WO2018042808A1 - レーザ照射装置 - Google Patents

レーザ照射装置 Download PDF

Info

Publication number
WO2018042808A1
WO2018042808A1 PCT/JP2017/021216 JP2017021216W WO2018042808A1 WO 2018042808 A1 WO2018042808 A1 WO 2018042808A1 JP 2017021216 W JP2017021216 W JP 2017021216W WO 2018042808 A1 WO2018042808 A1 WO 2018042808A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
hole
pedestal
porous plate
laser irradiation
Prior art date
Application number
PCT/JP2017/021216
Other languages
English (en)
French (fr)
Inventor
祐輝 鈴木
Original Assignee
株式会社日本製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本製鋼所 filed Critical 株式会社日本製鋼所
Priority to CN201780052577.9A priority Critical patent/CN109643648B/zh
Priority to SG11201900852RA priority patent/SG11201900852RA/en
Priority to KR1020197006163A priority patent/KR20190042593A/ko
Priority to US16/321,017 priority patent/US11688622B2/en
Publication of WO2018042808A1 publication Critical patent/WO2018042808A1/ja
Priority to US18/195,069 priority patent/US20230274964A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67784Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations using air tracks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/354Working by laser beam, e.g. welding, cutting or boring for surface treatment by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/063Transporting devices for sheet glass
    • B65G49/064Transporting devices for sheet glass in a horizontal position
    • B65G49/065Transporting devices for sheet glass in a horizontal position supported partially or completely on fluid cushions, e.g. a gas cushion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/02Floating material troughs
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • C03B25/02Annealing glass products in a discontinuous way
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/30Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with silicon-containing compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67715Changing the direction of the conveying path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/6776Continuous loading and unloading into and out of a processing chamber, e.g. transporting belts within processing chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68742Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a lifting arrangement, e.g. lift pins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2249/00Aspects relating to conveying systems for the manufacture of fragile sheets
    • B65G2249/04Arrangements of vacuum systems or suction cups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2249/00Aspects relating to conveying systems for the manufacture of fragile sheets
    • B65G2249/04Arrangements of vacuum systems or suction cups
    • B65G2249/045Details of suction cups suction cups
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment

Definitions

  • the present invention relates to a laser irradiation apparatus, for example, a laser irradiation apparatus that irradiates a laser beam while levitating and conveying a plate-like workpiece.
  • Patent Documents 1 and 2 disclose a technique for floating a plate-like workpiece by ejecting gas upward from a horizontally placed porous plate.
  • the porous plate is bonded to the base with an adhesive.
  • JP 2008-110852 A Japanese Patent No. 5512052
  • each of the first and second levitation units includes a pedestal and a porous plate bonded to the upper surface of the pedestal with an adhesive layer, and the pedestal includes at least a gap.
  • the outer peripheral edge facing the top has a rising part protruding upward
  • the porous plate has a notch part that fits into the rising part
  • the adhesive layer has an inner wall of the rising part that fits into the notch part It is formed along.
  • gas is sucked through the plurality of first through holes formed in the porous plate and the plurality of second through holes formed in the metal intermediate plate.
  • the diameter of the plurality of first through holes is larger than the diameter of the plurality of second through holes.
  • the one embodiment for example, it is suitable for a laser annealing apparatus or the like, and a high-quality laser irradiation apparatus can be provided.
  • FIG. 1 is a schematic cross-sectional view showing an outline of a laser irradiation apparatus according to Embodiment 1.
  • FIG. 4 is a plan view showing a positional relationship between the floating units 30a and 30b and the plate-like workpiece 100.
  • FIG. FIG. 5 is a cross-sectional view of a levitation unit according to Comparative Example 1 of Embodiment 1, corresponding to the VV cross-sectional view of FIG.
  • FIG. 5 is a cross-sectional view of a levitation unit according to Comparative Example 2 of Embodiment 1, corresponding to the VV cross-sectional view of FIG.
  • FIG. 5 is a VV cross-sectional view of FIG. 2.
  • 3 is a plan view showing an adhesive layer 34 formed on a pedestal 31.
  • FIG. 6 is an enlarged view of a portion surrounded by an alternate long and short dash line in FIG. 5. It is sectional drawing of the levitation
  • 3 is a plan view showing an adhesive layer 34 formed on a pedestal 31.
  • FIG. FIG. 5 is a cross-sectional view of a levitation unit according to a comparative example of Embodiment 2, corresponding to the VV cross-sectional view of FIG. 6 is a perspective view of a levitation unit according to Embodiment 2.
  • FIG. 6 is an exploded perspective view of a levitation unit according to Embodiment 2.
  • FIG. 6 is an exploded perspective view of a levitation unit according to Embodiment 2.
  • FIG. 14 is a sectional view taken along line XIV-XIV in FIG. 11.
  • 3 is a plan view showing adhesive layers 34a and 34d formed on a base 31.
  • FIG. It is an enlarged view of the junction part of short porous board 32a, 32b.
  • 3 is a cross-sectional view schematically showing a suction path (a through hole 323 of a porous plate 32 and a through hole 333 of an intermediate plate 33), a decompression chamber 36, and a decompression through hole 313.
  • FIG. 1 is a schematic cross-sectional view showing an outline of the laser irradiation apparatus according to the first embodiment.
  • the laser irradiation apparatus according to Embodiment 1 is suitable for an excimer laser annealing apparatus that irradiates an amorphous silicon film formed on a glass substrate with a laser beam to be polycrystallized.
  • the laser irradiation apparatus according to Embodiment 1 can be applied to a laser peeling apparatus that peels the peeling layer by irradiating the peeling layer formed on the glass substrate with a laser beam from the substrate side.
  • the laser irradiation apparatus 1 includes a laser irradiation unit 10, a local seal unit 20, and levitation units 30a and 30b.
  • the laser irradiation apparatus 1 according to Embodiment 1 irradiates a laser beam LB while levitating and conveying a plate-like workpiece 100 such as a glass substrate.
  • the right-handed xyz coordinates shown in FIG. 1 are convenient for explaining the positional relationship between the components.
  • the xy plane is a horizontal plane, and the z-axis plus direction is vertically upward.
  • the laser irradiation unit 10 includes a laser oscillator 11 and an optical system module 12.
  • the laser oscillator 11 is a laser light source, and is an ultraviolet laser oscillator such as an excimer laser or a solid-state laser. Laser light generated in the laser oscillator 11 is introduced into an optical system module 12 composed of lenses and mirrors.
  • the laser beam LB emitted from the optical system module 12 is condensed on the plate-like workpiece 100 that is being levitated and conveyed. As will be described later with reference to FIG. 2, the laser beam LB is a line beam whose longitudinal direction is the y-axis direction on the plate-like workpiece 100.
  • the local seal portion 20 is provided on the lower side of the optical system module 12 so as to surround the laser beam LB.
  • An inert gas such as nitrogen gas is injected from the local seal portion 20 toward the irradiation region of the laser beam LB on the plate-like workpiece 100. Therefore, for example, oxidation of the silicon film annealed by the laser beam LB on the plate-like workpiece 100 can be suppressed.
  • sticker part 20 is not essential.
  • the levitation units 30a and 30b are plate-like members installed horizontally, and jet the gas upward from the upper surface to float the plate-like workpiece 100 horizontally.
  • the plate workpiece 100 is levitated about 200 ⁇ m.
  • the levitation units 30a and 30b are arranged side by side in the conveyance direction (x-axis direction) of the plate workpiece 100 at a predetermined interval.
  • the laser beam LB is irradiated in the gap between the levitation unit (for example, the first levitation unit) 30a and the levitation unit (for example, the second levitation unit) 30b.
  • the levitation units 30a and 30b have a pedestal 31 and a porous plate 32, respectively.
  • a porous plate 32 is attached to the upper surface of the plate-shaped pedestal 31.
  • the pedestal 31 is a plate member made of metal such as aluminum or stainless steel.
  • a pressurized gas is introduced into the pedestal 31, and the gas passes through fine pores (that is, pores) inside the porous plate 32 and is injected from the upper surface of the porous plate 32.
  • the porous plate 32 faces the plate-like workpiece 100 when the plate-like workpiece 100 is conveyed.
  • the porous plate 32 is made of, for example, porous ceramics, porous carbon, porous metal, or the like. Carbon may be scraped by contact with the plate-like workpiece 100 during use, or particles may be generated in the irradiation region of the laser beam LB. Also, porous carbon is expensive. For this reason, it is preferable to use inexpensive ceramics that are less prone to scraping and particles.
  • alumina ceramics having a pore diameter of 0.1 to 50 ⁇ m (preferably 1 to 10 ⁇ m) and a porosity of 10 to 60% (preferably 35 to 45%) can be used.
  • FIG. 2 is a plan view showing the positional relationship between the levitation units 30 a and 30 b and the plate-like workpiece 100.
  • the laser beam LB on the plate-like workpiece 100 is indicated by a two-dot chain line. Note that the right-handed xyz coordinates shown in FIG. 2 coincide with those in FIG.
  • the levitation units 30a and 30b each have a rectangular planar shape.
  • the conveyance direction (x-axis direction) of the plate-like workpiece 100 matches the longitudinal direction of the floating units 30a and 30b
  • the y-axis direction matches the width direction of the floating units 30a and 30b. ing.
  • the laser beam LB is a line beam whose longitudinal direction is the y-axis direction, and is applied to the gap between the floating units 30a and 30b.
  • the length of the laser beam LB in the y-axis direction is, for example, about the same as or less than the length of the plate-like workpiece 100 in the y-axis direction (that is, the width of the plate-like workpiece 100).
  • the irradiation position of the laser beam LB is fixed, the plate-like workpiece 100 is conveyed in the x-axis plus direction. Therefore, the entire surface of the plate-like workpiece 100 can be irradiated with the laser beam LB.
  • the entire surface of the plate-shaped workpiece 100 may be irradiated with the laser beam LB by being divided into a plurality of conveyances. . Further, it is not always necessary to irradiate the entire surface of the plate-like workpiece 100 with the laser beam LB.
  • FIG. 3 is a cross-sectional view of the levitation unit according to the first comparative example of the first embodiment, corresponding to the VV cross-sectional view of FIG. Note that the right-handed xyz coordinates shown in FIG. 3 coincide with those in FIG.
  • the levitation unit 300b according to the first comparative example of the first embodiment includes a pedestal 310 and a porous plate 320.
  • both the base 310 and the porous plate 320 have a simple plate shape.
  • the porous plate 320 is attached to the upper surface of the plate-like pedestal 310 with an adhesive layer 340 made of a resin adhesive.
  • the adhesive layer 340 is formed in a square ring shape in plan view along the outer peripheral edge of the base 310.
  • a pressurizing chamber 350 that is a space surrounded by the pedestal 310, the porous plate 320, and the adhesive layer 340 is formed.
  • the pedestal 310 is formed with a pressurizing through hole 311 that penetrates the upper surface and the lower surface. Pressurized gas is introduced into the pressurizing chamber 350 through the pressurizing through hole 311, and the gas passes through fine pores inside the porous plate 320 and is injected from the upper surface of the porous plate 320. . Therefore, the plate-like workpiece 100 can be levitated.
  • the adhesive layer 340 is formed along the outer peripheral edge of the pedestal 310. Therefore, the ultraviolet rays generated with the irradiation of the laser beam LB easily reach the adhesive layer 340, and the adhesive layer 340 deteriorates.
  • the adhesive layer 340 is deteriorated, the airtightness of the pressurizing chamber 350 is lowered, and the gas injected from the upper surface of the porous plate 320 is reduced. Therefore, the plate-like workpiece 100 cannot be levitated with high accuracy. Further, when the adhesive layer 340 deteriorates, gas is generated from the resin adhesive itself, which adversely affects the irradiation result of the laser beam LB.
  • FIG. 4 is a cross-sectional view of the levitation unit according to Comparative Example 2 of Embodiment 1, and corresponds to the VV cross-sectional view of FIG. Note that the right-handed xyz coordinates shown in FIG. 4 coincide with those in FIG.
  • the pedestal 310 has a simple plate shape, whereas in Comparative Example 2 shown in FIG. 4, the rising portion 312 that protrudes upward is formed on the outer peripheral edge of the pedestal 310. Is formed.
  • the rising portion 312 is formed in a square ring shape in plan view along the outer peripheral edge of the base 310.
  • the porous plate 320 is the same size as the pedestal 310, whereas in the Comparative Example 2 shown in FIG. 4, the porous plate 320 is more than the pedestal 310. It is small and arranged inside the rising portion 312.
  • the adhesive layer 340 is formed along the outer peripheral edge of the pedestal 310, whereas in Comparative Example 2 shown in FIG. 4, the adhesive layer 340 is formed on the rising portion 312. It is formed along the inner wall.
  • the adhesive layer 340 is formed on the inner side along the inner wall of the rising portion 312. Therefore, the ultraviolet rays generated with the irradiation of the laser beam LB are blocked by the rising portion 312 and the deterioration of the adhesive layer 340 can be suppressed as compared with the first comparative example.
  • the ultraviolet rays that have entered from the gap between the rising portion 312 of the pedestal 310 and the porous plate 320 reach the adhesive layer 340 and deteriorate the adhesive layer 340.
  • FIGS. 5 and 6 are cross-sectional views taken along the line VV in FIG.
  • FIG. 6 is a plan view showing the adhesive layer 34 formed on the pedestal 31.
  • FIG. 7 is an enlarged view of a portion surrounded by an alternate long and short dash line in FIG. Note that the right-handed xyz coordinates shown in FIGS. 5 to 7 coincide with those in FIG.
  • the levitation units 30a and 30b have a mirror-symmetrical configuration with respect to the yz plane and are the same, so the configuration of the levitation unit 30b will be described.
  • the levitation unit 30 b according to Embodiment 1 includes a pedestal 31 and a porous plate 32.
  • the pedestal 31 according to the first embodiment is a plate-like member in which a rising portion 312 protruding upward is formed on the outer peripheral edge, like the pedestal 310 according to the comparative example 2 shown in FIG. 4. It is.
  • the rising portion 312 is formed in a square ring shape in plan view along the outer peripheral edge of the base 31.
  • the lower surface of the base 31 is grind
  • the thickness t1 of the pedestal 31 is preferably about 10 mm or more, for example.
  • the porous plate 32 according to the first embodiment is the same size as the pedestal 31 as shown in FIG. Moreover, as shown in FIG. 7, the notch part 321 fitted with the standing part 312 of the base 31 is formed along the outer periphery.
  • the notch 321 is formed in a square ring shape in plan view along the outer peripheral edge of the porous plate 32.
  • the porous plate 32 is attached to the upper surface of the pedestal 31 with an adhesive layer 34 made of a resin adhesive.
  • the adhesive layer 34 is formed along the inner wall of the rising portion 312 of the pedestal 31 fitted to the notch 321 of the porous plate 32.
  • the adhesive layer 34 is formed in a square ring shape in plan view along the inner wall of the rising portion 312 of the base 31.
  • the adhesive layer 34 does not need to be in close contact with the inner wall of the rising portion 312.
  • an epoxy adhesive can be used as the resin adhesive constituting the adhesive layer 34.
  • a pressurizing chamber 35 that is a space surrounded by the pedestal 31, the porous plate 32, and the adhesive layer 34 is formed.
  • the pedestal 31 is formed with a pressurizing through hole 311 passing through the upper surface and the lower surface at the end on the positive side in the x-axis direction.
  • a pressurized gas is introduced into the pressurizing chamber 35 through the pressurizing through hole 311, and the gas passes through fine pores inside the porous plate 32 and is injected from the upper surface of the porous plate 32. . Therefore, the plate-like workpiece 100 can be levitated.
  • a pressurizing device such as a compressor or a blower is connected to the pressurizing through hole 311 via a pipe.
  • the rising portion 312 protruding upward is formed on the outer peripheral edge of the base 31. Further, a notch 321 that fits with the rising portion 312 of the base 31 is formed on the outer peripheral edge of the porous plate 32. An adhesive layer 34 is formed along the inner wall of the rising portion 312 fitted with the notch 321.
  • the notch portion 321 of the porous plate 32 and the rising portion 312 of the base 31 are in close contact with each other, the ultraviolet rays generated by the irradiation of the laser beam LB do not reach the adhesive layer 34. Even if a gap is formed between the notch 321 and the rising portion 312 and ultraviolet rays enter through the gap, the adhesive layer 34 formed on the inside of the rising portion 312 fitted with the notch 321 is not covered. Hard to reach. Therefore, such a configuration can effectively suppress the deterioration of the adhesive layer 34.
  • FIG. 8 is a cross-sectional view of a levitation unit according to a modification of the first embodiment.
  • FIG. 8 corresponds to FIG.
  • FIG. 9 is a plan view showing the adhesive layer 34 formed on the pedestal 31.
  • the pedestal 31 of the levitation unit 30b according to the first embodiment has a rising portion 312 formed on the entire outer periphery.
  • the pedestal 31 of the levitation unit 30 b according to the modification of the first embodiment has the rising portion 312 only on the outer peripheral edge facing the gap irradiated with the laser beam LB. Is formed.
  • a rising portion 312 is not formed on the other outer peripheral edge. That is, as shown in FIG. 9, the rising portion 312 is formed linearly in the y-axis direction along the outer peripheral edge on the minus side in the x-axis direction.
  • the porous plate 32 of the levitation unit 30b is fitted with the rising portion 312 only at the outer peripheral edge facing the gap irradiated with the laser beam LB.
  • a notch 321 is formed.
  • the notch part 321 is not formed in the other outer periphery. That is, the notch 321 is linearly formed in the y-axis direction along the outer peripheral edge on the minus side in the x-axis direction.
  • the porous plate 32 is affixed to the upper surface of the pedestal 31 by an adhesive layer 34 made of a resin adhesive.
  • the adhesive layer 34 is formed on the inner side along the inner wall of the rising portion 312 of the base 31 fitted to the notch 321 of the porous plate 32.
  • the rising portion 312 is not formed on the outer peripheral edge that does not face the gap irradiated with the laser beam LB, and the adhesive layer 34 is formed on the outer peripheral edge. Therefore, the adhesive layer 34 is formed in a quadrangular ring shape in plan view.
  • the rising portion 312 protruding upward is formed on the outer peripheral edge of the base 31 facing the gap irradiated with the laser beam LB. Further, a notch 321 that fits the rising portion 312 is formed on the outer peripheral edge of the porous plate 32 facing the gap irradiated with the laser beam LB. An adhesive layer 34 is formed on the inner side along the inner wall of the rising portion 312 fitted with the notch 321.
  • the notch portion 321 of the porous plate 32 and the rising portion 312 of the base 31 are in close contact with each other, the ultraviolet rays generated by the irradiation of the laser beam LB do not reach the adhesive layer 34. Even if a gap is formed between the notch 321 and the rising portion 312 and ultraviolet rays enter through the gap, the adhesive layer 34 formed on the inside of the rising portion 312 fitted with the notch 321 is not covered. Hard to reach. Therefore, the deterioration of the adhesive layer 34 can be effectively suppressed.
  • the rising portion 312 is not formed on the outer peripheral edge that does not face the gap irradiated with the laser beam LB, and the adhesive layer 34 is formed on the outer peripheral edge. Is formed. However, since it does not face the gap irradiated with the laser beam LB, even if the adhesive layer 34 is formed on the outer peripheral edge, the ultraviolet ray hardly reaches the adhesive layer 34.
  • Embodiment 2 Next, a laser irradiation apparatus according to Embodiment 2 will be described.
  • the overall configuration of the laser irradiation apparatus according to Embodiment 2 is the same as the overall configuration of the laser irradiation apparatus according to Embodiment 1 shown in FIG. 1 and FIG.
