WO2018042729A1 - パワーステアリング装置 - Google Patents

パワーステアリング装置 Download PDF

Info

Publication number
WO2018042729A1
WO2018042729A1 PCT/JP2017/010713 JP2017010713W WO2018042729A1 WO 2018042729 A1 WO2018042729 A1 WO 2018042729A1 JP 2017010713 W JP2017010713 W JP 2017010713W WO 2018042729 A1 WO2018042729 A1 WO 2018042729A1
Authority
WO
WIPO (PCT)
Prior art keywords
abnormality
unit
output
distribution control
output distribution
Prior art date
Application number
PCT/JP2017/010713
Other languages
English (en)
French (fr)
Inventor
光昭 中田
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US16/329,201 priority Critical patent/US20190193774A1/en
Priority to CN201780045673.0A priority patent/CN109476339A/zh
Publication of WO2018042729A1 publication Critical patent/WO2018042729A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0484Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures for reaction to failures, e.g. limp home
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/049Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures detecting sensor failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/02Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to vehicle speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/46Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/04Arrangements for controlling or regulating the speed or torque of more than one motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/04Arrangements for controlling or regulating the speed or torque of more than one motor
    • H02P2006/045Control of current

Definitions

  • the present invention relates to a power steering device.
  • Patent Document 1 discloses a power steering device in which an assist control system and an output system are divided into two systems.
  • One of the objects of the present invention is to provide a power steering device that can suppress a sudden change in steering force.
  • the power steering device increases the output ratio of one steering force of the first actuation part and the second actuation part and increases the output ratio of the other steering force to a value larger than 0. Decrease.
  • Embodiment 1 It is a block diagram of the power steering apparatus of Embodiment 1. It is a block diagram of the control system of a power steering apparatus. It is a control block diagram of the 1st system and 2nd system of ECU16.
  • 3 is a flowchart illustrating a flow of output distribution control processing according to the first embodiment.
  • 3 is a flowchart illustrating a flow of output distribution control processing according to the first embodiment.
  • 3 is a flowchart illustrating a flow of output distribution control processing according to the first embodiment.
  • 3 is a flowchart illustrating a flow of output distribution control processing according to the first embodiment.
  • 3 is a flowchart illustrating a flow of output distribution control processing according to the first embodiment. It is explanatory drawing of the output distribution method according to a required motor output.
  • FIG. 15 is a flowchart illustrating a flow of output distribution control processing according to the fourth embodiment.
  • FIG. 1 is a configuration diagram of a power steering apparatus according to the first embodiment.
  • the steering mechanism 1 steers front wheels (steered wheels) 3 and 3 as the steering wheel 2 rotates, and includes a rack and pinion type steering gear 4.
  • a pinion gear 5 of the steering gear 4 is connected to the steering wheel 2 via a steering shaft 6.
  • the rack gear 7 of the steering gear 4 is provided on the rack shaft 8. Both ends of the rack shaft 8 are connected to the front wheels 3 and 3 via tie rods 9 and 9.
  • An electric motor (first actuation part, second actuation part) 11 is connected to the steering shaft 6 via a speed reducer 10.
  • the reduction gear 10 includes a worm 12 and a worm wheel 13.
  • the worm 12 is provided integrally with the motor shaft 14 of the electric motor 11.
  • the rotational torque from the motor shaft 14 is transmitted to the steering shaft 6 via the speed reducer 10.
  • the steering shaft 6 is provided with a steering torque sensor 15 that detects steering torque.
  • the electric motor 11 is integrally provided with an ECU 16 and a rudder angle sensor 17.
  • the steering angle sensor 17 detects the steering angle of the front wheels 3 from the rotation angle (motor rotation angle) of the electric motor 11.
  • the ECU 16 controls the drive of the electric motor 11 based on the steering torque signal (first torque signal, second torque signal), the steering angle signal, the vehicle speed signal detected by the vehicle speed sensor 18 and the like, and assists the steering mechanism 1 with the assist torque.
  • FIG. 2 is a configuration diagram of a control system of the power steering apparatus.
  • the electric motor 11 is a double three-phase motor having two sets of stators composed of three-phase windings (a first winding set 11a and a second winding set 11b).
  • the maximum motor output when only the first winding group (first actuation section) 11a is energized is the same as the maximum motor output when only the second winding group (second actuation section) 11b is energized.
  • the electric motor 11 generates assist torque (motor torque) according to the current from the inverter (first inverter, second inverter) 25.
  • the ECU 16 is divided into two systems: a first system that supplies current to the first winding set 11a and a second system that supplies current to the second winding set 11b.
  • the ECU 16 has a control board 21 and a power system board 22.
  • the control board 21 is a printed wiring board using a non-metallic base material such as an epoxy resin base material, and control system electronic components such as an MCU 23 and a pre-driver 24 are mounted on both sides.
  • the power system board 22 uses a metal circuit board having excellent heat transfer characteristics, and the inverter 25 is mounted on one side.
  • the MCU 23 performs calculations for assist control, motor current control, abnormality detection of functional components, and transition processing to a safe state.
  • the pre-driver 24 drives the drive element of the inverter 25 based on the torque command (first drive command signal, second drive command signal) from the MCU 23.
  • the inverter 25 converts DC power from the high-power battery 26 into AC power and supplies it to the winding set of the electric motor 11.
  • the steering torque sensor 15 is, for example, a magnetostrictive type, and has two Hall ICs. One output of the Hall ICs of the first steering torque sensor (first detection unit) 15a and the second steering torque sensor (second detection unit) 15b is input to the MCU 23 of another system.
  • the rudder angle sensor 17 includes two magnetic detection elements 17a and 17b. The outputs of both magnetic detection elements 17a and 17b are input to both MCUs 23.
  • the power supply 27 creates and supplies power for the steering torque sensor 15.
  • the power supply 28 creates and supplies power for the MPU 23.
  • the power supply 29 creates and supplies power for the rudder angle sensor 17.
  • Each power supply 27, 28, 29 is connected to a low-power battery or an ignition line.
  • a motor phase current sensor 30 is provided on the power board 22.
  • the control board 21 is provided with a motor rotation angle sensor 31 that detects a motor rotation angle based on a change in inductance.
  • the control board 21 is provided with a CPU monitor 32 that detects an abnormality of the MPU 23.
  • the CPU monitor 32 has a function of shutting off the power supply when an abnormality of the MPU 23 is detected.
  • FIG. 3 is a control block diagram of the first system and the second system of the ECU 16.
  • the input signal processing unit 41 assists by processing signals from the steering angle sensor 17, the steering torque sensor 15, the power supply voltage monitor 33, the temperature sensor 34, the motor rotation angle sensor 31, the motor phase current sensor 30, and the primary current sensor 35a.
  • the control is transferred to the external command controller 42.
  • the power supply voltage monitor 33 is provided on the power system board 22 and monitors the voltage of the power supply line that supplies power from the high-power battery 26 to the ECU 16.
  • the temperature sensor 34 is provided on the power system board 22 and detects the temperature of the winding of the electric motor 11.
  • the primary current sensor 35a is provided on the power system board 22 and detects a current taken from the high-power battery 26 into the ECU 16.
  • the assist control external command control unit 42 determines a torque command from each signal input.
  • the CAN communication unit 43 exchanges information with the outside via the CAN bus 36 by the CAN communication method.
  • the CAN communication unit 43 is provided only in the first MPU (first microprocessor) 23a.
  • the second MPU (second microprocessor) 23a does not have a CAN communication unit.
  • the inter-microcomputer communication unit 44 performs inter-microcomputer communication. Information exchanged between the microcomputers is an abnormality counter value, abnormality cause information (such as an abnormality occurrence location), an output sharing rate command, a current output sharing rate, a torque command, and the like. Details of these will be described later.
