WO2018043056A1 - 無段変速機の制御方法及び制御装置 - Google Patents

無段変速機の制御方法及び制御装置 Download PDF

Info

Publication number
WO2018043056A1
WO2018043056A1 PCT/JP2017/028641 JP2017028641W WO2018043056A1 WO 2018043056 A1 WO2018043056 A1 WO 2018043056A1 JP 2017028641 W JP2017028641 W JP 2017028641W WO 2018043056 A1 WO2018043056 A1 WO 2018043056A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil pump
oil
pressure
flow rate
continuously variable
Prior art date
Application number
PCT/JP2017/028641
Other languages
English (en)
French (fr)
Inventor
良平 豊田
智普 中野
啓 寺井
亮 高野
耕平 豊原
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US16/329,591 priority Critical patent/US10584789B2/en
Priority to CN201780048877.XA priority patent/CN109563922B/zh
Publication of WO2018043056A1 publication Critical patent/WO2018043056A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/50Inputs being a function of the status of the machine, e.g. position of doors or safety belts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H61/0025Supply of control fluid; Pumps therefore
    • F16H61/0031Supply of control fluid; Pumps therefore using auxiliary pumps, e.g. pump driven by a different power source than the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/06Smoothing ratio shift by controlling rate of change of fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/06Smoothing ratio shift by controlling rate of change of fluid pressure
    • F16H61/061Smoothing ratio shift by controlling rate of change of fluid pressure using electric control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members

