WO2014061270A1 - 高強度冷延鋼板およびその製造方法 - Google Patents

高強度冷延鋼板およびその製造方法 Download PDF

Info

Publication number
WO2014061270A1
WO2014061270A1 PCT/JP2013/006139 JP2013006139W WO2014061270A1 WO 2014061270 A1 WO2014061270 A1 WO 2014061270A1 JP 2013006139 W JP2013006139 W JP 2013006139W WO 2014061270 A1 WO2014061270 A1 WO 2014061270A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
heat treatment
steel sheet
rolled steel
area ratio
Prior art date
Application number
PCT/JP2013/006139
Other languages
English (en)
French (fr)
Inventor
英尚 川邉
横田 毅
杉原 玲子
大吾 伊藤
和憲 田原
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US14/436,685 priority Critical patent/US10072316B2/en
Priority to EP13847783.1A priority patent/EP2910662B1/en
Priority to CN201380054501.1A priority patent/CN104736736B/zh
Priority to KR1020157008751A priority patent/KR101706485B1/ko
Publication of WO2014061270A1 publication Critical patent/WO2014061270A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a high-strength cold-rolled steel sheet suitable for use in a press-formed part having a complicated shape such as a structural part of an automobile and a manufacturing method thereof.
  • the present invention relates to a high-strength cold-rolled steel sheet having a tensile strength (TS) of 1180 MPa or more, and a method for producing the same, particularly excellent in elongation, stretch flangeability, and bendability.
  • TS tensile strength
  • Patent Documents 1 to 4 are conventional techniques related to high-strength cold-rolled steel sheets with excellent workability.
  • Patent Documents 1 to 4 describe high-strength cold rolling in which a tempered martensite phase or a retained austenite phase is included in the steel structure by limiting the steel components and the steel structure, and optimizing the hot rolling and annealing conditions.
  • a technique for obtaining a steel sheet is disclosed.
  • Japanese Laid-Open Patent Publication No. 2004-308002 Japanese Unexamined Patent Publication No. 2005-179703 Japanese Unexamined Patent Publication No. 2006-283130 Japanese Unexamined Patent Publication No. 2004-359974
  • an expensive element is not an essential additive element, but massive martensite having an aspect ratio of 3 or less is present in the steel structure in an amount of 15 to 45%.
  • the massive martensite is a hard martensite phase, and the presence of such martensite may have an adverse effect on stretch flangeability and bendability.
  • Patent Document 2 the knowledge of utilizing the retained austenite phase and achieving high elongation (El) at the TS: 780 to 980 MPa level is disclosed.
  • a desired retained austenite phase is obtained when expensive Cu and Ni, which are austenite stabilizing elements, are added.
  • TS with a large amount of C a steel plate of 1180 MPa or more does not achieve sufficient stretch flangeability.
  • bendability improvement there is no knowledge about bendability improvement.
  • the volume fraction of the tempered martensite phase is as high as 50% or more, and a sufficient balance between TS and El (TS ⁇ El balance) cannot be achieved. There is no knowledge about stretch flangeability and bendability improvement.
  • Patent Document 4 requires the addition of expensive Mo and V. Patent Document 4 has no knowledge about workability. In the technique described in Patent Document 4, there is a concern about workability because the volume fraction of the retained austenite phase is small and the volume fraction of the tempered martensite phase is large.
  • the present invention advantageously solves the above-mentioned problems of the prior art, has excellent workability with excellent elongation, stretch flangeability, and bendability.
  • Tensile strength (TS) High-strength cold-rolled steel sheet of 1180 MPa or higher and its An object is to provide a manufacturing method. That is, the present invention is a component system in which expensive alloy elements such as Nb, V, Cu, Ni, Cr, and Mo are not positively added, and by adjusting the metal structure, the high-strength cold rolling excellent in the workability described above. The purpose is to obtain a steel plate.
  • a high-strength cold-rolled steel sheet having a tensile strength (TS) of 1180 MPa or more that is excellent in workability can be obtained without positively adding an expensive alloy element as described above.
  • TS tensile strength
  • the present invention is based on the above findings, and the gist of the present invention is as follows.
  • a steel slab having the composition described in [1] above is prepared, and the steel slab is hot-rolled into a steel plate, pickled, and heat-treated at a heat treatment temperature of 350 to 550 ° C.
  • the first heat treatment is performed, followed by cold rolling, and the cold-rolled steel sheet is subjected to heat treatment temperature: 800 to 900 ° C., cooling rate: 10 to 80 ° C./second, cooling stop temperature: 300 to 500 ° C., 300 to 500
  • a method for producing a high-strength cold-rolled steel sheet in which a second heat treatment is performed at a holding time at 100 ° C .: 100 to 1000 seconds, and then a third heat treatment is performed at a heat treatment temperature: 150 to 250 ° C.
  • the steel slab heating temperature is 1100 to 1300 ° C. and the hot rolling finishing temperature is 850 to 950 ° C. Production method.
  • a high-strength cold-rolled steel sheet having a tensile strength (TS) of 1180 MPa or more excellent in elongation, stretch flangeability and bendability can be obtained without positively adding expensive elements.
  • the high-strength cold-rolled steel sheet obtained by the present invention is suitable for use in automobile parts in which it is difficult to ensure the shape in press forming.
  • the present inventors diligently studied on improving the workability of a high-strength cold-rolled steel sheet. As a result, even if it is a component that does not contain expensive elements such as Nb, V, Cu, Ni, Cr, and Mo, by ensuring the metal structure of the steel sheet as shown below, the desired strength is ensured. It has been found that the workability can be remarkably improved. That is, the metal structure of the steel sheet according to the present invention has an average area ratio of 50 to 70% for the ferrite phase and bainite phase, an average grain size of 1 to 3 ⁇ m, and an area ratio of the tempered martensite phase of 25 to 45%. A metal structure having a crystal grain size of 1 to 3 ⁇ m and a residual austenite phase area ratio of 2 to 10% is used.
  • the limitation range and reason for limitation of the chemical composition (composition) of steel in the present invention are as follows.
  • C 0.12 to 0.22%
  • C is an element that contributes to strength, and contributes to securing strength by solid-solution hardening and transformation strengthening by the martensite phase. If the C content is less than 0.12%, it is difficult to obtain a tempered martensite phase having a required area ratio. Therefore, the C content is 0.12% or more. Preferably, the amount of C is 0.15% or more. On the other hand, if the C content exceeds 0.22%, the spot weldability is significantly deteriorated. On the other hand, if the amount of C exceeds 0.22%, the tempered martensite phase is excessively hardened and the formability of the steel sheet is lowered, and particularly the stretch flangeability is lowered. For this reason, the C content is 0.22% or less. Preferably, the amount of C is 0.21% or less. Therefore, the C content is in the range of 0.12 to 0.22%.
  • Si 0.8-1.8% Si is an important element for promoting C concentration in austenite and stabilizing retained austenite.
  • the Si content needs to be 0.8% or more, preferably 1.0% or more.
  • the upper limit of Si amount needs to be 1.8%, preferably 1.6%. Therefore, the Si amount is set to a range of 0.8 to 1.8%.
  • Mn 1.8 to 2.8%
  • Mn is an element that improves hardenability and facilitates securing a tempered martensite phase that contributes to strength.
  • the Mn content needs to be 1.8% or more.
  • the amount of Mn is preferably 2.0% or more.
  • the amount of Mn is less than 2.6%. Therefore, the Mn content is in the range of 1.8 to 2.8%. Preferably it is 2.0% or more and less than 2.6% of range.
  • P 0.020% or less Since P adversely affects spot weldability, it is preferable to reduce the amount of P as much as possible. However, the amount of P is acceptable up to 0.020%. Therefore, the P content is 0.020% or less. Preferably, the amount of P is 0.010% or less. In addition, if the amount of P is excessively reduced, the production efficiency in the steel making process is lowered and the cost is increased. For this reason, it is preferable that the lower limit of the P amount is about 0.001%.
  • S 0.0040% or less S segregates at the grain boundary and easily causes hot short embrittlement. S forms sulfide inclusions such as MnS. This sulfide inclusion is stretched by cold rolling and becomes a starting point of cracking when the steel sheet is deformed, and reduces the local deformability of the steel sheet. Therefore, it is desirable that the amount of S is as low as possible. However, the amount of S is acceptable up to 0.0040%. For this reason, the amount of S is made into 0.0040% or less. Preferably, the amount of S is 0.0020% or less. On the other hand, excessive reduction of the amount of S is industrially difficult and is accompanied by an increase in desulfurization cost in the steelmaking process. For this reason, the lower limit of the amount of S is preferably about 0.0001%.
  • Al 0.005 to 0.08%
  • Al is added mainly for the purpose of deoxidation.
  • Al is an element effective in suppressing the formation of carbides, generating a retained austenite phase, and improving the strength-elongation balance.
  • the Al content needs to be 0.005% or more.
  • the Al amount is 0.02% or more.
  • the Al content is 0.06% or less. Therefore, the Al content is in the range of 0.005 to 0.08%.
  • the Al content is in the range of 0.02% to 0.06%.
  • N 0.008% or less
  • N is an element that deteriorates aging resistance.
  • the N content exceeds 0.008%, deterioration of aging resistance becomes remarkable.
  • N combines with B to form BN and consumes B.
  • N reduces the hardenability by the solid solution B and makes it difficult to secure a tempered martensite phase having a predetermined area ratio.
  • N exists as an impurity element in ferrite, and reduces ductility by strain aging. Therefore, it is preferable that the N amount is low.
  • the N content is acceptable up to 0.008%.
  • the N content is 0.008% or less.
  • the N content is 0.006% or less.
  • the lower limit of the N amount be about 0.0001%.
  • Ti forms carbonitrides and sulfides and is effective in improving strength. Ti also suppresses the formation of BN by precipitating N as TiN. Therefore, Ti is effective in expressing the hardenability by B. In order to exhibit such an effect, the Ti amount needs to be 0.001% or more. Preferably, the Ti amount is 0.010% or more. On the other hand, if the Ti content exceeds 0.040%, precipitates are excessively generated in the ferrite phase, precipitation hardening (precipitation hardening) works excessively, and the elongation of the steel sheet decreases. For this reason, the amount of Ti needs to be 0.040% or less. Preferably, the Ti amount is 0.030% or less. Therefore, the Ti content is in the range of 0.001 to 0.040%. More preferably, the Ti content is in the range of 0.010 to 0.030%.
  • B 0.0001 to 0.0020% B contributes to securing a tempered martensite phase and a retained austenite phase by increasing the hardenability, and is necessary for obtaining an excellent strength-elongation balance.
  • the B amount needs to be 0.0001% or more.
  • the amount of B is 0.0002% or more.
  • the amount of B exceeds 0.0020%, the above effect is saturated. For this reason, the amount of B needs to be 0.0020% or less.
  • the amount of B is 0.0010% or less. From the above, the B content is set in the range of 0.0001 to 0.0020%.
  • Ca 0.0001 to 0.0020%
  • Ca has the effect of reducing the shape of the sulfide, which is the starting point of cracking during deformation, from a plate shape to a spherical shape and suppressing a decrease in local deformability.
  • the Ca content needs to be 0.0001% or more.
  • the Ca content is 0.0002% or more.
  • the amount of Ca is made 0.0020% or less.
  • the Ca content is 0.0010% or less. From the above, the Ca content is in the range of 0.0001 to 0.0020%.
  • components other than the above are Fe and inevitable impurities. However, as long as the effects of the present invention are not impaired, the inclusion of components other than those described above is not rejected.
  • Nb and V are positively added, they will precipitate in the steel, making it difficult to secure excellent El and adversely affect the material of the steel sheet. Moreover, when Cu, Ni, Cr, and Mo are positively added, a martensite phase is excessively generated, and it becomes difficult to secure excellent El, which adversely affects the material. Therefore, the inclusion of these elements is not preferred, and even if contained, it is preferable to keep the level of inevitable impurities.
  • Total area ratio of ferrite phase and bainite phase 50 to 70%
  • the ferrite phase is softer than the hard martensite phase produced by transformation from the austenite phase, and contributes to ductility.
  • the bainite phase is transformed from the austenite phase at a higher temperature than the martensite phase.
  • the bainite phase is composed of a ferrite phase and a cementite phase, and is softer than a hard martensite phase like the ferrite phase and contributes to ductility. For this reason, in order to obtain a desired elongation, the total area ratio of the ferrite phase and the bainite phase needs to be 50% or more.
  • the total area ratio of the ferrite phase and the bainite phase needs to be 50% or more, preferably 53% or more.
  • the total area ratio of the ferrite phase and the bainite phase is less than 50%, the area ratio of the hard martensite phase increases. For this reason, the steel sheet becomes excessively strong, and the elongation of the steel sheet and the stretch flange deteriorate.
  • the total area ratio of the ferrite phase and the bainite phase exceeds 70%, it becomes difficult to ensure a tensile strength (TS) of 1180 MPa or more. It also becomes difficult to secure a predetermined amount of retained austenite phase that contributes to ductility. For this reason, the total area ratio of the ferrite phase and the bainite phase is 70% or less, preferably 68% or less. Therefore, the total area ratio of the ferrite phase and the bainite phase is in the range of 50% to 70%.
  • Average crystal grain size of ferrite phase and bainite phase 1 to 3 ⁇ m
  • the average crystal grain size of the ferrite phase and the bainite phase needs to be 3 ⁇ m or less, preferably 2.5 ⁇ m or less.
  • the volume of the crystal grain boundary is large, and such a large amount of crystal grain boundary hinders the movement of dislocations.
  • the average crystal grain size of the ferrite phase and the bainite phase needs to be 1 ⁇ m or more, and preferably 1.4 ⁇ m or more. Therefore, the average crystal grain size of the ferrite phase and the bainite phase is in the range of 1 to 3 ⁇ m.
  • Area ratio of tempered martensite phase 25-45%
  • the tempered martensite phase is obtained by reheating and heating a hard martensite phase.
  • the tempered martensite phase contributes to strength.
  • TS In order to ensure 1180 MPa or more, the area ratio of the tempered martensite phase needs to be 25% or more, and preferably 28% or more.
  • the area ratio of the tempered martensite phase needs to be 45% or less, and preferably 44% or less.
  • Average grain size of tempered martensite phase 1 to 3 ⁇ m If the average crystal grain size of the tempered martensite phase exceeds 3 ⁇ m and is coarse, it becomes difficult for the steel sheet to be uniformly deformed during stretch flange molding and bending deformation. That is, the stretch flangeability and bendability of the steel sheet are reduced.
  • the average crystal grain size of the tempered martensite phase is finer than 1 ⁇ m, the volume of crystal grain boundaries is large, and such a large amount of crystal grain boundaries hinders the movement of dislocations. For this reason, a steel plate becomes high intensity
  • the average crystal grain size of the ferrite phase and the bainite phase and the average crystal grain size of the tempered martensite phase are respectively controlled to the above-described average crystal grain size.
  • making the average crystal grain size of the ferrite phase and the bainite phase and the average crystal grain size of the tempered martensite phase the same level enables more uniform deformation during processing.
  • it is preferable that the entire steel plate has a uniform and fine structure in order to enable more uniform deformation during processing.
  • (average crystal grain size of ferrite phase and bainite phase) / (average crystal grain size of tempered martensite phase) is preferably 0.5 to 3.0. More preferably, (average grain size of ferrite phase and bainite phase) / (average grain size of tempered martensite phase) is 0.8 to 2.0.