  • a diagnostic function unit (first abnormality determination unit, second abnormality determination unit) 45 performs abnormality detection in its own system and abnormality detection in other systems via communication between microcomputers.
  • the diagnosis function unit 45 notifies the other system of the abnormality counter value and abnormality cause information of its own system, and receives the abnormality detection and abnormality cause information of the other system.
  • the diagnosis function unit 45 performs reverse assist determination in which the assist direction is reversed between the own system and the other system.
  • the diagnosis function unit 45 starts counting up the abnormal counter value when an abnormality is detected in the own system, and determines the abnormality when the abnormal counter value reaches a predetermined abnormality confirmed value.
  • the abnormality confirmation value may be variable according to the cause of the abnormality.
  • the diagnosis function unit 45 includes an abnormality detection unit (first abnormality detection unit, second abnormality detection unit) 51 that detects an abnormality of the own system and an abnormality determination unit (first abnormality determination unit) that determines an abnormality after the abnormality detection unit detects the abnormality. 1 abnormality confirmation part, 2nd abnormality confirmation part) 52.
  • the output distribution control unit (first output distribution control unit, second output distribution control unit) 46 sets and notifies the output sharing rate of other systems and confirms the consistency of the output sharing rates of both systems. I do.
  • the output distribution control unit 46 sets the output sharing ratio of the own system to 50% when no abnormality is detected in the other system, but when the abnormality of the other system is detected, the output of the other system is output until the abnormality is confirmed.
  • a command to reduce the sharing ratio to 0% is transmitted to other systems, and the output sharing ratio of the own system is increased. At this time, the rate of change of the output sharing rate is matched between both systems.
  • the output distribution control unit 46 calculates the post-output distribution torque command by multiplying the torque command by the output sharing ratio.
  • the output distribution control unit 46 maintains the output distribution ratio of the other system at 0% when the abnormality of the other system is confirmed, and sets the output distribution ratio of the own system to a predetermined sharing ratio limit value ( ⁇ 50%).
  • the limit assist is gradually reduced until it is kept constant. Note that the assist control may be stopped by setting the sharing rate limit value to 0%. Further, the assist control may be continued only in the own system as much as possible without limiting the output distribution ratio of the own system.
  • the assist limiter (first upper limit value setting unit, second upper limit value setting unit) 47 limits the upper limit of the torque command after output distribution to the set output upper limit value in response to a request for overheating protection of the electric motor 11 and the ECU 16.
  • the final torque command is calculated.
  • the motor control unit 48b outputs a final torque command to the pre-driver 24.
  • step S1 it is determined whether the abnormality counter value of the own system is equal to or greater than a specified value. If YES, the process proceeds to step S2, and if NO, the process proceeds to step S3.
  • the specified value is a value smaller than the abnormality fixed value.
  • step S2 a system safety state transition process is performed to set the output sharing ratio of the own system to 0%, and the process proceeds to return.
  • step S3 it is determined whether an abnormality of the own system has been detected. If YES, the process proceeds to step S4. If NO, the process proceeds to step S10.
  • step S4 the abnormality counter value of the own system is incremented by 1 (incremented).
  • step S5 the abnormality counter value and abnormality cause information of the own system are transmitted to another system.
  • step S6 an output sharing ratio command and an output sharing ratio gradually increasing / decreasing process end flag (hereinafter referred to as a gradually increasing / decreasing process end flag) from another system are received.
  • step S8 the output sharing ratio of the own system is set based on the output sharing ratio command received in step S6.
  • step S9 the output sharing ratio set in step S8 is transmitted to another system, and the process proceeds to return.
  • step S11 the output sharing ratio of the own system is set to an initial value of 50%.
  • step S13 the abnormality counter value and abnormality cause information of the own system are transmitted to another system.
  • step S14 the abnormality counter value and abnormality cause information of another system are received.
  • step S15 it is determined whether the abnormal counter value of the other system received in step S14 is zero. If YES, the process proceeds to step S16, and if NO, the process proceeds to step S19.
  • step S18 the output sharing ratio of the own system is set to an initial value of 50%, and the process proceeds to return.
  • step S19 it is determined whether the other system is reverse assist, that is, whether the assist direction of the other system is opposite to the assist direction of the own system. If YES, the process proceeds to step S20. If NO, the process proceeds to step S23.
  • step S20 the output sharing ratio of the own system is set to 100%.
  • step S21 the output sharing ratio of the other system is set to 0%.
  • step S23 based on the abnormality cause information of the other system received in step S14, it is determined whether an abnormality has occurred on the downstream side in the other system. If YES, the process proceeds to step S24, and if NO, the process proceeds to step S27.
  • the “downstream side” refers to the motor control unit 48, the pre-driver 24, the inverter 25, and the electric motor 11 (winding sets thereof).
  • upstream side refers to sensors (steering angle sensor 17, steering torque sensor 15, power supply voltage monitor 33, temperature sensor 34, motor rotation angle sensor 31, motor phase current sensor 30, primary current sensor 35), CAN bus 36 (first system only), an input signal processing unit 41, and a CAN communication unit 43. If an abnormality occurs in these, it is determined as an upstream abnormality.
  • step S24 a gradual increase process for setting the output sharing ratio of the own system to the previous value + the predetermined amount ⁇ A is performed.
  • Predetermined amount ⁇ A is a value that when the abnormal counter value reaches 3 times per control period and reaches the specified value, the output sharing ratio of the own system reaches 100% and the output sharing ratio of the other system reaches 0% And
  • step S25 a gradual reduction process for setting the output sharing ratio of the other system to the previous value ⁇ the predetermined amount ⁇ A is performed.
  • step S26 3 is added to the gradual increase / decrease time counter value.
  • step S27 it is determined whether the necessary motor output is satisfied by the own system alone. If YES, the process proceeds to step S28, and if NO, the process proceeds to step S33.
  • step S28 a gradual increase process for setting the output sharing ratio of the own system to the previous value + the predetermined amount ⁇ B is performed.
  • ⁇ B is 1/3 the size of ⁇ A.
  • the abnormal counter value is incremented by 1 in one control cycle and reaches the specified value, the output sharing ratio of the own system reaches 100% and at the same time Assume that the output sharing ratio reaches 0%.
  • step S29 a gradual reduction process for setting the output sharing ratio of the other system to the previous value ⁇ the predetermined amount ⁇ B is performed.
  • step S30 the gradual increase / decrease time counter value is incremented by one.
  • step S31 it is determined whether the gradual increase / decrease time counter value has reached a specified value. If YES, the process proceeds to step S32.
  • step S33 the output sharing ratio of the own system is set to 100%.
  • step S34 an output sharing ratio of another system that compensates for the insufficient output with respect to the required motor output is set.
  • step S35 the output sharing rate of the other system set in step S21, step S25, step S29 or step S34 is used as the output sharing rate command, and is transmitted to the other system together with the gradual increase / decrease processing end flag set in step S32.
  • step S36 the output sharing rate setting value of the other system is received from the other system.
  • step S37 it is determined whether the output sharing ratios of the own system and other systems are consistent. If yes, go to return, if no, go to step S38.
  • step S38 a system safety state transition process is performed to set the output sharing ratio of the other system to 0%, and the process proceeds to return.
  • FIG. 10 is a time chart of the output sharing rate when an abnormality occurs on the upstream side in one system.
  • one system is referred to as an abnormality detection system and the other system is referred to as a normal system.
  • the output distribution control processing of both systems is S1 ⁇ S3 ⁇ S10 ⁇ S11 ⁇ S12 ⁇ S13 ⁇ S14 ⁇ S15
  • the sequence of S16 ⁇ S17 ⁇ S18 is repeated. Therefore, the output sharing ratio of both systems is maintained at the initial value of 50%.