Definitions

  • the present invention relates to control of a continuously variable transmission.
  • JP2008-240894A is a hydraulic circuit for a continuously variable transmission, which includes an oil pump for a source pressure that pumps oil from an oil pan and generates a line pressure that serves as a source pressure for shifting, and an electric oil pump for shifting.
  • an electric oil pump is interposed in a speed change oil passage that communicates with a primary pulley oil chamber and a secondary pulley oil chamber and is connected to an oil passage that is a line pressure.
  • the shift control is performed by adjusting the oil flow in and out of the primary pulley oil chamber by the electric oil pump.
  • the supply flow rate of the original pressure oil pump must be larger than the supply flow rate of the shifting oil pump.
  • the supply of the oil pump for the original pressure is performed during the shift control.
  • the flow rate may be less than the supply flow rate of the shifting oil pump. In this case, the original pressure decreases and the target gear ratio cannot be realized.
  • an object of the present invention is to provide a control method and a control device capable of realizing appropriate gear ratio control even in a state where the original pressure as described above is not sufficiently increased.
  • a control method for a continuously variable transmission includes: an oil path between a primary pulley oil chamber and a secondary pulley oil chamber by supplying hydraulic pressure to a line pressure oil path and a secondary pulley oil chamber by an original pressure oil pump; There is provided a control method for controlling the oil flow in and out of the primary pulley oil chamber by means of the electric oil pump disposed in the.
  • the discharge flow rate of the electric oil pump is limited to a smaller amount than the discharge flow rate of the main pressure oil pump.
  • FIG. 1 is a schematic configuration diagram of a vehicle.
  • FIG. 2 is a schematic configuration diagram of the hydraulic circuit.
  • FIG. 3 is a flowchart showing a routine for controlling the rotational speed of the speed change oil pump.
  • FIG. 4 is a timing chart when the travel range is selected.
  • FIG. 5 is a timing chart when the non-traveling range is selected.
  • FIG. 1 is a schematic configuration diagram of a vehicle.
  • the vehicle includes an engine 1, a torque converter 2 with a lock-up clutch 2 a, a forward / reverse switching mechanism 3, a variator 4, a final reduction mechanism 5, drive wheels 6, and a hydraulic circuit 100.
  • Engine 1 constitutes a drive source for the vehicle.
  • the output of the engine 1 is transmitted to the drive wheels 6 via the torque converter 2, the forward / reverse switching mechanism 3, the variator 4, and the final reduction mechanism 5.
  • the variator 4 is provided in a power transmission path for transmitting power from the engine 1 to the drive wheels 6 together with the torque converter 2, the forward / reverse switching mechanism 3, and the final reduction mechanism 5.
  • the forward / reverse switching mechanism 3 is provided between the torque converter 2 and the variator 4 in the power transmission path described above.
  • the forward / reverse switching mechanism 3 switches the rotation direction of the input rotation between a forward rotation direction corresponding to forward travel and a reverse rotation direction corresponding to reverse travel.
  • the forward / reverse switching mechanism 3 includes a forward clutch 31 and a reverse brake 32.
  • the forward clutch 31 is fastened when the rotation direction is the forward rotation direction.
  • the reverse brake 32 is fastened when the rotation direction is the reverse rotation direction.
  • One of the forward clutch 31 and the reverse brake 32 can be configured as a clutch that intermittently rotates between the engine 1 and the variator 4.
  • the variator 4 includes a primary pulley 41, a secondary pulley 42, and a belt 43 wound around the primary pulley 41 and the secondary pulley 42.
  • the primary is also referred to as PRI
  • the secondary is also referred to as SEC.
  • the variator 4 changes the belt width of the belt 43 by changing the groove width between the PRI pulley 41 and the SEC pulley 42 (hereinafter, also simply referred to as “winding diameter”) to change the belt type continuously variable transmission.
  • the mechanism is configured.
  • the PRI pulley 41 includes a fixed pulley 41a and a movable pulley 41b.
  • the controller 10 controls the amount of oil supplied to the PRI pulley oil chamber 41c, the movable pulley 41b operates and the groove width of the PRI pulley 41 is changed.
  • the SEC pulley 42 includes a fixed pulley 42a and a movable pulley 42b.
  • the controller 10 controls the amount of oil supplied to the SEC pulley oil chamber 42c, the movable pulley 42b operates and the groove width of the SEC pulley 42 is changed.
  • the belt 43 has a V-shaped sheave surface formed by the fixed pulley 41a and the movable pulley 41b of the PRI pulley 41, and a V-shape formed by the fixed pulley 42a and the movable pulley 42b of the SEC pulley 42. Wound around the sheave surface.
  • the final deceleration mechanism 5 transmits the output rotation from the variator 4 to the drive wheels 6.
  • the final reduction mechanism 5 includes a plurality of gear trains and differential gears. The final reduction mechanism 5 rotates the drive wheels 6 via the axle.
  • the hydraulic circuit 100 supplies hydraulic pressure to the variator 4, specifically, the PRI pulley 41 and the SEC pulley 42.
  • the hydraulic circuit 100 supplies hydraulic pressure to the forward / reverse switching mechanism 3, the lockup clutch 2a, and a lubrication system and a cooling system (not shown).
  • the hydraulic circuit 100 is configured as follows.
  • FIG. 2 is a schematic configuration diagram of the hydraulic circuit 100.
  • the hydraulic circuit 100 includes an original pressure oil pump 101, a line pressure adjusting valve 102, a pressure reducing valve 103, a line pressure solenoid valve 104, a forward / reverse switching mechanism solenoid valve 105, a transmission circuit pressure solenoid valve 107, a manual A valve 108, a line pressure oil passage 109, a low pressure system control valve 130, a speed change circuit 110, and a line pressure electric oil pump 111 are provided.
  • the solenoid valve is referred to as SOL.
  • the original pressure oil pump 101 is a mechanical oil pump that is driven by the power of the engine 1.
  • the original pressure oil pump 101 is connected to a line pressure adjusting valve 102, a pressure reducing valve 103, a transmission circuit pressure SOL 107 and a transmission circuit 110 via a line pressure oil passage 109.
  • the line pressure oil passage 109 constitutes a line pressure oil passage.
  • the line pressure is a hydraulic pressure that is a source pressure of the PRI pressure or the SEC pressure.
  • the line pressure electric oil pump 111 is driven by an electric motor 117.
  • the line pressure electric oil pump 111 is operated to supply line pressure when the engine 1 is stopped by, for example, idling / stop control and the main pressure oil pump 101 is stopped accordingly.
  • the line pressure adjusting valve 102 adjusts the hydraulic pressure generated by the oil pump 101 to generate line pressure.
  • the generation of the line pressure by the oil pump 101 includes the generation of the line pressure under the action of the line pressure regulating valve 102 as described above. Oil that is relieved when the line pressure regulating valve 102 regulates pressure is supplied to the lock-up clutch 2a, the lubrication system, and the cooling system via the low-pressure control valve 130.
  • the pressure reducing valve 103 reduces the line pressure.
  • the hydraulic pressure reduced by the pressure reducing valve 103 is supplied to the line pressure SOL 104 and the forward / reverse switching mechanism SOL 105.
  • the line pressure SOL104 is a linear solenoid valve and generates a control hydraulic pressure corresponding to the control current.
  • the control hydraulic pressure generated by the line pressure SOL104 is supplied to the line pressure adjustment valve 102, and the line pressure adjustment valve 102 adjusts the pressure by operating according to the control hydraulic pressure generated by the line pressure SOL104. For this reason, the command value of the line pressure PL can be set by the control current to the line pressure SOL104.
  • the forward / reverse switching mechanism SOL 105 is a linear solenoid valve that generates hydraulic pressure in accordance with the control current.
  • the hydraulic pressure generated by the forward / reverse switching mechanism SOL 105 is supplied to the forward clutch 31 and the reverse brake 32 via a manual valve 108 that operates according to the operation of the driver.
  • the transmission circuit pressure SOL107 is a linear solenoid valve, and generates hydraulic pressure to be supplied to the transmission circuit 110 according to the control current. Therefore, the command value for the transmission circuit pressure can be set by the control current to the transmission circuit pressure SOL107.
  • the transmission circuit pressure generated by the transmission circuit pressure SOL 107 is supplied to the transmission oil passage 106.
  • the transmission circuit pressure may be generated by, for example, a SOL that generates a control hydraulic pressure corresponding to the control current and a pressure regulating valve that generates a control circuit pressure from the line pressure PL according to the control hydraulic pressure generated by the SOL.
  • the speed change circuit 110 includes a speed change oil path 106 connected to the line pressure oil path 109 via a speed change circuit pressure SOL107, and a speed change oil pump 112 interposed in the speed change oil path 106.
  • the speed change oil passage 106 communicates the PRI pulley oil chamber 41c and the SEC pulley oil chamber 42c.
  • the shift oil pump 112 is an electric oil pump driven by an electric motor 113.
  • the electric motor 113 is controlled by the controller 10 via the inverter 114.
  • the shift oil pump 112 can switch the rotation direction between the forward direction and the reverse direction.
  • the forward direction is a direction in which oil is sent from the SEC pulley oil chamber 42c side to the PRI pulley oil chamber 41c side
  • the reverse direction is an oil direction from the PRI pulley oil chamber 41c side to the SEC pulley oil chamber 42c side. It is the direction to send.
  • the oil is supplied from the line pressure oil passage 109 to the transmission oil passage 106 so that the SEC-side hydraulic pressure is also not lower than the transmission circuit pressure command value.
  • the command value of the transmission circuit pressure is set in consideration of preventing the belt 43 from slipping.
  • the hydraulic pressure of the transmission oil passage 106 closer to the PRI pulley oil chamber 41 c (hereinafter also referred to as “PRI side”) than the transmission oil pump 112 is also referred to as PRI-side hydraulic pressure.
  • the shift oil pump 112 controls the oil flow in and out of the PRI pulley oil chamber 41c.
  • the outline of the shift control will be described later.
  • the vehicle further includes a controller 10.
  • the controller 10 is an electronic control device, and a signal from the sensor / switch group 11 is input to the controller 10.
  • the controller 10 includes a microcomputer that includes a central processing unit (CPU), a read-only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface). It is also possible to configure the controller 10 with a plurality of microcomputers.
  • the sensor switch group 11 detects, for example, an accelerator opening sensor that detects the accelerator opening of the vehicle, a brake sensor that detects the brake depression force of the vehicle, a vehicle speed sensor that detects the vehicle speed Vsp, and the rotational speed NE of the engine 1.
  • An engine speed sensor detects, for example, an accelerator opening sensor that detects the accelerator opening of the vehicle, a brake sensor that detects the brake depression force of the vehicle, a vehicle speed sensor that detects the vehicle speed Vsp, and the rotational speed NE of the engine 1.
  • the sensor switch group 11 further includes, for example, a PRI pressure sensor 115 that detects the PRI pressure, a SEC pressure sensor 116 that detects the SEC pressure, a PRI rotation speed sensor 120 that detects the input side rotation speed of the PRI pulley 41, and a SEC pulley 42. It includes a SEC rotation speed sensor 121 that detects the output side rotation speed, a pump rotation speed sensor 118 that detects the rotation speed of the shifting oil pump 112, and an oil temperature sensor 119 that detects the temperature of the oil.
  • a signal from the sensor / switch group 11 may be input to the controller 10 via another controller, for example. The same applies to signals such as information generated by other controllers based on signals from the sensor / switch group 11.
  • the controller 10 controls the hydraulic circuit 100 based on signals from the sensor / switch group 11. Specifically, the controller 10 controls the line pressure SOL 104 and the shift circuit 110 shown in FIG. The controller 10 is further configured to control the forward / reverse switching mechanism SOL 105 and the transmission circuit pressure SOL 107.
  • the controller 10 In controlling the line pressure SOL104, the controller 10 energizes the line pressure SOL104 with a control current corresponding to the command value of the line pressure PL.
  • the controller 10 sets a target gear ratio based on a signal from the sensor / switch group 11.
  • the winding diameter (target winding diameter) of each of the pulleys 41 and 42 for realizing the target gear ratio is determined.
  • the groove widths (target groove widths) of the pulleys 41 and 42 for realizing the target winding diameter are determined.
  • the movable pulley 41b of the PRI pulley 41 moves in response to the oil being taken in and out from the PRI pulley oil chamber 41c by the speed change oil pump 112, and the movable pulley 42b of the SEC pulley 42 is also moved accordingly. Moving. That is, there is a correlation between the amount of movement of the movable pulley 41b of the PRI pulley 41 and the amount of movement of the movable pulley 42b of the SEC pulley 42.
  • the controller 10 operates the shift oil pump 112 so that the position of the movable pulley 41b of the PRI pulley 41 becomes a position corresponding to the target gear ratio. Whether or not the movable pulley 41b is at a desired position is calculated by calculating the actual gear ratio from the detection values of the PRI rotational speed sensor 120 and the SEC rotational speed sensor 121, and whether the actual gear ratio matches the target gear ratio. Judgment by whether or not.
  • the operation of the speed change oil pump 112 by the controller 10 is not limited to the speed change. Even when the target speed ratio does not change, the controller 10 operates the speed change oil pump 112 when oil leaks from the pulley oil chambers 41c and 42c and the actual speed ratio changes. In the present embodiment, control for maintaining such a target gear ratio is also included in the shift control.
  • the shift control of the present embodiment is feedback control for converging the position of the movable pulley 41b of the PRI pulley 41 to the target position.
  • the control object of the feedback control is not the oil pressure of the pulley oil chambers 41c and 42c but the groove width of the PRI pulley 41, in other words, the position of the movable pulley 41b.