  • the laser irradiation apparatus according to the second embodiment is different from the laser irradiation apparatus according to the first embodiment in the configuration of the levitation unit.
  • FIG. 10 is a cross-sectional view of the levitation unit according to the comparative example of the second embodiment, corresponding to the VV cross-sectional view of FIG. Note that the right-handed xyz coordinates shown in FIG. 10 coincide with those in FIG.
  • the levitation unit 300b according to the comparative example of the second embodiment includes a pedestal 310 and a porous plate 320 according to the comparative example 1 of the first embodiment shown in FIG.
  • An intermediate plate 330 is provided.
  • the intermediate plate 330 has a simple plate shape.
  • the intermediate plate 330 is a metal plate member such as aluminum or stainless steel and has the same size as the pedestal 310.
  • the thickness t2 of the intermediate plate 330 is smaller than the thickness t1 of the pedestal 310.
  • the porous plate 320 is attached to the upper surface of the plate-shaped intermediate plate 330 by an adhesive layer 340a.
  • the adhesive layer 340a is formed in a square ring shape in plan view along the outer peripheral edge of the upper surface of the intermediate plate 330.
  • the intermediate plate 330 is attached to the upper surface of the pedestal 310 by an adhesive layer 340d.
  • the adhesive layer 340d is formed in a square ring shape in plan view along the outer peripheral edge of the upper surface of the base 310.
  • a pressurizing chamber 350 that is a space surrounded by the porous plate 320, the middle plate 330, and the adhesive layer 340a is formed.
  • the pedestal 310 is formed with a pressurizing through hole 311 passing through the upper surface and the lower surface at the end on the positive side in the x-axis direction.
  • a pressurizing through hole 334 is formed in the intermediate plate 330.
  • the pressurizing through hole 311 of the pedestal 310 and the pressurizing through hole 334 of the intermediate plate 330 are formed at corresponding positions and connected by an annular adhesive layer 340e. Further, the pressurizing chamber 350 and the decompression chamber 360 are partitioned by the adhesive layer 340a, and the respective airtightness is maintained.
  • Pressurized gas is introduced into the pressurizing chamber 350 through the pressurizing through hole 311 of the pedestal 310, the adhesive layer 340 e, and the pressurizing through hole 334 of the intermediate plate 330, and the gas enters the inside of the porous plate 320.
  • the fine holes are ejected from the upper surface of the porous plate 320. Therefore, the plate-like workpiece 100 can be levitated.
  • a decompression chamber 360 that is a space surrounded by the pedestal 310, the middle plate 330, and the adhesive layer 340d is formed.
  • the pedestal 310 is formed with a pressure reducing through hole 313 passing through the upper surface and the lower surface at the center. The gas in the decompression chamber 360 is exhausted through the decompression through hole 313.
  • a large number of through holes 333 are formed in the intermediate plate 330 constituting the decompression chamber 360 over substantially the entire surface.
  • the porous plate 320 is also formed with a large number of through holes 323 over substantially the entire surface.
  • middle board 330 are formed in the corresponding position, and are connected by the cyclic
  • the levitation unit 300b according to the comparative example of the second embodiment sucks the gas from the through hole 323 of the porous plate 320 while jetting the gas from the pores of the porous plate 320 to float the plate-like workpiece 100.
  • the plate-like workpiece 100 is sucked.
  • the plate-like workpiece 100 can be made more accurately than the levitating unit 300b according to the comparative example 1 of the first embodiment shown in FIG. Can surface.
  • the plate-like workpiece 100 can be levitated more accurately at the focal position of the laser beam LB.
  • the adhesive layer 340a is formed along the outer peripheral edge of the upper surface of the intermediate plate 330, and the adhesive layer 340d is formed on the upper surface of the pedestal 310. It is formed along the outer periphery. Therefore, the ultraviolet rays generated with the irradiation of the laser beam LB easily reach the adhesive layers 340a and 340d, and the adhesive layers 340a and 340d deteriorate.
  • the airtightness of the pressurizing chamber 350 decreases, and the gas injected from the upper surface of the porous plate 320 decreases.
  • the adhesive layer 340d deteriorates, the airtightness of the decompression chamber 360 is lowered, and the gas sucked from the through hole 323 of the porous plate 320 is reduced. Therefore, the plate-like workpiece 100 cannot be levitated with high accuracy.
  • FIG. 11 is a perspective view of the levitation unit according to the second embodiment.
  • 12 and 13 are exploded perspective views of the levitating unit according to the second embodiment.
  • 14 is a cross-sectional view taken along the line XIV-XIV in FIG.
  • FIG. 14 corresponds to the VV cross-sectional view of FIG.
  • FIG. 15 is a plan view showing the adhesive layers 34 a and 34 d formed on the pedestal 31. Note that the right-handed xyz coordinates shown in FIGS. 11 to 15 are the same as those in FIG.
  • the floating unit 30b according to the second embodiment also has a configuration in which a porous plate 32 is joined to a pedestal 31 in the same manner as the floating unit 30b according to the first embodiment. ing.
  • the porous plate 32 is divided into two at the center in the longitudinal direction (x-axis direction).
  • the long porous plate 32 is configured by joining the two short porous plates 32a and 32b at the center in the longitudinal direction.
  • a material obtained by joining two short porous plates can be manufactured more easily and inexpensively than a single long porous plate.
  • the levitating unit 30 b includes an intermediate plate 33 in addition to the pedestal 31 and the porous plate 32.
  • the intermediate plate 33 is a metal plate-like member such as aluminum or stainless steel, like the base 31.
  • the intermediate plate 33 is slightly smaller than the base 31 and is accommodated in the base 31.
  • the porous plate 32 has a large number of through holes (first through holes) 323 extending in the longitudinal direction (x-axis direction) and the width direction (substantially over the entire surface). They are arranged at equal intervals in the y-axis direction). Also on the intermediate plate 33, a large number of through holes (second through holes) 333 are arranged at substantially equal intervals in the longitudinal direction (x-axis direction) and the width direction (y-axis direction) over substantially the entire surface.
  • the through hole 323 of the porous plate 32 and the through hole 333 of the intermediate plate 33 are provided at corresponding positions.
  • a pressure reducing through hole 313 is formed in the base 31.
  • the pressurizing through hole 311 is formed at the center of the end on the plus side in the x-axis direction.
  • the decompression through-hole 313 is formed at the center.
  • the pedestal 31 according to the second embodiment has a plate shape in which a rising portion 312 protruding upward is formed on the outer peripheral edge, like the pedestal 31 according to the first embodiment shown in FIG. 5. It is a member.
  • the rising portion 312 is formed in a square ring shape in plan view along the outer peripheral edge of the base 31.
  • the lower surface of the base 31 is grind
  • the thickness t1 of the pedestal 31 is preferably about 10 mm or more, for example.
  • FIG. 16 is an enlarged view of a joint portion of the short porous plates 32a and 32b.
  • a convex portion 322a is formed on the lower end of the butted end surface of the short porous plate (first plate) 32a with the short porous plate (second plate) 32b.
  • the convex part 322b is formed in the upper surface at the abutting end surface with the short porous board 32a in the short porous board 32b.
  • An adhesive layer 34c is formed between the convex portion 322a of the short porous plate 32a and the convex portion 322b of the short porous plate 32b.
  • the ultraviolet rays generated by the irradiation with the laser beam LB hardly reach the joint portions. . Further, even if the ultraviolet rays reach the joint portion, as shown in FIG. 16, it is blocked by the convex portion 322b of the short porous plate 32b, and the deterioration of the adhesive layer 34c can be effectively suppressed.
  • the porous plate 32 is the same size as the pedestal 31.
  • a notch 321 that fits with the rising portion 312 of the pedestal 31 is formed along the outer peripheral edge.
  • the notch 321 is formed in a square ring shape in plan view along the outer peripheral edge of the porous plate 32.
  • the porous plate 32 is affixed to the upper surface of the pedestal 31 by an adhesive layer 34a made of a resin adhesive.
  • the adhesive layer 34 a is formed along the inner wall of the rising portion 312 of the pedestal 31 fitted with the notch 321 of the porous plate 32.
  • the adhesive layer 34 a is formed in a square ring shape in plan view along the inner wall of the rising portion 312 of the pedestal 31.
  • the pedestal 31 in the pedestal 31 according to the second embodiment, a region surrounded by the adhesive layer 34a is dug down, and a cavity constituting the decompression chamber 36 is formed.
  • a counterbore groove 314 is provided at the periphery of the cavity.
  • the intermediate plate 33 is fitted in the counterbored groove 314, and the intermediate plate 33 is bonded to the pedestal 31 by an adhesive layer 34 d formed on the counterbored groove 314.
  • the upper surface of the intermediate plate 33 coincides with the upper surface of the base 31 on which the adhesive layer 34a is formed. That is, the intermediate plate 33 is accommodated in the pedestal 31 in parallel with the porous plate 32 below the porous plate 32.
  • the thickness t2 of the intermediate plate 33 is smaller than the thickness t1 of the base 31.
  • the adhesive layer 34d is formed in a square ring shape in plan view along the inner side of the adhesive layer 34a.
  • the pressurizing through hole 311 is located inside the adhesive layer 34a and outside the adhesive layer 34d. Even if the adhesion area between the base 31 and the intermediate plate 33 is increased by providing a plurality of projections having the same height as the bottom surface of the counterbore groove 314 in the decompression chamber 36 and forming the adhesive layer 34d on the upper surface of the projections. Good.
  • a pressurizing chamber 35 that is a space surrounded by the pedestal 31, the porous plate 32, the intermediate plate 33, and the adhesive layer 34 a is formed on the upper side of the intermediate plate 33.
  • the pedestal 31 is formed with a pressurizing through hole 311 passing through the upper surface and the lower surface at the end on the positive side in the x-axis direction.
  • a pressurized gas is introduced into the pressurizing chamber 35 through the pressurizing through hole 311, and the gas passes through fine pores inside the porous plate 32 and is injected from the upper surface of the porous plate 32. . Therefore, the plate-like workpiece 100 can be levitated.
  • a pressurizing device such as a compressor or a blower is connected to the pressurizing through hole 311 via a pipe.
  • a decompression chamber 36 which is a space surrounded by the base 31, the middle plate 33, and the adhesive layer 34d, is formed below the middle plate 33.
  • the pressurizing chamber 35 and the decompression chamber 36 are partitioned by the intermediate plate 33.
  • the pedestal 31 is formed with a decompression through-hole 313 passing through the upper surface and the lower surface at the center.
  • the gas in the decompression chamber 36 is exhausted through the decompression through hole 313.
  • the decompression through-hole 313 is connected to a decompression device such as a vacuum pump or an ejector via a pipe.
  • a large number of through holes 333 are formed in the intermediate plate 33 constituting the decompression chamber 36 over substantially the entire surface.
  • the porous plate 32 is also formed with a large number of through holes 323 over substantially the entire surface.
  • middle board 33 are formed in the corresponding position, and are connected by the cyclic
  • the levitation unit 30b according to the second embodiment sucks gas from the through-hole 323 of the porous plate 32 while injecting gas from the pores of the porous plate 32 to float the plate-like workpiece 100, and forms a plate shape.
  • the workpiece 100 is sucked.
  • the plate-like workpiece 100 can be levitated more accurately than the levitating unit 30b according to the first embodiment.
  • the plate-like workpiece 100 can be levitated more accurately at the focal position of the laser beam LB.
  • the plate-like workpiece 100 can be levitated with high accuracy at about 20 to 50 ⁇ m.
  • the gas from the through holes 323 it is preferable to suck the gas from the through holes 323 while injecting the gas from the pores uniformly over the entire surface of the porous plate 32. Since the pore diameter of the porous plate 32 is extremely fine, for example, about several ⁇ m, the resistance of the gas path is large, so that the pressure distribution in the pressurizing chamber 35 can be made uniform. As a result, gas can be uniformly injected over the entire surface of the porous plate 32.
  • the diameter of the suction path (the through hole 323 of the porous plate 32 and the through hole 333 of the intermediate plate 33) is reduced to increase the resistance of the gas path. There is a need to. Thereby, the pressure distribution in the decompression chamber 36 can be made uniform, and the gas can be sucked uniformly over the entire surface of the porous plate 32.
  • the pressure distribution in the decompression chamber 36 can be made uniform, so that the decompression through-hole 313 and the pipe connected thereto are provided with 1 (Singular). Therefore, compared with the case where a plurality of decompression through-holes 313 are provided, the structure is simplified, the manufacturing is facilitated, and the manufacturing cost can be reduced.
  • the pressure distribution in the decompression chamber 36 becomes non-uniform, and the gas cannot be sucked uniformly over the entire surface of the porous plate 32. Specifically, the amount of gas suction from the suction path near the decompression through hole 313 of the pedestal 31 increases, and the amount of gas suction from the suction path far from the pressure reduction through hole 313 of the pedestal 31 decreases. .
  • FIG. 17 is a cross-sectional view schematically showing the suction path (the through hole 323 of the porous plate 32 and the through hole 333 of the intermediate plate 33), the decompression chamber 36, and the decompression through hole 313.
  • the adhesive layer 34a and the pressurizing chamber 35 are omitted.
  • the gas flow rates Q1 to Q7 sucked from the through holes 323 of the porous plate 32 need to be equal. Therefore, if the diameters of the plurality of suction paths (the through hole 323 of the porous plate 32 and the through hole 333 of the intermediate plate 33) are the same, the pressure P1 at the opening end of the through hole 333 on the decompression chamber 36 side. It is necessary to make P7 equal.
  • the suction path (the through hole 323 of the porous plate 32 and the through hole 333 of the intermediate plate 33) is reduced in diameter to increase the resistance of the gas path.
  • the gas flow rate Qt exhausted from the decompression chamber 35 through the decompression through hole 313 is significantly larger than the total of the gas flow rates Q1 to Q7 sucked from the through hole 323 of the porous plate 32.
  • Qt >> Q1 + Q2 + Q3 + Q4 + Q5 + Q6 + Q7 holds. Therefore, the pressure distribution in the decompression chamber 36 becomes uniform, and the pressures P1 to P7 are equal to each other.
  • the gas flow rates Q1 to Q7 sucked from the through holes 323 of the porous plate 32 are also equal to each other.
  • the processing variation occurs in the diameters of the suction paths (the through hole 323 of the porous plate 32 and the through hole 333 of the intermediate plate 33), the gas flow rates Q1 to Q7 are not completely equal, and somewhat vary. Occurs.
  • the above-described suction path (the through hole 323 of the porous plate 32 and the through hole 333 of the intermediate plate 33) is not required to have a small diameter over the entire length of the suction path, and a part of the suction path is narrowed. It is enough to make it diameter.
  • the porous plate 32 is made of ceramics from the viewpoint of durability improvement and particle suppression. In that case, it is difficult to make the through hole 323 have a minute diameter (for example, 1 mm or less) due to the problem of workability.
  • the diameter of the through hole 333 of the metal intermediate plate 33 is set to a minute diameter, and the through hole 323 of the ceramic porous plate 32 is formed. It is smaller than the diameter. That is, the gas flow rates Q1 to Q7 described above are determined by the diameter of the through hole 333 of the intermediate plate 33 having a smaller diameter, and the processing variation in the diameter of the through hole 333 of the intermediate plate 33 affects the gas flow rates Q1 to Q7.
  • the diameter of the through hole 333 of the intermediate plate 33 is preferably 1 mm or less, and more preferably 0.5 mm or less.
  • the diameter of the through hole 323 of the ceramic porous plate 32 is preferably set to, for example, 1 mm or more in order to facilitate processing.
  • the rising portion 312 protruding upward is formed on the outer peripheral edge of the pedestal 31, and the rising portion of the pedestal 31 along the outer peripheral edge of the porous plate 32.
  • a notch 321 is formed to fit with 312.
  • An adhesive layer 34 a is formed on the inner side along the inner wall of the rising portion 312 fitted with the notch 321.
  • the notch portion 321 of the porous plate 32 and the rising portion 312 of the base 31 are in close contact with each other, the ultraviolet rays generated by the irradiation of the laser beam LB do not reach the adhesive layer 34a. Even if a gap is formed between the notch 321 and the rising portion 312, and even if ultraviolet rays enter through the gap, the adhesive layer 34 a formed inside the rising portion 312 fitted with the notch 321 is not covered. Hard to reach. Therefore, deterioration of the adhesive layer 34a can be effectively suppressed.
  • the intermediate plate 33 is accommodated in the pedestal 31. Therefore, an adhesive layer 34 d that bonds the intermediate plate 33 to the pedestal 31 is also accommodated in the pedestal 31. Therefore, deterioration of the adhesive layer 34d can be effectively suppressed. Furthermore, since the intermediate plate 33 is accommodated in the base 31, the thickness (height) of the levitation unit 30b is at least the thickness t2 of the intermediate plate 33, compared to the comparative example shown in FIG. Can be small.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Laser Beam Processing (AREA)
  • Recrystallisation Techniques (AREA)
  • Standing Axle, Rod, Or Tube Structures Coupled By Welding, Adhesion, Or Deposition (AREA)