  • the flow is S1 ⁇ S3 ⁇ S4 ⁇ S5 ⁇ S6 ⁇ S7 ⁇ S8 ⁇ S9.
  • S3 detects its own abnormality, adds abnormality counter value in S4, transmits abnormality counter value and abnormality cause information in S5, receives output sharing rate command in S6, and sets output sharing rate in S8 Then, the output sharing rate is transmitted in S9.
  • the flow is S1->S3->S10->S11->S12->S13->S14->S15->S19->S23->S27->S28->S29->S30->S31->S35->S36-> S37.
  • the abnormal counter value and abnormality cause information is received in S14, it is determined that it is not reverse assist in S19, it is determined that there is no downstream abnormality in S23, and it is determined that the necessary motor output alone is satisfied in S27,
  • the output sharing ratio is set to the previous value + ⁇ B.
  • the output sharing ratio on the abnormality detection side is set to the previous value - ⁇ B.
  • the gradual increase / decrease time counter value is incremented by 1.
  • the abnormality detection side is set.
  • the output sharing rate is sent as an output sharing rate command, the output sharing rate on the abnormality detection side is received in S36, and the consistency of the output sharing rates of both systems is confirmed in S37.
  • the output sharing ratio of the normal side system gradually increases, and the output sharing ratio of the abnormality detection side system gradually decreases.
  • the gradual increase / decrease processing end flag is set in S32, so the flow from S1 ⁇ S3 ⁇ S10 ⁇ S11 ⁇ S12 from the next control cycle. Become.
  • the flow proceeds from S1 ⁇ S3 ⁇ S4 ⁇ S5 ⁇ S6 ⁇ S7 by setting the gradual increase / decrease processing end flag.
  • the output sharing ratio of the normal side system is 100%, and the output sharing ratio of the abnormality detection side system is 0%.
  • the abnormality counter value reaches the specified value, and the abnormality confirmation time has elapsed. Therefore, the output sharing ratio of the normal side system gradually decreases, and the output sharing ratio of the abnormality detection side system is maintained at 0%.
  • FIG. 11 is a time chart of the output sharing ratio when an abnormality occurs on the downstream side in one system.
  • the above occurs on the downstream side in one system, but no abnormality is detected, so the output distribution control processing of both systems is the same as the section from time t1 to t2 in FIG.
  • the abnormality detection side system detects its own abnormality.
  • the flow of the output distribution control of the abnormality detection side system is the same as the section from time t2 to t3 in FIG.
  • the rate of change of the output sharing ratio in both systems is three times higher than in the case of FIG. 10, that is, when an abnormality occurs on the upstream side.
  • the section from time t3 to t5 is the same as the section from time t3 to t5 in FIG.
  • the output distribution control that decreases the output sharing ratio of the abnormality detecting side system and increases the output sharing ratio of the normal system. I do.
  • the output distribution control unit 46 performs output distribution control from when the diagnosis function unit 45 detects an abnormality of the own system until the abnormality is confirmed.
  • the output sharing ratio of both systems is fixed from the time when the abnormality is detected until it is fixed, so the driver's steering is performed when the output sharing ratio of the abnormality detecting side system is reduced at the time of abnormality determination.
  • the force suddenly changed and the steering performance deteriorated.
  • the output sharing rate of the abnormality detection side system is reduced in advance before the abnormality is determined, thereby rapidly increasing the steering force at the time of abnormality determination. Fluctuations can be suppressed.
  • the output sharing ratio of the abnormality detection side system can be sufficiently reduced before the abnormality is confirmed, and the reliability of the steering control from the abnormality detection to the confirmation is improved. it can.
  • the required motor output is less than the maximum motor output that can be output by the normal side system alone, as shown in FIG. 11 (a)
  • the output sharing rate of the abnormality detection side system is set to 0% before the abnormality is confirmed. .
  • the reliability of steering control from abnormality detection to determination can be further improved, and the steering force fluctuation at the time of abnormality determination can be reduced to zero.
  • the steering force can be provided only by the normal system, there is little risk of an increase in the steering load of the driver.
  • the output sharing rate of the abnormality detection side system is set to 0% until the abnormality is confirmed. Instead, the difference between the required motor output and the maximum motor output of the normal system is borne. Thereby, an increase in the steering load of the driver can be suppressed.
  • FIG. 11B there is a step in the assist torque as the output sharing ratio of the abnormality detection side system is set to 0% when the abnormality is confirmed.
  • a scene where the required motor output exceeds the maximum motor output of the normal side system is when the vehicle is stopped or traveling at an extremely low speed, so that a handle shock is unlikely to occur.
  • the output distribution control unit 46 receives a signal (abnormal counter value> 0) indicating that there is an abnormality in the other system from the diagnosis function unit 45 of the other system, the output distribution control unit 46 starts the output distribution control. Thereby, output distribution control according to the occurrence of abnormality can be realized. Further, when an abnormality occurs in the diagnosis function unit 45 or the output distribution control unit 46, since the communication between the microcomputers is not performed, the output distribution control is not started. Therefore, it is possible to suppress problems such as the both systems increasing the motor output due to the abnormality of the diagnosis function unit 45 and the output distribution control unit 46, and the steering feeling becomes too light.
  • the diagnosis function unit 45 transmits a signal (abnormality cause information) caused by the cause of the abnormality of the own system to the MPU 23 of the other system. Thereby, output distribution control according to an abnormality cause (abnormality occurrence location) can be realized. Specifically, when an abnormality is detected on the downstream side in the other system, the output distribution control unit 46 ends the output distribution control earlier than when an abnormality is detected on the upstream side in the other system. . When the cause of the abnormality is caused by the steering torque sensor 15, the assist control can be continued in the abnormality detection side system based on the output sharing ratio set in the output distribution control unit 46 of the normal side system.
  • the output distribution control unit 46 receives a signal indicating that there is an abnormality in the other system (abnormal counter value> 0) from the diagnosis function unit 45 of the other system, the output distribution control unit 46 sets the output sharing ratio of the first system and the second system .
  • the MPU 23 includes an assist limiting unit 47 that sets an upper limit value for the post-output distribution torque command output from the output distribution control unit 46.
  • an upper limit value can be set in consideration of output distribution, so that overheating protection of the electric motor 11 and the ECU 16 is achieved, and assist control at the time of abnormality detection is performed. Reliability can be improved.
  • the power steering apparatus is different from the first embodiment in part of the output distribution control process.
  • step S24 of FIG. 6 the output sharing ratio of the own system is set to 100%.
  • step S25 the output sharing ratio of the other system is set to 0%.
  • step S26 the specified value is added to the gradual increase / decrease time counter value.
  • the output distribution control unit 46 receives a signal (abnormal counter value> 0) indicating that an abnormality has been detected downstream of the other system from the diagnosis function unit 45 of the other system,
  • the output sharing rate is 0%, and the output sharing rate of the own system is 100%. That is, when the cause of the abnormality is caused by the inverter 25 or the electric motor 11, the reliability of the assist control at the time of detecting the abnormality can be improved by completing the output distribution control as soon as the abnormality is detected.
  • the power steering device of the third embodiment is different from the first embodiment in that the assist control is continued in both systems even after the abnormality is confirmed when the cause of the abnormality in the other system is due to the steering torque sensor 15.
  • the output distribution control unit 46 determines whether the abnormality of the other system is confirmed by the diagnosis function unit 45 of the own system, and then from the steering torque sensor 15 of the own system. Using the signal, output distribution control is performed so that another system continues the assist control.
  • the output sharing ratio of both systems after the abnormality is confirmed shall be 50% and 50%.
  • step S6 of FIG. 12 an output sharing ratio command, a gradual increase / decrease processing end flag, and a torque command from another system are received.