  • the retained austenite phase has the effect of hardening the deformed portion of the steel sheet by strain-induced transformation to prevent strain concentration and thereby improving elongation.
  • the area ratio of the retained austenite phase is 3% or more.
  • the strain-induced transformation of the retained austenite phase is the transformation of a strained portion into a martensite phase when the material is deformed.
  • the residual austenite phase has a high C concentration and is hard. For this reason, when a residual austenite phase exists excessively exceeding 10% in a steel plate, many local hard parts will exist.
  • the retained austenite is small.
  • the area ratio of a residual austenite phase shall be 10% or less, Preferably it shall be 8% or less. Therefore, the area ratio of the retained austenite phase is 2 to 10%.
  • the present invention provides a steel slab having the above-described composition, hot-rolls the steel slab into a steel plate, pickles, and heat-treats the steel plate after pickling at a heat treatment temperature of 350 to 550 ° C. And then cold-rolled, and the cold-rolled steel sheet is subjected to heat treatment temperature: 800 to 900 ° C., cooling rate: 10 to 80 ° C./second, cooling stop temperature: 300 to 500 ° C., 300 to 500 ° C. The second heat treatment is performed at a time of 100 to 1000 seconds, and then the third heat treatment is performed at a heat treatment temperature of 150 to 250 ° C.
  • the production of the steel slab is not particularly limited, and may be performed according to a conventional method.
  • steel adjusted to the above component composition range can be melted and cast to obtain a steel slab.
  • the steel slab may be a continuous casting slab, an ingot-bundling slab, a thin slab having a thickness of about 50 mm to 100 mm, or the like.
  • the steel slab manufactured and prepared as described above is hot rolled into a steel plate.
  • the hot rolling is not particularly limited and may be performed according to a conventional method.
  • the heating temperature of the steel slab at the time of hot rolling shall be 1100 degreeC or more.
  • the upper limit of the heating temperature of the steel slab during hot rolling is preferably about 1300 ° C.
  • the hot rolling finishing temperature is preferably 850 ° C. or higher so as to avoid the formation of a band-like structure of ferrite and pearlite.
  • the upper limit of the hot rolling finishing temperature is preferably about 950 ° C.
  • the coiling temperature after completion of hot rolling is preferably 400 to 600 ° C. from the viewpoint of cold rolling properties and surface properties.
  • the pickled steel sheet is pickled according to a conventional method.
  • the conditions for pickling are not particularly limited, and may be performed according to a conventionally known method such as pickling with hydrochloric acid.
  • the steel plate after pickling is subjected to a first heat treatment (first heat treatment), followed by a cold rolling process, a second heat treatment (second heat treatment), and then a third heat treatment (third heat treatment). Heat treatment).
  • first heat treatment first heat treatment
  • second heat treatment second heat treatment
  • third heat treatment third heat treatment
  • Heat treatment temperature for the first heat treatment 350 to 550 ° C.
  • a first heat treatment is applied to the hot rolled steel sheet after hot rolling.
  • tempering after hot rolling is insufficient, and therefore, the influence of the structure after hot rolling on the finally obtained high-strength cold-rolled steel sheet can be removed.
  • the heat treatment temperature of the first heat treatment is less than 350 ° C., if the hot-rolled steel plate before the heat treatment has an unfavorable structure shown below, the steel sheet after the first heat treatment is caused by these structures. Becomes a heterogeneous structure.
  • the above-mentioned unfavorable structure is a non-uniform bainite single-phase structure in which coarse and fine crystal grains are mixed, a martensite single-phase structure, or a lamellar structure composed of ferrite and pearlite (lamellar ).
  • the heat processing temperature of 1st heat processing is less than 350 degreeC, a hot-rolled steel plate hardens, the load of cold rolling increases, and it becomes high cost.
  • the steel sheet structure becomes a structure having a non-uniform C concentration.
  • austenite is coarsely and roughly unevenly distributed, and a uniform and fine structure cannot be obtained.
  • the structure having a non-uniform C concentration is a structure in which coarse cementite having a high C concentration is roughly distributed in a ferrite phase having a low C concentration.
  • Tempering proceeds by performing heat treatment (first heat treatment) in the range of 350 to 550 ° C. Due to the progress of this tempering, cementite is present in the steel sheet uniformly and finely without being coarsened. As a result, the structure finally obtained after cold rolling, the second heat treatment and the third heat treatment becomes fine crystal grains, and excellent stretch flangeability and bendability are obtained. Therefore, in order to obtain a very uniform structure before cold rolling, the temperature of the first heat treatment performed after hot rolling and before cold rolling is set in the range of 350 to 550 ° C. The temperature is preferably in the range of 400 to 540 ° C.
  • the steel sheet when the first heat treatment is performed on the hot-rolled steel sheet, it is preferable to hold the steel sheet at a heat treatment temperature within a range of 350 to 550 ° C. for about 5 minutes to 5 hours.
  • the holding time is less than 5 minutes, tempering after hot rolling may be insufficient, and the influence of the structure after hot rolling may not be removed. If the holding time is too long, productivity is hindered, so the upper limit of the holding time is preferably about 5 hours. Therefore, in the first heat treatment, the holding time at a holding temperature in the range of 350 to 550 ° C. is preferably about 5 minutes to 5 hours. More preferably, the holding time at a holding temperature in the range of 350 to 550 ° C. is about 10 minutes to 4 hours.
  • the hot rolled steel sheet subjected to the first heat treatment is cold rolled.
  • the method of cold rolling does not need to be specified in particular, and may be performed according to a conventional method. From the viewpoint of obtaining a uniform recrystallized structure after the second heat treatment and ensuring the stability of the steel sheet material, it is preferable that the cold rolling reduction is about 30 to 70%.
  • the steel sheet after cold rolling has a heat treatment temperature of 800 to 900 ° C., a cooling rate of 10 to 80 ° C./second, and a cooling stop temperature of 300 to 500.
  • a second heat treatment is performed at a holding time at 100 ° C. and 300 to 500 ° C .: 100 to 1000 seconds.
  • Heat treatment temperature of second heat treatment 800 to 900 ° C
  • the heat treatment temperature in the second heat treatment is lower than 800 ° C.
  • the volume fraction of the ferrite phase increases during the heating and heat treatment.
  • tissue of the steel plate finally obtained increases, and it becomes difficult to ensure TS: 1180 Mpa or more.
  • the heat treatment temperature in the second heat treatment is lower than 800 ° C., C enrichment to the austenite phase is promoted during the heat treatment.
  • the martensite phase before being tempered in the third heat treatment is excessively hardened, and the martensite phase is not sufficiently softened even after the third heat treatment, and the stretch flangeability of the steel sheet is reduced.
  • the heat treatment temperature of the second heat treatment is set to a range of 800 to 900 ° C. More preferably, the heat treatment temperature of the second heat treatment is in the range of 810 to 860 ° C.
  • Cooling rate 10 to 80 ° C./second
  • the cooling rate at the time of cooling is important in order to obtain a desired area ratio of the martensite phase.
  • the average cooling rate is less than 10 ° C./second, it is difficult to secure the martensite phase, and the finally obtained steel sheet becomes soft and it is difficult to ensure the strength.
  • the average cooling rate exceeds 80 ° C./second, a martensite phase is excessively generated, the strength of the finally obtained steel sheet becomes too high, and workability such as elongation and stretch flangeability deteriorates. Therefore, the cooling rate is in the range of 10 to 80 ° C./second. More preferably, the average cooling rate is 15 to 60 ° C./second.
  • This cooling is preferably performed by gas cooling. Further, this cooling can be performed in combination using furnace cooling, mist cooling, roll cooling, water cooling, or the like.
  • Cooling stop temperature 300-500 ° C
  • the cooling stop temperature at which the cooling is stopped is less than 300 ° C.
  • a martensite phase is excessively generated, so that the strength of the finally obtained steel sheet becomes too high, and it becomes difficult to ensure elongation.
  • the cooling stop temperature exceeds 500 ° C.
  • the cooling stop temperature in the second heat treatment is set to 300 to 500 ° C.
  • the cooling stop temperature in the second heat treatment is set to 300 to 500 ° C.
  • the cooling stop temperature in the second heat treatment is 350 to 450 ° C.
  • Holding time at 300 to 500 ° C . 100 to 1000 seconds After the cooling is stopped at the above temperature, holding is performed. If the holding time is less than 100 seconds, the time for the C concentration to progress to the austenite phase is insufficient, and it becomes difficult to finally obtain a desired retained austenite area ratio, and an excessively martensite phase is formed. To do. For this reason, the steel plate finally obtained becomes high strength, and the elongation and stretch flangeability of the steel plate are lowered. On the other hand, even if retained for more than 1000 seconds, the amount of retained austenite does not increase and no significant improvement in elongation is observed. Staying longer than 1000 seconds only hinders productivity. Accordingly, the holding time at 300 to 500 ° C. is set in the range of 100 to 1000 seconds. Preferably, the holding time at 300 to 500 ° C. is in the range of 150 to 900 seconds.
  • a third heat treatment is performed to temper the martensite phase.
  • Heat treatment temperature of the third heat treatment 150 ° C. to 250 ° C.
  • the heat treatment temperature in the third heat treatment is lower than 150 ° C.
  • softening by tempering of the martensite phase is insufficient
  • the martensite phase becomes excessively hard
  • the stretch flangeability and bendability of the steel sheet are lowered.
  • the heat treatment temperature exceeds 250 ° C., the retained austenite phase obtained after the second heat treatment is decomposed. For this reason, the residual austenite phase of a desired area ratio is not finally obtained, and it becomes difficult to obtain a steel sheet excellent in elongation.
  • the heat treatment temperature is in the range of 150 ° C to 250 ° C.
  • the range is preferably 175 to 235 ° C.
  • the third heat treatment when performing the third heat treatment, it is preferable to hold at a holding temperature in the range of 150 to 250 ° C. for about 5 minutes to 5 hours.
  • a holding temperature in the range of 150 to 250 ° C.
  • softening of the martensite phase becomes insufficient, the martensite phase becomes excessively hard, and sufficient stretch flangeability and bendability may not be obtained.
  • the third heat treatment affects the decomposition of retained austenite and the temper softening of the martensite phase. For this reason, if the holding time is too long, there is a concern about a decrease in elongation and a decrease in strength. However, if the holding time is up to about 5 hours, the material changes little.
  • the upper limit of the holding time is preferably about 5 hours. Therefore, in the third heat treatment, the holding time at a holding temperature in the range of 150 to 250 ° C. is preferably about 5 minutes to 5 hours. More preferably, the holding time at a holding temperature in the range of 150 to 250 ° C. is about 10 minutes to 4 hours.
  • the cold-rolled steel sheet obtained as described above may be subjected to temper rolling (also referred to as skin pass rolling) according to a conventional method for shape correction and surface roughness adjustment.
  • temper rolling also referred to as skin pass rolling
  • the elongation of temper rolling is not particularly specified.
  • the elongation of temper rolling is preferably about 0.05% to 0.5%, for example.
  • a steel slab was prepared by melting steel having the composition shown in Table 1, and this steel slab was rolled at a heating temperature of 1200 ° C. and a finish rolling exit temperature of 910 ° C., and after the end of rolling, 40 ° C./second. Was cooled to the coiling temperature, and hot rolling was performed at a coiling temperature of 450 ° C.
  • the hot-rolled steel sheet obtained by this hot rolling was pickled with hydrochloric acid and then subjected to a first heat treatment under the conditions shown in Table 2.
  • the hot-rolled steel sheet after the first heat treatment is cold-rolled at a reduction rate of 30% to 70% to a thickness of 1.6 mm, and then subjected to a second heat treatment (annealing treatment) under the conditions shown in Table 2. It was. Thereafter, a third heat treatment was performed on the steel sheet after the second heat treatment under the conditions shown in Table 2 to obtain a cold-rolled steel sheet.
  • the cold-rolled steel sheet thus obtained was examined for the structure, tensile characteristics, stretch flangeability (hole expansion ratio), and bending characteristics of the steel sheet as shown below. The obtained results are shown in Table 3.
  • the area ratio of the tempered martensite phase was determined as follows by performing SEM observation before and after tempering. That is, it was judged that the structure observed as a lump-like shape having a relatively smooth surface before tempering was finally tempered and heat-treated to become a tempered martensite phase in which fine carbide precipitation was observed. Thus, the area ratio was obtained.
  • the amount of retained austenite was separately measured by X-ray diffraction (the X-ray diffraction method), and the measured amount of retained austenite was defined as the area ratio of the retained austenite phase.
  • the amount of retained austenite was determined by the X-ray diffraction method using Mo K ⁇ rays. That is, using a test piece having a surface near a thickness of 1/4 of the steel sheet as a measurement surface, the peaks of the (211) surface and the (220) surface of the austenite phase and the (200) surface and (220) surface of the ferrite phase
  • the volume ratio of the retained austenite phase was calculated from the strength.
  • the calculated volume fraction of the retained austenite phase was defined as the amount of retained austenite phase, and the area ratio of the retained austenite phase.
  • the average crystal grain size of the ferrite phase and the bainite phase is calculated by counting the number of grains in the measurement region (number of grains in the black region) and calculating the average grain area a using the area ratio of each phase in the measurement area.
  • the evaluation criteria for stretch flangeability was TS ⁇ ⁇ ⁇ 38000 MPa ⁇ % (TS: tensile strength (MPa), ⁇ : hole expansion rate (%)), and stretch flangeability was excellent.
  • No. 10 has a small total area ratio of the ferrite phase and the bainite phase, has a coarse crystal grain size, has an excessively high strength, and is inferior in elongation, stretch flangeability and bendability.
  • the cooling rate is fast.
  • No. 12 has a small area ratio of the total of the ferrite phase and the bainite phase, has an excessively high strength, and is inferior in elongation, stretch flangeability and bendability.
  • No. 2 having a low cooling stop temperature in the second heat treatment.
  • No. 17 has a small area ratio of residual austenite phase and low elongation.
  • No. 3 in which the heat treatment temperature of the third heat treatment is low.
  • No. 16 has insufficient tempering of the martensite phase, a tempered martensite phase cannot be obtained, the strength is excessively high, and the elongation, stretch flangeability, and bendability are poor.
  • tensile strength (TS): 1180 MPa or more which is inexpensive and has excellent elongation and stretch flangeability without actively containing expensive elements such as Nb, V, Cu, Ni, Cr and Mo in the steel sheet.
  • High strength cold-rolled steel sheet can be obtained.
  • the high-strength cold-rolled steel sheet of the present invention is also suitable for applications that require strict dimensional accuracy and workability, such as in the field of architecture and home appliances, in addition to automobile parts.

