.000% or less. More preferably, Ni content and Cu content are each 0.800% or less. Since the effects of the present invention can be obtained even when the contents of Ni and Cu are small, the lower limits of the respective contents are not particularly limited. In order to obtain the effect of strengthening the steel more effectively, the Ni content and the Cu content are preferably 0.005% or more, respectively.
- Sb and Sn can be added as necessary from the viewpoint of suppressing nitridation and oxidation of the steel sheet surface and decarburization in the region near the steel sheet surface. By suppressing such nitridation and oxidation, it is possible to prevent the amount of martensite from decreasing on the surface of the steel sheet and to improve the collision resistance. However, when Sb and Sn each exceed 1.000%, grain boundary embrittlement may degrade the collision resistance. Therefore, when either Sb or Sn is contained, the Sb content and Sn content are preferably 1.000% or less, respectively. More preferably, the Sb content and the Sn content are each 0.800% or less.
- the lower limit of each content is not particularly limited.
- the Sb content and the Sn content are preferably 0.005% or more, respectively.
- As is an element that segregates at grain boundaries and is an element that is contained as an impurity in raw material scrap. From the viewpoint of suppressing grain boundary embrittlement, it is preferably 1.000% or less. More preferably, the As content is 0.800% or less. The lower the content of As, the better. Although the lower limit of the content is not particularly limited, it is preferably 0.005% or more from the viewpoint of refining cost.
- Ca is an effective element for improving workability by controlling the morphology of sulfides.
- the Ca content is preferably 0.0050% or less. More preferably, the Ca content is 0.0040% or less. Since the effects of the present invention can be obtained even when the content of Ca is small, the lower limit of the content is not particularly limited. In order to more effectively obtain the effect of improving workability, the Ca content is preferably 0.0010% or more.
- W forms fine carbides, nitrides, or carbonitrides during hot rolling or annealing, and is useful for precipitation strengthening of steel. If the W content exceeds 0.500%, the workability deteriorates. Therefore, when W is contained, it is made 0.500% or less. When W is contained, it is preferably 0.005% or more, more preferably 0.050% or more. When W is contained, it is preferably 0.400% or less, more preferably 0.300% or less.
- Ta forms fine carbides, nitrides, or carbonitrides during hot rolling or annealing, and is useful for precipitation strengthening of steel. If the Ta content exceeds 0.100%, the workability deteriorates. Therefore, when Ta is contained, it is made 0.100% or less. When Ta is contained, it is preferably 0.001% or more, more preferably 0.010% or more. When Ta is contained, it is preferably 0.08% or less, more preferably 0.060% or less.
- Mg is an effective element for improving workability by controlling the morphology of inclusions.
- the content of Mg shall be 0.050% or less.
- Mg is contained, it is preferably 0.0005% or more, more preferably 0.001% or more.
- Mg is contained, it is preferably 0.040% or less, more preferably 0.030% or less.
- Zr is an effective element for improving workability by controlling the morphology of inclusions.
- the cleanliness of the steel may be adversely affected. Therefore, when Zr is contained, the content of Zr is set to 0.050% or less.
- Zr is contained, it is preferably 0.0005% or more, more preferably 0.001% or more.
- Zr is contained, it is preferably 0.040% or less, more preferably 0.030% or less.
- the REM is an effective element for improving workability by controlling the morphology of sulfides.
- the content of each REM is preferably 0.005% or less. More preferably, the REM content is 0.004% or less. Since the effect of the present invention can be obtained even if the content of REM is small, the lower limit of each content is not particularly limited. In order to more effectively obtain the effect of improving the workability, the content of each REM is preferably 0.001% or more.
- the element is included as an unavoidable impurity.
- the temperature used to heat or cool a steel slab (steel material), steel plate, or the like described below means the surface temperature of the steel slab (steel material), steel plate, or the like.
- a steel slab having the above composition is heated to a temperature range of 1100 to 1300 ° C.
- the finish rolling temperature (finish rolling delivery side temperature) is set to 800 to 950 ° C.
- finish rolling is performed.
- the rolling reduction is set to 60% or more, and in the cooling process from the delivery side of the finish rolling to the coiling, the residence time in the temperature range of 750 to 600 ° C. is set to 10 seconds or less, and the coiling temperature is set to 600 ° C. or less.
- the hot-rolled steel sheet may have a structure in which the area ratio is ferrite: 20% or less, and the total of fresh martensite and bainite: 80% or more.
- An annealing step in which the cold-rolled steel sheet after the cold rolling step is heated to an annealing temperature of 750 to 880 ° C. and held for 30 seconds or more, and after the annealing step, the cooling stop temperature: (Ms-250 ° C.) to ( Ms-50° C.), and after the quenching step, a reheating temperature: 300 to 500° C. and a tempering step of holding for 20 seconds or longer.
- the steel sheet manufacturing method of the present invention may include a plating step of hot-dip galvanizing or alloying hot-dip galvanizing the surface of the steel sheet before the quenching step or after the tempering step.
- Finish rolling temperature 800-950°C If the finish rolling temperature (the temperature at the finish rolling delivery side) is less than 800°C, ferrite transformation occurs during rolling, and the hot-rolled structure of the present invention may not be obtained. Therefore, the finish rolling temperature is 800°C or higher, preferably 850°C or higher, more preferably 880°C or higher. On the other hand, if the finish rolling temperature exceeds 950° C., the crystal grains become coarse, and non-uniform ferrite grains may be generated after annealing. Therefore, the finish rolling temperature is 950°C or lower, preferably 930°C or lower.
- Cumulative rolling reduction in finish rolling 60% or more
- the cumulative rolling reduction in finish rolling is 60% or more, preferably 70% or more.
- the upper limit is not particularly limited, but in consideration of the balance with the rolling reduction during cold rolling, the cumulative rolling reduction in finish rolling is preferably 99% or less, more preferably 96% or less.
- Residence time in the temperature range of 750 to 600°C in the cooling process from the delivery side of finish rolling to coiling 10 seconds or less Residence time in the temperature range of 750 to 600°C in the cooling process from the delivery side of finish rolling to coiling exceeds 10 s, ferrite transformation progresses and the hot-rolled structure of the present invention may not be obtained. Therefore, the residence time in the temperature range of 750-600° C. is 10 seconds or less, preferably 8 seconds or less. Although the lower limit is not particularly limited, the residence time is preferably 1 s or longer, more preferably 3 s or longer, in consideration of production costs.
- Coiling temperature 600°C or less
- the coiling temperature exceeds 600°C, ferrite transformation proceeds after coiling, and the hot-rolled structure of the present invention may not be obtained.
- the carbides in the hot-rolled steel sheet are coarsened, and such coarsened carbides are not completely melted during soaking during annealing, so that the required strength may not be obtained in some cases. Therefore, the winding temperature is 600° C. or lower, preferably 580° C. or lower.
- the lower limit of the coiling temperature is not particularly limited, it is preferable to set the coiling temperature to 400° C. or higher from the viewpoint of preventing the steel sheet from being deformed and excessively hardening the steel sheet.
- the structure of the hot-rolled steel sheet is controlled by adding ferrite having an average crystal grain size of 25 ⁇ m or less in the final structure and 0.25 ⁇ m or less in the final structure. It is important to obtain a CVxCE of 28 or less.
- the hot rolling process by controlling the rolling reduction during finish rolling, the cooling process from the delivery side of the finish rolling to the coiling, and the coiling temperature, the generation of ferrite is suppressed, and the area ratio of ferrite is reduced in the structure of the hot rolled steel sheet.
- the area ratio of ferrite in the hot-rolled steel sheet is 20% or less, preferably 15% or less.
- the area ratio of ferrite in the hot-rolled steel sheet may be 0%.
- Total area ratio of fresh martensite and bainite in hot-rolled steel sheet 80% or more
- controlling the structure of the hot-rolled steel sheet to a structure mainly composed of fresh martensite and bainite is the final structure for the same reason as described above. It is important for obtaining ferrite with an average grain size of 25 ⁇ m or less and CV ⁇ CE of 0.28 or less. Therefore, the total area ratio of fresh martensite and bainite in the hot-rolled steel sheet is 80% or more, preferably 85% or more. The total area ratio of fresh martensite and bainite in the hot-rolled steel sheet may be 100%.
- phase other than the above include, for example, pearlite and cementite. If these phases are excessively increased and the total area ratio of fresh martensite and bainite in the hot-rolled steel sheet is less than 80%, non-uniform ferrite grains are formed during annealing, and voids are generated during collision deformation, resulting in collision characteristics. may reduce These phases preferably have an area ratio of 15% or less.
- the hot-rolled steel sheet obtained by the hot-rolling process is subjected to pretreatment such as pickling and degreasing by a generally known method, and then cold-rolled as necessary. Conditions for the cold rolling process when cold rolling is performed will be described.
- Cumulative reduction in cold rolling 20% or more If the cumulative reduction in cold rolling is less than 20%, recrystallization of ferrite is not promoted, non-recrystallized ferrite remains, and the steel structure of the present invention cannot be obtained. Sometimes. Therefore, the cumulative reduction in cold rolling is 20% or more, preferably 30% or more.