  • step S39 it is determined whether an output sharing ratio command is received in step S6. If YES, the process proceeds to step S8, and if NO, the process proceeds to step S40.
  • step S40 the torque command of the own system is overwritten with the torque command received in step S6, and the process proceeds to return.
  • step S34 in FIG. 6 a torque command for another system that compensates for the shortage output relative to the required motor output is set.
  • step S35 the output sharing ratio of the other system set in step S21, step S25 or step S29, or the torque command of the other system set in step S34, together with the gradually increasing / decreasing process end flag set in step S32.
  • the output distribution control unit 46 when an abnormality is detected on the upstream side in another system and it is determined that the necessary motor output is not satisfied by the own system alone, the other system that compensates for the insufficient output for the necessary motor output Torque command is set and output to MPU23 of other system.
  • the assist control external command control unit 42 of the abnormality detection side system drives the inverter 25 of its own system using the torque command sent from the MPU 23 of the normal side system.
  • the first actuation unit and the second actuation unit are the winding groups (the first winding group 11a and the second winding group 11b) in the electric motor 11, but the first actuation unit and The second actuation unit may be a separate electric motor.
  • the output distribution ratio may be changed stepwise.
  • the steering mechanism that transmits the steering operation of the steering wheel to the steered wheels, the first actuation unit and the second actuation unit that apply steering force to the steering mechanism,
  • a controller that outputs a first drive command signal for driving and controlling the first actuation unit and a second drive command signal for driving and controlling the second actuation unit; and provided in the controller, the first actuation unit and the first actuation unit
  • An output distribution control unit that changes the output ratio of the steering force of the two actuation units, and increases the output ratio of one steering force of the first actuation unit and the second actuation unit and the other steering
  • the first drive command signal so as to reduce the output ratio of the force to a value larger than 0
  • an output distribution control unit that performs output distribution control for changing the second drive command signal.
  • a first detection unit that detects a steering torque of the steering mechanism and outputs a first torque signal
  • a second detection unit that detects the steering torque and outputs a second torque signal
  • the controller includes a first microprocessor for outputting the first drive command signal based on the first torque signal, and a first actuation unit based on the first drive command signal.
  • a first inverter that supplies power, a second microprocessor that outputs the second drive command signal based on the second torque signal, and a power that is supplied to the second actuation unit based on the second drive command signal
  • a second inverter that the torque sensor; the first microprocessor; the first inverter; the second microprocessor;
  • An abnormality determination unit that determines whether there is an abnormality in the two inverters, the first actuation unit, or the second actuation unit, and the output distribution control unit includes the first detection unit, the first micro When it is determined that there is an abnormality in one of the first systems including the processor, the first inverter, and the first actuation unit, the output ratio of the first actuation unit is reduced and the second actuation is reduced.
  • the abnormality determination unit includes an abnormality detection unit that detects an abnormality in the first system or the second system, and an abnormality after the abnormality detection unit detects the abnormality.
  • the output distribution control unit performs the output distribution control from when the abnormality detection unit detects an abnormality until the abnormality determination unit determines the abnormality.
  • the output distribution control unit terminates the output distribution control before the abnormality determination unit determines abnormality.
  • the output distribution control unit determines an output ratio of a steering force on the side where an abnormality is detected in the first system and the second system, as the abnormality determination unit. Is set to 0 before the failure is confirmed.
  • the controller calculates a required amount of steering force to be applied to the steering mechanism based on the first torque signal or the second torque signal, and the output distribution.
  • the control unit detects that the abnormality detection unit detects an abnormality and then the abnormality determination unit is abnormal.
  • the output distribution control is performed so that the side of the first system and the second system in which an abnormality is detected also continues to apply the steering force until it is determined.
  • the controller calculates a required amount of steering force to be applied to the steering mechanism based on the first torque signal or the second torque signal, and the output distribution.
  • the control unit is a side where an abnormality is detected in the first system and the second system.
  • the output ratio of the steering force is set to 0 before the abnormality determination unit determines the abnormality.
  • the abnormality determination unit is provided in the first microprocessor, and includes a first abnormality determination unit that determines whether there is an abnormality in the first system, and the second A second abnormality determining unit that is provided in the microprocessor and determines whether or not there is an abnormality in the second system, and the output distribution control unit includes a first output distribution control unit provided in the first microprocessor; A second output distribution control unit provided in the second microprocessor, wherein the first output distribution control unit receives a signal from the second abnormality determination unit that there is an abnormality in the second system.
  • the output distribution control is started, and the second output distribution control unit starts the output distribution control when receiving a signal indicating that there is an abnormality in the first system from the first abnormality determination unit.
  • the first abnormality determination unit transmits a signal related to the cause of the abnormality of the first system to the second microprocessor
  • the second abnormality determination unit includes: A signal relating to the cause of the abnormality of the second system is transmitted to the first microprocessor.
  • the first output distribution control unit is configured such that when the cause of the abnormality in the second system is caused by the second inverter or the second actuation unit, The output distribution control is terminated earlier than in the case of using the second detection unit, and the second output distribution control unit determines that the cause of the abnormality in the first system is due to the first inverter or the first actuation unit. In this case, the output distribution control is terminated earlier than in the case of using the first detection unit.
  • the first output distribution control unit is configured such that when the cause of the abnormality in the second system is caused by the second inverter or the second actuation unit, When a signal indicating that there is an abnormality in the second system is received from the second abnormality determination unit, the output distribution control is performed so that the output ratio of the steering force of the second actuation unit becomes 0 immediately, The two-output distribution control unit has an abnormality in the first system from the first abnormality determination unit when the cause of the abnormality in the first system is due to the first inverter or the first actuation unit. When the above signal is received, the output distribution control is performed so that the output ratio of the steering force of the first actuation section becomes zero immediately.
  • the abnormality determination unit is provided in the first microprocessor, and after the first abnormality detection unit detects an abnormality in the first system, the abnormality is confirmed.
  • a first abnormality determining unit that is provided in the second microprocessor, and a second abnormality determining unit that determines an abnormality after the second abnormality detecting unit detects an abnormality in the second system.
  • the first output distribution control unit is configured to perform the operation even after the abnormality of the second system is confirmed by the first abnormality confirmation unit.
  • the second actuation unit uses the first torque signal, and the second output distribution control unit causes the first system abnormality to be caused by the first torque signal.
  • the output distribution is performed so that the first actuation unit continues to apply the steering force using the second torque signal even after the abnormality of the first system is determined by the second abnormality determination unit. Take control.
  • the first output distribution control unit when the first output distribution control unit receives a signal from the second abnormality determination unit that there is an abnormality in the second system, When the output ratio of the steering force of the tuition unit and the second actuation unit is determined, and the second output distribution control unit receives a signal from the first abnormality determination unit that there is an abnormality in the first system And determining the output ratio of the steering force of the first actuation part and the second actuation part.
  • the first output distribution control unit when the first output distribution control unit receives a signal from the second abnormality determination unit that there is an abnormality in the second system, When a torque command value is output to the processor, and the second output distribution control unit receives a signal indicating that the first system is abnormal from the first abnormality determination unit, the torque is transmitted to the first microprocessor. Outputs a command.
  • the output distribution control unit continuously outputs an output ratio of one of the steering forces of the first actuation unit and the second actuation unit. While increasing, the output ratio of the other steering force is continuously decreased.