Abstract

 優れた伸び、伸びフランジ性、曲げ性を有する高強度冷延鋼板およびその製造方法を提供する。質量%で、C:0.12~0.22%、Si:0.8~1.8%、Mn:1.8~2.8%、P:0.020%以下、S:0.0040%以下、Al:0.005~0.08%、N:0.008%以下、Ti:0.001~0.040%、B:0.0001~0.0020%およびCa:0.0001~0.0020%を含有し、残部がFe及び不可避不純物からなる成分組成を有し、フェライト相とベイナイト相の合計面積比率が50~70%、フェライト相とベイナイト相の平均結晶粒径が1~3μm、焼戻マルテンサイト相の面積比率が25~45%、焼戻マルテンサイト相の平均結晶粒径が1~3μm、残留オーステナイト相の面積比率が2~10%である組織を有する高強度冷延鋼板。

Description

高強度冷延鋼板およびその製造方法
 本発明は、自動車の構造部品などの複雑な形状のプレス成形部品などに供して好適な高強度冷延鋼板およびその製造方法に関する。本発明は、特に、伸び、伸びフランジ性、曲げ性に優れる、引張強度(TS):1180MPa以上の高強度冷延鋼板およびその製造方法に関するものである。
 従来、TS:1180MPa以上の冷延鋼板はロール成形などにより軽加工される自動車用部品に適用されることが多かった。最近では、自動車のより一層の衝突安全性と車体軽量化による燃費向上の両立をすべく、TS:1180MPa以上の冷延鋼板の自動車の骨格構造部品(structural member for automobile)など複雑形状のプレス成形部品への適用が拡大している。このため、加工性、特に伸び、伸びフランジ性(stretch flangeability)および曲げ性(bendability)に優れるTS:1180MPa以上の冷延鋼板へのニーズは高い。
 一般に鋼板を高強度化すると加工性が低下するといった傾向にある。それゆえ、高強度鋼板の適用拡大にあたっては、高強度化した鋼板をプレス成形する際の割れを回避することが課題である。またTS:1180MPa以上に鋼板を高強度化する場合、C、Mnに加え、強度確保の観点からNb、V、Cu、Ni、Cr、Moなどの極めて高価な希少元素を積極的に添加する場合がある。
 加工性に優れた高強度冷延鋼板に関する従来技術としては、例えば、特許文献1~4がある。特許文献1~4には、鋼成分や鋼組織の限定、熱延条件や焼鈍条件の最適化により、焼戻マルテンサイト相、または残留オーステナイト相を鋼組織中に含むようにした高強度冷延鋼板を得る技術が開示されている。
日本国特開2004-308002号公報 日本国特開2005-179703号公報 日本国特開2006-283130号公報 日本国特開2004-359974号公報
 特許文献1に記載の技術では、高価な元素を必須添加元素とはしないが、アスペクト比が3以下の塊状マルテンサイト(blocky martensite)が鋼組織中に15~45%存在する。前記塊状マルテンサイトは硬質なマルテンサイト相であり、このようなマルテンサイトの存在は伸びフランジ性や曲げ性に悪影響をおよぼす懸念がある。
 特許文献2に記載の技術では、残留オーステナイト相を活用し、TS:780~980MPaレベルで高い伸び(El)を達成する知見は開示されている。しかし、特許文献2の実施例を参照すると、オーステナイト安定化元素である高価なCu、Niを添加した場合に所望の残留オーステナイト相が得られている。また、C量の多いTS:1180MPa以上の鋼板では十分な伸びフランジ性を達成していない。なお、曲げ性向上に関する知見はない。
 特許文献3に記載の技術では、焼戻マルテンサイト相の体積分率が50%以上と多く、十分なTSとElのバランス(TS×Elバランス)が達成できてない。また伸びフランジ性と曲げ性向上に関する知見はない。
 特許文献4に記載の技術では、高価なMo、Vの添加を必須としている。特許文献4には加工性に関する知見はない。また、特許文献4に記載の技術では残留オーステナイト相の体積分率が少なく、焼戻マルテンサイト相の体積分率も多いため加工性に懸念がある。
 本発明は、上記の従来技術の問題点を有利に解決して、優れた伸び、伸びフランジ性、曲げ性を有する加工性に優れる引張強度(TS):1180MPa以上の高強度冷延鋼板およびその製造方法を提供することを目的とする。すなわち、本発明は、Nb、V、Cu、Ni、Cr、Moといった高価な合金元素を積極的に添加しない成分系で、金属組織を調整することで、上記の加工性に優れる高強度冷延鋼板を得ることを目的とする。
 本発明者らは、上記の課題を解決すべく、鋭意研究した。その結果、以下のi)、ii)により、上記したような高価な合金元素を積極的に添加しなくても、加工性に優れる引張強度(TS):1180MPa以上の高強度冷延鋼板が得られることを見出した。
i)金属組織中のフェライト相とベイナイト相、焼戻マルテンサイト相および残留オーステナイト相の面積比率を制御すること。
ii)フェライト相とベイナイト相の結晶粒径、焼鈍(焼き戻し処理)を施し軟質化した焼戻マルテンサイト相の結晶粒径を厳密に制御すること。
本発明は上記知見に基づくものであり、本発明の要旨は以下のとおりである。
 [1]質量%で、
C:0.12~0.22%、
Si:0.8~1.8%、
Mn:1.8~2.8%、
P:0.020%以下、
S:0.0040%以下、
Al:0.005~0.08%、
N:0.008%以下、
Ti:0.001~0.040%、
B:0.0001~0.0020%および
Ca:0.0001~0.0020%
を含有し、残部がFe及び不可避不純物からなる成分組成を有し、
フェライト相とベイナイト相の合計面積比率が50~70%、
フェライト相とベイナイト相の平均結晶粒径が1~3μm、
焼戻マルテンサイト相の面積比率が25~45%、
焼戻マルテンサイト相の平均結晶粒径が1~3μm、
残留オーステナイト相の面積比率が2~10%である組織を有する高強度冷延鋼板。
 [2]さらに、(フェライト相とベイナイト相の平均結晶粒径)/(焼戻マルテンサイト相の平均結晶粒径)が0.5~3.0である前記[1]に記載の高強度冷延鋼板。
 [3]前記[1]に記載の成分組成からなる鋼スラブを準備し、該鋼スラブを熱間圧延して鋼板とし、酸洗し、酸洗後の鋼板に熱処理温度:350~550℃で第1の熱処理を施し、次いで冷間圧延し、冷間圧延後の鋼板に熱処理温度:800~900℃、冷却速度:10~80℃/秒、冷却停止温度:300~500℃、300~500℃での保持時間:100~1000秒で第2の熱処理を施し、次いで熱処理温度:150~250℃で第3の熱処理を施す高強度冷延鋼板の製造方法。
 [4]さらに、前記熱間圧延の条件として、鋼スラブの加熱温度を1100~1300℃、熱間圧延の仕上げ温度を850~950℃とする前記[3]に記載の高強度冷延鋼板の製造方法。
 [5]さらに、前記第1の熱処理における350~550℃での保持時間を5分~5時間とする前記[3]または[4]に記載の高強度冷延鋼板の製造方法。
 [6]さらに、前記第3の熱処理における150~250℃での保持時間を5分~5時間とする前記[3]~[5]のいずれか1つに記載の高強度冷延鋼板の製造方法。
 本発明によれば、高価な元素を積極的に添加することなく、伸び、伸びフランジ性および曲げ性に優れる引張強度(TS):1180MPa以上の高強度冷延鋼板を得ることができる。本発明により得られる高強度冷延鋼板は、プレス成形において形状の確保が難しい自動車部品用として好適である。
 本発明者らは、高強度冷延鋼板の加工性向上に関し、鋭意検討した。その結果、Nb、V、Cu、Ni、Cr、Moといった高価な元素を含有しない成分であっても、鋼板の金属組織を以下に示す金属組織とすることで、所望の強度を確保した上で加工性を顕著に向上できることを見出した。すなわち、本発明の鋼板の金属組織は、フェライト相とベイナイト相の合計面積比率が50~70%で平均結晶粒径が1~3μm、焼戻マルテンサイト相の面積比率が25~45%で平均結晶粒径が1~3μm、残留オーステナイト相の面積比率が2~10%である金属組織とする。
 以下、伸び、伸びフランジ性および曲げ性に優れる引張強度(TS)が1180MPa以上の高強度冷延鋼板を得るための鋼の化学成分と、組織の限定範囲および限定理由を詳細に説明する。なお、鋼板中の元素の含有量の単位は何れも質量%であるが、以下、特に断らない限り、単に%で示す。
 まず、本発明における鋼の化学成分(組成)の限定範囲および限定理由は以下の通りである。
 C:0.12~0.22%
Cは強度に寄与する元素であり、固溶強化(solid-solution hardening)およびマルテンサイト相による組織強化(transformation strengthening)により強度確保に寄与する。C量が0.12%未満では必要な面積比率の焼戻マルテンサイト相を得るのが困難である。このため、C量は0.12%以上とする。好ましくは、C量は0.15%以上である。一方、C量が0.22%を超えるとスポット溶接性が著しく劣化する。また、C量が0.22%を超えると焼戻マルテンサイト相が過度に硬質化して鋼板の成形性が低下し、特に伸びフランジ性が低下する。このため、C量は0.22%以下とする。好ましくは、C量は0.21%以下である。したがってC量は0.12~0.22%の範囲とする。
 Si:0.8~1.8%
Siはオーステナイト中へのC濃化を促進させ、残留オーステナイトを安定化するのに重要な元素である。上記作用を得るにはSiの含有量を0.8%以上、好ましくは1.0%以上とする必要がある。一方、1.8%を超えてSiを添加すると鋼板が脆くなり、割れが生じ、成形性も低下する。このため、Si量の上限は1.8%とする必要があり、好ましくは1.6%である。したがってSi量は0.8~1.8%の範囲とする。
 Mn:1.8~2.8%