Abstract

一実施の形態に係るレーザ照射装置1では、第1及び第2の浮上ユニット30a、30bは、それぞれ、台座31と、台座31の上面に接着層34により接合された多孔質板32と、を有し、台座31が、少なくとも間隙に面した外周縁に、上側に突出した立ち上がり部312を有すると共に、多孔質板32が、立ち上がり部312と嵌合する切欠き部321を有し、接着層34が、切欠き部321と嵌合した立ち上がり部312の内壁に沿って形成されている。

Description

レーザ照射装置
 本発明はレーザ照射装置に関し、例えば、板状のワークを浮上搬送しつつレーザビームを照射するレーザ照射装置に関する。
 板状のワークを浮上搬送しつつ、当該ワークに対してレーザビームを照射するレーザ照射装置が知られている。
 ところで、特許文献1、2には、水平に載置された多孔質板からガスを上向きに噴出させることにより、板状のワークを浮上させる技術が開示されている。ここで、多孔質板は、特許文献1、2に開示されているように、台座に対して接着剤により接合されている。
特開2008-110852号公報 特許第5512052号公報
 発明者は、板状のワークを浮上搬送しつつレーザビームを照射するレーザ照射装置の開発に際し、様々な課題を見出した。
 その他の課題と新規な特徴は、本明細書の記述及び添付図面から明らかになるであろう。
 一実施の形態に係るレーザ照射装置では、第1及び第2の浮上ユニットは、それぞれ、台座と、台座の上面に接着層により接合された多孔質板と、を有し、台座が、少なくとも間隙に面した外周縁に、上側に突出した立ち上がり部を有すると共に、多孔質板が、立ち上がり部と嵌合する切欠き部を有し、接着層が、切欠き部と嵌合した立ち上がり部の内壁に沿って形成されている。
 他の実施の形態に係るレーザ照射装置では、多孔質板に形成された複数の第1の貫通孔及び金属製の中板に形成された複数の第2の貫通孔を介してガスが吸引され、複数の第1の貫通孔の直径は複数の第2の貫通孔の直径より大きい。
 前記一実施の形態によれば、例えばレーザアニール装置等に好適であって、良質なレーザ照射装置を提供することができる。
実施の形態1に係るレーザ照射装置の概要を示す模式的断面図である。 浮上ユニット30a、30bと板状ワーク100との位置関係を示す平面図である。 実施の形態1の比較例1に係る浮上ユニットの断面図であって、図2のV-V断面図に対応する図である。 実施の形態1の比較例2に係る浮上ユニットの断面図であって、図2のV-V断面図に対応する図である。 図2のV-V断面図である。 台座31に形成された接着層34を示す平面図である。 図5において一点鎖線で囲われた部分の拡大図である。 実施の形態1の変形例に係る浮上ユニットの断面図である。 台座31に形成された接着層34を示す平面図である。 実施の形態2の比較例に係る浮上ユニットの断面図であって、図2のV-V断面図に対応する図である。 実施の形態2に係る浮上ユニットの斜視図である。 実施の形態2に係る浮上ユニットの分解斜視図である。 実施の形態2に係る浮上ユニットの分解斜視図である。 図11のXIV-XIV断面図である。 台座31に形成された接着層34a、34dを示す平面図である。 短尺多孔質板32a、32bの接合部の拡大図である。 吸引経路(多孔質板32の貫通孔323及び中板33の貫通孔333)、減圧室36、及び減圧用貫通孔313を模式的に示した断面図である。
 以下、具体的な実施の形態について、図面を参照しながら詳細に説明する。ただし、以下の実施の形態に限定される訳ではない。また、説明を明確にするため、以下の記載及び図面は、適宜簡略化されている。
(実施の形態1)
<レーザ照射装置の全体構成>
 まず、図1を参照して、実施の形態1に係るレーザ照射装置の全体構成について説明する。図1は、実施の形態1に係るレーザ照射装置の概要を示す模式的断面図である。実施の形態1に係るレーザ照射装置は、ガラス基板上に形成されたアモルファスシリコン膜にレーザビームを照射して多結晶化するエキシマレーザアニール装置に好適である。あるいは、実施の形態1に係るレーザ照射装置は、ガラス基板上に形成された剥離層に基板側からレーザビームを照射して剥離層を剥離するレーザ剥離装置などに適用することもできる。
 図1に示すように、実施の形態1に係るレーザ照射装置1は、レーザ照射部10、局所シール部20、浮上ユニット30a、30bを備えている。実施の形態1に係るレーザ照射装置1は、例えばガラス基板などの板状ワーク100を浮上搬送しつつレーザビームLBを照射する。
 なお、図1に示した右手系xyz座標は、構成要素の位置関係を説明するための便宜的なものである。通常、xy平面が水平面であって、z軸プラス向きが鉛直上向きとなる。
 レーザ照射部10は、レーザ発振器11、及び光学系モジュール12を備えている。レーザ発振器11は、レーザ光源であって、例えばエキシマレーザや固体レーザなどの紫外線レーザ発振器である。レーザ発振器11において生成されたレーザ光が、レンズやミラーから構成された光学系モジュール12に導入される。光学系モジュール12から出射されたレーザビームLBは、浮上搬送されている板状ワーク100上に集光される。なお、図2を参照して後述するように、レーザビームLBは、板状ワーク100上において、y軸方向を長手方向とするラインビームである。
 局所シール部20は、光学系モジュール12の下側において、レーザビームLBを囲うように設けられている。板状ワーク100におけるレーザビームLBの照射領域に向けて、局所シール部20から窒素ガスなどの不活性ガスが噴射される。そのため、例えば板状ワーク100上においてレーザビームLBによりアニールされたシリコン膜の酸化を抑制することができる。なお、局所シール部20は、必須ではない。
 浮上ユニット30a、30bは、水平に設置された板状の部材であって、上面から上向きにガスを噴射して板状ワーク100を水平に浮上させる。例えば、板状ワーク100を200μm程度浮上させる。浮上ユニット30a、30bは、所定の間隔で板状ワーク100の搬送方向(x軸方向)に並んで配置されている。浮上ユニット(例えば、第1の浮上ユニット)30aと浮上ユニット(例えば、第2の浮上ユニット)30bとの間の間隙において、レーザビームLBが照射される。
 浮上ユニット30a、30bは、それぞれ台座31と多孔質板32とを有している。板状の台座31の上面に多孔質板32が貼り付けられている。台座31は、例えばアルミニウムやステンレスなどの金属製の板状部材である。台座31に加圧されたガスが導入され、そのガスが多孔質板32の内部の微細な気孔(すなわち細孔)を通過して多孔質板32の上面から噴射される。
 多孔質板32は、板状ワーク100の搬送時に、板状ワーク100と対向している。
 多孔質板32は、例えば、多孔質セラミックス、多孔質カーボン、多孔質金属などからなる。カーボンは、使用時に板状ワーク100との接触で削れてしまったり、レーザビームLBの照射領域でパーティクルが発生してしまう虞がある。また、多孔質カーボンは高価である。そのため、削れやパーティクルが発生し難く、安価なセラミックスを使用することが好ましい。例えば、気孔径0.1~50μm(好ましくは1~10μm)、気孔率10~60%(好ましくは35~45%)のアルミナセラミックスを使用することができる。
 ここで、図2を参照して、浮上ユニット30a、30bと板状ワーク100との平面視における位置関係について説明する。図2は、浮上ユニット30a、30bと板状ワーク100との位置関係を示す平面図である。さらに、図2には、板状ワーク100上におけるレーザビームLBが二点鎖線で示されている。なお、図2に示した右手系xyz座標は、図1と一致している。
 図2に示すように、浮上ユニット30a、30bは、それぞれ矩形状の平面形状を有している。図2の例では、板状ワーク100の搬送方向(x軸方向)が、浮上ユニット30a、30bの長手方向に一致しており、y軸方向が、浮上ユニット30a、30bの幅方向に一致している。
 上述の通り、レーザビームLBは、y軸方向を長手方向とするラインビームであって、浮上ユニット30a、30bの間隙に照射される。レーザビームLBのy軸方向の長さは、例えば、板状ワーク100のy軸方向の長さ(すなわち板状ワーク100の幅)と同程度もしくはそれ以下である。レーザビームLBの照射位置は固定されているが、板状ワーク100がx軸プラス方向に搬送される。そのため、板状ワーク100の表面全体にレーザビームLBを照射することができる。なお、1回の搬送で板状ワーク100の表面全体にレーザビームLBを照射するのではなく、複数回の搬送に分割して板状ワーク100の表面全体にレーザビームLBを照射してもよい。また、必ずしも板状ワーク100の表面全体にレーザビームLBを照射する必要はない。
<実施の形態1の比較例1に係る浮上ユニット>
 次に、図3を参照して、発明者が事前に検討した実施の形態1の比較例1に係る浮上ユニットについて説明する。図3は、実施の形態1の比較例1に係る浮上ユニットの断面図であって、図2のV-V断面図に対応する図である。なお、図3に示した右手系xyz座標は、図1と一致している。
 実施の形態1の比較例1に係る浮上ユニット300bは、台座310と多孔質板320とを有している。ここで、台座310及び多孔質板320は、いずれも単純な板形状を有している。多孔質板320は、樹脂接着剤からなる接着層340により、板状の台座310の上面に貼り付けられている。接着層340は台座310の外周縁に沿って平面視で四角環状に形成されている。
 そのため、台座310、多孔質板320、接着層340に囲まれた空間である加圧室350が形成される。台座310には上面と下面とを貫通する加圧用貫通孔311が形成されている。加圧用貫通孔311を介して、加圧室350に加圧されたガスが導入され、そのガスが多孔質板320の内部の微細な気孔を通過して多孔質板320の上面から噴射される。そのため、板状ワーク100を浮上させることができる。
 図3に示すように、実施の形態1の比較例1に係る浮上ユニット300bでは、接着層340が台座310の外周縁に沿って形成されている。そのため、レーザビームLBの照射に伴って発生する紫外線が容易に接着層340に到達し、接着層340が劣化する。接着層340が劣化すると、加圧室350の気密性が低下し、多孔質板320の上面から噴射されるガスが減少する。そのため、板状ワーク100を精度よく浮上させることができなくなる。また、接着層340が劣化する際に樹脂接着剤自体からガスが発生し、レーザビームLBの照射結果に悪影響を及ぼす。
<実施の形態1の比較例2に係る浮上ユニット>
 次に、図4を参照して、発明者等が事前に検討した実施の形態1の比較例2に係る浮上ユニットについて説明する。図4は、実施の形態1の比較例2に係る浮上ユニットの断面図であって、図2のV-V断面図に対応する図である。なお、図4に示した右手系xyz座標は、図1と一致している。
 図3に示した比較例1では、台座310が単純な板形状を有していたのに対し、図4に示した比較例2では、台座310の外周縁に上側に突出した立ち上がり部312が形成されている。立ち上がり部312は台座310の外周縁に沿って平面視で四角環状に形成されている。
 また、図3に示した比較例1では、多孔質板320が台座310と同じ大きさであったのに対し、図4に示した比較例2では、多孔質板320が台座310よりも一回り小さく、立ち上がり部312の内側に配置されている。
 そして、図3に示した比較例1では、接着層340が台座310の外周縁に沿って形成されていたのに対し、図4に示した比較例2では、接着層340が立ち上がり部312の内壁に沿って形成されている。
 図4に示すように、実施の形態1の比較例2に係る浮上ユニット300bでは、接着層340が立ち上がり部312の内壁に沿って内側に形成されている。そのため、レーザビームLBの照射に伴って発生する紫外線が、立ち上がり部312により遮られ、第1の比較例よりも接着層340の劣化を抑制することができる。しかしながら、台座310の立ち上がり部312と多孔質板320との間の隙間から侵入した紫外線が接着層340に到達し、接着層340が劣化する虞があった。
<実施の形態1に係る浮上ユニット>
 次に、図5、図6を参照して、実施の形態1に係る浮上ユニットの詳細について説明する。図5は、図2のV-V断面図である。図6は、台座31に形成された接着層34を示す平面図である。図7は、図5において一点鎖線で囲われた部分の拡大図である。なお、図5~図7に示した右手系xyz座標は、図1と一致している。浮上ユニット30a、30bは、yz平面に関して鏡面対称の構成を有しており、同様であるため、浮上ユニット30bの構成について説明する。