  • the controller sets a first upper limit value for setting an upper limit value for the first drive command signal and the second drive command signal that have passed through the output distribution control unit. A setting unit and a second upper limit setting unit;

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Power Steering Mechanism (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

操舵力の急変を抑制できるパワーステアリング装置を提供する。 パワーステアリング装置は、ステアリングホイールの操舵操作を転舵輪に伝達する操舵機構と、操舵機構に操舵力を付与する第1アクチュエーション部および第2アクチュエーション部と、第1アクチュエーション部を駆動制御する第1駆動指令信号および第2アクチュエーション部を駆動制御する第2駆動指令信号を出力するコントローラと、を備える。コントローラは、第1駆動指令信号の出力の割合と第2駆動指令信号の出力の割合とを変更する出力分配制御部であって、第1駆動指令信号および第2駆動指令信号のうち一方の出力割合を増加させると共に他方の出力割合を0よりも大きな値まで減少させる出力分配制御を行う出力分配制御部を備える。

Description

パワーステアリング装置
 本発明は、パワーステアリング装置に関する。
 特許文献1には、アシスト制御の制御系および出力系を2系統化したパワーステアリング装置が開示されている。
特開2015-61458号公報
 しかしながら、上記従来技術にあっては、一方系統の異常が確定したとき当該異常検出側系統のアシスト出力を停止または制限する際、ドライバの操舵力が急変し、操舵性が悪化するという問題があった。
  本発明の目的の一つは、操舵力の急変を抑制できるパワーステアリング装置を提供することにある。
 本発明の一実施形態におけるパワーステアリング装置は、第1アクチュエーション部および第2アクチュエーション部のうち一方の操舵力の出力割合を増加させると共に他方の操舵力の出力割合を0よりも大きな値まで減少させる。
 よって、操舵状態やパワーステアリング装置の駆動状態等の変化に合わせ、第1アクチュエーション部と第2アクチュエーション部の操舵力の出力割合を変更することにより、より適切な操舵力の付与を実現できる。また、出力減少側の操舵力の出力割合が0とならないため、操舵力の急変を抑制できる。
実施形態1のパワーステアリング装置の構成図である。 パワーステアリング装置の制御系の構成図である。 ECU16の第1系統および第2系統の制御ブロック図である。 実施形態1の出力配分制御処理の流れを示すフローチャートである。 実施形態1の出力配分制御処理の流れを示すフローチャートである。 実施形態1の出力配分制御処理の流れを示すフローチャートである。 実施形態1の出力配分制御処理の流れを示すフローチャートである。 実施形態1の出力配分制御処理の流れを示すフローチャートである。 必要モータ出力に応じた出力配分方法の説明図である。 一方系統内の上流側に異常が発生したときの出力分担率のタイムチャートである。 一方系統内の下流側に異常が発生したときの出力分担率のタイムチャートである。 実施形態4の出力配分制御処理の流れを示すフローチャートである。
 〔実施形態1〕
  図1は、実施形態1のパワーステアリング装置の構成図である。
  操舵機構1は、ステアリングホイール2の回転に伴い前輪(転舵輪)3,3を転舵させるもので、ラック&ピニオン式のステアリングギア4を有する。ステアリングギア4のピニオンギア5は、ステアリングシャフト6を介してステアリングホイール2と連結されている。ステアリングギア4のラックギア7は、ラック軸8に設けられている。ラック軸8の両端は、タイロッド9,9を介して前輪3,3と連結されている。ステアリングシャフト6には、減速機10を介して電動モータ(第1アクチュエーション部、第2アクチュエーション部)11が連結されている。減速機10は、ウォーム12とウォームホイール13とで構成されている。ウォーム12は電動モータ11のモータシャフト14と一体に設けられている。モータシャフト14からの回転トルクは、減速機10を介してステアリングシャフト6に伝達される。ステアリングシャフト6には、操舵トルクを検出する操舵トルクセンサ15が設けられている。電動モータ11には、ECU16および舵角センサ17が一体に設けられている。舵角センサ17は、電動モータ11の回転角(モータ回転角)から前輪3,3の舵角を検出する。ECU16は、操舵トルク信号(第1トルク信号、第2トルク信号)、舵角信号、車速センサ18により検出された車速信号等に基づいて、電動モータ11を駆動制御して操舵機構1にアシストトルクを付与するアシスト制御を実行する。
 図2は、パワーステアリング装置の制御系の構成図である。
  電動モータ11は、三相巻線により構成されるステータを2組(第1巻線組11a、第2巻線組11b)有する二重三相モータである。第1巻線組(第1アクチュエーション部)11aのみを通電したときの最大モータ出力と第2巻線組(第2アクチュエーション部)11bのみを通電したときの最大モータ出力は同一である。電動モータ11は、インバータ(第1インバータ、第2インバータ)25からの電流に応じてアシストトルク(モータトルク)を発生する。ECU16は、第1巻線組11aへ電流を供給する第1系統と、第2巻線組11bへ電流を供給する第2系統とで2系統化している。以下の説明では、両系統を区別する場合、第1系統に対応する部位には符号の末尾にaを付記し、第2系統に対応する部位には符号の末尾にbを付記する。ECU16は、制御基板21およびパワー系基板22を有する。制御基板21は、エポキシ樹脂基材等の非金属基材を用いたプリント配線基板からなり、MCU23、プリドライバ24等の制御系電子部品が両面に実装されている。パワー系基板22は、熱伝達性に優れた金属回路基板を用いたもので、インバータ25が片面に実装されている。MCU23は、アシスト制御のための演算、モータ電流のコントロール、機能構成要素の異常検出、安全状態への移行処理を行う。プリドライバ24は、MCU23からのトルク指令(第1駆動指令信号、第2駆動指令信号)に基づいて、インバータ25の駆動素子を駆動する。インバータ25は、強電バッテリ26からの直流電力を交流電力に変換し、電動モータ11の巻線組へ供給する。
  操舵トルクセンサ15は、例えば磁歪式であり、それぞれ2つのホールICを有する。第1操舵トルクセンサ(第1検出部)15aおよび第2操舵トルクセンサ(第2検出部)15bの各ホールICのうち一方の出力は、他系統のMCU23に入力される。舵角センサ17は2つの磁気検出素子17a,17bを有する。両磁気検出素子17a,17bの出力は両MCU23に入力される。パワーサプライ27は、操舵トルクセンサ15の電源を作成して供給する。パワーサプライ28は、MPU23の電源を作成して供給する。パワーサプライ29は、舵角センサ17の電源を作成して供給する。各パワーサプライ27,28,29は、弱電バッテリまたはイグニッションラインと接続されている。パワー系基板22には、モータ相電流センサ30が設けられている。制御基板21には、インダクタンスの変化に基づいてモータ回転角を検出するモータ回転角センサ31が設けられている。また、制御基板21には、MPU23の異常を検出するCPUモニタ32が設けられている。CPUモニタ32は、MPU23の異常が検出された場合、電源を遮断する機能を持つ。
 図3は、ECU16の第1系統および第2系統の制御ブロック図である。