- Annealing temperature 750 to 880°C
- holding time 30 seconds or more If the annealing temperature is less than 750°C, the formation of austenite is insufficient and excessive ferrite is formed, making it impossible to obtain the steel structure of the present invention. Therefore, the annealing temperature should be 750° C. or higher. If the annealing temperature exceeds 880°C, austenite may become excessive and ferrite may become insufficient. Therefore, the annealing temperature is 880° C. or less. On the other hand, if the holding time is less than 30 seconds, the formation of austenite is insufficient and excessive ferrite is formed, making it impossible to obtain the steel structure of the present invention. Therefore, the retention time is 30 seconds or more, preferably 60 seconds or more. Although the upper limit of the holding time is not particularly limited, it is preferable to set the holding time to 600 seconds or less so as not to impair productivity.
- Cooling stop temperature (Ms-250°C) ⁇ (Ms-50°C) If the cooling stop temperature exceeds (Ms ⁇ 50° C.), the formation of tempered martensite is insufficient, and the steel structure of the present invention cannot be obtained. Therefore, the cooling stop temperature is (Ms-50°C) or less, preferably (Ms-100°C) or less. On the other hand, when the temperature is less than (Ms-250°C), the tempered martensite becomes excessive and the generation of retained austenite may become insufficient. Therefore, the cooling stop temperature is (Ms ⁇ 250° C.) or higher, preferably (Ms ⁇ 200° C.) or higher.
- Ms can be calculated by the following formula (3).
- Ms (° C.) 539 ⁇ 423 ⁇ [C%] ⁇ 100/(100 ⁇ [ ⁇ area %]) ⁇ 30 ⁇ [Mn%] ⁇ 12 ⁇ [Cr%] ⁇ 18 ⁇ [Ni%] ⁇ 8 ⁇ [Mo%] (3)
- each element symbol represents the content (% by mass) of each element, and the element not contained is 0.
- [ ⁇ area %] is the ferrite area ratio after annealing. The ferrite area ratio after annealing is determined in advance by simulating the heating rate, annealing temperature, and holding time during annealing with a thermal expansion measuring device. [ ⁇ area %] is treated as the same as the area ratio of ferrite contained in the finally obtained steel sheet through the quenching process and tempering process of the present invention after annealing.
- Tempering temperature 300 to 500°C, holding time: 20 seconds or more At less than 300°C, tempering of martensite becomes insufficient, and the difference in hardness between ferrite and tempered martensite increases, resulting in tempering during primary processing. It is thought that martensite does not deform following ferrite, voids are likely to occur at the interface with ferrite, and collision characteristics are degraded. In addition, the bainite transformation may become insufficient, and the steel structure and fracture resistance of the present invention may not be obtained. Therefore, the tempering temperature (reheating temperature) is 300°C or higher, preferably 350°C or higher.
- the tempering temperature exceeds 500°C
- ferrite is excessively formed, and the steel structure of the present invention cannot be obtained.
- the bainite transformation may become insufficient, and the steel structure and fracture resistance of the present invention may not be obtained. Therefore, the tempering temperature (reheating temperature) is 500°C or lower, preferably 450°C or lower.
- the holding time is 20 seconds or more, preferably 30 seconds or more.
- the holding time is preferably 500 seconds or less from the viewpoint of productivity and suppression of excessive bainite transformation.
- the surface of the steel sheet may be electrogalvanized, hot-dip galvanized, or hot-dip alloyed galvanized.
- the plating step after the annealing step and before the quenching step include a step of maintaining the temperature in the temperature range of 300 to 500° C. for 0 to 300 seconds before plating. If the temperature range is less than 300° C., martensitic transformation may occur, and excessive concentration of C in untransformed austenite may cause decomposition during plating or plating alloying, resulting in a decrease in retained austenite. . On the other hand, if the temperature range exceeds 500°C, ferrite may be generated, and the steel structure of the present invention may not be obtained. On the other hand, if the holding time exceeds 300 seconds, bainite transformation may proceed excessively and the steel structure and fracture resistance of the present invention may not be obtained. Therefore, in the present invention, it is preferable that the plating step after the annealing step and before the quenching step includes a step of holding the temperature in the temperature range of 300 to 500 ° C. for 0 to 300 seconds before plating.
- Electrogalvanizing treatment is preferably carried out by immersing in a zinc solution at 50 to 60° C. and applying current.
- the hot-dip galvanizing treatment is preferably performed by immersing the steel sheet obtained as described above in a galvanizing bath at a temperature of 440°C or higher and 500°C or lower. After that, it is preferable to adjust the coating amount by gas wiping or the like.
- An alloying step of performing an alloying treatment may be provided after the hot-dip galvanizing step. When alloying the zinc plating, it is preferable to alloy by holding in the temperature range of 450° C. or higher and 580° C. or lower for 1 second or longer and 180 seconds or shorter.
- Steel sheets that have been hot-dip galvanized or alloyed hot-dip galvanized can be temper-rolled for the purpose of correcting the shape and adjusting the surface roughness.
- the temper rolling exceeds 0.5%, the bendability may be deteriorated due to surface layer hardening, so the temper rolling is preferably 0.5% or less. More preferably, it is 0.3% or less.
- Various coating treatments such as resin and oil coating can also be applied.
- the slab is preferably manufactured by continuous casting, and can also be manufactured by ingot casting or thin slab casting.
- the slab may be cooled to room temperature and then reheated for hot rolling.
- the slab can be charged into a heating furnace without being cooled to room temperature and hot rolled.
- an energy-saving process of hot rolling immediately after a slight heat retention can be applied.
- the heating temperature of the slab is preferably 1300° C. or less.
- the rough bar after rough rolling can be heated from the viewpoint of preventing troubles during rolling when the slab heating temperature is lowered. Also, a so-called continuous rolling process, in which rough bars are joined together and finish rolling is continuously performed, can be applied. In order to reduce the rolling load and uniformize the shape and material, it is preferable to perform lubricating rolling so that the coefficient of friction is 0.10 to 0.25 in all passes or some passes of finish rolling.
- the scale of the steel sheet after winding may be removed by pickling or the like. After pickling, cold rolling, annealing and galvanization are performed under the above conditions.
- the member of the present invention is obtained by subjecting the steel plate of the present invention to at least one of forming and welding. Further, the method of manufacturing a member of the present invention includes a step of subjecting the steel plate manufactured by the method of manufacturing a steel plate of the present invention to at least one of forming and welding.
- the steel sheet of the present invention has high strength and excellent crash characteristics. Therefore, members obtained by using the steel plate of the present invention also have high strength, excellent collision characteristics, and are less likely to break during collision deformation. Therefore, the member of the present invention can be suitably used as an energy absorbing member in automobile parts.
- General processing methods such as press processing can be used without restrictions for molding.
- general welding such as spot welding and arc welding can be used without limitation.
- Example 1 Steel having the composition shown in Table 1 was melted in a vacuum melting furnace and bloomed to form a steel slab. These steel slabs were heated to 1100 to 1300° C. and subjected to hot rolling, cold rolling, annealing, quenching, tempering and heat treatment under the conditions shown in Table 2 to produce steel plates. When producing the steel sheets under the conditions shown in Table 2, some of the steel sheets were plated before the quenching process or after the tempering process. In the hot-dip galvanizing treatment, the steel sheet was immersed in a plating bath to form a hot-dip galvanized layer (GI) with a coating weight of 10 to 100 g/m 2 .
- GI hot-dip galvanized layer
- alloyed hot-dip galvanizing an alloying treatment was performed after forming a hot-dip galvanized layer on a steel sheet to form an alloyed hot-dip galvanized layer (GA).
- the final plate thickness of each steel plate was 1.2 mm.
- a method for measuring NF void /NF is as follows.
- the steel plate is bent 90° in the rolling (L) direction with the width (C) direction as the axis at a curvature radius/plate thickness of 4.2, and after being flattened again, the thickness cross section is polished and compressed.
- An L cross-section within a 0-50 ⁇ m region from the surface of the steel sheet on the tensile side was observed.
- the L section was photographed with a SEM (scanning electron microscope) at a magnification of 2000 times for 3 fields of view, and from the obtained image data, Image-Pro manufactured by Media Cybernetics was used to determine the number of all ferrite grains in the field of view and voids at the interface.
- the measurement position of the ferrite grains after the unbending process was the area including the corners formed by the bending process and extending in the width (C) direction (see symbol D1 in FIG. 1). More specifically, the number of ferrite grains within a region of 0 to 50 ⁇ m in the plate thickness direction in the lowermost region in the direction perpendicular to the width direction and the rolling direction (the pressing direction of the pressing portion such as a punch) due to bending. was measured.
- the area ratio of each tissue was measured as follows. After polishing the thickness cross-section of the steel plate cut perpendicular to the rolling direction, it was corroded with 3% by volume nital, and the 1/4 position of the thickness was photographed with a SEM (scanning electron microscope) at a magnification of 1500 times in three fields. , the area ratio of each tissue was determined from the obtained image data using Image-Pro manufactured by Media Cybernetics. The average value of the area ratios of the three fields of view is used as the area ratio of each tissue in the present invention.