 実施の形態1に係る浮上ユニット30bは、台座31と多孔質板32とを有している。
 図5に示すように、実施の形態1に係る台座31は、図4に示した比較例2に係る台座310と同様に、外周縁に上側に突出した立ち上がり部312が形成された板状部材である。図6に示すように、立ち上がり部312は台座31の外周縁に沿って平面視で四角環状に形成されている。
 また、台座31には設置精度が要求されるため、台座31の下面は研磨される。台座31の下面を精度良く研磨するには、台座31の厚さt1を例えば10mm程度以上にすることが好ましい。
 実施の形態1に係る多孔質板32は、図5に示すように、台座31と同じ大きさである。また、図7に示すように、外周縁に沿って台座31の立ち上がり部312と嵌合する切欠き部321が形成されている。切欠き部321は多孔質板32の外周縁に沿って平面視で四角環状に形成されている。
 図5に示すように、多孔質板32は、樹脂接着剤からなる接着層34により、台座31の上面に貼り付けられている。ここで、図7に示すように、接着層34は、多孔質板32の切欠き部321と嵌合した台座31の立ち上がり部312の内壁に沿って形成されている。
 図6に示すように、接着層34は台座31の立ち上がり部312の内壁に沿って平面視で四角環状に形成されている。ここで、接着層34は、立ち上がり部312の内壁に密着している必要はない。接着層34を構成する樹脂接着剤としては、例えばエポキシ系接着剤を使用することができる。
 図5に示すように、台座31、多孔質板32、接着層34に囲まれた空間である加圧室35が形成される。台座31には上面と下面とを貫通する加圧用貫通孔311が、x軸方向プラス側の端部に形成されている。加圧用貫通孔311を介して、加圧室35に加圧されたガスが導入され、そのガスが多孔質板32の内部の微細な気孔を通過して多孔質板32の上面から噴射される。そのため、板状ワーク100を浮上させることができる。なお、図示しないが、加圧用貫通孔311には配管を介してコンプレッサやブロワなどの加圧装置が接続されている。
 上述の通り、実施の形態1に係る浮上ユニット30bでは、台座31の外周縁に上側に突出した立ち上がり部312が形成されている。また、多孔質板32の外周縁に台座31の立ち上がり部312と嵌合する切欠き部321が形成されている。そして、切欠き部321と嵌合した立ち上がり部312の内壁に沿って、接着層34が形成されている。
 通常、多孔質板32の切欠き部321と台座31の立ち上がり部312とは密着しているため、レーザビームLBの照射に伴って発生する紫外線が、接着層34に到達することはない。仮に、切欠き部321と立ち上がり部312との間に隙間が生じ、当該隙間から紫外線が侵入したとしても、切欠き部321と嵌合した立ち上がり部312の内側に形成された接着層34までは到達し難い。従って、このような構成により、接着層34の劣化を効果的に抑制することができる。
<実施の形態1の変形例に係る浮上ユニット>
 次に、図8、図9を参照して、実施の形態1の変形例に係る浮上ユニットの詳細について説明する。図8は、実施の形態1の変形例に係る浮上ユニットの断面図である。図8は、図5に対応している。図9は、台座31に形成された接着層34を示す平面図である。
 図6に示すように、実施の形態1に係る浮上ユニット30bの台座31は、外周縁全体に立ち上がり部312が形成されている。これに対し、図8、図9に示すように、実施の形態1の変形例に係る浮上ユニット30bの台座31は、レーザビームLBが照射される隙間に面した外周縁のみに立ち上がり部312が形成されている。その他の外周縁には、立ち上がり部312が形成されていない。すなわち、図9に示すように、立ち上がり部312が、x軸方向マイナス側の外周縁に沿って、y軸方向に直線状に形成されている。
 また、図8に示すように、実施の形態1の変形例に係る浮上ユニット30bの多孔質板32は、レーザビームLBが照射される隙間に面した外周縁のみに立ち上がり部312と嵌合する切欠き部321が形成されている。その他の外周縁には、切欠き部321が形成されていない。すなわち、切欠き部321が、x軸方向マイナス側の外周縁に沿って、y軸方向に直線状に形成されている。
 図8に示すように、多孔質板32は、樹脂接着剤からなる接着層34により、台座31の上面に貼り付けられている。ここで、図8、図9に示すように、接着層34は、多孔質板32の切欠き部321と嵌合した台座31の立ち上がり部312の内壁に沿って内側に形成されている。他方、図9に示すように、レーザビームLBが照射される隙間に面していない外周縁には立ち上がり部312は形成されておらず、当該外周縁に接着層34が形成されている。そのため、接着層34は、平面視で四角環状に形成されている。
 上述の通り、実施の形態1に係る浮上ユニット30bでは、レーザビームLBが照射される隙間に面した台座31の外周縁に上側に突出した立ち上がり部312が形成されている。また、レーザビームLBが照射される隙間に面した多孔質板32の外周縁に立ち上がり部312と嵌合する切欠き部321が形成されている。そして、切欠き部321と嵌合した立ち上がり部312の内壁に沿って内側に、接着層34が形成されている。
 通常、多孔質板32の切欠き部321と台座31の立ち上がり部312とは密着しているため、レーザビームLBの照射に伴って発生する紫外線が、接着層34に到達することはない。仮に、切欠き部321と立ち上がり部312との間に隙間が生じ、当該隙間から紫外線が侵入したとしても、切欠き部321と嵌合した立ち上がり部312の内側に形成された接着層34までは到達し難い。従って、接着層34の劣化を効果的に抑制することができる。
 なお、実施の形態1の変形例に係る浮上ユニット30bでは、レーザビームLBが照射される隙間に面していない外周縁には立ち上がり部312は形成されておらず、当該外周縁に接着層34が形成されている。しかしながら、レーザビームLBが照射される隙間に面していないため、外周縁に接着層34が形成されていても、接着層34には紫外線がほとんど到達しない。
(実施の形態2)
 次に、実施の形態2に係るレーザ照射装置について説明する。実施の形態2に係るレーザ照射装置の全体構成は、図1、図2に示した実施の形態1に係るレーザ照射装置の全体構成と同様であるため、説明を省略する。実施の形態2に係るレーザ照射装置は、浮上ユニットの構成が実施の形態1に係るレーザ照射装置と異なる。
<実施の形態2の比較例に係る浮上ユニット>
 まず、図10を参照して、発明者が事前検討した実施の形態2の比較例に係る浮上ユニットについて説明する。図10は、実施の形態2の比較例に係る浮上ユニットの断面図であって、図2のV-V断面図に対応する図である。なお、図10に示した右手系xyz座標は、図1と一致している。
 図10に示すように、実施の形態2の比較例に係る浮上ユニット300bは、図3に示した実施の形態1の比較例1に係る台座310と多孔質板320に加え、両者の間に中板330を備えている。ここで、中板330は、台座310、多孔質板320と同様に、単純な板形状を有している。中板330は、台座310と同様に、例えばアルミニウムやステンレスなどの金属製の板状部材であって、台座310と同じ大きさである。中板330の厚さt2は、台座310の厚さt1よりも小さい。
 多孔質板320は、接着層340aにより、板状の中板330の上面に貼り付けられている。接着層340aは中板330の上面の外周縁に沿って平面視で四角環状に形成されている。
 中板330は、接着層340dにより、台座310の上面に貼り付けられている。接着層340dは台座310の上面の外周縁に沿って平面視で四角環状に形成されている。
 図10に示すように、多孔質板320、中板330及び接着層340aに囲まれた空間である加圧室350が形成される。台座310には上面と下面とを貫通する加圧用貫通孔311が、x軸方向プラス側の端部に形成されている。中板330には、加圧用貫通孔334が形成されている。そして、台座310の加圧用貫通孔311と中板330の加圧用貫通孔334とは、対応した位置に形成されており、環状の接着層340eにより接続されている。また、接着層340aにより、加圧室350と減圧室360とが仕切られ、それぞれの気密性が維持されている。
 台座310の加圧用貫通孔311、接着層340e、及び中板330の加圧用貫通孔334を介して、加圧室350に加圧されたガスが導入され、そのガスが多孔質板320の内部の微細な気孔を通過して多孔質板320の上面から噴射される。そのため、板状ワーク100を浮上させることができる。
 他方、図10に示すように、台座310、中板330、接着層340dに囲まれた空間である減圧室360が形成される。台座310には上面と下面とを貫通する減圧用貫通孔313が、中心部に形成されている。減圧用貫通孔313を介して、減圧室360のガスが排気される。
 ここで、減圧室360を構成する中板330には、略全面に亘って、多数の貫通孔333が形成されている。また、多孔質板320にも、略全面に亘って、多数の貫通孔323が形成されている。そして、多孔質板320の貫通孔323と中板330の貫通孔333とは、対応した位置に形成されており、環状の接着層340bにより接続されている。従って、多孔質板320上のガスが、多孔質板320の貫通孔323、接着層340b、及び中板330の貫通孔333を介して吸引される。そのため、板状ワーク100を吸引することができる。また、接着層340bにより、加圧室350と減圧室360とが仕切られ、それぞれの気密性が維持されている。
 すなわち、実施の形態2の比較例に係る浮上ユニット300bは、多孔質板320の気孔からガスを噴射して板状ワーク100を浮上させつつ、多孔質板320の貫通孔323からガスを吸引して板状ワーク100を吸引している。このように、ガスの加圧による浮上と、ガスの減圧による吸引とをバランスさせることにより、図3に示した実施の形態1の比較例1に係る浮上ユニット300bより精度よく板状ワーク100を浮上させることができる。具体的には、レーザビームLBの焦点位置に、より精度よく板状ワーク100を浮上させることができる。
 図10に示すように、実施の形態2の比較例に係る浮上ユニット300bでは、接着層340aが中板330の上面の外周縁に沿って形成されており、接着層340dが台座310の上面の外周縁に沿って形成されている。そのため、レーザビームLBの照射に伴って発生する紫外線が容易に接着層340a、340dに到達し、接着層340a、340dが劣化する。
 接着層340aが劣化すると、加圧室350の気密性が低下し、多孔質板320の上面から噴射されるガスが減少する。他方、接着層340dが劣化すると、減圧室360の気密性が低下し、多孔質板320の貫通孔323から吸引されるガスが減少する。そのため、精度よく板状ワーク100を浮上させることができなくなる。
<実施の形態2に係る浮上ユニット>
 次に、図11~図15を参照して、実施の形態2に係る浮上ユニットについて説明する。図11は、実施の形態2に係る浮上ユニットの斜視図である。図12、図13は、実施の形態2に係る浮上ユニットの分解斜視図である。図14は、図11のXIV-XIV断面図である。図14は、図2のV-V断面図に対応している。図15は、台座31に形成された接着層34a、34dを示す平面図である。
 なお、図11~図15に示した右手系xyz座標は、図1と一致している。
 図11に示すように、実施の形態2に係る浮上ユニット30bも、外見上は、実施の形態1に係る浮上ユニット30bと同様に、台座31に多孔質板32が接合された構成を有している。ここで、実施の形態2に係る浮上ユニット30bでは、多孔質板32が長手方向(x軸方向)の中央部において、2つに分割されている。すなわち、2枚の短尺多孔質板32a、32bが長手方向中央部で接合されることにより、長尺の多孔質板32が構成されている。セラミックス製の場合、1枚の長尺の多孔質板よりも、2枚の短尺多孔質板を接合したものの方が、容易かつ安価に製造することができる。
 他方、図12に示すように、実施の形態2に係る浮上ユニット30bは、台座31と多孔質板32に加え、中板33を備えている。中板33は、台座31と同様に、例えばアルミニウムやステンレスなどの金属製の板状部材である。図13に示すように、中板33は台座31よりも一回り小さく、台座31に収容されている。
 図12に示すように、実施の形態2に係る多孔質板32には、略全面に亘って、多数の貫通孔(第1の貫通孔)323が長手方向(x軸方向)及び幅方向(y軸方向)に等間隔に配置されている。
 中板33にも、略全面に亘って、多数の貫通孔(第2の貫通孔)333が長手方向(x軸方向)及び幅方向(y軸方向)に等間隔に配置されている。多孔質板32の貫通孔323と中板33の貫通孔333とは、対応した位置に設けられている。