Mnは焼入れ性を向上させる元素であり、強度に寄与する焼戻マルテンサイト相の確保を容易にする。上記作用を得るためにはMnの含有量は1.8%以上とすることが必要である。Mn量は2.0%以上とすることが好ましい。一方、2.8%を超えてMnを添加すると、鋼板が過度に硬質化し、高温での延性が不足し、スラブ割れが生じる場合がある。このため、Mn量は2.8%以下とする。好ましくは、Mn量は2.6%未満である。したがって、Mn量は1.8~2.8%の範囲とする。好ましくは2.0%以上2.6%未満の範囲である。
 P:0.020%以下
Pはスポット溶接性に悪影響をおよぼすため、P量は極力低減することが好ましい。しかし、P量は0.020%までは許容できる。このため、P量は0.020%以下とする。好ましくはP量は0.010%以下である。なお、P量を過度に低減すると製鋼工程での生産能率が低下し、高コストとなる。このため、P量の下限は0.001%程度とすることが好ましい。
 S: 0.0040%以下
Sは粒界に偏析(segregate)して熱間脆性(hotshort embrittlement)を起こしやすくする。また、SはMnSなどの硫化物系介在物(sulfide inclusion)を形成する。この硫化物系介在物は、冷間圧延により展伸し、鋼板を変形させる時の割れの起点となり、鋼板の局部変形能(local deformability)を低下させる。それゆえ、S量は極力低いほうが望ましい。しかし、S量は0.0040%までは許容できる。このため、S量は0.0040%以下とする。好ましくはS量は0.0020%以下である。一方、S量の過度の低減は工業的に困難であり、製鋼工程における脱硫コストの増加を伴う。このため、S量の下限は0.0001%程度とすることが好ましい。
 Al:0.005~0.08%
Alは、主として脱酸の目的で添加される。また、Alは炭化物の生成を抑制し、残留オーステナイト相を生成させるのに有効であり、強度-伸びバランスを向上させるのに有効な元素である。このような効果を得るため、Alの含有量は0.005%以上とする必要がある。好ましくは、Al量は0.02%以上とする。一方、0.08%を超えてAlを添加すると、アルミナなどの介在物増加により鋼板の加工性が劣化する問題が生じる。このため、Al量は0.08%以下とする。好ましくは、Al量は0.06%以下である。したがって、Al量は0.005~0.08%の範囲とする。好ましくは、Al量は0.02%以上0.06%以下の範囲である。
 N:0.008%以下
Nは耐時効性を劣化させる元素であり、N量が0.008%を超えると耐時効性の劣化が顕著になる。また、NはBと結合してBNを形成してBを消費する。このため、Nは固溶Bによる焼入れ性を低下させ、所定の面積比率の焼戻マルテンサイト相を確保することを困難とする。さらに、Nはフェライト中で不純物元素として存在し、ひずみ時効により延性を低下させる。したがってN量は低いほうが好ましい。しかし、N量は0.008%までは許容できる。このため、N量は0.008%以下とする。好ましくは、N量は0.006%以下である。一方、N量の過度の低減は製鋼工程における脱窒コストの増加を伴う。このため、N量の下限は0.0001%程度とすることが好ましい。
 Ti:0.001~0.040%
Tiは炭窒化物や硫化物を形成し、強度の向上に有効である。また、TiはNをTiNとして析出させることによりBNの形成を抑制する。それゆえ、TiはBによる焼入れ性を発現させるのに有効である。このような効果を発現させるためには、Ti量は0.001%以上とする必要がある。好ましくは、Ti量は0.010%以上である。一方、Ti量が0.040%を超えると、フェライト相中に過度に析出物が生成し、析出強化(precipitation hardening)が過度に働き、鋼板の伸びが低下する。このため、Ti量は0.040%以下とする必要がある。好ましくはTi量は0.030%以下である。したがって、Ti量は0.001~0.040%の範囲とする。より好ましくは、Ti量は0.010~0.030%の範囲である。
 B:0.0001~0.0020%
Bは焼き入れ性を高めて焼戻マルテンサイト相、および残留オーステナイト相の確保に寄与し、優れた強度-伸びバランスを得るために必要である。この効果を得るためには、B量は0.0001%以上とする必要がある。好ましくは、B量は0.0002%以上である。一方、B量が0.0020%を超えると、上記効果が飽和する。このため、B量は0.0020%以下とする必要がある。好ましくは、B量は0.0010%以下である。以上より、B量は0.0001~0.0020%の範囲とする。
 Ca:0.0001~0.0020%
Caは変形時の割れの起点となる硫化物の形状を板状から球状化し、局部変形能の低下を抑制する効果がある。この効果を得るためには、Ca量は0.0001%以上とする必要がある。好ましくは、Ca量は0.0002%以上である。一方、Caは0.0020%を超えて多量に含有すると、鋼板表層に介在物として存在する。この介在物は、鋼板を曲げ成形する時に微小な割れの起点となり、鋼板の曲げ性を劣化させる。このため、Ca量は0.0020%以下とする。好ましくは、Ca量は0.0010%以下である。以上より、Ca量は0.0001~0.0020%の範囲とする。
 なお、本発明の鋼板において、上記以外の成分はFeおよび不可避不純物である。ただし、本発明の効果を損なわない範囲内であれば、上記以外の成分の含有を拒むものではない。
 Nb、Vを積極的に添加すると鋼中に析出し、優れたElの確保が困難となり、鋼板の材質上悪影響を及ぼす。また、Cu、Ni、Cr、Moを積極的に添加すると、過度にマルテンサイト相を生成し、優れたElの確保が困難となり、材質上悪影響を及ぼす。したがって、これらの元素の含有は好ましくなく、含有しても不可避不純物のレベル以下とすることが好ましい。
 次に、本発明にとって重要な要件の一つである鋼の組織の限定範囲および限定理由について詳細に説明する。
 フェライト相とベイナイト相の合計面積比率:50~70%
フェライト相は、オーステナイト相から変態して生成する硬質なマルテンサイト相よりも軟質であり、延性に寄与する。またベイナイト相は、マルテンサイト相より高温域でオーステナイト相から変態生成する。ベイナイト相はフェライト相とセメンタイト相から構成されており、フェライト相と同様に硬質なマルテンサイト相よりも軟質であり、延性に寄与する。
このため、所望の伸びを得るにはフェライト相とベイナイト相の面積比率を合計で50%以上とする必要がある。すなわち、フェライト相とベイナイト相の合計面積比率を50%以上とする必要があり、好ましくは、53%以上とする。フェライト相とベイナイト相の合計面積比率が50%に満たない場合、硬質なマルテンサイト相の面積比率が増加する。このため、鋼板が過度に高強度化し、鋼板の伸びおよび伸びフランジが劣化する。
一方で、フェライト相とベイナイト相の合計面積比率が70%を超えると、引張強度(TS)1180MPa以上の確保が困難となる。また延性に寄与する残留オーステナイト相を所定量確保することが困難となる。このため、フェライト相とベイナイト相の合計面積比率は70%以下とし、好ましくは68%以下とする。よって、フェライト相とベイナイト相の合計面積比率は50%~70%の範囲とする。
 フェライト相とベイナイト相の平均結晶粒径:1~3μm
フェライト相とベイナイト相の平均結晶粒径が3μmを超えて粗大な場合、伸びフランジ成形時および曲げ変形時に鋼板が均一に変形することが困難となる。すなわち、鋼板の伸びフランジ性および曲げ性が低下する。このため、フェライト相とベイナイト相の平均結晶粒径は、3μm以下とする必要があり、2.5μm以下とすることが好ましい。また、フェライト相とベイナイト相の平均結晶粒径が1μmより微細な場合、結晶粒界の体積が多く、このような多量の結晶粒界は転位の移動を妨げる。このため、鋼板が過度に高強度化し、優れた伸びの確保が困難となる。このため、フェライト相とベイナイト相の平均結晶粒径は1μm以上とする必要があり、1.4μm以上とすることが好ましい。よってフェライト相とベイナイト相の平均結晶粒径は1~3μmの範囲とする。
 焼戻マルテンサイト相の面積比率:25~45%
 焼戻マルテンサイト相は、硬質なマルテンサイト相を再加熱昇温して得られる。焼戻マルテンサイト相は強度に寄与する。TS:1180MPa以上を確保するために焼戻マルテンサイト相の面積比率は25%以上とする必要があり、28%以上とすることが好ましい。一方、焼戻マルテンサイト相の面積比率が過度に多い場合には、鋼板の伸びが低下する。このため、焼戻マルテンサイト相の面積比率は45%以下とする必要があり、44%以下とすることが好ましい。焼戻マルテンサイト相の面積比率を25%以上45%以下の範囲内で含有する組織とすることで、強度、伸び、伸びフランジ性および曲げ性といった材質のバランスが良好である鋼板が得られる。
 焼戻マルテンサイト相の平均結晶粒径:1~3μm
焼戻マルテンサイト相の平均結晶粒径が3μmを超えて粗大な場合、伸びフランジ成形時および曲げ変形時に鋼板が均一に変形することが困難となる。すなわち、鋼板の伸びフランジ性および曲げ性が低下する。また焼戻マルテンサイト相の平均結晶粒径が1μmより微細な場合、結晶粒界の体積が多く、このような多量の結晶粒界は転位の移動を妨げる。このため、鋼板が過度に高強度化し、優れた延性の確保が困難となる。よって焼戻マルテンサイト相の平均結晶粒径は1~3μmの範囲とする。
 フェライト相とベイナイト相の平均結晶粒径および焼戻マルテンサイト相の平均結晶粒径は、各々上記した平均結晶粒径に制御する。このような制御に加え、フェライト相とベイナイト相の平均結晶粒径と焼戻マルテンサイト相の平均結晶粒径とを同じレベルとすることが、加工時に、より均一な変形を可能とする上で好ましい。すなわち鋼板全体として均一微細な組織とすることが、加工時に、より均一な変形を可能とする上で好ましい。