- ferrite is black
- bainite is black containing island-shaped retained austenite, or gray containing oriented carbide
- tempered martensite is light gray containing fine non-oriented carbide
- retained austenite is white.
- the fresh martensite also exhibits white color, and it is difficult to distinguish between the fresh martensite and the retained austenite in the SEM image. Therefore, the area ratio of fresh martensite was obtained by subtracting the area ratio of retained austenite obtained by the method described later from the total area ratio of fresh martensite and retained austenite.
- the residual structure is the total area ratio of ferrite (F), tempered martensite (TM), bainite (B), retained austenite (RA) and fresh martensite (FM) of 100. % and these residual structures were determined to be pearlite and/or cementite.
- the volume ratio of retained austenite was obtained by measuring the X-ray diffraction intensity, and the volume ratio was regarded as the area ratio of retained austenite.
- the volume fraction of retained austenite is the (200), (220), (311) It was obtained from the ratio of the X-ray diffraction integrated intensity of the surface.
- ⁇ Tensile test> A JIS No. 5 tensile test piece (JIS Z2201) was taken from each steel plate obtained in the direction perpendicular to the rolling direction, and a tensile test was performed in accordance with the provisions of JIS Z2241 (2011) with a strain rate of 10 -3 /s. and the tensile strength (TS) was determined. In addition, TS was made into the pass 780MPa or more.
- ⁇ Bending - orthogonal bending test> The resulting steel plate is bent at a curvature radius/plate thickness of 4.2 in the rolling (L) direction with the width (C) direction as the axis, and then bent back flat again (primary bending). and prepared test specimens.
- a punch B1 was pressed into a steel plate placed on a die A1 having a V-groove to obtain a test piece T1.
- the punch B2 is pushed into the test piece T1 placed on the support roll A2 so that the bending direction is perpendicular to the rolling direction (secondary bending). was applied.
- D1 indicates the width (C) direction
- D2 indicates the rolling (L) direction.
- FIG. 3 shows a test piece T1 obtained by subjecting a steel plate to 90° bending (primary bending).
- FIG. 4 shows a test piece T2 obtained by subjecting the test piece T1 to orthogonal bending (secondary bending).
- the position indicated by the dashed line on the test piece T2 in FIG. 4 corresponds to the position indicated by the dashed line on the test piece T1 in FIG. 3 before the orthogonal bending.
- ⁇ S50 was defined as the average value of the stroke at the point where the load was reduced by 50% from the maximum load when the bending-perpendicular bending test was performed three times. A ⁇ S 50 of 29 mm or more was evaluated as having good breaking resistance.
- the load that determines the stroke amount is important in the evaluation of fracture resistance. Fracture at the time of axial crushing deformation occurs when the crack generated in the primary processed portion of the member becomes large and penetrates through the plate thickness, leading to fracture.
- FIG. 5 is a front view of a test member 30 produced by spot-welding the hat-shaped member 10 and the steel plate 20.
- FIG. FIG. 6 is a perspective view of the test member 30.
- the position of the spot welded portion 40 was such that the distance between the edge of the steel plate and the welded portion was 10 mm, and the interval between the welded portions was 45 mm.
- the test member 30 was joined to the base plate 50 by TIG welding to prepare an axial crush test sample.
- the impactor 60 was made to collide with the prepared sample for axial crush test at a constant velocity at a collision speed of 10 m/s to crush the sample for axial crush test by 100 mm.
- the crushing direction D3 was parallel to the longitudinal direction of the test member 30 .
- the area in the stroke range of 0 to 100 mm was obtained, and the average value of the area when the test was performed three times was taken as the absorbed energy (F ave ).
- F ave A F ave of 38,000 N or more was evaluated as having good absorbed energy. Also, when both the breakage resistance and the absorbed energy were good, the impact properties were evaluated as good.
- the steel sheets of the invention examples had a TS of 780 MPa or more and had excellent collision resistance.
- the steel sheets of the comparative examples had a TS of less than 780 MPa or poor collision properties.
- Example 2 No. in Table 3 of Example 1.