  入力信号処理部41は、舵角センサ17、操舵トルクセンサ15、電源電圧モニタ33、温度センサ34、モータ回転角センサ31、モータ相電流センサ30、一次電流センサ35aからの信号を処理してアシスト制御外部指令制御部42に引き渡す。電源電圧モニタ33は、パワー系基板22に設けられ、強電バッテリ26からECU16へ電力を供給する電源ラインの電圧を監視する。温度センサ34は、パワー系基板22に設けられ、電動モータ11の巻線の温度を検出する。一次電流センサ35aは、パワー系基板22に設けられ、強電バッテリ26からECU16への取り込み電流を検出する。
  アシスト制御外部指令制御部42は、各信号入力からトルク指令を決定する。
  CAN通信部43は、CANバス36を介してCAN通信方式により外部との情報の授受を行う。CAN通信部43は、第1MPU(第1マイクロプロセッサ)23aのみに設けられている。第2MPU(第2マイクロプロセッサ)23aはCAN通信部を持たない。
  マイコン間通信部44は、マイコン間通信を行う。マイコン間で交換される情報は、異常カウンタ値、異常原因情報(異常発生箇所等)、出力分担率指令、現在の出力分担率およびトルク指令等である。これらの詳細については後述する。
  診断機能部(第1異常判断部、第2異常判断部)45は、自系統内の異常検出およびマイコン間通信を介した他系統の異常検出を行う。診断機能部45は、自系統の異常カウンタ値および異常原因情報を他系統に通知し、他系統の異常検出、異常原因情報を受信する。また、診断機能部45は、自系統と他系統とでアシスト方向が逆方向となる逆アシスト判断を行う。診断機能部45は、自系統内で異常が検出されると異常カウンタ値のカウントアップを開始し、異常カウンタ値が所定の異常確定値に到達したとき異常を確定する。異常確定値は異常原因に応じて可変としてもよい。診断機能部45は、自系統の異常を検出する異常検出部(第1異常検出部、第2異常検出部)51および異常検出部が異常を検出した後、異常を確定する異常確定部(第1異常確定部、第2異常確定部)52を有する。
  出力配分制御部(第1出力配分制御部、第2出力配分制御部)46は、異常検出結果に基づき、他系統の出力分担率の設定、通知および両系統の出力分担率の整合性の確認を行う。出力配分制御部46は、他系統に異常が検出されていない場合は自系統の出力分担率を50%とするが、他系統の異常検出時には、異常が確定するまでの間に他系統の出力分担率を0%まで低下させる指令を他系統に送信すると共に、自系統の出力分担率を増加させる。このとき、両系統間で出力分担率の変化速度を一致させる。出力配分制御部46は、トルク指令に出力分担率を乗じて出力配分後トルク指令を演算する。出力配分制御部46は、他系統の異常が確定した場合には、他系統の出力配分率を0%に維持すると共に、自系統の出力配分率を所定の分担率制限値(<50%)まで漸減させ、その後一定に維持する制限アシストを実施する。なお、分担率制限値を0%としてアシスト制御を停止してもよい。また、自系統の出力配分率を制限せず、可能な限り自系統のみでアシスト制御を継続してもよい。
  アシスト制限部(第1上限値設定部、第2上限値設定部)47は、電動モータ11およびECU16の過熱保護の要請から、出力配分後トルク指令の上限を、設定された出力上限値に制限した最終トルク指令を演算する。
  モータ制御部48bは、最終トルク指令をプリドライバ24へ出力する。
 図4~8は、実施形態1の出力配分制御処理の流れを示すフローチャートである。出力配分制御処理は、第1MPU23aおよび第2MPU23bでそれぞれ実行される。
  ステップS1では、自系統の異常カウンタ値が規定値以上であるかを判断する。YESの場合はステップS2へ進み、NOの場合はステップS3へ進む。規定値は、異常確定値よりも小さな値とする。
  ステップS2では、自系統の出力分担率を0%とするシステム安全状態移行処理を実施し、リターンへ進む。
  ステップS3では、自系統の異常が検出されたかを判断する。YESの場合はステップS4へ進み、NOの場合はステップS10へ進む。
  ステップS4では、自系統の異常カウンタ値を1加算(インクリメント)する。
  ステップS5では、自系統の異常カウンタ値および異常原因情報を他系統へ送信する。
  ステップS6では、他系統からの出力分担率指令および出力分担率漸増減処理終了フラグ(以下、漸増減処理終了フラグ)を受信する。
  ステップS7では、ステップS6で受信した漸増減処理終了フラグがセット(=1)されているかを判断する。YESの場合はリターンへ進み、NOの場合はステップS8へ進む。
  ステップS8では、ステップS6で受信した出力分担率指令に基づき、自系統の出力分担率を設定する。
  ステップS9では、ステップS8で設定した出力分担率を他系統へ送信し、リターンへ進む。
 ステップS10では、自系統の異常カウンタ値をクリア(=0)する。
  ステップS11では、自系統の出力分担率を初期値50%に設定する。
  ステップS12では、漸増減処理終了フラグがセット(=1)されているかを判断する。YESの場合はリターンへ進み、NOの場合はステップS13へ進む。
  ステップS13では、自系統の異常カウンタ値および異常原因情報を他系統へ送信する。
  ステップS14では、他系統の異常カウンタ値および異常原因情報を受信する。
  ステップS15では、ステップS14で受信した他系統の異常カウンタ値が0であるかを判断する。YESの場合はステップS16へ進み、NOの場合はステップS19へ進む。
  ステップS16では、出力分担率漸増減時間カウンタ値(以下、漸増減時間カウンタ値)をクリア(=0)する。
  ステップS17では、漸増減処理終了フラグをクリア(=0)する。
  ステップS18では、自系統の出力分担率を初期値50%に設定し、リターンへ進む。
  ステップS19では、他系統が逆アシストか、すなわち、他系統のアシスト方向が自系統のアシスト方向と逆方向であるかを判断する。YESの場合はステップS20へ進み、NOの場合はステップS23へ進む。
 ステップS20では、自系統の出力分担率を100%に設定する。
  ステップS21では、他系統の出力分担率を0%に設定する。
  ステップS22では、漸増減処理終了フラグをセット(=1)する。
  ステップS23では、ステップS14で受信した他系統の異常原因情報に基づき、他系統内の下流側に異常が発生しているかを判断する。YESの場合はステップS24へ進み、NOの場合はステップS27へ進む。なお、「下流側」は、モータ制御部48、プリドライバ24、インバータ25および電動モータ11(の巻線組)であり、これらに異常が発生した場合は下流側の異常とする。一方、「上流側」は、各センサ(舵角センサ17、操舵トルクセンサ15、電源電圧モニタ33、温度センサ34、モータ回転角センサ31、モータ相電流センサ30、一次電流センサ35)、CANバス36(第1系統のみ)、入力信号処理部41、CAN通信部43であり、これらに異常が発生した場合は上流側の異常とする。
  ステップS24では、自系統の出力分担率を前回値+所定量ΔAに設定する漸増処理を実施する。所定量ΔAは、異常カウンタ値が1制御周期に3ずつ加算されて規定値に到達したとき、自系統の出力分担率が100%に達すると同時に他系統の出力分担率が0%に達する値とする。
  ステップS25では、他系統の出力分担率を前回値-所定量ΔAに設定する漸減処理を実施する。
  ステップS26では、漸増減時間カウンタ値を3加算する。
  ステップS27では、自系統単独で必要モータ出力を充足するかを判断する。YESの場合はステップS28へ進み、NOの場合はステップS33へ進む。このステップでは、自系統の出力分担率を100%、他系統の出力分担率を0%とした場合、すなわち、一系統における最大モータ出力がトルク指令に応じた必要モータ出力以上である場合(図11(a)参照)には、自系統単独で必要モータ出力を充足すると判断する。一方、一系統における最大モータ出力が必要モータ出力を下回る場合(図11(b)参照)には自系統単独では必要モータ出力を充足しないと判断する。
 ステップS28では、自系統の出力分担率を前回値+所定量ΔBに設定する漸増処理を実施する。ΔBは、ΔAの1/3の大きさであり、異常カウンタ値が1制御周期に1ずつ加算されて規定値に到達したとき、自系統の出力分担率が100%に達すると同時に他系統の出力分担率が0%に達する値とする。
  ステップS29では、他系統の出力分担率を前回値-所定量ΔBに設定する漸減処理を実施する。