 ここで、(フェライト相とベイナイト相の平均結晶粒径)/(焼戻マルテンサイト相の平均結晶粒径)が0.5より小さい場合、または3.0より大きい場合は、フェライト相とベイナイト相の平均結晶粒径と焼戻マルテンサイト相の平均結晶粒径のどちらか一方が微小または粗大な場合といえる。このような場合に比べ、(フェライト相とベイナイト相の平均結晶粒径)/(焼戻マルテンサイト相の平均結晶粒径)を0.5~3.0とすることで、伸びフランジ成形時および曲げ変形時の鋼板の変形をより均一とすることができる。このため、(フェライト相とベイナイト相の平均結晶粒径)/(焼戻マルテンサイト相の平均結晶粒径)は0.5~3.0とすることが好ましい。さらに好ましくは(フェライト相とベイナイト相の平均結晶粒径)/(焼戻マルテンサイト相の平均結晶粒径)は、0.8~2.0である。
 残留オーステナイト相の面積比率:2~10%
残留オーステナイト相は、歪誘起変態により鋼板の変形部を硬質化して歪の集中を防ぎ、これにより伸びを向上させる効果がある。高い伸びを得るためには、2%以上の残留オーステナイト相を鋼板中に含有させることが必要である。好ましくは、残留オーステナイト相の面積比率は3%以上である。なお、残留オーステナイト相の歪誘起変態とは、材料を変形する場合に歪を受けた部分がマルテンサイト相に変態することである。しかしながら残留オーステナイト相はC濃度が高く、硬質である。このため、鋼板中に10%を超えて過度に残留オーステナイト相が存在すると、局所的に硬質な部分が多く存在することとなる。このように過度に存在する残留オーステナイト相は、伸び、および伸びフランジ成形時の材料(鋼板)の均一な変形を阻害する要因となり、優れた伸び、および伸びフランジ性を確保することが困難となる。特に伸びフランジ性の観点からは残留オーステナイトは少ないほうが好ましい。このため、残留オーステナイト相の面積比率は10%以下とし、好ましくは8%以下とする。よって、残留オーステナイト相の面積比率は2~10%とする。
 次に本発明の高強度冷延鋼板の製造方法条件およびその限定理由について説明する。
 本発明は、上記した成分組成を有する鋼スラブを準備し、該鋼スラブを熱間圧延して鋼板とし、酸洗し、酸洗後の鋼板に熱処理温度:350~550℃で第1の熱処理を施し、次いで冷間圧延し、冷間圧延後の鋼板に熱処理温度:800~900℃、冷却速度:10~80℃/秒、冷却停止温度:300~500℃、300~500℃での保持時間:100~1000秒で第2の熱処理を施し、次いで熱処理温度:150~250℃で第3の熱処理を施す。
 本発明において、鋼スラブの製造には特に制限は無く、常法に従って行えばよい。例えば上記成分組成範囲に調整した鋼を溶製、鋳造して、鋼スラブを得ることができる。本発明においては、鋼スラブは連続鋳造スラブ、造塊-分塊スラブ、厚み:50mm~100mm程度の薄スラブ等を用いることができる。特に偏析を軽減するためには連続鋳造法で製造したスラブを用いることが好ましい。
 上記のように製造して準備した鋼スラブを熱間圧延して鋼板とする。熱間圧延に関しても特に制限は無く、常法に従って行えばよい。なお、熱間圧延時の鋼スラブの加熱温度は、1100℃以上にすることが好ましい。スケール生成の軽減、燃料原単位の低減の観点から、熱間圧延時の鋼スラブの加熱温度の上限は1300℃程度とすることが好ましい。また、熱間圧延の仕上げ温度(仕上げ圧延出側温度)は、フェライトとパーライトのバンド状組織(band structure)の生成を回避すべく、850℃以上とすることが好ましい。スケール生成の軽減、結晶粒径粗大化の抑制による組織の微細均一化の観点からは、熱間圧延の仕上げ温度の上限は950℃程度とすることが好ましい。熱間圧延終了後の巻き取り温度は冷間圧延性、表面性状の観点から400~600℃とすることが好ましい。
 巻き取り後の鋼板には、常法に従い酸洗を施す。酸洗の条件についても、特に制限は無く、塩酸での酸洗など、従来公知の方法に従って行えばよい。
 酸洗後の鋼板には、第1の熱処理(第1回目の熱処理)、次いで冷間圧延工程を経て、第2の熱処理(第2回目の熱処理)、次いで第3の熱処理(第3回目の熱処理)を施す。
 第1の熱処理の熱処理温度:350~550℃
熱間圧延後の鋼板組織の影響を除去するため、熱間圧延後の熱延鋼板に第1の熱処理を施す。熱処理温度が350℃に満たない場合、熱間圧延後の焼き戻しが不十分であり、このため、最終的に得られる高強度冷延鋼板に対する熱間圧延後の組織の影響を除去することができない。すなわち、第1の熱処理の熱処理温度が350℃に満たない場合、熱処理前の熱延鋼板が下記に示す好ましくない組織を有していると、これら組織に起因して第1の熱処理後の鋼板は不均一な組織となる。このため、第1の熱処理後の鋼板に、冷間圧延、第2の熱処理、第3の熱処理を施して最終的に得られる鋼板の組織において、微細な結晶粒が得られず、十分な伸びフランジ性が得られない。ここで、上記の好ましくない組織とは、粗大な結晶粒と微細な結晶粒が混在する不均一なベイナイト単相組織や、マルテンサイト単相組織や、またはフェライト、パーライトから構成される層状(lamellar)の組織である。また、第1の熱処理の熱処理温度が350℃に満たない場合、熱延鋼板が硬質化して冷間圧延の負荷が増大し、高コストとなる。一方、550℃を超えて熱処理すると、鋼板組織はC濃度が不均一な組織となり、第2の熱処理中に、オーステナイトが粗大にかつ粗に不均一分布し、均一微細な組織が得られない。ここで、C濃度が不均一な組織とは、C濃度の低いフェライト相中にC濃度の高い粗大なセメンタイトが粗に分布するといった組織である。また、550℃を超えて熱処理すると、結晶粒界にPが偏析し、鋼板が脆化して伸びおよび伸びフランジ性が著しく低下する。
 350~550℃の範囲で熱処理(第1の熱処理)を行うことにより、焼き戻しが進行する。この焼き戻しの進行より、セメンタイトは粗大化することなく、均一微細に緻密に鋼板中に存在する。この結果、冷間圧延、第2の熱処理および第3の熱処理後に最終的に得られる組織は微細な結晶粒となり、優れた伸びフランジ性および曲げ性が得られる。したがって冷間圧延前に極めて均一な組織とするために、熱間圧延後冷間圧延前に行う第1の熱処理の温度は350~550℃の範囲とする。好ましくは400~540℃の範囲とする。
 なお、熱間圧延後の鋼板に第1の熱処理を施すに際して、350~550℃の範囲内の熱処理温度で5分~5時間程度保持を施すことが好ましい。保持時間が5分に満たない場合、熱延後の焼き戻しが不十分となって熱延後の組織の影響を除去することができない場合がある。保持時間があまりに長いと生産性が阻害されるため、保持時間の上限は5時間程度とすることが好ましい。したがって第1の熱処理において、350~550℃の範囲の保持温度での保持時間は5分~5時間程度とすることが好ましい。より好ましくは、350~550℃の範囲の保持温度での保持時間は10分~4時間程度である。
 第1の熱処理を施した熱延鋼板は、冷間圧延される。冷間圧延の方法は、特に規定する必要は無く、常法に従って行えばよい。なお、第2の熱処理後に均一な再結晶組織を得て、鋼板の材質を安定確保する観点から、冷間圧延の圧下率は30~70%程度とすることが好ましい。
 鋼組織の面積比率、粒径を所望の範囲とするため、冷間圧延後の鋼板には、熱処理温度:800~900℃、冷却速度:10~80℃/秒、冷却停止温度:300~500℃、300~500℃での保持時間:100~1000秒とする第2の熱処理を施す。
 第2の熱処理の熱処理温度:800~900℃
第2の熱処理における熱処理温度が800℃より低い場合、加熱、熱処理中にフェライト相の体積分率が多くなる。このため、第3の熱処理の後、最終的に得られる鋼板の組織におけるフェライト相の面積比率が多くなり、TS:1180MPa以上の確保が困難となる。また、第2の熱処理における熱処理温度が800℃より低い場合、熱処理中にオーステナイト相へのC濃化が促進される。このため、第3の熱処理で焼き戻しを施される前のマルテンサイト相が過度に硬質化し、このマルテンサイト相は第3の熱処理後も十分に軟質化せず、鋼板の伸びフランジ性が低下する。一方、900℃を超えてオーステナイト単相の高温域まで加熱すると、オーステナイト粒が過度に粗大化する。このため、オーステナイト相から生成するフェライト相や低温変態相が粗大化して、鋼板の伸びフランジ性が劣化する。よって第2の熱処理の熱処理温度は800~900℃の範囲とする。より好ましくは、第2の熱処理の熱処理温度は810~860℃の範囲とする。
 冷却速度:10~80℃/秒
第2の熱処理において、上記した温度での熱処理後に冷却を行う。この冷却の際の冷却速度は、所望のマルテンサイト相の面積比率を得るために重要である。平均冷却速度が10℃/秒未満の場合、マルテンサイト相の確保が困難となり、最終的に得られる鋼板が軟質化して強度の確保が困難となる。一方で、平均冷却速度が80℃/秒を超えると、過度にマルテンサイト相が生成し、最終的に得られる鋼板の強度が高くなりすぎ、伸び、および伸びフランジ性など加工性が低下する。したがって冷却速度は10~80℃/秒の範囲とする。より好ましくは、平均冷却速度は15~60℃/秒とする。なお、この冷却は、ガス冷却にて行うことが好ましい。また、この冷却は炉冷、ミスト冷却、ロール冷却、水冷などを用いて組み合わせて行うことが可能である。
 冷却停止温度:300~500℃
上記冷却を停止する冷却停止温度が300℃未満の場合、過度にマルテンサイト相が生成するため、最終的に得られる鋼板の強度が高くなりすぎ、伸びの確保が困難となる。一方、この冷却停止温度が500℃を超える場合、残留オーステナイトの生成は抑制され、優れた伸びを得ることが困難となる。したがって、焼戻マルテンサイト相および残留オーステナイト相の存在比率を所望の範囲となるように制御するため、第2の熱処理における冷却停止温度は300~500℃とする。すなわち、TS:1180MPa級以上の強度を確保するとともに伸び、および伸びフランジ性をバランス良く得るために、第2の熱処理における冷却停止温度は、300~500℃とする。好ましくは、第2の熱処理における冷却停止温度は350~450℃とする。
 300~500℃での保持時間:100~1000秒