- the steel plate of No. 1 (invention example) was press-formed to produce a member of the invention example. Furthermore, No. in Table 3 of Example 1. 1 steel plate and No. 1 in Table 3 of Example 1. 30 (invention example) were joined by spot welding to manufacture a member of the invention example.
- the member of the present invention manufactured using the steel plate of the present invention has excellent collision resistance and high strength, and is the same as No. 1 in Table 3 of Example 1. 1 (example of the present invention), and No. 1 in Table 3 of Example 1. 1 steel plate and No. 1 in Table 3 of Example 1. It was confirmed that all of the members manufactured by spot-welding the steel sheets of No. 30 (invention examples) can be suitably used for automobile frame parts and the like.
- Example 3 No. in Table 3 of Example 1.
- the galvanized steel sheet of No. 1 (invention example) was press-formed to produce a member of the invention example. Furthermore, No. in Table 3 of Example 1. 1 galvanized steel sheet and No. 1 in Table 3 of Example 1.
- a galvanized steel sheet No. 30 (invention example) was spot-welded to produce a member of the invention example.
- the member of the present invention manufactured using the steel plate of the present invention has excellent collision resistance and high strength, and is the same as No. 1 in Table 3 of Example 1. 1 (example of the present invention), and No. 1 in Table 3 of Example 1. 1 steel plate and No. 1 in Table 3 of Example 1. It was confirmed that all of the members manufactured by spot-welding the steel sheets of No. 30 (invention examples) can be suitably used for automobile frame parts and the like.
- test piece 10 hat-shaped member 20 steel plate 30 test member 40 spot welded portion 50 base plate 60 impactor A1 die A2 support roll B1 punch B2 punch D1 width (C) direction D2 rolling (L) direction D3 crushing direction T1 test piece T2 test piece
- a steel sheet having a TS of 780 MPa or more and excellent collision resistance can be obtained. If the member obtained from the steel sheet of the present invention is used as an automobile part, it can contribute to the weight reduction of automobiles and to the improvement of the performance of automobile bodies.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
[1]炭素当量(CE)が0.46%以上を満たす成分組成と、
面積率で、フェライト:10~50%、焼戻しマルテンサイト及びベイナイトの合計:30%以上、残留オーステナイト:3~20%、フレッシュマルテンサイト:15%以下、フェライト、焼戻しマルテンサイト、ベイナイト、残留オーステナイト及びフレッシュマルテンサイトの合計:90%以上である鋼組織と、を有し、
フェライトの平均結晶粒径:25μm以下であり、
フェライト粒径の変動係数(CV)×炭素当量(CE)が0.28以下であり、
曲率半径/板厚:4.2で幅(C)方向を軸に圧延(L)方向に90°曲げた後、再度平坦に曲げ戻し加工した際に、圧縮-引張変形側の鋼板表面から0~50μm領域内のL断面において、全フェライト粒に対し、界面にボイドを有するフェライト粒の割合(NFvoid/NF)が15%以下であり、
引張強度が780MPa以上である鋼板。
[2]前記成分組成は、質量%で、
C:0.07~0.20%、
Si:0.10~2.00%、
Mn:1.5~4.0%、
P:0.100%以下、
S:0.050%以下、
Sol.Al:0.005~0.100%、及び
N:0.0100%以下を含有し、残部がFe及び不可避的不純物からなる[1]に記載の鋼板。
[3]前記成分組成は、さらに、質量%で、
前記成分組成は、さらに、質量%で、
Cr:1.000%以下、
Mo:0.500%以下、
V:0.500%以下、
Ti:0.500%以下、
Nb:0.500%以下、
B:0.0050%以下、
Ni:1.000%以下、
Cu:1.000%以下、
Sb:1.000%以下、
Sn:1.000%以下、
As:1.000%以下、
Ca:0.0050%以下、
W:0.500%以下、
Ta:0.100%以下、
Mg:0.050%以下、
Zr:0.050%以下、及び
REM:0.005%以下のうちから選ばれる少なくとも1種を含有する[2]に記載の鋼板。
[4]鋼板の表面に、電気亜鉛めっき層、溶融亜鉛めっき層、又は合金化溶融亜鉛めっき層を有する[1]から[3]までのいずれか一つに記載の鋼板。
[5][1]から[4]までのいずれか一項に記載の鋼板に対して、成形加工及び溶接の少なくとも一方を施してなる部材。
[6]炭素当量(CE)が0.46以上を満たし、[2]又は[3]に記載の成分組成を有する鋼スラブを、1100~1300℃の温度域に加熱し、仕上げ圧延温度を800~950℃で熱間圧延し、仕上げ圧延の累積圧下率を60%以上とし、仕上げ圧延出側から巻取までの冷却過程において、750~600℃の温度域での滞留時間を10s以下とし、巻取温度を600℃以下で巻き取る熱間圧延工程と、
該熱間圧延工程で得られた熱延鋼板を酸洗し、20%以上の累積圧下率で冷間圧延する冷間圧延工程と、
該冷間圧延工程で得られた冷延鋼板を、750~880℃の焼鈍温度まで加熱し、30秒以上保持する焼鈍工程と、
該焼鈍工程後、冷却停止温度:(Ms-250℃)~(Ms-50℃)まで冷却する焼入れ工程と、
該焼入れ工程後、再加熱温度:300~500℃まで加熱し、20秒以上保持する焼戻し工程と、
を含む鋼板の製造方法。
[7]炭素当量(CE)が0.46以上を満たし、[2]又は[3]に記載の成分組成を有する鋼スラブを、1100~1300℃の温度域に加熱し、仕上げ圧延出側温度を800~950℃で熱間圧延し、仕上げ圧延の累積圧下率を60%以上とし、仕上げ圧延出側から巻取までの冷却過程において、750~600℃の温度域での滞留時間を10s以下とし、巻取温度を600℃以下として巻き取り、熱延鋼板組織の面積率で、フェライト:20%以下、フレッシュマルテンサイト及びベイナイトの合計:80%以上である組織を有する熱延鋼板を製造する熱間圧延工程を含む冷延鋼板用熱延鋼板の製造方法。
[8][7]に記載の製造方法で得られた熱延鋼板を酸洗し、20%以上の累積圧下率で冷間圧延する冷間圧延工程を含む冷延鋼板の製造方法。
[9]前記焼鈍工程後及び前記焼入れ工程前に、又は焼戻し工程後に、鋼板の表面に、電気亜鉛めっき、溶融亜鉛めっき、又は合金化溶融亜鉛めっきを施すめっき工程を含む[6]に記載の鋼板の製造方法。
[10]前記焼鈍工程後かつ前記焼入れ工程前のめっき工程において、めっき前に300~500℃の温度域に0~300s保持する工程を含む[9]に記載の鋼板の製造方法。
[11][6]、[9]又は[10]に記載の鋼板の製造方法によって製造された鋼板に対して、成形加工及び溶接の少なくとも一方を施す工程を有する部材の製造方法。
炭素当量CEは鋼の強度における指標としてC以外の元素の影響をC量に換算したものである。炭素当量CEを0.46%以上とすることで、後述するフェライト等の各金属組織の面積率を本発明の範囲内に制御し、本発明の引張強度(780MPa以上)および衝突特性を得ることができる。炭素当量CEは、好ましくは0.48%以上とする。上限は特に限定されないが、溶接性や成形性とのバランスを考慮し、炭素当量CEは0.85%以下とすることが好ましく、より好ましくは0.82%以下である。
炭素当量CE=[C%]+([Si%]/24)+([Mn%]/6)+([Ni%]/40)+([Cr%]/5)+([Mo%]/4)+([V%]/14) ・・・(1)
ただし、上記式中の[元素記号%]は、各元素の含有量(質量%)を表し、含有しない元素は0とする。
フェライトの面積率が50%超では、780MPa以上の引張強度(TS)と衝突特性を両立することが困難となる。フェライトの面積率が10%未満では、変形中にフェライトに応力集中し、界面におけるボイド生成が促進される場合がある。したがって、フェライトの面積率は10~50%である。フェライトの面積率は、好ましくは15%以上である。また、フェライトの面積率は、好ましくは45%以下である。