  • a sensor that detects the position of the movable pulley 41b may be provided to determine whether or not the movable pulley 41b is at a position corresponding to the target gear ratio.
  • the source pressure is insufficient if the oil supply flow rate by the source pressure oil pump 101 is not sufficient.
  • the SEC pressure cannot be controlled to the target value, and appropriate shift control cannot be performed.
  • the source pressure is insufficient, the amount of oil supplied to the lockup clutch 2a, the forward clutch 31, the reverse brake 32, the lubrication system, and the cooling system is insufficient. Therefore, in order to execute the feedback control described above, it is assumed that the original pressure can be maintained when the shifting oil pump 112 is operated.
  • the main pressure oil pump 101 has a larger capacity than the speed change oil pump 112, it is difficult to cause a situation where the above-mentioned main pressure is insufficient.
  • the rotational speed of the original pressure oil pump 101 is low, and when the transmission oil pump 112 is rotated forward in this state, the transmission oil pump 112 Depending on the rotation speed, the source pressure is insufficient.
  • the rotation speed of the source pressure oil pump 101 is low and the line pressure is not sufficiently developed, such as when the internal combustion engine system including the continuously variable transmission is started for the first time.
  • the shift oil pump 112 is used when the main pressure is not sufficiently developed immediately after the system is started or when the supply flow rate is reduced due to deterioration over time. There is a possibility that a problem that the source pressure becomes insufficient with the operation of the system.
  • the controller 10 executes the control described below in order to suppress a decrease in the original pressure accompanying the operation of the speed change oil pump 112.
  • FIG. 3 is a flowchart showing a control routine of the hydraulic circuit 100 executed by the controller 10 when the engine is started.
  • the control routine is executed at regular intervals (for example, every several milliseconds) after the engine 1 is started.
  • step S100 the controller 10 determines whether or not the rotational speed R1 of the original pressure oil pump 101 is greater than the threshold value 1.
  • the rotational speed R1 is detected by a rotational speed sensor provided in the vicinity of the original pressure oil pump 101.
  • the threshold value 1 is a rotation speed at which the supply flow rate is such that the source pressure does not become deficient even when the shifting oil pump 112 is operated in the positive direction at the upper limit value in normal shift control.
  • the threshold value 1 is a value determined according to the specifications of the original pressure oil pump 101 and the shift oil pump 112 to be used and the specifications of the configuration other than the variator 4 such as a lubrication system, a cooling system, and the lockup clutch 2a. Yes, determined in advance by experiment.
  • the normal control here refers to control when the restriction of the discharge flow rate of the speed change oil pump 112 described in the present embodiment is not executed.
  • step S110 the controller 10 executes normal control in step S110. That is, the upper limit rotational speed of the transmission oil pump 112 is set to the upper limit value in the normal control.
  • the upper limit value in the normal control is determined by the specifications of the shifting oil pump 112, and is set to, for example, a rotation speed considering the durability of the rotating parts.
  • step S100 If the determination result in step S100 is negative, the controller 10 executes the process of step S120.
  • step S120 the controller 10 determines whether a travel range is selected.
  • the controller 10 executes the process of step S130 if the travel range is selected, and executes the process of step S160 if the non-travel range is selected.
  • the travel range is a travel range such as a drive range or a reverse range.
  • the non-traveling range is a range other than the traveling range such as a parking range or a neutral range.
  • step S130 the controller 10 determines whether or not the SEC oil pressure is greater than the threshold value 2.
  • the threshold 2 is a hydraulic pressure in a state where the oil passage 106 for shifting on the SEC side and the SEC pulley oil chamber 42c from the oil pump 112 for shifting are filled with oil (hereinafter also referred to as a filling state).
  • the threshold value 2 is the upper limit hydraulic pressure at which the non-operating shift oil pump 112 does not rotate due to the differential pressure in the shift oil passage 106.
  • the controller 10 executes the process of step S140 if the determination result in step S130 is positive, and executes the process of step S150 if negative.
  • step S140 the controller 10 limits the upper limit rotational speed R2_max of the speed change oil pump 112 to X1.
  • X1 is determined as described below.
  • the “specific discharge flow rate” is a discharge amount per one rotation of the pump determined for each oil pump to be used.
  • the controller 10 compares the rotational speed R2 of the speed change oil pump 112 determined by the equation (2) with zero, and sets the larger value to X1.
  • R2 (source pressure supply flow rate ⁇ clutch supply flow rate) ⁇ (specific discharge amount ⁇ pump efficiency ⁇ ) (2)
  • the “source pressure supply flow rate” is the amount of oil that the source pressure oil pump 101 sucks up and discharges from the oil tank
  • the “clutch supply flow rate” is the flow rate supplied to the forward / reverse switching mechanism 3.
  • the specific discharge amount and the pump efficiency ⁇ are determined by the specifications of the shifting oil pump 112.
  • Formula (2) is a modification of the formula for calculating the oil pump rotation speed after setting the “supply flow rate” of Formula (1) to “source pressure supply flow rate ⁇ clutch supply flow rate”. That is, the rotational speed R2 calculated by the equation (2) is the amount of oil obtained by subtracting the amount of oil supplied to the forward / reverse switching mechanism 3 from the supply flow rate of the original pressure oil pump 101 by the supply flow rate of the shifting oil pump 112. Is the rotational speed of the shifting oil pump 112.
  • the upper limit rotational speed R2_max is a larger value of the rotational speed R2 calculated by the equation (2) and zero.
  • step S150 the controller 10 limits the upper limit rotation speed R2_max to X2.
  • X2 is determined as described below.
  • the controller 10 compares the rotational speed R2 of the speed change oil pump 112 determined by the equation (3) with zero, and sets the larger value to X2.
  • R2 (source pressure supply flow rate ⁇ clutch supply flow rate ⁇ SEC pulley oil chamber supply flow rate) ⁇ (specific discharge amount ⁇ pump efficiency ⁇ ) (3)
  • Formula (3) is a formula that calculates the oil pump rotation speed after changing the "supply flow rate” of formula (1) to "source pressure supply flow rate-clutch supply flow rate-SEC pulley oil chamber supply flow rate". It is.
  • the rotational speed R2 calculated by the equation (3) is determined by the amount of oil supplied to the shift oil pump 112 from the supply flow of the original pressure oil pump 101 to the forward / reverse switching mechanism 3 and the SEC pulley oil chamber. This is the rotational speed of the shifting oil pump 112 when the amount of oil supplied to 42c is the same as the amount of oil reduced.
  • R2 calculated by the equation (3) is smaller than the R2 calculated by the equation (2) by considering the “SEC pulley oil chamber supply flow rate”.
  • step S140 is executed when the SEC oil pressure is greater than the threshold value 2. At this time, the SEC pulley oil chamber 42c is in a filled state. In this case, it is sufficient to consider the relationship between the amount of oil supplied to the transmission oil passage 106 and the supply flow rate of the transmission oil pump 112. On the other hand, the process of step S150 is executed when the SEC pulley oil chamber 42c is not in the filled state.
  • step S140 when the upper limit rotational speed of the shifting oil pump 112 is set as in step S140, the amount of oil supplied from the original pressure oil pump 101 by being supplied to the SEC pulley oil chamber 42c is supplied to the shifting oil pump 112. Insufficient flow rate, leading to insufficient source pressure.
  • the controller 10 sets the upper limit rotational speed R2_max of the shifting oil pump 112 by the process of step S140 or step S150.
  • step S130 the controller 10 performs the same determination as in step S130 in step S160.
  • the controller 10 executes the process of step S170 when the determination result of step S160 is positive, and executes the process of step S180 when the determination result is negative.
  • step S170 the controller 10 limits the upper limit rotation speed R2_max to X3.
  • X3 is determined as described below.
  • the controller 10 compares the rotational speed R2 of the speed change oil pump 112 determined by the equation (4) with zero, and sets the larger value to X3.
  • R2 source pressure supply flow rate / (specific discharge amount ⁇ pump efficiency ⁇ ) (4)
  • Equation (4) is a modification of Equation (1).
  • Equation (2) used in step S140 in which the travel range is selected has a term “clutch supply flow rate”, but equation (4) does not have this term. This is because when the non-traveling range is selected, neither the forward clutch 31 nor the reverse brake 32 needs to be engaged, so there is no need to consider the clutch supply flow rate. That is, R2 calculated by the equation (4) is a rotation speed at which the supply flow rate of the shift oil pump 112 becomes equal to the supply flow rate of the original pressure oil pump 101.
  • step S180 the controller 10 limits the upper limit rotation speed R2_max to X4.
  • X4 is determined as described below.
  • the controller 10 compares the rotational speed R2 of the speed change oil pump 112 determined by the equation (5) with zero, and sets the larger value to X4.
  • R2 (source pressure supply flow rate ⁇ SEC pulley oil chamber supply flow rate) ⁇ (specific discharge amount ⁇ pump efficiency ⁇ ) (5)
  • Equation (5) is obtained by removing the term “clutch supply flow rate” from Equation (3) used in Step S150. This is because it is not necessary to consider the clutch supply flow rate in the non-traveling range as described above.
  • the rotation speed R2 calculated by the equation (5) is the same as the oil amount obtained by subtracting the oil amount supplied to the SEC pulley oil chamber 42c from the supply flow rate of the original pressure oil pump 101. Is the rotational speed of the shifting oil pump 112.
  • the discharge flow rate of the transmission oil pump 112 can be made smaller than the discharge flow rate of the main pressure oil pump 101.
  • FIG. 4 and 5 are timing charts when the control routine of FIG. 3 is executed.
  • FIG. 4 shows the case where the travel range is selected
  • FIG. 5 shows the case where the non-travel range is selected.
  • the dashed-dotted line in a figure is a setting value of upper limit rotational speed R2_max.
  • the controller 10 executes the process of step S130.
  • step S130 Since a negative determination result is obtained in step S130 until the timing t2 when the SEC actual hydraulic pressure reaches the threshold value 2, the controller 10 sets the upper limit rotation speed R2_max to X2 (S150). When the actual SEC hydraulic pressure exceeds the threshold value 2, the controller 10 sets the upper limit rotational speed R2_max to X1 (S140). Note that the target value of the upper limit rotational speed R2_max changes stepwise from X2 to X1 at the timing t2, but the rotational speed of the transmission oil pump 112 increases with a delay as shown by the solid line in the figure. This delay also occurs at timings t3 and t4 described later.
  • the rotational speed of the shifting oil pump 112 decreases to a rotational speed that maintains the current hydraulic pressure.
  • whether or not the PRI actual oil pressure has reached the PRI side target oil pressure corresponding to the target gear ratio can be determined by detecting the PRI actual oil pressure and comparing it with the PRI side target oil pressure. Then, the determination is made based on whether or not the actual gear ratio has reached the target gear ratio.
  • the PRI actual oil pressure has reached the PRI-side target oil pressure, so the same result can be obtained regardless of which method is used.
  • the source pressure oil pump 101 When the non-traveling range is selected, as in the case where the traveling range is selected, the source pressure oil pump 101 is operated at timing t1, the SEC actual hydraulic pressure exceeds the threshold 2 at timing t2, and at timing t3. The rotational speed of the original pressure oil pump 101 exceeds the threshold 1, and the actual gear ratio becomes the target gear ratio at timing t4.
  • the upper limit rotational speed R2_max of the speed change oil pump 112 is set to X4 from timing t1 to timing t2 (S180), is set to X3 from timing t2 to timing t3 (S170), and after timing t3.
  • the upper limit rotational speed for normal control is set.
  • the upper limit rotational speed R2_max (X3) between the timing t2 and the timing t3 is larger than when the traveling range is selected (X1). This is due to the difference between the calculation formula of X1 and the calculation formula of X3, that is, whether or not the clutch supply flow rate is taken into consideration.
  • the discharge flow rate of the shift oil pump (electric oil pump) 112 is limited to a smaller amount than the discharge flow rate of the main pressure oil pump 101, it is possible to prevent the source pressure from being insufficient.
  • the discharge flow rate of the shift oil pump 112 is limited when the rotation speed of the original pressure oil pump 101 is lower than a predetermined rotation speed (threshold 1). Since the determination is made based on the rotational speed in this way, a flow rate sensor for detecting the discharge flow rate of the source pressure oil pump 101 becomes unnecessary.
  • the rotational speed of the shift oil pump 112 is limited. Therefore, the discharge flow rate of the shift oil pump 112 is limited without using a flow sensor. be able to.
  • the discharge flow rate of the shift oil pump 112 is reduced compared to when the non-travel range is selected.
  • a higher source pressure is required to engage the forward clutch 31 or the reverse brake 32. According to the present embodiment, the vehicle can be started quickly.
  • the rotational speed of the original pressure oil pump 101 is lower than a predetermined rotational speed (threshold 1) and the pressure in the SEC pulley oil chamber 42c is lower than a predetermined pressure (threshold 2)
  • the discharge flow rate is further reduced as compared with the case where the pressure in the SEC pulley oil chamber 42c is higher than a predetermined pressure (threshold value 2).
  • the pressure in the SEC pulley oil chamber 42c that is, the original pressure is lower, it is necessary to quickly increase the original pressure so that the vehicle can start.
  • the discharge flow rate of the shift oil pump 112 is limited to a smaller value, the original pressure is quickly increased and the vehicle can start.
  • the discharge flow rate of the transmission oil pump 112 may be limited only when the transmission oil pump 112 rotates in the direction (positive direction) of discharging oil from the PRI pulley oil chamber 41c.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Transmission Device (AREA)