上記した温度で冷却停止後、保持を行う。保持時間が100秒に満たない場合、オーステナイト相へのC濃化が進行する時間が不十分となり、最終的に所望の残留オーステナイト面積比率を得ることが困難となり、また過度にマルテンサイト相が生成する。このため、最終的に得られる鋼板が高強度化し、鋼板の伸び、および伸びフランジ性が低下する。一方、1000秒を超えて滞留しても残留オーステナイト量は増加せず、伸びの顕著な向上は認められない。1000秒を超えて滞留することは、生産性を阻害するだけである。したがって、300~500℃での保持時間は100~1000秒の範囲とする。好ましくは、300~500℃での保持時間は150~900秒の範囲とする。
 上記第2の熱処理の後、マルテンサイト相を焼き戻すため、第3の熱処理を行う。
第3の熱処理の熱処理温度:150℃~250℃
第3の熱処理での熱処理温度が150℃より低い場合、マルテンサイト相の焼き戻しによる軟質化が不十分であり、マルテンサイト相は過度に硬質化し、鋼板の伸びフランジ性および曲げ性が低下する。一方、熱処理温度が250℃を超えると、第2の熱処理の後に得られていた残留オーステナイト相が分解する。このため、最終的に所望の面積比率の残留オーステナイト相が得られず、伸びに優れた鋼板を得ることが困難となる。またマルテンサイト相がフェライト相とセメンタイトに分解するため、強度確保が困難となる。よって熱処理温度は150℃~250℃の範囲とする。好ましくは175~235℃の範囲である。
 なお、第3の熱処理を行うに際して、150~250℃の範囲の保持温度で5分~5時間程度保持を行うことが好ましい。第3の熱処理の保持時間が5分より短い場合、マルテンサイト相の軟質化が不十分となり、マルテンサイト相が過度に硬質化して、十分な伸びフランジ性や曲げ性が得られない場合がある。また、第3の熱処理は、残留オーステナイトの分解やマルテンサイト相の焼戻軟化に影響をおよぼす。このため、あまりに保持時間を長時間とすると、伸びの低下や強度の低下が懸念される。しかし、この保持時間が5時間程度までであれば材質の変化は少ない。また過度に長時間保持すると生産性を阻害する。それゆえ、保持時間の上限は5時間程度とすることが好ましい。したがって第3の熱処理において、150~250℃の範囲の保持温度での保持時間は5分~5時間程度とすることが好ましい。より好ましくは、150~250℃の範囲の保持温度での保持時間は10分~4時間程度である。
 上記のようにして得られた冷延鋼板に、形状矯正や表面粗度調整のため、常法に従い調質圧延(スキンパス圧延ともいう)を行ってもよい。この際、調質圧延の伸び率は、特に規定されるものではない。調質圧延の伸び率は、例えば0.05%~0.5%程度とすることが好ましい。
 表1に示す成分組成を有する鋼を溶製して鋼スラブを準備し、この鋼スラブを加熱温度:1200℃、仕上げ圧延出側温度:910℃で圧延し、圧延終了後、40℃/秒で巻取温度まで冷却して、巻取温度:450℃で巻き取る熱間圧延を行った。この熱間圧延により得られた熱延鋼板を塩酸酸洗した後、表2に示す条件で第1の熱処理を行った。次いで第1の熱処理後の熱延鋼板を、圧下率30%~70%で冷間圧延して板厚1.6mmとした後、表2に示す条件で第2の熱処理(焼鈍処理)を行った。その後、第2の熱処理後の鋼板に、表2に示す条件で第3の熱処理を行い、冷延鋼板を得た。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 このようにして得た冷延鋼板について、下記に示すように、鋼板の組織、引張特性、伸びフランジ性(穴拡げ率)、曲げ特性を調査した。得られた結果を表3に示す。
 (1)鋼板の組織
組織全体に占めるフェライト相とベイナイト相の合計面積比率は、圧延方向断面で、板厚1/4面位置の面を光学顕微鏡で観察することにより求めた。具体的には、倍率1000倍の断面組織写真を用いて、画像解析により、任意に設定した100μm×100μm四方の正方形領域内に存在する各組織の占有面積を求めた。なお、観察はN=5(観察視野5箇所)で実施した。
 ここで、エッチング(etching)には3vol.%ピクラール(picral)と3vol.%ピロ亜硫酸ソーダ(sodium metabisulfite)の混合液を用いた。エッチング後に観察される黒色領域がフェライト相(ポリゴナルフェライト相)あるいはベイナイト相であるとして、該黒色領域の面積率をフェライト相とベイナイト相の合計面積比率として求めた。
 組織全体に占める焼戻マルテンサイト相の面積比率は、圧延方向断面で、板厚1/4位置の面を走査型電子顕微鏡(scanning electron microscope:SEM)で観察することにより求めた。具体的には、倍率2000倍の断面組織写真を用いて、画像解析により、任意に設定した50μm×50μm四方の正方形領域内に存在する組織の占有面積を求めた。なお、観察はN=5(観察視野5箇所)で実施した。焼戻マルテンサイト相の面積比率は、焼戻し前後にSEM観察を行うことで次のようにして求めた。すなわち、焼戻し前に比較的平滑な表面を有し、塊状の形状として観察された組織が最終的に焼戻し熱処理されて内部に微細な炭化物の析出が認められた焼戻マルテンサイト相になると判断して、面積比率を求めた。
 残留オーステナイト相の面積比率は、残留オーステナイト量を別途、X線回折(the X-ray diffraction method)により測定し、測定した残留オーステナイト量を残留オーステナイト相の面積比率であるとした。なお、残留オーステナイト量はMoのKα線を用いてX線回折法により求めた。すなわち、鋼板の板厚1/4付近の面を測定面とする試験片を使用し、オーステナイト相の(211)面および(220)面とフェライト相の(200)面および(220)面のピーク強度から残留オーステナイト相の体積率を算出した。この算出した残留オーステナイト相の体積率を残留オーステナイト相量とし、残留オーステナイト相の面積比率とした。
 フェライト相とベイナイト相の平均結晶粒径は、測定領域中の粒の数(上記黒色領域中の粒の数)を数え、測定面積中の各相の面積比率を用いて平均粒面積aを算出し、粒径d=a1/2とする求積法(planimetric method)により求めた。焼戻マルテンサイト相の平均結晶粒径は、測定面積中の粒の数を数え、測定面積中の各相の面積比率を用いて平均粒面積aを算出し、粒径d=a1/2とする求積法により求めた。
 (2)引張特性(強度、伸び)
圧延方向に対して90°をなす方向(圧延直角方向)を長手方向(引張方向)とするJIS Z 2201に記載の5号試験片を用い、JIS Z 2241に準拠した引張試験を行い、引張特性を評価した。表3に、降伏強度(YP)、引張強度(TS)、全伸び(El)を示す。なお、引張特性の評価基準はTS≧1180MPa、かつ、TS×El≧21000MPa・%を良好とし、強度および伸びが優れるとした。
 (3)穴拡げ率(伸びフランジ性)
伸びフランジ性を評価するため、日本鉄鋼連盟規格JFST1001に基づき穴拡げ率を測定した。ここで、穴拡げ率の測定は、次のようにした。すなわち、初期直径d=10mmの穴を打抜き、60°の円錐ポンチを上昇させ穴を拡げた。この際に、亀裂が鋼板の板厚を貫通したところでポンチ上昇を止め、亀裂が貫通した後の打抜き穴径dを測定した。次いで、穴拡げ率(%)=((d-d)/d)×100を算出した。同一番号の鋼板について3回試験を実施し、穴拡げ率の平均値(λ)を求めた。なお、伸びフランジ性の評価基準はTS×λ≧38000MPa・%(TS:引張強度(MPa)、λ:穴拡げ率(%))を良好とし、伸びフランジ性が優れるとした。
 (4)曲げ特性
得られた板厚t=1.6mmの鋼板を用い、曲げ部の稜線と圧延方向が平行になるように曲げ試験片を採取した。ここで、曲げ試験片のサイズは40mm×100mmとし、曲げ試験片の長手が圧延直角方向となるようにした。採取した曲げ試験片について、先端曲げ半径R=2.5mmの金型を用いて、下死点(bottom dead center)での押し付け荷重29.4kNの90°V曲げを行った。曲げ頂点で割れの有無を目視で判定し、割れ発生がない場合、良好な曲げ性であるとした。
Figure JPOXMLDOC01-appb-T000003
 表3より、本発明例では、TS×El≧21000MPa・%以上とTS×λ≧38000MPa・%を両立し、さらにR/t=2.5/1.6=1.6で割れなく90°V曲げを満足していることがわかる。表3より、本発明例では、伸び、伸びフランジ性および曲げ性に優れる引張強度が1180MPa以上の高強度冷延鋼板が得られていることがわかる。
 一方、鋼成分が本発明範囲外であるNo.6は伸び、伸びフランジ性、および曲げ性に劣る。熱間圧延後の第1の熱処理の熱処理温度が低いNo.7、第1の熱処理の熱処理温度が高いNo.8は焼き戻しマルテンサイト相の結晶粒径が粗大であり、伸び、伸びフランジ性、および曲げ性に劣る。第2の熱処理の熱処理温度が低いNo.9、第2の熱処理における冷却速度が遅いNo.11はフェライト相とベイナイト相の合計の面積比率が多く、TS≧1180MPaを満足していない。第2の熱処理の熱処理温度が高いNo.10はフェライト相とベイナイト相の合計の面積比率が少なく、結晶粒径が粗大であり、強度が過度に高く、伸び、伸びフランジ性および曲げ性に劣る。第2の熱処理における冷却速度が速いNo.12は、フェライト相とベイナイト相の合計の面積比率が少なく、強度が過度に高く、伸び、伸びフランジ性および曲げ性に劣る。また、第2の熱処理における冷却停止温度が低いNo.13、冷却停止温度が高いNo.14、保持時間の短いNo.15、第3の熱処理の熱処理温度が高いNo.17は残留オーステナイト相の面積比率が少なく、伸びが低い。第3の熱処理の熱処理温度が低いNo.16はマルテンサイト相の焼き戻しが不十分であり、焼戻マルテンサイト相が得られず、強度が過度に高く、伸び、伸びフランジ性、曲げ性に劣る。
 本発明により鋼板中のNb、V、Cu、Ni、Cr、Moなど高価な元素を積極的に含有せずとも、安価で且つ優れた伸びおよび伸びフランジ性を有する引張強度(TS):1180MPa以上の高強度冷延鋼板を得ることができる。また、本発明の高強度冷延鋼板は、自動車部品以外にも、建築および家電分野など厳しい寸法精度、加工性が必要とされる用途にも好適である。