焼戻しマルテンサイトは、衝突変形時の部材破断を抑制することで衝突特性を向上させつつ、衝突時の吸収エネルギー及び強度を向上させるのに有効である。焼戻しマルテンサイト及びベイナイトの合計面積率が30%未満では、こうした効果を十分に得られない。したがって、合計面積率は、30%以上であり、好ましくは40%以上である。また、合計面積率の上限は限定されないが、他の組織とのバランスと考慮し、合計面積率は80%以下であることが好ましい。
残留オーステナイトは衝突時の割れ発生を遅延させ、衝突特性を向上させるのに有効である。メカニズムは明らかではないが、次のように考えられる。残留オーステナイトは衝突変形時に加工硬化することで曲げ変形中の曲率半径が大きくなることで曲げ部のひずみが分散される。ひずみが分散されることによって一次加工によるボイド生成部への応力集中が緩和され、その結果衝突特性が向上する。残留オーステナイトの面積率が3%未満ではこうした効果を得られない。したがって、残留オーステナイトの面積率は3%以上であり、好ましくは5%以上である。一方、残留オーステナイトの面積率が20%を超えると、加工誘起変態によって生成したフレッシュマルテンサイトによって衝突時の耐破断特性を低下させる場合がある。したがって、残留オーステナイトの面積率は20%以下であり、好ましくは15%以下である。
フレッシュマルテンサイトは高強度化には有効である。しかしながら、軟質相との粒界でボイドを生じやすく、フレッシュマルテンサイトの面積率が15%を超えるとフェライトとの界面でボイドの生成が促進され、衝突特性を低下させる場合がある。したがって、フレッシュマルテンサイトの面積率は15%以下であり、好ましくは10%以下であり、より好ましくは5%以下である。フレッシュマルテンサイトの面積率の下限は0%でもよい。
フェライト、焼戻しマルテンサイト、ベイナイト、残留オーステナイト及びフレッシュマルテンサイトの合計面積率が90%未満になると、上記以外の相の面積率が高くなり、強度と衝突特性を両立することが困難となる。上記以外の相には、例えば、パーライト、セメンタイトが挙げられ、これらの相が増加すると、衝突変形時にボイド生成の起点となり衝突特性を低下させる場合がある。また、パーライトやセメンタイトが増加すると、強度が低下する場合がある。上記合計面積率が90%以上であれば残りの相の種類や面積率にかかわらず高い強度及び衝突特性が得られる。合計面積率は好ましくは95%以上とする。合計面積率は100%であってもよい。上記以外の残部の組織となるパーライト及びセメンタイトの合計面積率は10%以下である。好ましくは、この残部の組織の合計面積率は7%以下であり、より5%以下であり、さらに好ましくは3%以下である。
本発明の鋼板において、フェライトの平均結晶粒径を25μm以下とすることで高い衝突特性が得られる。このメカニズムは明らかではないが、次のように考えられる。衝突特性劣化の原因となる衝突時の破断は、割れの発生及び進展が起点となる。割れは加工硬化能の低下及び高硬度差領域でのボイドの生成及び連結によって発生しやすくなると考えられる。また、実部材の衝突では成形時に一次加工を受けた箇所で一次加工と直交方向に曲げ戻されるように変形する。このとき一次加工部の高硬度差領域でボイドが発生するとボイドの周辺に応力が集中し、割れの発生・進展が助長され、その結果破断に至る。高硬度差領域におけるボイド生成の原因は硬質相に対し、軟質相の変形量が大きくなるためである。そこで、フェライトを微細化することで、変形量を小さくし、一次加工部におけるボイド発生、進展及びそれに伴う部材破断を抑制し、高い耐破断特性が得られる。したがって、フェライトの平均結晶粒径は25μm以下であり、好ましくは20μm以下である。なお、フェライトの平均結晶粒径の下限は特に定めないが、3μm以上が好ましい。
また、後述のフェライト粒径の標準偏差は、上述のImage-Proを用いて求めた各フェライト粒径から算出することができる。
本発明の鋼板において、CV×CEを0.28以下とすることで高い衝突特性が得られる。このメカニズムは明らかではないが、次のように考えられる。衝突時に破断の起点となる一次加工部におけるボイド発生、進展は局所的な応力集中によって促進される。これを抑制するためには、鋼組織におけるフェライト粒径のばらつきを小さくすることと、硬質相の軟質化が有効であると考えられる。したがって、前者(鋼組織におけるフェライト粒径のばらつきを小さくすること)の指標をCVとし、後者(硬質相の軟質化)の指標をCEとし、CV×CEを0.28以下とすることで高い耐破断特性が得られる。好ましくは0.25以下である。
CE=[C%]+([Si%]/24)+([Mn%]/6)+([Ni%]/40)+([Cr%]/5)+([Mo%]/4)+([V%]/14) ・・・(1)
ただし、上記式中の[元素記号%]は、各元素の含有量(質量%)を表し、含有しない元素は0とする。
本発明の鋼板において、NFvoid/NFを15%以下とすることで高い衝突特性が得られる(NFは、曲率半径/板厚:4.2で幅(C)方向を軸に圧延(L)方向に90°曲げた後、再度平坦に曲げ戻し加工した際に、圧縮-引張変形側の鋼板表面から0~50μm領域内のL断面における、全フェライト粒の個数である。NFvoidは、曲率半径/板厚:4.2で幅(C)方向を軸に圧延(L)方向に90°曲げた後、再度平坦に曲げ戻し加工した際に、圧縮-引張変形側の鋼板表面から0~50μm領域内のL断面において、界面にボイドを有するフェライト粒の個数である。)。
このメカニズムは明らかではないが、次のように考えられる。衝突特性劣化の原因となる衝突時の破断は、割れの発生及び進展が起点となる。割れは加工硬化能の低下及び高硬度差領域でのボイドの生成及び連結によって発生しやすくなると考えられる。また、実部材の衝突では成形時(一次加工)に変形を受けた箇所で衝突時に二次変形を受け、このとき破断起点部の変形履歴は一次加工及び二次変形によって圧縮変形を受けた後に引張変形を受けた箇所と考えられる。圧縮-引張変形部では、高硬度差領域でボイドが発生するとボイドの周辺に応力が集中し、割れの発生・進展が助長され、その結果破断に至ると考えられる。そこで、焼戻しマルテンサイト及びベイナイトによって高硬度差領域を減少させ、さらに必要に応じて残留オーステナイトを活用し変形中に一次加工部でのマクロな応力集中を抑制し、フェライトの粒径を制御することで、粗大なフェライト粒へのミクロな応力集中を抑制することで、一次加工部におけるボイド発生、進展及びそれに伴う部材破断を抑制し、高い耐破断特性が得られる。したがって、これらの効果を得るためにNFvoid/NFを15%以下とする。好ましくは10%以下である。NFvoid/NFは工業的に得られる下限として、1以上とする。
また、圧縮-引張変形側の鋼板表面とは、上記の押圧した一方の側の鋼板表面(押圧を施すパンチ等の押圧部と接触する方の鋼板表面)のことを指す。
また、曲げ戻し加工後のL断面については、曲げ加工による変形の方向に対し平行に、且つ鋼板表面に対し垂直に切断することで形成される断面であって、幅方向に対し垂直な断面のことを指す。
まず、鋼板に対して、曲率半径/板厚:4.2で幅(C)方向を軸に圧延(L)方向に90°曲げた後、再度平坦に曲げ戻し加工(一次曲げ加工)を施し、試験片を準備する。90°曲げ加工(一次曲げ加工)では、図1に示すように、V溝を有するダイA1の上に載せた鋼板に対して、パンチB1を押し込んで試験片T1を得る。次に、図2に示すように、支持ロールA2の上に載せた試験片T1に対して、曲げ方向が圧延直角方向となるようにして、パンチB2を押し込んで直交曲げ(二次曲げ加工)を施す。図1及び図2において、D1は幅(C)方向、D2は圧延(L)方向を示している。
[直交曲げ条件]
試験方法:ロール支持、パンチ押し込み
ロール径:φ30mm
パンチ先端R:0.4mm
ロール間距離:(板厚×2)+1.5mm
ストローク速度:20mm/min
試験片サイズ:60mm×60mm
曲げ方向:圧延直角方向
まず、軸圧壊試験では板厚の影響を考慮し、全て板厚1.2mmの鋼板で実施する。鋼板を切り出し、パンチ肩半径が5.0mmであり、ダイ肩半径が5.0mmである金型を用いて、深さ40mmとなるように成形加工(曲げ加工)して、図5及び図6に示すハット型部材10を作製する。また、ハット型部材の素材として用いた鋼板を、200mm×80mmの大きさに別途切り出す。次に、その切り出した後の鋼板20と、ハット型部材10とをスポット溶接し、図5及び図6に示すような試験用部材30を作製する。図5は、ハット型部材10と鋼板20とをスポット溶接して作製した試験用部材30の正面図である。図6は、試験用部材30の斜視図である。スポット溶接部40の位置は、図6に示すように、鋼板の端部と溶接部が10mm、溶接部間が45mmの間隔となるようにする。次に、図7に示すように、試験用部材30を地板50とTIG溶接により接合して軸圧壊試験用サンプルを作製する。次に、作製した軸圧壊試験用サンプルにインパクター60を衝突速度10m/sで等速衝突させ、軸圧壊試験用のサンプルを100mm圧壊する。図7に示すように、圧壊方向D3は、試験用部材30の長手方向と平行な方向とする。圧壊時のストローク-荷重のグラフにおける、ストローク0~100mmの範囲における面積を求め、3回試験を行った際の当該面積の平均値を吸収エネルギー(Fave)とする。
Cはフェライト以外の相を生成しやすくし、また、NbやTiなどと合金化合物を形成するため、強度向上に必要な元素である。C含有量が0.07%未満では、製造条件の最適化を図っても、所望の強度を確保できない場合がある。したがって、C含有量は好ましくは0.07%以上であり、より好ましくは0.10%以上である。一方、C含有量が0.20%を超えるとマルテンサイトの強度が過剰に増加し、製造条件の最適化を図っても本発明の衝突特性が得られない場合がある。したがって、C含有量は好ましくは0.20%以下であり、より好ましくは0.18%以下である。
Siはフェライト生成元素であり、また、固溶強化元素でもある。したがって、強度と延性のバランスの向上に寄与する。この効果を得るために、Si含有量は好ましくは0.10%以上であり、より好ましくは0.20%以上である。一方、Si含有量が2.00%を超えると、亜鉛めっき付着、密着性の低下及び表面性状の劣化を引き起こす場合がある。したがって、Si含有量は好ましくは2.00%以下であり、より好ましくは1.50%以下である。
Mnはマルテンサイトの生成元素であり、また、固溶強化元素でもある。また、残留オーステナイト安定化に寄与する。これらの効果を得るために、Mn含有量は好ましくは1.5%以上である。Mn含有量は、より好ましくは2.0%以上である。一方、Mn含有量が4.0%を超えると残留オーステナイト分率が増加し、衝突特性が低下する場合がある。したがって、Mn含有量は好ましくは4.0%以下であり、より好ましくは3.5%以下である。