Abstract

本発明は、元圧用オイルポンプ(100)によりライン圧油路及びセカンダリプーリ油室に油圧を供給し、プライマリプーリ油室(41c)と前記セカンダリプーリ油室(42c)との間の油路に配置された電動オイルポンプ(112)により前記プライマリプーリ油室(41c)のオイルの出入りを制御する無段変速機の制御方法において、前記電動オイルポンプ(112)の吐出流量を、前記元圧用オイルポンプ(100)の吐出流量よりも少量に制限する無段変速機の制御方法に関する。

Description

無段変速機の制御方法及び制御装置
 本発明は、無段変速機の制御に関する。
 無段変速機の油圧回路として、オイルパンからオイルを汲み上げて変速用の元圧となるライン圧を発生させる元圧用のオイルポンプと、変速用の電動オイルポンプと、を備えるものがJP2008-240894Aに開示されている。上記文献に記載の油圧回路では、プライマリプーリ油室とセカンダリプーリ油室とを連通し、かつライン圧となる油路と接続される変速用油路に電動オイルポンプが介装されている。そして、上記文献に記載の油圧回路においては、電動オイルポンプによってプライマリプーリ油室のオイルの出入りを調整することで、変速制御を行う。
 ところで、上記文献に記載の変速制御においては、変速用の電動オイルポンプが稼働した場合に、元圧用のオイルポンプによって元圧を維持できることが必要である。つまり、元圧用のオイルポンプによる供給流量が、変速用の電動オイルポンプの供給流量よりも多くなければならない。しかし、例えば、無段変速機を含む内燃機関システムをいわゆる油落ちした状態で起動した直後のように、元圧が十分に上昇していない状態では、変速制御中に元圧用のオイルポンプの供給流量が変速用オイルポンプの供給流量より少なくなるおそれがある。この場合、元圧が低下してしまい、目標変速比を実現することができなくなる。しかしながら、上記文献においては、このような元圧が低下する状況についての記載がない。
 そこで本発明では、上述したような元圧が十分に上昇していない状態においても適切な変速比制御を実現し得る制御方法及び制御装置を提供することを目的とする。
 本発明のある態様による無段変速機の制御方法は、元圧用オイルポンプによりライン圧油路及びセカンダリプーリ油室に油圧を供給し、プライマリプーリ油室とセカンダリプーリ油室との間の油路に配置された電動オイルポンプによりプライマリプーリ油室のオイルの出入りを制御する制御方法が提供される。この制御方法においては、電動オイルポンプの吐出流量を、元圧用オイルポンプの吐出流量よりも少量に制限する。
図1は、車両の概略構成図である。 図2は、油圧回路の概略構成図である。 図3は、変速用オイルポンプの回転速度の制御ルーチンを示すフローチャートである。 図4は、走行レンジが選択されている場合のタイミングチャートである。 図5は、非走行レンジが選択されている場合のタイミングチャートである。
 以下、添付図面を参照しながら本発明の実施形態について説明する。
 図1は、車両の概略構成図である。車両は、エンジン1と、ロックアップクラッチ2a付きトルクコンバータ2と、前後進切替機構3と、バリエータ4と、終減速機構5と、駆動輪6と、油圧回路100と、を備える。
 エンジン1は、車両の駆動源を構成する。エンジン1の出力は、トルクコンバータ2、前後進切替機構3、バリエータ4、及び終減速機構5を介して駆動輪6へと伝達される。したがって、バリエータ4は、トルクコンバータ2や前後進切替機構3や終減速機構5とともに、エンジン1から駆動輪6に動力を伝達する動力伝達経路に設けられる。
 前後進切替機構3は、上述の動力伝達経路においてトルクコンバータ2とバリエータ4との間に設けられる。前後進切替機構3は、前進走行に対応する正転方向と後退走行に対応する逆転方向との間で、入力される回転の回転方向を切り替える。
 前後進切替機構3は具体的には、前進クラッチ31と、後退ブレーキ32と、を備える。前進クラッチ31は、回転方向を正転方向とする場合に締結される。後退ブレーキ32は、回転方向を逆転方向とする場合に締結される。前進クラッチ31及び後退ブレーキ32の一方は、エンジン1とバリエータ4と間の回転を断続するクラッチとして構成することができる。
 バリエータ4は、プライマリプーリ41と、セカンダリプーリ42と、プライマリプーリ41及びセカンダリプーリ42に巻き掛けられたベルト43と、を有する。以下では、プライマリをPRIとも称し、セカンダリをSECとも称す。バリエータ4は、PRIプーリ41とSECプーリ42との溝幅を変更することでベルト43の巻掛け径(以下、単に「巻掛け径」ともいう)を変更し、変速を行うベルト式無段変速機構を構成している。
 PRIプーリ41は、固定プーリ41aと、可動プーリ41bと、を備える。コントローラ10がPRIプーリ油室41cに供給されるオイル量を制御することにより、可動プーリ41bが作動し、PRIプーリ41の溝幅が変更される。
 SECプーリ42は、固定プーリ42aと、可動プーリ42bと、を備える。コントローラ10がSECプーリ油室42cに供給されるオイル量を制御することにより、可動プーリ42bが作動し、SECプーリ42の溝幅が変更される。
 ベルト43は、PRIプーリ41の固定プーリ41aと可動プーリ41bとにより形成されるV字形状をなすシーブ面と、SECプーリ42の固定プーリ42aと可動プーリ42bとにより形成されるV字形状をなすシーブ面に巻き掛けられる。
 終減速機構5は、バリエータ4からの出力回転を駆動輪6に伝達する。終減速機構5は、複数の歯車列やディファレンシャルギアを有して構成される。終減速機構5は、車軸を介して駆動輪6を回転する。
 油圧回路100は、バリエータ4、具体的にはPRIプーリ41及びSECプーリ42に油圧を供給する。油圧回路100は、前後進切替機構3やロックアップクラッチ2a、及び図示しない潤滑系や冷却系にも油圧を供給する。油圧回路100は具体的には、次のように構成される。
 図2は、油圧回路100の概略構成図である。油圧回路100は、元圧用オイルポンプ101と、ライン圧調整弁102と、減圧弁103と、ライン圧ソレノイドバルブ104と、前後進切替機構用ソレノイドバルブ105と、変速回路圧ソレノイドバルブ107と、マニュアルバルブ108と、ライン圧油路109と、低圧系制御弁130と、変速用回路110と、ライン圧用電動オイルポンプ111と、を備える。以下では、ソレノイドバルブをSOLと称す。
 元圧用オイルポンプ101は、エンジン1の動力によって駆動する機械式のオイルポンプである。元圧用オイルポンプ101は、ライン圧油路109を介して、ライン圧調整弁102と、減圧弁103と、変速回路圧SOL107及び変速用回路110と、に接続される。ライン圧油路109はライン圧の油路を構成する。ライン圧は、PRI圧やSEC圧の元圧となる油圧である。
 ライン圧用電動オイルポンプ111は、電動モータ117によって駆動する。ライン圧用電動オイルポンプ111は、例えばアイドリング・ストップ制御によりエンジン1が停止し、これに伴い元圧用オイルポンプ101が停止した場合に、ライン圧を供給するために稼働する。
 ライン圧調整弁102は、オイルポンプ101が発生させる油圧を調整してライン圧を生成する。オイルポンプ101がライン圧を発生させることは、このようなライン圧調整弁102の作用のもと、ライン圧を発生させることを含む。ライン圧調整弁102が調圧時にリリーフするオイルは、低圧系制御弁130を介してロックアップクラッチ2a、潤滑系、及び冷却系に供給される。
 減圧弁103は、ライン圧を減圧する。減圧弁103によって減圧された油圧は、ライン圧SOL104や前後進切替機構用SOL105に供給される。
 ライン圧SOL104は、リニアソレノイドバルブであり、制御電流に応じた制御油圧を生成する。ライン圧SOL104が生成した制御油圧は、ライン圧調整弁102に供給され、ライン圧調整弁102は、ライン圧SOL104が生成した制御油圧に応じて作動することで調圧を行う。このため、ライン圧SOL104への制御電流によってライン圧PLの指令値を設定することができる。
 前後進切替機構用SOL105は、リニアソレノイドバルブであり、制御電流に応じた油圧を生成する。前後進切替機構用SOL105が生成した油圧は、運転者の操作に応じて作動するマニュアルバルブ108を介して前進クラッチ31や後退ブレーキ32に供給される。
 変速回路圧SOL107は、リニアソレノイドバルブであり、制御電流に応じて変速用回路110に供給する油圧を生成する。このため、変速回路圧SOL107への制御電流によって変速回路圧の指令値を設定することができる。変速回路圧SOL107が生成した変速回路圧は、変速用油路106に供給される。変速回路圧は例えば、制御電流に応じた制御油圧を生成するSOLと、当該SOLが生成した制御油圧に応じてライン圧PLから制御回路圧を生成する調圧弁とによって生成されてもよい。
 変速用回路110は、変速回路圧SOL107を介してライン圧油路109と接続される変速用油路106と、変速用油路106に介装される変速用オイルポンプ112と、を備える。変速用油路106はPRIプーリ油室41cとSECプーリ油室42cとを連通する。
 変速用オイルポンプ112は、電動モータ113によって駆動する電動オイルポンプである。電動モータ113はインバータ114を介してコントローラ10に制御される。変速用オイルポンプ112は、回転方向を正方向と逆方向に切り替え可能である。ここでいう正方向とは、オイルをSECプーリ油室42c側からPRIプーリ油室41c側へ送る方向であり、逆方向とは、オイルをPRIプーリ油室41c側からSECプーリ油室42c側へ送る方向である。
 変速用オイルポンプ112が正方向に回転すると、変速用油路106及びSECプーリ油室42cにあるオイルがPRIプーリ油室41cに供給される。これによりPRIプーリ41の可動プーリ41bが固定プーリ41aに近づく方向に移動し、PRIプーリ41の溝幅が減少する。一方、SECプーリ42の可動プーリ42bは固定プーリ42aから遠ざかる方向に移動し、SECプーリ42の溝幅が増大する。なお、変速用オイルポンプ112が正回転する際には、変速用オイルポンプ112よりもSECプーリ油室42c側(以下、「SEC側」とも称する)の変速用油路106の油圧(以下、「SEC側油圧」とも称する)が変速回路圧の指令値を下回らないように、ライン圧油路109から変速用油路106へオイルが供給される。変速回路圧の指令値は、ベルト43の滑りを防止すること等を考慮して設定される。なお、変速用オイルポンプ112よりもPRIプーリ油室41c側(以下、「PRI側」とも称する)の変速用油路106の油圧を、PRI側油圧とも称する。