Claims (6)

  1.  質量%で、
    C:0.12~0.22%、
    Si:0.8~1.8%、
    Mn:1.8~2.8%、
    P:0.020%以下、
    S:0.0040%以下、
    Al:0.005~0.08%、
    N:0.008%以下、
    Ti:0.001~0.040%、
    B:0.0001~0.0020%および
    Ca:0.0001~0.0020%
    を含有し、残部がFe及び不可避不純物からなる成分組成を有し、
    フェライト相とベイナイト相の合計面積比率が50~70%、
    フェライト相とベイナイト相の平均結晶粒径が1~3μm、
    焼戻マルテンサイト相の面積比率が25~45%、
    焼戻マルテンサイト相の平均結晶粒径が1~3μm、
    残留オーステナイト相の面積比率が2~10%である組織を有する高強度冷延鋼板。
  2.  さらに、(フェライト相とベイナイト相の平均結晶粒径)/(焼戻マルテンサイト相の平均結晶粒径)が0.5~3.0である請求項1に記載の高強度冷延鋼板。
  3.  請求項1に記載の成分組成からなる鋼スラブを準備し、該鋼スラブを熱間圧延して鋼板とし、酸洗し、酸洗後の鋼板に熱処理温度:350~550℃で第1の熱処理を施し、次いで冷間圧延し、冷間圧延後の鋼板に熱処理温度:800~900℃、冷却速度:10~80℃/秒、冷却停止温度:300~500℃、300~500℃での保持時間:100~1000秒で第2の熱処理を施し、次いで熱処理温度:150~250℃で第3の熱処理を施す高強度冷延鋼板の製造方法。
  4.  さらに、前記熱間圧延の条件として、鋼スラブの加熱温度を1100~1300℃、熱間圧延の仕上げ温度を850~950℃とする請求項3に記載の高強度冷延鋼板の製造方法。
  5.  さらに、前記第1の熱処理における350~550℃での保持時間を5分~5時間とする請求項3または4に記載の高強度冷延鋼板の製造方法。
  6.  さらに、前記第3の熱処理における150~250℃での保持時間を5分~5時間とする請求項3~5のいずれか1項に記載の高強度冷延鋼板の製造方法。
PCT/JP2013/006139 2012-10-18 2013-10-16 高強度冷延鋼板およびその製造方法 WO2014061270A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/436,685 US10072316B2 (en) 2012-10-18 2013-10-16 High-strength cold-rolled steel sheet and method for producing the same
EP13847783.1A EP2910662B1 (en) 2012-10-18 2013-10-16 High-strength cold-rolled steel sheet and method for producing same
CN201380054501.1A CN104736736B (zh) 2012-10-18 2013-10-16 高强度冷轧钢板及其制造方法
KR1020157008751A KR101706485B1 (ko) 2012-10-18 2013-10-16 고강도 냉연 강판 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012230484A JP5609945B2 (ja) 2012-10-18 2012-10-18 高強度冷延鋼板およびその製造方法
JP2012-230484 2012-10-18

Publications (1)

Publication Number Publication Date
WO2014061270A1 true WO2014061270A1 (ja) 2014-04-24

Family

ID=50487849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006139 WO2014061270A1 (ja) 2012-10-18 2013-10-16 高強度冷延鋼板およびその製造方法

Country Status (6)