 台座31には、加圧用貫通孔311に加え、減圧用貫通孔313が形成されている。加圧用貫通孔311は、x軸方向プラス側の端部中央に形成されている。減圧用貫通孔313は、中心部に形成されている。
 次に、図14、図15を参照して、実施の形態2に係る浮上ユニット30bの構成についてさらに説明する。
 図14に示すように、実施の形態2に係る台座31は、図5に示した実施の形態1に係る台座31と同様に、外周縁に上側に突出した立ち上がり部312が形成された板状部材である。図15に示すように、立ち上がり部312は台座31の外周縁に沿って平面視で四角環状に形成されている。
 また、台座31には設置精度が要求されるため、台座31の下面は研磨される。台座31の下面を精度良く研磨するには、台座31の厚さt1を例えば10mm程度以上にすることが好ましい。
 図14に示すように、実施の形態2に係る多孔質板32は、2枚の短尺多孔質板32a、32bが長手方向中央部で接着層34cにより接合されたものである。接着層34cにより加圧室35の気密性が保たれている。ここで、図16は、短尺多孔質板32a、32bの接合部の拡大図である。図16に示すように、短尺多孔質板(第1の板)32aにおける短尺多孔質板(第2の板)32bとの突き合わせ端面には、下側に凸部322aが形成されている。また、短尺多孔質板32bにおける短尺多孔質板32aとの突き合わせ端面には、上側に凸部322bが形成されている。そして、短尺多孔質板32aの凸部322aと、短尺多孔質板32bの凸部322bとの間に接着層34cが形成されている。
 図14に示すように、短尺多孔質板32a、32bの接合部は、レーザビームLBの照射位置から離れているため、レーザビームLBの照射に伴って発生する紫外線は当該接合部まで到達し難い。また、仮に、紫外線が当該接合部まで到達したとしても、図16に示すように、短尺多孔質板32bの凸部322bによって遮られ、接着層34cの劣化を効果的に抑制することができる。
 図14に示すように、多孔質板32は、台座31と同じ大きさである。また、外周縁に沿って台座31の立ち上がり部312と嵌合する切欠き部321が形成されている。切欠き部321は多孔質板32の外周縁に沿って平面視で四角環状に形成されている。多孔質板32は、樹脂接着剤からなる接着層34aにより、台座31の上面に貼り付けられている。ここで、接着層34aは、多孔質板32の切欠き部321と嵌合した台座31の立ち上がり部312の内壁に沿って形成されている。図15に示すように、接着層34aは台座31の立ち上がり部312の内壁に沿って平面視で四角環状に形成されている。
 また、図14に示すように、実施の形態2に係る台座31では、接着層34aによって囲まれた領域が下側に掘り込まれており、減圧室36を構成する空洞が形成されている。この空洞の周縁にはザグリ溝314が設けられている。このザグリ溝314に中板33が嵌め込まれると共に、ザグリ溝314上に形成された接着層34dによって中板33が台座31に接着されている。ここで、中板33の上面は、接着層34aが形成された台座31の上面に一致している。すなわち、中板33は、多孔質板32の下方において多孔質板32と平行に台座31の内部に収容されている。当然のことながら、中板33の厚さt2は、台座31の厚さt1よりも小さい。
 図15に示すように、接着層34dは接着層34aの内側に沿って平面視で四角環状に形成されている。ここで、加圧用貫通孔311は、接着層34aの内側かつ接着層34dの外側に位置している。
 なお、減圧室36にザグリ溝314の底面と同じ高さの突起を複数設け、当該突起の上面に接着層34dを形成することにより、台座31と中板33との接着面積を大きくしてもよい。
 図14に示すように、中板33の上側には、台座31、多孔質板32、中板33及び接着層34aに囲まれた空間である加圧室35が形成される。台座31には上面と下面とを貫通する加圧用貫通孔311が、x軸方向プラス側の端部に形成されている。加圧用貫通孔311を介して、加圧室35に加圧されたガスが導入され、そのガスが多孔質板32の内部の微細な気孔を通過して多孔質板32の上面から噴射される。そのため、板状ワーク100を浮上させることができる。なお、図示しないが、加圧用貫通孔311には配管を介してコンプレッサやブロワなどの加圧装置が接続されている。
 他方、図14に示すように、中板33の下側には、台座31、中板33、接着層34dに囲まれた空間である減圧室36が形成される。このように、中板33により加圧室35と減圧室36とが仕切られている。台座31には上面と下面とを貫通する減圧用貫通孔313が、中心部に形成されている。減圧用貫通孔313を介して、減圧室36のガスが排気される。なお、図示しないが、減圧用貫通孔313には配管を介して真空ポンプやエジェクタなどの減圧装置が接続されている。
 ここで、減圧室36を構成する中板33には、略全面に亘って、多数の貫通孔333が形成されている。また、多孔質板32にも、略全面に亘って、多数の貫通孔323が形成されている。そして、多孔質板32の貫通孔323と中板33の貫通孔333とは、対応した位置に形成されており、環状の接着層34bにより接続されている。従って、多孔質板32上のガスが、多孔質板32の貫通孔323、接着層34b、及び中板33の貫通孔333を介して減圧室36に吸引される。そのため、板状ワーク100を吸引することができる。
 すなわち、実施の形態2に係る浮上ユニット30bは、多孔質板32の気孔からガスを噴射して板状ワーク100を浮上させつつ、多孔質板32の貫通孔323からガスを吸引して板状ワーク100を吸引している。このように、ガスの加圧による浮上と、ガスの減圧による吸引とをバランスさせることにより、実施の形態1に係る浮上ユニット30bより精度よく板状ワーク100を浮上させることができる。具体的には、レーザビームLBの焦点位置に、より精度よく板状ワーク100を浮上させることができる。例えば、板状ワーク100を20~50μm程度において精度よく浮上させることができる。
 ここで、板状ワーク100を精度良く浮上させるには、多孔質板32の全面において均一に、気孔からガスを噴射しつつ、貫通孔323からガスを吸引することが好ましい。
 多孔質板32の気孔径は例えば数μm程度と極めて微細であるから、ガス経路の抵抗が大きいため、加圧室35内の圧力分布を均一にすることができる。その結果、多孔質板32の全面において均一にガスを噴射することができる。
 他方、多孔質板32の全面において均一にガスを吸引するには、吸引経路(多孔質板32の貫通孔323及び中板33の貫通孔333)の径を小さくし、ガス経路の抵抗を大きくする必要がある。これにより、減圧室36内の圧力分布を均一にすることができ、多孔質板32の全面において均一にガスを吸引することができる。
 実施の形態2に係る浮上ユニット30bでは、吸引経路を細径化することにより、減圧室36内の圧力分布を均一にすることができるため、減圧用貫通孔313及びこれに接続する配管を1つ(単数)にすることができる。そのため、減圧用貫通孔313を複数設ける場合に比べ、構造がシンプルになると共に、製造が容易になり、製造コストも削減することができる。
 反対に、吸引経路の径が大きいと、減圧室36内の圧力分布が不均一になってしまい、多孔質板32の全面において均一にガスを吸引することができない。具体的には、台座31の減圧用貫通孔313に近い吸引経路からのガスの吸引量が多くなり、台座31の減圧用貫通孔313から遠い吸引経路からのガスの吸引量が少なくなってしまう。
 図17を参照して、多孔質板32の全面において均一にガスを吸引可能なメカニズムについてさらに詳細に説明する。図17は、吸引経路(多孔質板32の貫通孔323及び中板33の貫通孔333)、減圧室36、及び減圧用貫通孔313を模式的に示した断面図である。図17においては、接着層34a及び加圧室35は省略されている。
 多孔質板32の全面において均一にガスを吸引するには、多孔質板32の貫通孔323から吸引するガス流量Q1~Q7を等しくする必要がある。そのため、複数設けられた吸引経路(多孔質板32の貫通孔323及び中板33の貫通孔333)の径がいずれも同じであれば、貫通孔333の減圧室36側の開口端における圧力P1~P7を等しくする必要がある。
 そこで、実施の形態2に係る浮上ユニット30bでは、吸引経路(多孔質板32の貫通孔323及び中板33の貫通孔333)を細径化し、ガス経路の抵抗を大きくする。このような構成により、多孔質板32の貫通孔323から吸引するガス流量Q1~Q7の合計よりも、減圧用貫通孔313を介して減圧室35から排気されるガス流量Qtが著しく大きくなる。数式で表現すると、Qt>>Q1+Q2+Q3+Q4+Q5+Q6+Q7が成立する。そのため、減圧室36内の圧力分布が均一になり、圧力P1~P7が互いに等しくなる。その結果、多孔質板32の貫通孔323から吸引するガス流量Q1~Q7も互いに等しくなる。なお、実際には、吸引経路(多孔質板32の貫通孔323及び中板33の貫通孔333)の径に加工ばらつきが生じるため、ガス流量Q1~Q7も完全には等しくならず、多少ばらつきが生じる。
 上述した吸引経路(多孔質板32の貫通孔323及び中板33の貫通孔333)の細径化は、吸引経路の全長に亘って細径化する必要はなく、吸引経路の一部を細径化すれば足りる。ここで、耐久性向上やパーティクル抑制の観点から多孔質板32がセラミックス製であることが好ましい。その場合、加工性の問題から貫通孔323を微小径(例えば1mm以下)にすることが難しい。そのため、実施の形態2に係る浮上ユニット30bでは、吸引経路を細径化するに当たり、金属製の中板33の貫通孔333の直径を微小径とし、セラミックス製の多孔質板32の貫通孔323の直径よりも小さくしている。すなわち、上述のガス流量Q1~Q7は、より細い径を有する中板33の貫通孔333の径によって定まり、中板33の貫通孔333の径の加工ばらつきがガス流量Q1~Q7に影響する。
 多孔質板32の全面において均一にガスを吸引するため、中板33の貫通孔333の直径は、1mm以下であることが好ましく、0.5mm以下であることがさらに好ましい。他方、セラミックス製の多孔質板32の貫通孔323の直径は、加工を容易にするため、例えば1mm以上とすることが好ましい。
 上述の通り、実施の形態2に係る浮上ユニット30bでは、台座31の外周縁に上側に突出した立ち上がり部312が形成されていると共に、多孔質板32の外周縁に沿って台座31の立ち上がり部312と嵌合する切欠き部321が形成されている。そして、切欠き部321と嵌合した立ち上がり部312の内壁に沿って内側に、接着層34aが形成されている。
 通常、多孔質板32の切欠き部321と台座31の立ち上がり部312とは密着しているため、レーザビームLBの照射に伴って発生する紫外線が、接着層34aに到達することはない。仮に、切欠き部321と立ち上がり部312との間に隙間が生じ、当該隙間から紫外線が侵入したとしても、切欠き部321と嵌合した立ち上がり部312の内側に形成された接着層34aまでは到達し難い。従って、接着層34aの劣化を効果的に抑制することができる。
 また、実施の形態2に係る浮上ユニット30bでは、中板33が台座31の内部に収容されている。そのため、中板33を台座31に接着する接着層34dも台座31の内部に収容されている。従って、接着層34dの劣化を効果的に抑制することができる。
 さらに、中板33が台座31の内部に収容されているため、図10に示した比較例よりも、浮上ユニット30bの厚さ(高さ)を、少なくとも中板33の厚さt2分だけ、小さくすることができる。
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は既に述べた実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の変更が可能であることはいうまでもない。
 この出願は、2016年8月29日に出願された日本出願特願2016-166962を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1 レーザ照射装置
10 レーザ照射部
11 レーザ発振器
12 光学系モジュール
20 局所シール部
30a、30b 浮上ユニット
31 台座
32 多孔質板
32a、32b 短尺多孔質板
33 中板
34、34a、34b、34c、34d 接着層
35 加圧室
36 減圧室
100 板状ワーク
311 加圧用貫通孔
312 立ち上がり部
313 減圧用貫通孔
314 ザグリ溝
321 切欠き部
323 貫通孔
322a、322b 凸部
333 貫通孔