Pは、鋼の強化に有効な元素である。しかしながら、P含有量が0.100%を超えると合金化速度を大幅に遅延させる場合がある。また、Pを0.100%超えて過剰に含有させると、粒界偏析により脆化を引き起こし、本発明の鋼組織を満たしても衝突時の耐破断特性を劣化させる場合がある。したがって、P含有量は0.100%以下であり、好ましくは0.050%以下である。P含有量に特に下限は無いが、現在工業的に実施可能な下限は0.002%程度であり、0.002%以上であることが好ましい。
Sは、MnSなどの介在物となって、溶接部のメタルフローに沿った割れの原因となり、本発明の鋼組織を満たしても衝突特性が低下する場合がある。したがって、S量は極力低い方がよいが、製造コストの面からS含有量は好ましくは0.050%以下である。S含有量は、より好ましくは、0.010%以下である。S含有量に特に下限は無いが、現在工業的に実施可能な下限は0.0002%程度であり、0.0002%以上であることが好ましい。
Alは脱酸剤として作用し、また、固溶強化元素でもある。Sol.Al含有量が0.005%未満ではこれらの効果は得られない場合があり、本発明の鋼組織を満たしても強度が低下する場合がある。したがって、Sol.Al含有量は、好ましくは0.005%以上である。一方、Sol.Al含有量が0.100%を超えると製鋼時におけるスラブ品質を劣化させる。したがって、Sol.Al含有量は、好ましくは0.100%以下であり、より好ましくは0.04%以下である。
Nは、鋼中でTiN、(Nb、Ti)(C、N)、AlN等の窒化物、炭窒化物系の粗大介在物を形成して衝突特性を低下させることから、含有量を抑える必要がある。Nの含有量が0.0100%超えの場合に衝突特性が低下しやすくなるので、N含有量は好ましくは0.0100%以下である。N含有量は、より好ましくは0.007%以下、さらに好ましくは0.005%以下である。なお、N含有量の下限は特に限定されるものではないが、現在工業的に実施可能な下限は0.0003%程度であり、0.0003%以上であることが好ましい。
Cr、Mo、Vは焼き入れ性を上げ、鋼の強化に有効な元素である。しかし、Cr:1.000%、Mo:0.500%、V:0.500%を超えて過剰に添加すると、上記の効果が飽和し、さらに原料コストが増加する。また、第2相分率が過大となり衝突時の耐破断特性を劣化させる場合がある。したがって、Cr、Mo、Vのいずれかを含有する場合、Cr含有量は好ましくは1.000%以下、Mo含有量は好ましくは0.500%以下、V含有量は好ましくは0.500%以下である。より好ましくはCr含有量は、0.800%以下、Mo含有量は、0.400%以下、V含有量は、0.400%以下である。Cr、Mo、Vの含有量が少なくても本発明の効果は得られるので、それぞれの含有量の下限は特に限定されない。焼き入れ性の効果をより有効に得るためには、Cr、Mo、Vの含有量はそれぞれ0.005%以上であることが好ましい。
巻取後、熱延鋼板は、面積率で、フェライト:20%以下、フレッシュマルテンサイト及びベイナイトの合計:80%以上である組織を有していてよい。
また、上記熱間圧延工程後の熱延鋼板を酸洗し、20%以上の累積圧下率で冷間圧延する冷間圧延工程を含む。
また、上記冷間圧延工程後の冷延鋼板を750~880℃の焼鈍温度まで加熱し、30秒以上保持する焼鈍工程と、該焼鈍工程後、冷却停止温度:(Ms-250℃)~(Ms-50℃)まで冷却する焼入れ工程と、該焼入れ工程後、再加熱温度:300~500℃まで加熱し、20秒以上保持する焼戻し工程と、を含む。
また、本発明の鋼板の製造方法は、前記焼入れ工程前、又は焼戻し工程後に、鋼板の表面に、溶融亜鉛めっき、又は合金化溶融亜鉛めっきを施すめっき工程を有してもよい。
仕上げ圧延温度(仕上げ圧延出側温度)が800℃未満の場合、圧延時にフェライト変態が起こり、本発明の熱間圧延組織が得られない場合がある。したがって、仕上げ圧延温度は800℃以上であり、好ましくは850℃以上であり、より好ましくは880℃以上である。一方、仕上げ圧延温度が950℃を超えると結晶粒が粗大化し、焼鈍後に不均一なフェライト粒が生成する場合がある。したがって、仕上げ圧延温度は950℃以下であり、好ましくは930℃以下である。
仕上げ圧延の累積圧下率を60%以上とすることで、熱間圧延時の再結晶率が増加し、微細な熱間圧延組織となる。さらに、仕上げ圧延出側から巻取までの冷却過程および巻取温度の制御により、フェライトの生成を抑制し、フレッシュマルテンサイトおよびベイナイト主体の微細な熱間圧延組織とすることで、焼鈍工程において、フェライトの核生成サイトが増加し、均一かつ微細なフェライト粒が得られると考えられる。仕上げ圧延の累積圧下率が60%未満ではこれらの効果が得られない。したがって、仕上げ圧延の累積圧下率は60%以上であり、好ましくは70%以上である。上限は特に限定されないが、冷間圧延時の圧下率とのバランスを考慮し、仕上げ圧延の累積圧下率は99%以下とすることが好ましく、より好ましくは96%以下である。
仕上げ圧延出側から巻取までの冷却過程において、750~600℃の温度域での滞留時間が10sを超えた場合、フェライト変態が進行し、本発明の熱間圧延組織が得られない場合がある。したがって、750~600℃の温度域での滞留時間は10s以下であり、好ましくは8s以下である。
下限は特に限定されないが、製造コストを考慮し、滞留時間は1s以上とすることが好ましく、より好ましくは3s以上である。
巻取温度が600℃を超えた場合、巻き取り後にフェライト変態が進行し、本発明の熱間圧延組織が得られない場合がある。また、熱延鋼板中の炭化物が粗大化し、このような粗大化した炭化物は焼鈍時の均熱中に溶けきらないため、必要な強度を得ることができない場合がある。したがって、巻取温度は、600℃以下であり、好ましくは580℃以下である。巻取温度の下限は特に限定されないが、鋼板の形状不良を発生しにくくし、かつ鋼板が過度に硬質化することを防ぐ観点から、巻取温度を400℃以上とすることが好ましい。
本発明の鋼板において、熱延鋼板(熱間圧延板)の組織を制御することは、最終組織で平均結晶粒径が25μm以下のフェライトおよび0.28以下のCV×CEを得るために重要である。熱間圧延工程において、仕上げ圧延時の圧下率及び仕上げ圧延出側から巻取までの冷却過程、巻取温度の制御により、フェライトの生成を抑制し、熱延鋼板組織について、フェライトの面積率を20%以下とすることで、後述するフレッシュマルテンサイト及びベイナイトを80%以上含む微細な熱間圧延組織が得られ、焼鈍工程において、フェライトの核生成サイトが増加し、均一かつ微細なフェライト粒が得られると考えられる。したがって、熱延鋼板のフェライトの面積率は20%以下であり、好ましくは15%以下である。熱延鋼板のフェライトの面積率は、0%であってもよい。
本発明において、熱延鋼板の組織をフレッシュマルテンサイト及びベイナイト主体の組織に制御することは、前記と同様の理由から最終組織で平均結晶粒径が25μm以下のフェライト及び0.28以下のCV×CEを得るために重要である。したがって、熱延鋼板のフレッシュマルテンサイト及びベイナイトの合計面積率は80%以上であり、好ましくは85%以上である。熱延鋼板のフレッシュマルテンサイト及びベイナイトの合計面積率は、100%であってもよい。
冷間圧延の累積圧下率が20%未満では、フェライトの再結晶が促進されず、未再結晶フェライトが残存し、本発明の鋼組織が得られない場合がある。したがって、冷間圧延の累積圧下率は20%以上であり、好ましくは30%以上である。
焼鈍温度が750℃未満では、オーステナイトの生成が不十分となり、過剰なフェライトが生成して本発明の鋼組織が得られない。よって、焼鈍温度は750℃以上とする。焼鈍温度は、880℃を超えるとオーステナイトが過剰となり、フェライトが不足する場合がある。したがって、焼鈍温度は、880℃以下である。
また、保持時間が30秒未満では、オーステナイトの生成が不十分となり、過剰なフェライトが生成して本発明の鋼組織が得られない。したがって、保持時間は30秒以上であり、好ましくは60秒以上である。保持時間の上限は特に限定されないが、生産性を損なわないようにするために、保持時間を600秒以下とすることが好ましい。
冷却停止温度が(Ms-50℃)超えでは焼戻しマルテンサイトの生成が不十分であり、本発明の鋼組織が得られない。したがって、冷却停止温度は、(Ms-50℃)以下であり、好ましくは(Ms-100℃)以下である。一方、(Ms-250℃)未満では焼戻しマルテンサイトが過剰になり、残留オーステナイトの生成が不十分となる場合がある。したがって、冷却停止温度は(Ms-250℃)以上であり、好ましくは(Ms-200℃)以上である。
Ms(℃)=539-423×{[C%]×100/(100-[α面積%])}-30×[Mn%]-12×[Cr%]-18×[Ni%]-8×[Mo%] ・・・(3)
なお、上記式において、各元素記号は各元素の含有量(質量%)を表し、含有しない元素は0とする。
また、[α面積%]は焼鈍後のフェライト面積率である。焼鈍後のフェライト面積率は、熱膨張測定装置で昇温速度、焼鈍温度及び焼鈍時の保持時間を模擬することによって事前に求める。[α面積%]は、焼鈍後、本発明の焼入れ工程、焼戻し工程を経て、最終的に得られる鋼板に含まれるフェライトの面積率と同じとして扱う。
300℃未満ではマルテンサイトの焼戻しが不十分となり、フェライトと焼戻しマルテンサイトの硬度差が大きくなることで、一次加工時に焼戻しマルテンサイトがフェライトに追随して変形せず、フェライトとの界面でボイドが発生しやすくなり、衝突特性が低下すると考えられる。また、ベイナイト変態が不十分となり本発明の鋼組織及び耐破断特性が得られない場合がある。したがって、焼戻し温度(再加熱温度)は300℃以上であり、好ましくは350℃以上である。一方、焼戻し温度(再加熱温度)が500℃を超えるとフェライトが過剰に生成し、本発明の鋼組織が得られない。また、ベイナイト変態が不十分となり本発明の鋼組織及び耐破断特性が得られない場合がある。したがって、焼戻し温度(再加熱温度)は500℃以下であり、好ましくは450℃以下である。
また、保持時間が20秒未満ではマルテンサイトの焼戻しが不十分となり、本発明の耐破断特性が得られない。また、ベイナイト変態が不十分となり、本発明の鋼組織及び耐破断特性が得られない場合がある。したがって、保持時間は20秒以上であり、好ましくは30秒以上である。保持時間の上限は特に限定されないが、生産性および過度なベイナイト変態抑制の観点から、保持時間を500秒以下とすることが好ましい。
上記温度域が300℃未満では、マルテンサイト変態が生じる場合があり、未変態オーステナイト中にCが過度に濃化することで、めっきまたはめっき合金化時に分解し、残留オーステナイトが減少する場合がある。一方で、上記温度域が500℃超えでは、フェライトが生成する場合があり、本発明の鋼組織が得られない場合がある。