  ステップS30では、漸増減時間カウンタ値を1加算(インクリメント)する。
  ステップS31では、漸増減時間カウンタ値が規定値に到達したかを判断する。YESの場合はステップS32へ進み、NOの場合はステップS35へ進む。
  ステップS32では、漸増減処理終了フラグをセット(=1)する。
  ステップS33では、自系統の出力分担率を100%に設定する。
  ステップS34では、必要モータ出力に対する不足出力分を補う他系統の出力分担率を設定する。
  ステップS35では、ステップS21、ステップS25、ステップS29またはステップS34で設定した他系統の出力分担率を出力分担率指令とし、ステップS32でセットした漸増減処理終了フラグと共に他系統へ送信する。
  ステップS36では、他系統の出力分担率設定値を他系統から受信する。
  ステップS37では、自系統および他系統の出力分担率に整合性があるかを判断する。YESの場合はリターンへ進み、NOの場合はステップS38へ進む。
  ステップS38では、他系統の出力分担率を0%とするシステム安全状態移行処理を実施し、リターンへ進む。
 図10は、一方系統内の上流側に異常が発生したときの出力分担率のタイムチャートである。以下、一方系統を異常検出側系統、他方系統を正常側系統と称す。
  時刻t1では、一方系統内の上流側に異常が発生するが、異常を検出していないため、両系統の出力配分制御処理は、共にS1→S3→S10→S11→S12→S13→S14→S15→S16→S17→S18の流れが繰り返される。よって、両系統の出力分担率は初期値50%に維持される。
  時刻t2では、異常検出側系統が自身の異常を検出するため、異常検出側系統では、S1→S3→S4→S5→S6→S7→S8→S9の流れとなる。つまり、S3で自身の異常を検出し、S4で異常カウンタ値を加算し、S5で異常カウンタ値および異常原因情報を送信し、S6で出力分担率指令を受信し、S8で出力分担率を設定し、S9で出力分担率を送信する。一方、正常側系統では、S1→S3→S10→S11→S12→S13→S14→S15→S19→S23→S27→S28→S29→S30→S31→S35→S36→S37の流れとなる。つまり、S14で異常カウンタ値および異常原因情報を受信し、S19で逆アシストではないと判断し、S23で下流側異常ではないと判断し、S27で単独での必要モータ出力を充足すると判断し、S28で自身の出力分担率を前回値+ΔBに設定し、S29で異常検出側の出力分担率を前回値-ΔBに設定し、S30で漸増減時間カウンタ値を1加算し、S35で異常検出側の出力分担率を出力分担率指令として送信し、S36で異常検出側の出力分担率を受信し、S37で両系統の出力分担率の整合性を確認する。以上により、時刻t2からt3までの区間では、正常側系統の出力分担率が漸増し、異常検出側系統の出力分担率が漸減する。
  時刻t3では、漸増減時間カウンタ値が規定値に達したため、正常側系統では、S32で漸増減処理終了フラグをセットするため、次の制御周期からS1→S3→S10→S11→S12の流れとなる。一方、異常検出側系統では、漸増減処理終了フラグのセットにより、S1→S3→S4→S5→S6→S7の流れとなる。以上により、正常側系統の出力分担率は100%となり、異常検出側系統の出力分担率は0%となる。
  時刻t4では、異常カウンタ値が規定値に達し、異常確定時間が経過したため、正常側系統の出力分担率は漸減し、異常検出側系統の出力分担率は0%に維持される。
  時刻t5では、時刻t4からアシスト漸減時間が経過し、正常側系統の出力分担率が配分率分担率制限値に達する。
 図11は、一方系統内の下流側に異常が発生したときの出力分担率のタイムチャートである。
  時刻t1では、一方系統内の下流側に以上が発生するが、異常を検出していないため、両系統の出力配分制御処理は、図10の時刻t1からt2の区間と同じとなる。
  時刻t2では、異常検出側系統が自身の異常を検出する。異常検出側系統の出力配分制御の流れは、図10の時刻t2からt3の区間と同じであるが、異常発生箇所が下流側であるため、正常側系統では、S1→S3→S10→S11→S12→S13→S14→S15→S19→S23→S24→S25→S26→S31→S35→S36→S37の流れとなる。よって、図10の場合と比べて、S23で下流側異常と判断し、S24で自身の出力分担率を前回値+ΔAに設定し、S25で異常検出側系統の出力分担率を前回値-ΔAに設定し、S26で漸増減時間カウンタ値を3加算する点で相違する。よって、両系統における出力分担率の変化速度は、図10の場合、すなわち上流側で異常が発生した場合よりも3倍高くなる。
  時刻t3からt5の区間は図10の時刻t3からt5の区間と同じであるため、説明は省略する。
 以上のように、実施形態1のパワーステアリング装置では、一方系統で異常が検出された場合、異常検出側系統の出力分担率を減少させる一方、正常側系統の出力分担率を増加させる出力配分制御を行う。これにより、操舵力の急激な変動およびドライバの操舵負荷増大を抑制しつつ、異常検出時におけるアシスト制御の信頼性を向上できる。また、出力配分制御では両系統の出力分担率を連続的に変化させるため、操舵力の変動をさらに抑制できる。
  出力配分制御部46は、診断機能部45が自系統の異常を検出してから異常を確定するまでの間、出力配分制御を行う。従来のステアリング装置では、異常を検出してから確定するまでの間、両系統の出力分担率を固定していたため、異常確定時に異常検出側系統の出力分担率を減少させたときにドライバの操舵力が急変し、操舵性の悪化を招いていた。これに対し、実施形態1では、異常検出から確定までの時間を利用して、異常確定前に予め異常検出側系統の出力分担率を減少させておくことにより、異常確定時における操舵力の急激な変動を抑制できる。このとき、異常確定前までに出力配分制御を終了させるため、異常検出側系統の出力分担率を異常確定前までに充分減少させることができ、異常検出から確定までのステアリング制御の信頼性を向上できる。さらに、必要モータ出力が正常側系統単独で出力可能な最大モータ出力以下の場合には、図11(a)に示すように、異常確定までに異常検出側系統の出力分担率を0%とする。これにより、異常検出から確定までのステアリング制御の信頼性をより向上できると共に、異常確定時の操舵力変動を0にできる。また、正常系統のみで操舵力を賄える状況であるため、ドライバの操舵負荷の増大リスクが少ない。
 一方、必要モータ出力が正常側系統単独で出力可能な最大モータ出力を超える場合には、図11(b)に示すように、異常確定までの間は異常検出側系統の出力分担率を0%とせず、必要モータ出力と正常側系統の最大モータ出力との差分を負担する。これにより、ドライバの操舵負荷増大を抑制できる。ここで、図11(b)では、異常確定時に異常検出側系統の出力分担率を0%とすることに伴いアシストトルクに段差が生じている。しかしながら、必要モータ出力が正常側系統の最大モータ出力を超えるシーンは、停車時や極低速走行時であるから、ハンドルショックは生じにくい。また、停車時や極低速走行時には、アシストトルクの変動によりステアリングホイール2が多少変化しても車両挙動には影響がない。
  出力配分制御部46は、他系統の診断機能部45から他系統に異常が有ることの信号(異常カウンタ値>0)を受信した場合、出力配分制御を開始する。これにより、異常発生に合わせた出力配分制御を実現できる。また、診断機能部45や出力配分制御部46に異常が生じた場合、マイコン間通信は行われないため、出力配分制御は開始されない。よって、診断機能部45や出力配分制御部46の異常に伴い両系統がモータ出力を増大させて操舵感が軽くなり過ぎるの等の不具合を抑制できる。
 診断機能部45は、他系統のMPU23に自系統の異常の原因に起因する信号(異常原因情報)を送信する。これにより、異常原因(異常発生箇所)に応じた出力配分制御を実現できる。具体的には、出力配分制御部46は、他系統内の下流側に異常が検出された場合には、他系統内の上流側に異常が検出された場合よりも出力配分制御を早く終了させる。異常の原因が操舵トルクセンサ15によるものの場合、正常側系統の出力配分制御部46で設定された出力分担率に基づいて異常検出側系統でアシスト制御を継続できるが、異常の原因がインバータ25や電動モータ11によるものの場合、異常検出側系統でアシスト制御を継続するとアシスト制御の信頼性が低下する。よって、下流側に異常が検出された場合は、上流側に異常が検出された場合よりも早めに出力配分制御を完了させることにより、異常検出時におけるアシスト制御の信頼性を向上できる。