Claims (14)

  1.  それぞれがガスを上向きに噴射して板状のワークを浮上させると共に、所定の間隔で並べられた第1及び第2の浮上ユニットと、
     前記第1の浮上ユニットと前記第2の浮上ユニットとの間の間隙において、前記第1の浮上ユニットから前記第2の浮上ユニットに向かって浮上搬送される前記ワークに対して上側からレーザビームを照射するレーザ照射部と、を備え、
     前記第1及び第2の浮上ユニットは、それぞれ、
     台座と、
     前記台座の上面に接着層により接合された多孔質板と、を有し、
     前記台座が、少なくとも前記間隙に面した外周縁に、上側に突出した立ち上がり部を有すると共に、前記多孔質板が、前記立ち上がり部と嵌合する切欠き部を有し、
     前記接着層が、前記切欠き部と嵌合した前記立ち上がり部の内壁に沿って形成された、
    レーザ照射装置。
  2.  前記立ち上がり部が、前記台座の外周縁全体に形成されている、
    請求項1に記載のレーザ照射装置。
  3.  前記第1及び第2の浮上ユニットは、それぞれ、
     前記多孔質板と平行に前記台座の内部に収容された中板をさらに備え、
     前記中板には、前記多孔質板に形成された複数の第1の貫通孔のそれぞれに接続された複数の第2の貫通孔が形成されており、
     前記多孔質板から噴射するガスを加圧する加圧室と、前記複数の第1及び第2の貫通孔を介してガスを吸引する減圧室とが、前記中板によって仕切られている、
    請求項1に記載のレーザ照射装置。
  4.  前記減圧室を構成する空洞が前記台座に形成されており、
     前記空洞の周縁にザグリ溝が形成されており、当該ザグリ溝に前記中板が嵌め込まれ、接着されている、
    請求項3に記載のレーザ照射装置。
  5.  前記多孔質板がセラミックス製である、
    請求項3に記載のレーザ照射装置。
  6.  前記中板が金属製であって、
     前記第1の貫通孔の直径よりも前記第2の貫通孔の直径が小さい、
    請求項5に記載のレーザ照射装置。
  7.  前記第1の貫通孔の直径が1mmよりも大きく、
     前記第2の貫通孔の直径が1mm以下である、
    請求項6に記載のレーザ照射装置。
  8.  前記多孔質板が、長手方向において第1の板と第2の板とに分割されている、
    請求項5に記載のレーザ照射装置。
  9.  前記第1の板における前記第2の板との突き合わせ端面の下側に凸部が形成されていると共に、前記第2の板における前記第1の板との突き合わせ端面の上側に凸部が形成されており、
     前記第1の板の凸部と前記第2の板の凸部との間において、前記第1の板と前記第2の板とが接着されている、
    請求項8に記載のレーザ照射装置。
  10.  前記ワークが、上面にアモルファスシリコン膜が形成された基板であって、
     前記アモルファスシリコン膜に前記レーザビームを照射して多結晶化するエキシマレーザアニール装置である、
    請求項1に記載のレーザ照射装置。
  11.  以下を有するレーザ照射装置:
    (a)板状のワークに照射するためのレーザビームを出射するレーザ発振器;及び
    (b)以下を有する、ガスの噴射及び吸引によって前記ワークを浮上させる浮上ユニット:
    (b1)加圧用貫通孔及び減圧用貫通孔が形成された台座;
    (b2)前記台座の上面に位置し、複数の第1の貫通孔が形成された多孔質板;
    (b3)前記多孔質板の下方であって前記台座の内部に収容された、複数の第2の貫通孔が形成された金属製の中板、
     ここで、
     前記多孔質板は前記ワークと対向するように配置され、
     前記多孔質板と前記中板の間の空間に、ガスを加圧するための加圧室が構成され、
     前記台座と前記中板の間の空間に、ガスを減圧するための減圧室が構成され、
     前記加圧用貫通孔は前記加圧室に接続され、
     前記複数の第1の貫通孔は前記複数の第2の貫通孔と接続され、
     前記減圧用貫通孔及び前記第2の貫通孔は前記減圧室に接続され、
     前記加圧用貫通孔及び前記多孔質板の気孔を介してガスが噴射され、
     前記減圧用貫通孔、前記複数の第1及び第2の貫通孔を介してガスが吸引され、
     前記複数の第1の貫通孔の直径は前記複数の第2の貫通孔の直径より大きい。
  12.  前記多孔質板がセラミックス製である、
    請求項11記載のレーザ照射装置。
  13.  前記減圧室に接続される前記減圧用貫通孔は単数である、
    請求項11記載のレーザ照射装置。
  14.  前記ワークが、上面にアモルファスシリコン膜が形成された基板であって、
     前記アモルファスシリコン膜に前記レーザビームを照射して多結晶化するエキシマレーザアニール装置である、
    請求項11に記載のレーザ照射装置。
PCT/JP2017/021216 2016-08-29 2017-06-07 レーザ照射装置 WO2018042808A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780052577.9A CN109643648B (zh) 2016-08-29 2017-06-07 激光照射装置
SG11201900852RA SG11201900852RA (en) 2016-08-29 2017-06-07 Laser irradiating device
KR1020197006163A KR20190042593A (ko) 2016-08-29 2017-06-07 레이저 조사 장치
US16/321,017 US11688622B2 (en) 2016-08-29 2017-06-07 Laser irradiation apparatus
US18/195,069 US20230274964A1 (en) 2016-08-29 2023-05-09 Laser irradiation apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016166962A JP6803177B2 (ja) 2016-08-29 2016-08-29 レーザ照射装置
JP2016-166962 2016-08-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/321,017 A-371-Of-International US11688622B2 (en) 2016-08-29 2017-06-07 Laser irradiation apparatus
US18/195,069 Division US20230274964A1 (en) 2016-08-29 2023-05-09 Laser irradiation apparatus