 また、変速用オイルポンプ112が逆方向に回転すると、PRIプーリ油室41cからオイルが流出する。これによりPRIプーリ41の可動プーリ41bが固定プーリ41aから離れる方向に移動し、PRIプーリ41の溝幅が増大する。一方、SECプーリ42の可動プーリ42bは固定プーリ42aに近づく方向に移動し、SECプーリ42の溝幅が減少する。PRIプーリ油室41cから流出したオイルが流入することでSEC側油圧は上昇するが、変速回路圧SOL107によりSEC側油圧が指令値を超えないように制御される。すなわち、SEC側油圧が指令値を超える場合には、変速回路圧SOL107を介して変速用油路106からオイルが排出される。一方、SEC側油圧が指令値未満の場合には、変速回路圧SOL107を介してライン圧油路109からオイルが流入する。
 上記の通り、本実施形態の無段変速機では、変速用オイルポンプ112によりPRIプーリ油室41cのオイルの出入りを制御することによって変速を行う。変速制御の概要については後述する。
 図1に戻り、車両はコントローラ10をさらに備える。コントローラ10は電子制御装置であり、コントローラ10には、センサ・スイッチ群11からの信号が入力される。なお、コントローラ10は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。コントローラ10を複数のマイクロコンピュータで構成することも可能である。
 センサ・スイッチ群11は例えば、車両のアクセル開度を検出するアクセル開度センサや、車両のブレーキ踏力を検出するブレーキセンサや、車速Vspを検出する車速センサや、エンジン1の回転速度NEを検出するエンジン回転速度センサを含む。
 センサ・スイッチ群11はさらに例えば、PRI圧を検出するPRI圧センサ115、SEC圧を検出するSEC圧センサ116、PRIプーリ41の入力側回転速度を検出するPRI回転速度センサ120、SECプーリ42の出力側回転速度を検出するSEC回転速度センサ121、変速用オイルポンプ112の回転速度を検出するポンプ回転速度センサ118、及びオイルの温度を検出する油温センサ119を含む。センサ・スイッチ群11からの信号は例えば、他のコントローラを介してコントローラ10に入力されてもよい。センサ・スイッチ群11からの信号に基づき他のコントローラで生成された情報等の信号についても同様である。
 コントローラ10は、センサ・スイッチ群11からの信号に基づき油圧回路100を制御する。具体的には、コントローラ10は、図2に示すライン圧SOL104や変速用回路110を制御する。コントローラ10はさらに、前後進切替機構用SOL105や変速回路圧SOL107を制御するように構成される。
 ライン圧SOL104を制御するにあたり、コントローラ10は、ライン圧PLの指令値に応じた制御電流をライン圧SOL104に通電する。
 変速制御を実行するにあたり、コントローラ10はセンサ・スイッチ群11からの信号に基づいて目標変速比を設定する。目標変速比が定まれば、当該目標変速比を実現するための各プーリ41、42の巻掛け径(目標巻掛け径)が定まる。目標巻掛け径が定まれば、目標巻掛け径を実現するための各プーリ41、42の溝幅(目標溝幅)が定まる。
 また、変速用回路110では、変速用オイルポンプ112によるPRIプーリ油室41cからのオイルの出し入れに応じてPRIプーリ41の可動プーリ41bが移動し、これに応じてSECプーリ42の可動プーリ42bも移動する。つまり、PRIプーリ41の可動プーリ41bの移動量とSECプーリ42の可動プーリ42bの移動量とには相関がある。
 そこでコントローラ10は、PRIプーリ41の可動プーリ41bの位置が目標変速比に応じた位置になるよう変速用オイルポンプ112を稼働させる。可動プーリ41bが所望の位置にあるか否かは、PRI回転速度センサ120及びSEC回転速度センサ121の検出値から実変速比を算出し、この実変速比と目標変速比とが一致しているか否かによって判断する。
 また、コントローラ10が変速用オイルポンプ112を稼働させるのは、変速時に限られるわけではない。目標変速比が変化しない場合でも、各プーリ油室41c、42cからオイルがリークして実変速比が変化した場合には、コントローラ10は変速用オイルポンプ112を稼働させる。本実施形態においては、このような目標変速比を維持するための制御も、変速制御に含めることとする。
 すなわち、本実施形態の変速制御は、PRIプーリ41の可動プーリ41bの位置を目標位置に収束させるフィードバック制御である。そして、当該フィードバック制御の制御対象は、各プーリ油室41c、42cの油圧ではなく、PRIプーリ41の溝幅、換言すると可動プーリ41bの位置である。
 なお、可動プーリ41bの位置を検出するセンサを設けて、可動プーリ41bが目標変速比に応じた位置にあるか否かを判断してもよい。
 ところで、変速用オイルポンプ112を正回転させてPRIプーリ油室41cにオイルを供給した場合に、元圧用オイルポンプ101によるオイルの供給流量が十分でないと、元圧が不足する。元圧が不足する場合には、SEC圧を目標値に制御できなくなるため、適切な変速制御ができなくなる。また、元圧が不足すると、ロックアップクラッチ2a、前進クラッチ31、後退ブレーキ32、潤滑系、及び冷却系へのオイル供給量が不足する。したがって、上述したフィードバック制御を実行するためには、変速用オイルポンプ112を稼働させた場合に元圧が維持可能であることが前提となる。一般的には、元圧用オイルポンプ101は変速用オイルポンプ112よりも大容量のものを用いるので、上記のような元圧が不足するという事態は生じ難い。しかし、例えばエンジン1が低回転速度領域で運転している場合は、元圧用オイルポンプ101の回転速度も低く、このような状態で変速用オイルポンプ112を正回転させると、変速用オイルポンプ112の回転速度いかんによっては元圧が不足する。また、無段変速機を含む内燃機関システムの初回起動時のように、元圧用オイルポンプ101の回転速度が低くライン圧が十分に発達していない場合も同様である。さらには、経年劣化等により元圧用オイルポンプ101の供給流量が低下した場合も同様である。なお、元圧用オイルポンプ101が電動式の場合でも、システム起動直後で元圧が十分に発達していない場合や、経年劣化等による供給流量の低下が生じた場合には、変速用オイルポンプ112の稼働に伴い元圧が不足するという問題が生じるおそれがある。
 そこで本実施形態では、変速用オイルポンプ112の稼働に伴う元圧の低下を抑制するために、コントローラ10は以下に説明する制御を実行する。
 図3は、コントローラ10がエンジン始動時に実行する、油圧回路100の制御ルーチンを示すフローチャートである。当該制御ルーチンは、エンジン1の始動後に一定間隔(例えば数ミリ秒毎)に実行される。
 ステップS100で、コントローラ10は元圧用オイルポンプ101の回転速度R1が閾値1より大きいか否かを判定する。回転速度R1は、元圧用オイルポンプ101に近接して設けた回転速度センサにより検出する。閾値1は、変速用オイルポンプ112を通常の変速制御における上限値で正方向に稼働させても、元圧が不足しない供給流量となる回転速度である。具体的には、閾値1は使用する元圧用オイルポンプ101及び変速用オイルポンプ112の仕様や、潤滑系や冷却系やロックアップクラッチ2a等といったバリエータ4以外の構成の仕様に応じて定まる値であり、事前に実験等により定める。なお、ここでいう通常制御とは、本実施形態で説明する変速用オイルポンプ112の吐出流量の制限を実行しない場合の制御のことをいう。
 ステップS100における判定結果が肯定的な場合は、コントローラ10はステップS110において通常制御を実行する。すなわち、変速用オイルポンプ112の上限回転速度は、通常制御における上限値に設定される。通常制御における上限値は、変速用オイルポンプ112の仕様により定まるものであり、例えば、回転部品の耐久性を考慮した回転速度に設定される。
 ステップS100における判定結果が否定的な場合は、コントローラ10はステップS120の処理を実行する。
 ステップS120では、コントローラ10は走行レンジが選択されているか否かを判定する。コントローラ10は、走行レンジが選択されている場合であればステップS130の処理を実行し、非走行レンジが選択されている場合であればステップS160の処理を実行する。なお、走行レンジとは、ドライブレンジやリバースレンジ等といった走行用のレンジである。非走行レンジとは、パーキングレンジやニュートラルレンジといった走行用レンジ以外のレンジである。
 ステップS130では、コントローラ10はSEC油圧が閾値2より大きいか否かを判定する。閾値2は、変速用オイルポンプ112よりもSEC側の変速用油路106及びSECプーリ油室42cがオイルで満たされた状態(以下、充填状態ともいう)における油圧である。換言すると、閾値2は非稼動状態の変速用オイルポンプ112が変速用油路106内の差圧によって回転することがない上限の油圧である。
 コントローラ10は、ステップS130における判定結果が肯定的な場合はステップS140の処理を実行し、否定的な場合はステップS150の処理を実行する。
 ステップS140では、コントローラ10は変速用オイルポンプ112の上限回転速度R2_maxをX1に制限する。X1は次に説明するようにして定まる。
 オイルポンプの供給流量は、次の式(1)により定まることが知られている。
  供給流量=オイルポンプ回転速度×固有吐出量×ポンプ効率η…(1)
 ここで、「固有吐出流量」は使用するオイルポンプ毎に定まる、ポンプ一回転当たりの吐出量である。
 コントローラ10は式(2)で定まる変速用オイルポンプ112の回転速度R2とゼロとを比較して、大きい方の値をX1とする。
  R2=(元圧供給流量-クラッチ供給流量)÷(固有吐出量×ポンプ効率η)…(2)
 ここで、「元圧供給流量」とは元圧用オイルポンプ101がオイルタンクから吸い上げて吐出するオイル量であり、「クラッチ供給流量」とは、前後進切替機構3に供給する流量である。また、固有吐出量及びポンプ効率ηは、変速用オイルポンプ112の仕様により定まる。
 式(2)は、式(1)の「供給流量」を「元圧供給流量-クラッチ供給流量」としたうえで、オイルポンプ回転速度を算出する式に変形したものである。すなわち、式(2)で算出される回転速度R2は、変速用オイルポンプ112の供給流量が、元圧用オイルポンプ101の供給流量から前後進切替機構3に供給されるオイル量を減じたオイル量と同じになる場合の変速用オイルポンプ112の回転速度である。
 そして、上限回転速度R2_maxは、式(2)で算出される回転速度R2とゼロのうち大きい方の値である。このように上限回転速度R2_maxを設定することで、変速用オイルポンプ112を稼働した場合に、変速用オイルポンプ112の供給流量が元圧用オイルポンプ101により変速用油路106に供給されるオイル量を上回ることがなくなる。その結果、変速用オイルポンプ112を稼働することによって元圧が不足することを防止できる。