Country Link
US (1) US10072316B2 (ja)
EP (1) EP2910662B1 (ja)
JP (1) JP5609945B2 (ja)
KR (1) KR101706485B1 (ja)
CN (1) CN104736736B (ja)
WO (1) WO2014061270A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016001899A1 (en) * 2014-07-03 2016-01-07 Arcelormittal Method for manufacturing a high strength steel sheet and sheet obtained
EP3219821A4 (en) * 2015-01-15 2017-11-29 JFE Steel Corporation High-strength hot-dip galvanized steel sheet and production method thereof
EP3219822A4 (en) * 2015-01-15 2017-12-06 Jfe Steel Corporation High-strength hot-dip galvanized steel sheet and production method thereof
EP3263728A4 (en) * 2015-02-27 2018-01-03 JFE Steel Corporation High-strength cold-rolled steel plate and method for producing same
WO2018043456A1 (ja) * 2016-08-31 2018-03-08 Jfeスチール株式会社 高強度冷延薄鋼板及びその製造方法
EP3415656A4 (en) * 2016-02-10 2018-12-19 JFE Steel Corporation High-strength steel sheet and method for manufacturing same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10329636B2 (en) 2014-03-31 2019-06-25 Jfe Steel Corporation High-strength cold-rolled steel sheet with excellent material homogeneity and production method therefor
US10590504B2 (en) 2014-12-12 2020-03-17 Jfe Steel Corporation High-strength cold-rolled steel sheet and method for manufacturing the same
CN107250406B (zh) * 2015-02-27 2019-11-15 杰富意钢铁株式会社 高强度冷轧钢板及其制造方法
US10724114B2 (en) 2015-06-30 2020-07-28 Nippon Steel Corporation High-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet
WO2017131052A1 (ja) 2016-01-29 2017-08-03 Jfeスチール株式会社 温間加工用高強度鋼板およびその製造方法
JP6762868B2 (ja) * 2016-03-31 2020-09-30 株式会社神戸製鋼所 高強度鋼板およびその製造方法
MX2019001600A (es) * 2016-08-10 2019-06-20 Jfe Steel Corp Lamina de acero, y metodo de produccion para la misma.
WO2018147400A1 (ja) 2017-02-13 2018-08-16 Jfeスチール株式会社 高強度鋼板およびその製造方法
CN111406124B (zh) * 2017-11-29 2021-11-09 杰富意钢铁株式会社 高强度冷轧钢板及其制造方法
EP3770292B1 (en) * 2018-03-19 2022-09-21 Nippon Steel Corporation High-strength cold-rolled steel sheet and manufacturing method therefor
EP3686293B1 (en) * 2019-01-22 2021-06-23 voestalpine Stahl GmbH A high strength high ductility complex phase cold rolled steel strip or sheet
CN113316649A (zh) * 2019-01-22 2021-08-27 奥钢联钢铁有限责任公司 高强度高延展性的复相的冷轧钢带或板

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001207235A (ja) * 2000-01-25 2001-07-31 Kawasaki Steel Corp 高張力溶融亜鉛めっき鋼板およびその製造方法
JP2004308002A (ja) 2003-03-26 2004-11-04 Kobe Steel Ltd 伸び及び耐水素脆化特性に優れた超高強度鋼板、その製造方法、並びに該超高強度鋼板を用いた超高強度プレス成形部品の製造方法
JP2004359974A (ja) 2003-06-02 2004-12-24 Nippon Steel Corp 耐遅れ破壊特性に優れた高強度鋼板およびその製造方法
JP2005179703A (ja) 2003-12-16 2005-07-07 Kobe Steel Ltd 伸び、及び伸びフランジ性に優れた高強度鋼板
JP2006104532A (ja) * 2004-10-06 2006-04-20 Nippon Steel Corp 伸びと穴拡げ性に優れた高強度薄鋼板およびその製造方法
JP2006283130A (ja) 2005-03-31 2006-10-19 Kobe Steel Ltd 塗膜密着性と延性に優れた高強度冷延鋼板および自動車用鋼部品
JP2009203548A (ja) * 2008-01-31 2009-09-10 Jfe Steel Corp 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP2010196115A (ja) * 2009-02-25 2010-09-09 Jfe Steel Corp 加工性および耐衝撃性に優れた高強度冷延鋼板およびその製造方法
JP2012122093A (ja) * 2010-12-08 2012-06-28 Nippon Steel Corp 成形性に優れた高強度冷延鋼板及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4772497B2 (ja) * 2005-12-27 2011-09-14 新日本製鐵株式会社 穴拡げ性に優れた高強度冷延薄鋼板及びその製造方法
WO2008007785A1 (fr) * 2006-07-14 2008-01-17 Kabushiki Kaisha Kobe Seiko Sho Feuilles d'acier très résistantes et procédés de production de celles-ci
JP4894863B2 (ja) * 2008-02-08 2012-03-14 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
ES2711891T3 (es) * 2010-09-16 2019-05-08 Nippon Steel & Sumitomo Metal Corp Lámina de acero de alta resistencia y lámina de acero recubierta con zinc de alta resistencia con excelente ductilidad y capacidad de estiramiento y método de fabricación de estas
RU2566705C2 (ru) * 2011-07-06 2015-10-27 Ниппон Стил Энд Сумитомо Метал Корпорейшн Горячегальванизированный холоднокатаный стальной лист и способ его получения
EP2738280B1 (en) * 2011-07-29 2019-03-20 Nippon Steel & Sumitomo Metal Corporation High-strength galvanized steel sheet having superior bendability and method for producing same
CA2850195C (en) * 2011-09-30 2016-10-25 Nippon Steel & Sumitomo Metal Corporation High-strength hot-dip galvanized steel sheet excellent in impact resistance property and manufacturing method thereof, and high-strength alloyed hot-dip galvanized steel sheet and manufacturing method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001207235A (ja) * 2000-01-25 2001-07-31 Kawasaki Steel Corp 高張力溶融亜鉛めっき鋼板およびその製造方法
JP2004308002A (ja) 2003-03-26 2004-11-04 Kobe Steel Ltd 伸び及び耐水素脆化特性に優れた超高強度鋼板、その製造方法、並びに該超高強度鋼板を用いた超高強度プレス成形部品の製造方法
JP2004359974A (ja) 2003-06-02 2004-12-24 Nippon Steel Corp 耐遅れ破壊特性に優れた高強度鋼板およびその製造方法
JP2005179703A (ja) 2003-12-16 2005-07-07 Kobe Steel Ltd 伸び、及び伸びフランジ性に優れた高強度鋼板
JP2006104532A (ja) * 2004-10-06 2006-04-20 Nippon Steel Corp 伸びと穴拡げ性に優れた高強度薄鋼板およびその製造方法
JP2006283130A (ja) 2005-03-31 2006-10-19 Kobe Steel Ltd 塗膜密着性と延性に優れた高強度冷延鋼板および自動車用鋼部品
JP2009203548A (ja) * 2008-01-31 2009-09-10 Jfe Steel Corp 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP2010196115A (ja) * 2009-02-25 2010-09-09 Jfe Steel Corp 加工性および耐衝撃性に優れた高強度冷延鋼板およびその製造方法
JP2012122093A (ja) * 2010-12-08 2012-06-28 Nippon Steel Corp 成形性に優れた高強度冷延鋼板及びその製造方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2680041C2 (ru) * 2014-07-03 2019-02-14 Арселормиттал Способ изготовления высокопрочного стального листа и полученный лист
WO2016001704A1 (en) * 2014-07-03 2016-01-07 Arcelormittal Method for manufacturing a high strength steel sheet and sheet obtained
WO2016001899A1 (en) * 2014-07-03 2016-01-07 Arcelormittal Method for manufacturing a high strength steel sheet and sheet obtained
US11339454B2 (en) 2014-07-03 2022-05-24 Arcelormittal Method for manufacturing a high strength steel sheet and sheet obtained
US11149325B2 (en) 2014-07-03 2021-10-19 Arcelormittal Method for manufacturing a high strength steel sheet and sheet obtained
EP3219821A4 (en) * 2015-01-15 2017-11-29 JFE Steel Corporation High-strength hot-dip galvanized steel sheet and production method thereof
EP3219822A4 (en) * 2015-01-15 2017-12-06 Jfe Steel Corporation High-strength hot-dip galvanized steel sheet and production method thereof
US20180030564A1 (en) * 2015-01-15 2018-02-01 Jfe Steel Corporation High-strength galvanized steel sheet and method for producing the same
US10450642B2 (en) 2015-01-15 2019-10-22 Jfe Steel Corporation High-strength galvanized steel sheet and method for producing the same
US10370737B2 (en) 2015-01-15 2019-08-06 Jfe Steel Corporation High-strength galvanized steel sheet
EP3263728A4 (en) * 2015-02-27 2018-01-03 JFE Steel Corporation High-strength cold-rolled steel plate and method for producing same
US20180127856A1 (en) * 2015-02-27 2018-05-10 Jfe Steel Corporation High-strength cold-rolled steel sheet and method for manufacturing the same
EP3415656A4 (en) * 2016-02-10 2018-12-19 JFE Steel Corporation High-strength steel sheet and method for manufacturing same
US11111553B2 (en) 2016-02-10 2021-09-07 Jfe Steel Corporation High-strength steel sheet and method for producing the same
JP6323627B1 (ja) * 2016-08-31 2018-05-16 Jfeスチール株式会社 高強度冷延薄鋼板及びその製造方法
US11136644B2 (en) 2016-08-31 2021-10-05 Jfe Steel Corporation High-strength cold rolled steel sheet and method for producing the same
WO2018043456A1 (ja) * 2016-08-31 2018-03-08 Jfeスチール株式会社 高強度冷延薄鋼板及びその製造方法

Also Published As

Publication number Publication date
CN104736736A (zh) 2015-06-24
CN104736736B (zh) 2017-03-08
EP2910662B1 (en) 2018-06-13
KR101706485B1 (ko) 2017-02-13
JP2014080665A (ja) 2014-05-08
EP2910662A1 (en) 2015-08-26
KR20150048885A (ko) 2015-05-07
JP5609945B2 (ja) 2014-10-22
EP2910662A4 (en) 2015-11-11
US10072316B2 (en) 2018-09-11
US20160168656A1 (en) 2016-06-16

Similar Documents

Publication Publication Date Title
JP5609945B2 (ja) 高強度冷延鋼板およびその製造方法
JP5348268B2 (ja) 成形性に優れる高強度冷延鋼板およびその製造方法
JP6341214B2 (ja) 熱間成形鋼板部材およびその製造方法ならびに熱間成形用鋼板
JP5862051B2 (ja) 加工性に優れる高強度冷延鋼板ならびにその製造方法
JP5487984B2 (ja) 曲げ性に優れた高強度冷延鋼板およびその製造方法
EP2615191B1 (en) High-strength cold-rolled steel sheet having excellent stretch flange properties, and process for production thereof
JP5321605B2 (ja) 延性に優れる高強度冷延鋼板およびその製造方法
JP5126844B2 (ja) 熱間プレス用鋼板およびその製造方法ならびに熱間プレス鋼板部材の製造方法
JP5363922B2 (ja) 伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板
JP6047983B2 (ja) 伸びおよび伸びフランジ性に優れる高強度冷延鋼板の製造方法
WO2014097559A1 (ja) 低降伏比高強度冷延鋼板およびその製造方法
JP5860343B2 (ja) 強度および延性のばらつきの小さい高強度冷延鋼板およびその製造方法
JP5862052B2 (ja) 伸びおよび伸びフランジ性に優れる高強度冷延鋼板ならびにその製造方法
EP2792762A1 (en) High-yield-ratio high-strength cold-rolled steel sheet and method for producing same
JP4324226B1 (ja) 降伏応力と伸びと伸びフランジ性に優れた高強度冷延鋼板
JP5302840B2 (ja) 伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板
JP2013064172A (ja) 耐面歪性、焼付け硬化性および伸びフランジ性に優れた高張力冷延鋼板およびその製造方法
JP6098537B2 (ja) 高強度冷延鋼板およびその製造方法
WO2019203251A1 (ja) 熱延鋼板
WO2013160938A1 (ja) 延性に優れる高強度冷延鋼板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13847783

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013847783

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157008751

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14436685

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201502621

Country of ref document: ID