また、保持時間が300s超えでは、過度にベイナイト変態が進行し本発明の鋼組織及び耐破断特性が得られない場合がある。
よって、本発明では、焼鈍工程後かつ焼入れ工程前のめっき工程においては、めっき前に300~500℃の温度域に0~300s保持する工程を含むことが好ましい
溶融亜鉛めっき処理は、上記により得られた鋼板を440℃以上500℃以下の亜鉛めっき浴中に浸漬して行うことが好ましい。その後、ガスワイピングなどによってめっき付着量を調整して行うことが好ましい。なお、溶融亜鉛めっき処理工程後に合金化処理を施す合金化工程を有してもよい。亜鉛めっきに合金化処理を施す際は、450℃以上580℃以下の温度域で1秒以上180秒以下保持して合金化することが好ましい。
表1に示す成分組成の鋼を真空溶解炉により溶製し、分塊圧延して鋼スラブとした。これらの鋼スラブを1100~1300℃に加熱し、表2に示す条件で、熱間圧延、冷間圧延、焼鈍、焼入れ、焼戻し、熱処理を施し、鋼板を製造した。表2に示す条件で鋼板を製造する際に、焼入れ工程前、又は焼戻し工程後に、一部の鋼板にめっき処理を施した。溶融亜鉛めっき処理では、鋼板をめっき浴中に浸漬し、めっき付着量10~100g/m2の溶融亜鉛めっき層(GI)を形成させた。また、合金化溶融亜鉛めっきでは、鋼板に溶融亜鉛めっき層を形成した後に合金化処理を行い、合金化溶融亜鉛めっき層(GA)を形成させた。なお、最終的な各鋼板の板厚は、1.2mmであった。
曲げ戻し加工した後のフェライト粒の測定位置については、曲げ加工により形成され、幅(C)方向(図1の符号D1参照)に延びた角部を含む領域とした。より具体的には、曲げ加工により幅方向及び圧延方向に垂直な方向(パンチ等の押圧部の押圧方向)で最下部となる領域において、板厚方向に0~50μm領域内でフェライト粒の数を測定した。
なお、表3には示していないが、残部組織は、フェライト(F)、焼戻しマルテンサイト(TM)、ベイナイト(B)、残留オーステナイト(RA)及びフレッシュマルテンサイト(FM)の合計面積率を100%から引くことによって求められ、これら残部組織はパーライト及び/またはセメンタイトであると判断した。
得られた各鋼板から圧延方向に対して直角方向にJIS5号引張試験片(JIS Z2201)を採取し、歪速度を10-3/sとするJIS Z2241(2011)の規定に準拠した引張試験を行い、引張強度(TS)を求めた。なお、TSが780MPa以上を合格とした。
得られた鋼板に対して、曲率半径/板厚:4.2で幅(C)方向を軸に圧延(L)方向に90°曲げた後、再度平坦に曲げ戻し加工(一次曲げ加工)を施し、試験片を準備した。90°曲げ加工(一次曲げ加工)では、図1に示すように、V溝を有するダイA1の上に載せた鋼板に対して、パンチB1を押し込んで試験片T1を得た。次に、図2に示すように、支持ロールA2の上に載せた試験片T1に対して、曲げ方向が圧延直角方向となるようにして、パンチB2を押し込んで直交曲げ(二次曲げ加工)を施した。図1及び図2において、D1は幅(C)方向、D2は圧延(L)方向を示している。
[直交曲げ条件]
試験方法:ロール支持、パンチ押し込み
ロール径:φ30mm
パンチ先端R:0.4mm
ロール間距離:(板厚×2)+1.5mm
ストローク速度:20mm/min
試験片サイズ:60mm×60mm
曲げ方向:圧延直角方向
軸圧壊試験では板厚の影響を考慮し、全て板厚1.2mmの鋼板で実施した。上記製造工程で得られた鋼板を切り出し、パンチ肩半径が5.0mmであり、ダイ肩半径が5.0mmである金型を用いて、深さ40mmとなるように成形加工(曲げ加工)して、図5及び図6に示すハット型部材10を作製した。またハット型部材の素材として用いた鋼板を、200mm×80mmの大きさに別途切り出した。次に、その切り出した後の鋼板20と、ハット型部材10とをスポット溶接し、図5及び図6に示すような試験用部材30を作製した。図5は、ハット型部材10と鋼板20とをスポット溶接して作製した試験用部材30の正面図である。図6は、試験用部材30の斜視図である。スポット溶接部40の位置は、図6に示すように、鋼板の端部と溶接部が10mm、溶接部間が45mmの間隔となるようにした。次に、図7に示すように、試験用部材30を地板50とTIG溶接により接合して軸圧壊試験用サンプルを作製した。次に、作製した軸圧壊試験用サンプルにインパクター60を衝突速度10m/sで等速衝突させ、軸圧壊試験用のサンプルを100mm圧壊した。図7に示すように、圧壊方向D3は、試験用部材30の長手方向と平行な方向とした。圧壊時のストローク-荷重のグラフにおける、ストローク0~100mmの範囲における面積を求め、3回試験を行った際の当該面積の平均値を吸収エネルギー(Fave)とした。Faveが38000N以上で吸収エネルギーが良好と評価した。また、耐破断特性及び吸収エネルギーの両方が良好の場合、衝突特性が良好と評価した。
実施例1の表3のNo.1(本発明例)の鋼板を、プレス加工により成形加工して、本発明例の部材を製造した。さらに、実施例1の表3のNo.1の鋼板と、実施例1の表3のNo.30(本発明例)の鋼板とをスポット溶接により接合し、本発明例の部材を製造した。本発明の鋼板を用いて製造した本発明例の部材は、衝突特性に優れており、高強度であり、実施例1の表3のNo.1(本発明例)の鋼板の成形加工により製造した部材、および実施例1の表3のNo.1の鋼板と、実施例1の表3のNo.30(本発明例)の鋼板とをスポット溶接して製造した部材のすべてにおいて、自動車用骨格部品等に好適に用いることができることを確認できた。
実施例1の表3のNo.1(本発明例)の亜鉛めっき鋼板を、プレス加工により成形加工して、本発明例の部材を製造した。さらに、実施例1の表3のNo.1の亜鉛めっき鋼板と、実施例1の表3のNo.30(本発明例)の亜鉛めっき鋼板とをスポット溶接により接合し、本発明例の部材を製造した。本発明の鋼板を用いて製造した本発明例の部材は、衝突特性に優れており、高強度であり、実施例1の表3のNo.1(本発明例)の鋼板の成形加工により製造した部材、および実施例1の表3のNo.1の鋼板と、実施例1の表3のNo.30(本発明例)の鋼板とをスポット溶接して製造した部材のすべてにおいて、自動車用骨格部品等に好適に用いることができることを確認できた。
20 鋼板
30 試験用部材
40 スポット溶接部
50 地板
60 インパクター
A1 ダイ
A2 支持ロール
B1 パンチ
B2 パンチ
D1 幅(C)方向
D2 圧延(L)方向
D3 圧壊方向
T1 試験片
T2 試験片
Claims (11)
- 炭素当量(CE)が0.46%以上を満たす成分組成と、
面積率で、フェライト:10~50%、焼戻しマルテンサイト及びベイナイトの合計:30%以上、残留オーステナイト:3~20%、フレッシュマルテンサイト:15%以下、フェライト、焼戻しマルテンサイト、ベイナイト、残留オーステナイト及びフレッシュマルテンサイトの合計:90%以上である鋼組織と、を有し、
フェライトの平均結晶粒径:25μm以下であり、
フェライト粒径の変動係数(CV)×炭素当量(CE)が0.28以下であり、
曲率半径/板厚:4.2で幅(C)方向を軸に圧延(L)方向に90°曲げた後、再度平坦に曲げ戻し加工した際に、圧縮-引張変形側の鋼板表面から0~50μm領域内のL断面において、全フェライト粒に対し、界面にボイドを有するフェライト粒の個数割合(NFvoid/NF)が15%以下であり、
引張強度が780MPa以上である鋼板。 - 前記成分組成は、質量%で、
C:0.07~0.20%、
Si:0.10~2.00%、
Mn:1.5~4.0%、
P:0.100%以下、
S:0.050%以下、
Sol.Al:0.005~0.100%、及び
N:0.0100%以下を含有し、残部がFe及び不可避的不純物からなる請求項1に記載の鋼板。 - 前記成分組成は、さらに、質量%で、
Cr:1.000%以下、
Mo:0.500%以下、
V:0.500%以下、
Ti:0.500%以下、
Nb:0.500%以下、
B:0.0050%以下、
Ni:1.000%以下、
Cu:1.000%以下、
Sb:1.000%以下、
Sn:1.000%以下、
As:1.000%以下、
Ca:0.0050%以下、
W:0.500%以下、
Ta:0.100%以下、
Mg:0.050%以下、
Zr:0.050%以下、及び
REM:0.005%以下のうちから選ばれる少なくとも1種を含有する請求項2に記載の鋼板。 - 鋼板の表面に、電気亜鉛めっき層、溶融亜鉛めっき層、又は合金化溶融亜鉛めっき層を有する請求項1から請求項3までのいずれか一項に記載の鋼板。
- 請求項1から請求項4までのいずれか一項に記載の鋼板に対して、成形加工及び溶接の少なくとも一方を施してなる部材。
- 炭素当量(CE)が0.46以上を満たし、請求項2又は請求項3に記載の成分組成を有する鋼スラブを、1100~1300℃の温度域に加熱し、仕上げ圧延温度を800~950℃で熱間圧延し、仕上げ圧延の累積圧下率を60%以上とし、仕上げ圧延出側から巻取までの冷却過程において、750~600℃の温度域での滞留時間を10s以下とし、巻取温度を600℃以下として巻き取る熱間圧延工程と、
該熱間圧延工程で得られた熱延鋼板を酸洗し、20%以上の累積圧下率で冷間圧延する冷間圧延工程と、
該冷間圧延工程で得られた冷延鋼板を、750~880℃の焼鈍温度まで加熱し、30秒以上保持する焼鈍工程と、
該焼鈍工程後、冷却停止温度:(Ms-250℃)~(Ms-50℃)まで冷却する焼入れ工程と、
該焼入れ工程後、再加熱温度:300~500℃まで加熱し、20秒以上保持する焼戻し工程と、
を含む鋼板の製造方法。 - 炭素当量(CE)が0.46以上を満たし、請求項2又は請求項3に記載の成分組成を有する鋼スラブを、1100~1300℃の温度域に加熱し、仕上げ圧延温度を800~950℃で熱間圧延し、仕上げ圧延の累積圧下率を60%以上とし、仕上げ圧延出側から巻取までの冷却過程において、750~600℃の温度域での滞留時間を10s以下とし、巻取温度を600℃以下として巻き取り、
熱延鋼板組織の面積率で、フェライト:20%以下、フレッシュマルテンサイト及びベイナイトの合計:80%以上である組織を有する熱延鋼板を製造する熱間圧延工程を含む冷延鋼板用熱延鋼板の製造方法。 - 請求項7に記載の冷延鋼板用熱延鋼板の製造方法で得られた熱延鋼板を酸洗し、20%以上の累積圧下率で冷間圧延する冷間圧延工程を含む冷延鋼板の製造方法。
- 前記焼鈍工程後かつ前記焼入れ工程前に、又は焼戻し工程後に、鋼板の表面に、電気亜鉛めっき、溶融亜鉛めっき、又は合金化溶融亜鉛めっきを施すめっき工程を含む請求項6に記載の鋼板の製造方法。
- 前記焼鈍工程後かつ前記焼入れ工程前のめっき工程において、めっき前に300~500℃の温度域に0~300s保持する工程を含む請求項9に記載の鋼板の製造方法。