 なお、ゼロと比較して大きい方を選択するのは、式(2)の算出結果が負になる場合には、変速用オイルポンプ112の稼働を禁止すれば十分だからである。これは、以下に説明するX2~X4の算出方法についても同様である。
 一方、ステップS150では、コントローラ10は上限回転速度R2_maxをX2に制限する。X2は次に説明するようにして定まる。
 コントローラ10は式(3)で定まる変速用オイルポンプ112の回転速度R2とゼロとを比較して、大きい方の値をX2とする。
  R2=(元圧供給流量-クラッチ供給流量-SECプーリ油室供給流量)÷(固有吐出量×ポンプ効率η)…(3)
 式(3)は、式(1)の「供給流量」を「元圧供給流量-クラッチ供給流量-SECプーリ油室供給流量」としたうえで、オイルポンプ回転速度を算出する式に変形したものである。すなわち、式(3)で算出される回転速度R2は、変速用オイルポンプ112の供給流量が、元圧用オイルポンプ101の供給流量から前後進切替機構3に供給されるオイル量及びSECプーリ油室42cに供給されるオイル量を減じたオイル量と同じになる場合の変速用オイルポンプ112の回転速度である。
 式(3)で算出されるR2は、「SECプーリ油室供給流量」を考慮する分だけ、式(2)で算出されるR2に比べて小さくなる。
 なお、式(2)では考慮していない「SECプーリ油室供給流量」を式(3)で考慮するのは、以下の理由による。ステップS140の処理を実行するのは、SEC油圧が閾値2より大きい場合であり、このときSECプーリ油室42cは充填状態となっている。この場合には、変速用油路106に供給されるオイル量と変速用オイルポンプ112の供給流量との関係を考慮すれば足りる。これに対し、ステップS150の処理を実行するのは、SECプーリ油室42cが充填状態ではない場合である。したがって、ステップS140と同様に変速用オイルポンプ112の上限回転速度を設定すると、SECプーリ油室42cに供給されることにより元圧用オイルポンプ101から供給されるオイル量が変速用オイルポンプ112の供給流量に対して不足し、元圧不足を招来する。
 なお、ステップS140においてX1を算出する際に、式(3)を用いてもよい。この場合、式(3)の「SECプーリ油室供給流量」がゼロになる。
 上記の通り、走行レンジが選択されている場合は、コントローラ10はステップS140またはステップS150の処理によって変速用オイルポンプ112の上限回転速度R2_maxを設定する。
 一方、非走行レンジが選択されている場合は、コントローラ10はステップS160においてステップS130と同様の判定を行う。コントローラ10は、ステップS160の判定結果が肯定的な場合はステップS170の処理を実行し、判定結果が否定的な場合はステップS180の処理を実行する。
 ステップS170で、コントローラ10は上限回転速度R2_maxをX3に制限する。X3は次に説明するようにして定まる。
 コントローラ10は式(4)で定まる変速用オイルポンプ112の回転速度R2とゼロとを比較して、大きい方の値をX3とする。
  R2=元圧供給流量÷(固有吐出量×ポンプ効率η)…(4)
 式(4)は、式(1)を変形したものである。走行レンジが選択されているステップS140で用いる式(2)には「クラッチ供給流量」の項があるが、式(4)には当該項がない。これは、非走行レンジが選択されている場合には、前進クラッチ31及び後退ブレーキ32のいずれも締結する必要がないので、クラッチ供給流量を考慮する必要がないからである。すなわち、式(4)で算出されるR2は、変速用オイルポンプ112の供給流量が、元圧用オイルポンプ101の供給流量と等しくなる回転速度である。
 ステップS180で、コントローラ10は上限回転速度R2_maxをX4に制限する。X4は次に説明するようにして定まる。
 コントローラ10は式(5)で定まる変速用オイルポンプ112の回転速度R2とゼロとを比較して、大きい方の値をX4とする。
  R2=(元圧供給流量-SECプーリ油室供給流量)÷(固有吐出量×ポンプ効率η)…(5)
 式(5)は、ステップS150で用いる式(3)から、「クラッチ供給流量」の項を除いたものである。これは、上述した通り非走行レンジではクラッチ供給流量を考慮する必要がないためである。
 式(5)で算出される回転速度R2は、変速用オイルポンプ112の供給流量が、元圧用オイルポンプ101の供給流量からSECプーリ油室42cに供給されるオイル量を減じたオイル量と同じになる場合の変速用オイルポンプ112の回転速度である。
 上記のように変速用オイルポンプ112の上限回転速度R2_maxを制限することで、変速用オイルポンプ112の吐出流量を元圧用オイルポンプ101の吐出流量よりも少なくすることができる。
 図4、図5は、図3の制御ルーチンを実行した場合のタイミングチャートである。図4は走行レンジが選択されている場合、図5は非走行レンジが選択されている場合について示している。なお、図中の一点鎖線は、上限回転速度R2_maxの設定値である。
 まず、走行レンジが選択されている場合(図4)について説明する。
 タイミングt1で元圧用オイルポンプ101を稼働し、元圧用オイルポンプ101の回転速度R1が上昇し始める。この段階では回転速度R1は閾値1より小さく、かつ、走行レンジが選択されているので、コントローラ10はステップS130の処理を実行する。
 SEC実油圧が閾値2に到達するタイミングt2になるまでは、ステップS130において否定的な判定結果になるので、コントローラ10は上限回転速度R2_maxをX2に設定する(S150)。そして、SEC実油圧が閾値2を超えたら、コントローラ10は上限回転速度R2_maxをX1に設定する(S140)。なお、上限回転速度R2_maxの目標値はタイミングt2においてX2からX1へステップ的に変化するが、変速用オイルポンプ112の回転速度は、図中の実線のように、遅れをもって上昇する。この遅れは、後述するタイミングt3、t4においても同様に発生する。
 タイミングt3において元圧用オイルポンプ101の回転速度が閾値1に到達すると、変速用オイルポンプ112の上限回転速度R2_maxは通常制御時の上限回転速度に切り替わる(S100、S110)。
 そして、PRI実油圧が目標変速比に応じたPRI側目標油圧に到達するタイミングt4以降は、変速用オイルポンプ112の回転速度は、現状の油圧を維持する回転速度まで低下する。なお、PRI実油圧が目標変速比に応じたPRI側目標油圧に到達したか否かは、PRI実油圧を検出してPRI側目標油圧と比較することによって判定することもできるが、本実施形態では、実変速比が目標変速比になったか否かで判定する。実変速比が目標変速比になったときには、PRI実油圧がPRI側目標油圧に到達しているので、いずれの方法で判定しても同じ結果が得られる。
 次に、非走行レンジが選択されている場合(図5)について説明する。
 非走行レンジが選択されている場合も、走行レンジが選択されている場合と同様に、タイミングt1で元圧用オイルポンプ101が稼働し、タイミングt2でSEC実油圧が閾値2を超え、タイミングt3で元圧用オイルポンプ101の回転速度が閾値1を超え、タイミングt4で実変速比が目標変速比になる。
 そして、変速用オイルポンプ112の上限回転速度R2_maxは、タイミングt1からタイミングt2の間はX4に設定され(S180)、タイミングt2からタイミングt3の間はX3に設定され(S170)、タイミングt3以降は通常制御の上限回転速に設定される。ただし、非走行レンジが選択されている場合は、タイミングt2からタイミングt3の間の上限回転速度R2_max(X3)が、走行レンジが選択されている場合(X1)に比べて大きくなる。これは、上述したX1の算出式とX3の算出式との違い、つまりクラッチ供給流量を考慮するか否かの違いによる。タイミングt1からタイミングt2までの上限回転速度R2_maxについても同様に算出方法の違いがあるが、図4、図5ではいずれもゼロが選択されている。
 以上説明した実施形態によれば、次の効果が得られる。
 本実施形態によれば、変速用オイルポンプ(電動オイルポンプ)112の吐出流量を、元圧用オイルポンプ101の吐出流量よりも少量に制限するので、元圧が不足することを防止できる。
 本実施形態によれば、変速用オイルポンプ112の吐出流量を制限するのは、元圧用オイルポンプ101の回転速度が所定回転速度(閾値1)より低い場合である。このように回転速度に基づいて判断するので、元圧用オイルポンプ101の吐出流量を検出する流量センサが不要となる。
 本実施形態では、変速用オイルポンプ112の吐出流量を制限するために、変速用オイルポンプ112の回転速度を制限するので、流量センサを用いることなく、変速用オイルポンプ112の吐出流量を制限することができる。
 本実施形態では、走行レンジが選択されている場合には、非走行レンジが選択されている場合に比べて、変速用オイルポンプ112の吐出流量を少なくする。走行レンジが選択されている場合には、前進クラッチ31または後退ブレーキ32を締結するために、より高い元圧が必要となる。本実施形態によれば速やかに発進可能な状態になる。
 本実施形態では元圧用オイルポンプ101の回転速度が所定回転速度(閾値1)より低く、かつSECプーリ油室42cの圧力が所定圧(閾値2)より低い場合には、変速用オイルポンプ112の吐出流量をSECプーリ油室42cの圧力が所定圧(閾値2)より高い場合よりもさらに少なくする。SECプーリ油室42cの圧力、つまり元圧が低いほど、発進可能な状態にするために元圧を速やかに高める必要がある。本実施形態によれば、変速用オイルポンプ112の吐出流量をより少なく制限するので、速やかに元圧を高め、発進可能な状態になる。
 ところで、変速用オイルポンプ112を逆方向に回転させると、元圧は高まる。つまり、変速用オイルポンプ112を稼働することで元圧が不足するという事態が生じるのは、主に変速用オイルポンプ112を正方向に回転させる場合である。そこで、変速用オイルポンプ112の吐出流量を制限するのは、変速用オイルポンプ112がPRIプーリ油室41cからオイルを排出する方向(正方向)に回転する場合に限定してもよい。
 なお、上述した各実施形態では、元圧を供給するオイルポンプとして、機械式オイルポンプ(元圧用オイルポンプ101)と、電動オイルポンプ(ライン圧用電動オイルポンプ111)とを併せ持つ構成について説明したが、いずれか一方だけを備える構成であってもよい。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 本願は2016年8月29日に日本国特許庁に出願された特願2016-166775に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (7)