Publications (1)

Publication Number Publication Date
WO2018042808A1 true WO2018042808A1 (ja) 2018-03-08

Family

ID=61300407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021216 WO2018042808A1 (ja) 2016-08-29 2017-06-07 レーザ照射装置

Country Status (7)

Country Link
US (2) US11688622B2 (ja)
JP (1) JP6803177B2 (ja)
KR (1) KR20190042593A (ja)
CN (1) CN109643648B (ja)
SG (2) SG11201900852RA (ja)
TW (1) TW201808762A (ja)
WO (1) WO2018042808A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019038953A1 (ja) * 2017-08-25 2019-02-28 株式会社日本製鋼所 レーザ照射装置、レーザ照射方法、及び半導体装置の製造方法
JP2020145362A (ja) * 2019-03-08 2020-09-10 株式会社日本製鋼所 レーザ処理装置
JP2021034679A (ja) * 2019-08-29 2021-03-01 株式会社日本製鋼所 レーザ処理装置及び半導体装置の製造方法
US20210252635A1 (en) * 2020-02-13 2021-08-19 The Japan Steel Works, Ltd. Flotation conveyance apparatus and laser processing apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111252558B (zh) * 2020-02-11 2020-09-15 江苏科技大学 一种无接触倾角可控式输运平台及控制方法
CN113500314B (zh) * 2021-07-13 2023-05-26 奔腾激光科技(山东)有限公司 一种具备自动筛选损坏切割支撑单元的工作台

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231654A (ja) * 2001-01-30 2002-08-16 Ishikawajima Harima Heavy Ind Co Ltd レーザアニール方法及び装置
JP2006135083A (ja) * 2004-11-05 2006-05-25 Ckd Corp 非接触支持装置
JP2006327715A (ja) * 2005-05-23 2006-12-07 Honda Motor Co Ltd ワーク搬送装置
JP2008110852A (ja) * 2006-10-31 2008-05-15 Myotoku Ltd 浮上搬送ユニット
JP2009117552A (ja) * 2007-11-05 2009-05-28 Fuji Electric Systems Co Ltd 吸着ステージ
JP2009135430A (ja) * 2007-10-10 2009-06-18 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP2009161283A (ja) * 2007-12-28 2009-07-23 Myotoku Ltd 浮上ユニット及び装置
JP2009194370A (ja) * 2008-01-16 2009-08-27 Semiconductor Energy Lab Co Ltd レーザ処理装置、および半導体基板の作製方法
JP2011225355A (ja) * 2010-04-22 2011-11-10 Sumitomo Heavy Ind Ltd エア浮上ユニット、ステージ装置、検査システム、露光システム及び塗布システム
WO2013136411A1 (ja) * 2012-03-12 2013-09-19 三菱電機株式会社 真空吸着ステージ、半導体ウエハのダイシング方法およびアニール方法
JP2013251524A (ja) * 2012-05-31 2013-12-12 Sunil Co Ltd 順次密着できる構造を有するシート型fpcb自動真空吸脱着装置
JP5512052B2 (ja) * 2012-02-28 2014-06-04 株式会社タンケンシールセーコウ 非接触吸着盤

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848427B2 (ja) 1978-07-07 1983-10-28 東急車輌製造株式会社 コンテナ等の床パネル構造
US9120344B2 (en) 2011-08-09 2015-09-01 Kateeva, Inc. Apparatus and method for control of print gap

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231654A (ja) * 2001-01-30 2002-08-16 Ishikawajima Harima Heavy Ind Co Ltd レーザアニール方法及び装置
JP2006135083A (ja) * 2004-11-05 2006-05-25 Ckd Corp 非接触支持装置
JP2006327715A (ja) * 2005-05-23 2006-12-07 Honda Motor Co Ltd ワーク搬送装置
JP2008110852A (ja) * 2006-10-31 2008-05-15 Myotoku Ltd 浮上搬送ユニット
JP2009135430A (ja) * 2007-10-10 2009-06-18 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP2009117552A (ja) * 2007-11-05 2009-05-28 Fuji Electric Systems Co Ltd 吸着ステージ
JP2009161283A (ja) * 2007-12-28 2009-07-23 Myotoku Ltd 浮上ユニット及び装置
JP2009194370A (ja) * 2008-01-16 2009-08-27 Semiconductor Energy Lab Co Ltd レーザ処理装置、および半導体基板の作製方法
JP2011225355A (ja) * 2010-04-22 2011-11-10 Sumitomo Heavy Ind Ltd エア浮上ユニット、ステージ装置、検査システム、露光システム及び塗布システム
JP5512052B2 (ja) * 2012-02-28 2014-06-04 株式会社タンケンシールセーコウ 非接触吸着盤
WO2013136411A1 (ja) * 2012-03-12 2013-09-19 三菱電機株式会社 真空吸着ステージ、半導体ウエハのダイシング方法およびアニール方法
JP2013251524A (ja) * 2012-05-31 2013-12-12 Sunil Co Ltd 順次密着できる構造を有するシート型fpcb自動真空吸脱着装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019038953A1 (ja) * 2017-08-25 2019-02-28 株式会社日本製鋼所 レーザ照射装置、レーザ照射方法、及び半導体装置の製造方法
US11348787B2 (en) 2017-08-25 2022-05-31 Jsw Aktina System Co., Ltd. Laser irradiation apparatus, laser irradiation method, and method for manufacturing semiconductor device
JP2020145362A (ja) * 2019-03-08 2020-09-10 株式会社日本製鋼所 レーザ処理装置
JP7184678B2 (ja) 2019-03-08 2022-12-06 Jswアクティナシステム株式会社 レーザ処理装置
JP2021034679A (ja) * 2019-08-29 2021-03-01 株式会社日本製鋼所 レーザ処理装置及び半導体装置の製造方法
WO2021038950A1 (ja) * 2019-08-29 2021-03-04 株式会社日本製鋼所 レーザ処理装置及び半導体装置の製造方法
JP7412111B2 (ja) 2019-08-29 2024-01-12 Jswアクティナシステム株式会社 レーザ処理装置及び半導体装置の製造方法
US20210252635A1 (en) * 2020-02-13 2021-08-19 The Japan Steel Works, Ltd. Flotation conveyance apparatus and laser processing apparatus

Also Published As

Publication number Publication date
US20190164798A1 (en) 2019-05-30
CN109643648A (zh) 2019-04-16
US20230274964A1 (en) 2023-08-31
SG11201900852RA (en) 2019-03-28
CN109643648B (zh) 2023-07-07
SG10201913799XA (en) 2020-03-30
JP2018037449A (ja) 2018-03-08
TW201808762A (zh) 2018-03-16
JP6803177B2 (ja) 2020-12-23
KR20190042593A (ko) 2019-04-24
US11688622B2 (en) 2023-06-27

Similar Documents

Publication Publication Date Title
WO2018042808A1 (ja) レーザ照射装置
US11990463B2 (en) Device for bonding chips
TWI768137B (zh) 雷射加工裝置
TWI778159B (zh) 雷射加工裝置
JP6489970B2 (ja) チャックテーブルの製造方法及び加工装置
JP2010029930A (ja) レーザ加工装置及びレーザ加工方法
JP4043923B2 (ja) 加工装置
JP2012079871A (ja) 支持基板、基板積層体、貼り合わせ装置、剥離装置、および基板の製造方法
TW201910017A (zh) 粉塵吸引裝置
JP6910518B2 (ja) レーザ照射装置
KR20220067486A (ko) 척 테이블 및 레이저 가공 장치
TW202018837A (zh) 工件分離裝置及工件分離方法
KR102515688B1 (ko) 레이저 가공 장치
CN109746572B (zh) 激光加工装置
JP5243139B2 (ja) レーザ加工装置及びレーザ加工方法
TWI495531B (zh) Laser processing device and laser processing method
US11195757B2 (en) Wafer processing method
WO2023090035A1 (ja) レーザ切断装置、レーザ切断方法、及びディスプレイの製造方法
JP7173787B2 (ja) ウエーハの加工方法
JP2020145362A (ja) レーザ処理装置
TWI758210B (zh) 工件分離裝置及工件分離方法
WO2015125756A1 (ja) エアベアリング装置及び測定装置
JP7305276B2 (ja) 被加工物の保持方法
WO2023032037A1 (ja) ワーク分離装置及びワーク分離方法
KR102066386B1 (ko) 부품 실장 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845819

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197006163

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17845819

Country of ref document: EP

Kind code of ref document: A1