- 請求項6、請求項9又は請求項10に記載の鋼板の製造方法によって製造された鋼板に対して、成形加工及び溶接の少なくとも一方を施す工程を含む部材の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020247027808A KR20240139067A (ko) | 2022-02-28 | 2022-02-28 | 강판, 부재, 그들의 제조 방법, 냉연 강판용 열연 강판의 제조 방법 및 냉연 강판의 제조 방법 |
CN202280092146.6A CN118660983A (zh) | 2022-02-28 | 2022-02-28 | 钢板、构件、它们的制造方法、冷轧钢板用热轧钢板的制造方法和冷轧钢板的制造方法 |
JP2024502417A JPWO2023162190A1 (ja) | 2022-02-28 | 2022-02-28 | |
PCT/JP2022/008145 WO2023162190A1 (ja) | 2022-02-28 | 2022-02-28 | 鋼板、部材、それらの製造方法、冷延鋼板用熱延鋼板の製造方法及び冷延鋼板の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/008145 WO2023162190A1 (ja) | 2022-02-28 | 2022-02-28 | 鋼板、部材、それらの製造方法、冷延鋼板用熱延鋼板の製造方法及び冷延鋼板の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023162190A1 true WO2023162190A1 (ja) | 2023-08-31 |
Family
ID=87765193
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/008145 WO2023162190A1 (ja) | 2022-02-28 | 2022-02-28 | 鋼板、部材、それらの製造方法、冷延鋼板用熱延鋼板の製造方法及び冷延鋼板の製造方法 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPWO2023162190A1 (ja) |
KR (1) | KR20240139067A (ja) |
CN (1) | CN118660983A (ja) |
WO (1) | WO2023162190A1 (ja) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010059452A (ja) * | 2008-09-02 | 2010-03-18 | Sumitomo Metal Ind Ltd | 冷延鋼板およびその製造方法 |
JP2011179050A (ja) * | 2010-02-26 | 2011-09-15 | Kobe Steel Ltd | 伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板 |
JP2012031462A (ja) | 2010-07-29 | 2012-02-16 | Jfe Steel Corp | 成形性および耐衝撃性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP2015175061A (ja) | 2014-03-18 | 2015-10-05 | 新日鐵住金株式会社 | 引張最大強度780MPaを有する衝突特性に優れた高強度鋼板、高強度溶融亜鉛めっき鋼板、並びに、高強度合金化溶融亜鉛めっき鋼板とそれらの製造方法。 |
WO2015151419A1 (ja) * | 2014-03-31 | 2015-10-08 | Jfeスチール株式会社 | 高降伏比高強度冷延鋼板及びその製造方法 |
JP2016028172A (ja) * | 2014-07-11 | 2016-02-25 | 新日鐵住金株式会社 | 冷延鋼板およびその製造方法 |
WO2016194272A1 (ja) * | 2015-05-29 | 2016-12-08 | Jfeスチール株式会社 | 高強度冷延鋼板、高強度めっき鋼板及びこれらの製造方法 |
WO2018043456A1 (ja) * | 2016-08-31 | 2018-03-08 | Jfeスチール株式会社 | 高強度冷延薄鋼板及びその製造方法 |
JP2020059881A (ja) * | 2018-10-09 | 2020-04-16 | 日本製鉄株式会社 | 鋼材およびその製造方法 |
WO2021140663A1 (ja) * | 2020-01-10 | 2021-07-15 | Jfeスチール株式会社 | 高強度亜鉛めっき鋼板およびその製造方法 |
JP2022510212A (ja) * | 2018-11-29 | 2022-01-26 | ポスコ | 延性及び低温靭性に優れた高強度鋼材及びその製造方法 |
-
2022
- 2022-02-28 WO PCT/JP2022/008145 patent/WO2023162190A1/ja active Application Filing
- 2022-02-28 KR KR1020247027808A patent/KR20240139067A/ko unknown
- 2022-02-28 CN CN202280092146.6A patent/CN118660983A/zh active Pending
- 2022-02-28 JP JP2024502417A patent/JPWO2023162190A1/ja active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010059452A (ja) * | 2008-09-02 | 2010-03-18 | Sumitomo Metal Ind Ltd | 冷延鋼板およびその製造方法 |
JP2011179050A (ja) * | 2010-02-26 | 2011-09-15 | Kobe Steel Ltd | 伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板 |
JP2012031462A (ja) | 2010-07-29 | 2012-02-16 | Jfe Steel Corp | 成形性および耐衝撃性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP2015175061A (ja) | 2014-03-18 | 2015-10-05 | 新日鐵住金株式会社 | 引張最大強度780MPaを有する衝突特性に優れた高強度鋼板、高強度溶融亜鉛めっき鋼板、並びに、高強度合金化溶融亜鉛めっき鋼板とそれらの製造方法。 |
WO2015151419A1 (ja) * | 2014-03-31 | 2015-10-08 | Jfeスチール株式会社 | 高降伏比高強度冷延鋼板及びその製造方法 |
JP2016028172A (ja) * | 2014-07-11 | 2016-02-25 | 新日鐵住金株式会社 | 冷延鋼板およびその製造方法 |
WO2016194272A1 (ja) * | 2015-05-29 | 2016-12-08 | Jfeスチール株式会社 | 高強度冷延鋼板、高強度めっき鋼板及びこれらの製造方法 |
WO2018043456A1 (ja) * | 2016-08-31 | 2018-03-08 | Jfeスチール株式会社 | 高強度冷延薄鋼板及びその製造方法 |
JP2020059881A (ja) * | 2018-10-09 | 2020-04-16 | 日本製鉄株式会社 | 鋼材およびその製造方法 |
JP2022510212A (ja) * | 2018-11-29 | 2022-01-26 | ポスコ | 延性及び低温靭性に優れた高強度鋼材及びその製造方法 |
WO2021140663A1 (ja) * | 2020-01-10 | 2021-07-15 | Jfeスチール株式会社 | 高強度亜鉛めっき鋼板およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20240139067A (ko) | 2024-09-20 |
JPWO2023162190A1 (ja) | 2023-08-31 |
CN118660983A (zh) | 2024-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115715332B (zh) | 镀锌钢板、构件和它们的制造方法 | |
WO2020129402A1 (ja) | 鋼板、部材およびこれらの製造方法 | |
JP7028379B1 (ja) | 鋼板、部材及びそれらの製造方法 | |
CN113348259B (zh) | 高强度热浸镀锌钢板和其制造方法 | |
WO2020129403A1 (ja) | 鋼板、部材およびこれらの製造方法 | |
CN115768915B (zh) | 镀锌钢板、构件和它们的制造方法 | |
JP7031800B1 (ja) | 鋼板、部材及びそれらの製造方法 | |
WO2023162190A1 (ja) | 鋼板、部材、それらの製造方法、冷延鋼板用熱延鋼板の製造方法及び冷延鋼板の製造方法 | |
WO2023162381A1 (ja) | 鋼板、部材、それらの製造方法、冷延鋼板用熱延鋼板の製造方法及び冷延鋼板の製造方法 | |
JP2020122213A (ja) | 高強度溶融亜鉛めっき鋼板およびその製造方法 | |
CN116897217A (zh) | 钢板、构件和它们的制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22928716 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2024502417 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022928716 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022928716 Country of ref document: EP Effective date: 20240814 |
|
ENP | Entry into the national phase |
Ref document number: 20247027808 Country of ref document: KR Kind code of ref document: A |