  1.  元圧用オイルポンプによりライン圧油路及びセカンダリプーリ油室に油圧を供給し、
     プライマリプーリ油室と前記セカンダリプーリ油室との間の油路に配置された電動オイルポンプにより前記プライマリプーリ油室のオイルの出入りを制御する無段変速機の制御方法において、
     前記電動オイルポンプの吐出流量を、前記元圧用オイルポンプの吐出流量よりも少量に制限する無段変速機の制御方法。
  2.  請求項1に記載の無段変速機の制御方法において、
     前記電動オイルポンプの吐出流量を制限するのは、前記元圧用オイルポンプの回転速度が所定回転速度より低い場合である無段変速機の制御方法。
  3.  請求項1または2に記載の無段変速機の制御方法において、
     前記電動オイルポンプの吐出流量を制限するために、前記電動オイルポンプの回転速度を制限する無段変速機の制御方法。
  4.  請求項3に記載の無段変速機の制御方法において、
     前記無段変速機の変速レンジが走行レンジの場合には、非走行レンジの場合に比べて前記電動オイルポンプの吐出流量を少なくする無段変速機の制御方法。
  5.  請求項2から4のいずれかに記載の無段変速機の制御方法において、
     前記元圧用オイルポンプの回転速度が所定回転速度より低く、かつ前記セカンダリプーリ油室の圧力が所定圧より低い場合には、前記電動オイルポンプの吐出流量を前記セカンダリプーリ油室の圧力が所定圧より高い場合よりもさらに少なくする無段変速機の制御方法。
  6.  請求項1から5のいずれかに記載の無段変速機の制御方法において、
     前記電動オイルポンプの吐出流量を制限するのは、前記電動オイルポンプが前記プライマリプーリ油室からオイルを排出する方向に回転する場合である無段変速機の制御方法。
  7.  ライン圧油路とセカンダリプーリ油室とに油圧を供給する元圧用オイルポンプと、
     前記ライン圧油路に接続され、かつプライマリプーリ油室と前記セカンダリプーリ油室とを連通する変速用油路と、
     前記変速用油路に介装される電動オイルポンプと、
     前記電動オイルポンプにより前記プライマリプーリ油室のオイルの出入りを制御する制御部と、
    を備える無段変速機の制御装置において、
     前記制御部は、前記電動オイルポンプの吐出流量を、前記電動オイルポンプの吐出流量よりも少量に制限する無段変速機の制御装置。
PCT/JP2017/028641 2016-08-29 2017-08-07 無段変速機の制御方法及び制御装置 WO2018043056A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/329,591 US10584789B2 (en) 2016-08-29 2017-08-07 Control method and control device of continuously variable transmission
CN201780048877.XA CN109563922B (zh) 2016-08-29 2017-08-07 无级变速器的控制方法以及控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016166775A JP6922173B2 (ja) 2016-08-29 2016-08-29 無段変速機の制御方法及び制御装置
JP2016-166775 2016-08-29

Publications (1)

Publication Number Publication Date
WO2018043056A1 true WO2018043056A1 (ja) 2018-03-08

Family

ID=61300485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028641 WO2018043056A1 (ja) 2016-08-29 2017-08-07 無段変速機の制御方法及び制御装置

Country Status (4)

Country Link
US (1) US10584789B2 (ja)
JP (1) JP6922173B2 (ja)
CN (1) CN109563922B (ja)
WO (1) WO2018043056A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6859631B2 (ja) * 2016-08-29 2021-04-14 日産自動車株式会社 無段変速機の制御方法及び制御装置
US10527164B2 (en) * 2016-11-24 2020-01-07 Nissan Motor Co., Ltd. Method for controlling continuously variable transmission and continuously variable transmission system
JP6823617B2 (ja) * 2018-03-15 2021-02-03 本田技研工業株式会社 変速機の油圧制御装置及び油圧制御方法
WO2022176472A1 (ja) * 2021-02-22 2022-08-25 ジヤトコ株式会社 センサの配置構造

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63222942A (ja) * 1987-03-11 1988-09-16 Toyota Motor Corp 車両用ベルト式無段変速機の油圧制御装置
JP2000193075A (ja) * 1998-12-25 2000-07-14 Nissan Motor Co Ltd ベルト式無段変速機の制御装置
JP2008240894A (ja) * 2007-03-27 2008-10-09 Jtekt Corp 無段変速機のサーボポンプの流量制御方法および流量制御装置
JP2014228086A (ja) * 2013-05-23 2014-12-08 トヨタ自動車株式会社 車両の油圧制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050687A1 (fr) 2006-10-23 2008-05-02 Jtekt Corporation Dispositif de commande pour une transmission continue, procédé de commande de débit et dispositif de commande de débit
JP5177234B2 (ja) * 2010-03-09 2013-04-03 トヨタ自動車株式会社 駆動力制御装置
CN102494128B (zh) * 2011-12-13 2015-08-26 重庆市科学技术研究院 泵控cvt电液控制系统
EP2860427A4 (en) * 2012-06-08 2016-09-07 Jatco Ltd CONTINUOUSLY VARIABLE TRANSMISSION AND HYDRAULIC PRESSURE CONTROL METHOD RELATING THERETO
WO2014147854A1 (ja) * 2013-03-21 2014-09-25 トヨタ自動車株式会社 車両の油圧制御装置
JP6211321B2 (ja) * 2013-07-16 2017-10-11 日立オートモティブシステムズ株式会社 車両用電動オイルポンプの制御装置
DE112014003376T5 (de) * 2013-09-30 2016-04-07 Aisin Aw Co., Ltd. Steuerungsvorrichtung für eine Fahrzeughydraulikdruckzufuhrvorrichtung
US20160115951A1 (en) * 2014-10-27 2016-04-28 University Of Rochester High-performance, low-voltage electroosmotic pumps with molecularly thin nanomembranes
US9657676B2 (en) * 2015-02-04 2017-05-23 Ford Global Technologies, Llc Methods and systems for powertrain control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63222942A (ja) * 1987-03-11 1988-09-16 Toyota Motor Corp 車両用ベルト式無段変速機の油圧制御装置
JP2000193075A (ja) * 1998-12-25 2000-07-14 Nissan Motor Co Ltd ベルト式無段変速機の制御装置
JP2008240894A (ja) * 2007-03-27 2008-10-09 Jtekt Corp 無段変速機のサーボポンプの流量制御方法および流量制御装置
JP2014228086A (ja) * 2013-05-23 2014-12-08 トヨタ自動車株式会社 車両の油圧制御装置

Also Published As

Publication number Publication date
CN109563922A (zh) 2019-04-02
JP6922173B2 (ja) 2021-08-18
CN109563922B (zh) 2020-06-23
US20190195343A1 (en) 2019-06-27
JP2018035814A (ja) 2018-03-08
US10584789B2 (en) 2020-03-10

Similar Documents

Publication Publication Date Title
WO2018043056A1 (ja) 無段変速機の制御方法及び制御装置
WO2018043052A1 (ja) 無段変速機の制御方法及び制御装置
KR101994018B1 (ko) 차량 및 차량의 제어 방법
JP6584892B2 (ja) 車両のセーリングストップ制御方法及び制御装置
CN109715992B (zh) 无级变速器的控制方法以及无级变速器系统
JP6673483B2 (ja) 無段変速機、及び、その制御方法
JP4409496B2 (ja) ベルト式無段変速機の制御装置
JP2008106896A (ja) ベルト式無段変速機搭載車両の制御装置
WO2018096622A1 (ja) 無段変速機の制御方法、及び、無段変速システム
JP2006207678A (ja) 無段変速機の変速制御装置
JP6772846B2 (ja) 無段変速機の制御方法
JP6699754B2 (ja) 無段変速機、及び、無段変速機の制御方法
KR101836608B1 (ko) 자동변속기 탑재 차량의 제어방법
JP6866937B2 (ja) 無段変速機及び無段変速機の制御方法
JP6662471B2 (ja) 無段変速機の制御方法、及び、無段変速機システム
JP6654862B2 (ja) 車両の制御装置及び車両の制御方法
JP6666693B2 (ja) 車両の制御装置及び車両の制御方法
JP2019027550A (ja) 無段変速機の制御装置及び無段変速機の制御方法
JP2022024186A (ja) 車両用無段変速機の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846065

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17846065

Country of ref document: EP

Kind code of ref document: A1