  出力配分制御部46は、他系統の診断機能部45から他系統に異常があることの信号(異常カウンタ値>0)を受信した場合、第1系統および第2系統の出力分担率を設定する。正常側系統の出力配分制御部46で両系統の出力分担率を決定することにより、不適切な出力分担率が設定されるのを回避でき、異常検出時におけるアシスト制御の信頼性を向上できる。
  MPU23は、出力配分制御部46から出力された出力配分後トルク指令に対し上限値を設定するアシスト制限部47を有する。出力配分制御部46の下流側にアシスト制限部47を設けたことにより、出力配分を加味した上限値を設定できるため、電動モータ11およびECU16の過熱保護を図りつつ、異常検出時におけるアシスト制御の信頼性を向上できる。
 〔実施形態2〕
  実施形態2のパワーステアリング装置は、出力配分制御処理の一部が実施形態1と相違する。
  図6のステップS24では、自系統の出力分担率を100%とする。
  ステップS25では、他系統の出力分担率を0%とする。
  ステップS26では、漸増減時間カウンタ値に規定値を加算する。
  実施形態2では、出力配分制御部46において、他系統の診断機能部45から他系統内の下流側に異常が検出されたことの信号(異常カウンタ値>0)を受信したとき、他系統の出力分担率を0%、自系統の出力分担率を100%とする。つまり、異常の原因がインバータ25や電動モータ11によるものの場合、異常が検出されたとき直ぐに出力配分制御を完了させることにより、異常検出時におけるアシスト制御の信頼性を向上できる。
 〔実施形態3〕
  実施形態3のパワーステアリング装置は、他系統の異常の原因が操舵トルクセンサ15によるものであるとき、異常確定後も両系統でアシスト制御を継続する点で実施形態1と相違する。
  出力配分制御部46は、他系統の異常の原因が操舵トルクセンサ15によるものの場合には、自系統の診断機能部45により他系統の異常が確定した後、自系統の操舵トルクセンサ15からの信号を用いて他系統がアシスト制御を継続するように出力配分制御を行う。異常確定後の両系統の出力分担率は50%,50%とする。正常な操舵トルクセンサ15からの代替トルク信号により異常確定後も両系統でアシスト制御を継続することにより、操舵トルクセンサ15の異常発生時におけるドライバの操舵負荷増大を抑制できる。
 〔実施形態4〕
  実施形態4のパワーステアリング装置は、出力配分制御処理の一部が実施形態1と相違する。相違点は以下の通りである。
  図12のステップS6では、他系統からの出力分担率指令、漸増減処理終了フラグおよびトルク指令を受信する。
  ステップS39では、ステップS6で出力分担率指令を受信したかを判断する。YESの場合はステップS8へ進み、NOの場合はステップS40へ進む。
  ステップS40では、自系統のトルク指令をステップS6で受信したトルク指令で上書きし、リターンへ進む。
  図6のステップS34では、必要モータ出力に対する不足出力分を補う他系統のトルク指令を設定する。
  図8において、ステップS35では、ステップS21、ステップS25またはステップS29で設定した他系統の出力分担率、またはステップS34で設定した他系統のトルク指令を、ステップS32でセットした漸増減処理終了フラグと共に他系統へ送信する。
  実施形態4では、出力配分制御部46において、他系統内の上流側に異常が検出され、自系統単独では必要モータ出力を充足しないと判断した場合、必要モータ出力に対する不足出力分を補う他系統のトルク指令を設定し、他系統のMPU23へ出力する。異常検出側系統のアシスト制御外部指令制御部42は、正常側系統のMPU23から送られたトルク指令を用いて自系統のインバータ25を駆動する。正常側系統で異常検出側系統のトルク指令を設定することにより、不適切なトルク指令が設定されるのを回避できるため、異常検出時におけるアシスト制御の信頼性を向上できる。なお、操舵トルクセンサ15の検出周期は電動モータ11の制御周期と比較して充分に長いため、操舵トルクから決まるトルク指令はマイコン間通信により他系統のMPU23に送信可能である。
 〔他の実施形態〕
  以上、本発明を実施するための実施形態を説明したが、本発明の具体的な構成は実施形態の構成に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、特許請求の範囲および明細書に記載された各構成要素の任意の組み合わせ、または、省略が可能である。
  例えば、実施形態では第1アクチュエーション部と第2アクチュエーション部を電動モータ11内の巻線組(第1巻線組11a、第2巻線組11b)としたが、第1アクチュエーション部と第2アクチュエーション部を別々の電動モータとしてもよい。
  実施形態では出力配分率を連続的に変化させる例を示したが、出力配分率を階段状に変化させてもよい。
 以上説明した実施形態から把握し得る他の態様について、以下に記載する。
  パワーステアリング装置は、その一つの態様において、ステアリングホイールの操舵操作を転舵輪に伝達する操舵機構と、前記操舵機構に操舵力を付与する第1アクチュエーション部および第2アクチュエーション部と、前記第1アクチュエーション部を駆動制御する第1駆動指令信号および前記第2アクチュエーション部を駆動制御する第2駆動指令信号を出力するコントローラと、前記コントローラに設けられ、前記第1アクチュエーション部と前記第2アクチュエーション部の操舵力の出力割合を変更する出力配分制御部であって、前記第1アクチュエーション部と前記第2アクチュエーション部のうち一方の操舵力の出力割合を増加させると共に他方の操舵力の出力割合を0よりも大きな値まで減少させるように前記第1駆動指令信号および前記第2駆動指令信号を変更する出力配分制御を行う出力配分制御部と、を備える。
  より好ましい態様では、上記態様において、前記操舵機構の操舵トルクを検出し第1トルク信号を出力する第1検出部、および前記操舵トルクを検出し、第2トルク信号を出力する第2検出部と、を有するトルクセンサを有し、前記コントローラは、前記第1トルク信号に基づき前記第1駆動指令信号を出力する第1マイクロプロセッサと、前記第1駆動指令信号に基づき前記第1アクチュエーション部に電力を供給する第1インバータと、前記第2トルク信号に基づき前記第2駆動指令信号を出力する第2マイクロプロセッサと、前記第2駆動指令信号に基づき前記第2アクチュエーション部に電力を供給する第2インバータと、前記トルクセンサ、前記第1マイクロプロセッサ、前記第1インバータ、前記第2マイクロプロセッサ、前記第2インバータ、前記第1アクチュエーション部、または前記第2アクチュエーション部の異常の有無を判断する異常判断部と、を有し、前記出力配分制御部は、前記第1検出部、前記第1マイクロプロセッサ、前記第1インバータおよび前記第1アクチュエーション部から構成される第1系統のうちのいずれかに異常有りと判断した場合、前記第1アクチュエーション部の出力割合を減少すると共に前記第2アクチュエーション部の出力割合を増加させる一方、前記第2検出部、前記第2マイクロプロセッサ、前記第2インバータおよび前記第2アクチュエーション部から構成される第2系統の内のうちのいずれかに異常有りと判断した場合、前記第2アクチュエーション部の操舵力の出力割合を減少すると共に前記第1アクチュエーション部の操舵力の出力割合を増加させる。
 別の好ましい態様では、上記態様のいずれかにおいて、前記異常判断部は、前記第1系統または前記第2系統の異常を検出する異常検出部と、前記異常検出部が異常を検出した後、異常の確定をする異常確定部とを有し、前記出力配分制御部は、前記異常検出部が異常を検出してから前記異常確定部が異常を確定するまでの間、前記出力配分制御を行う。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記出力配分制御部は、前記異常確定部が異常を確定するまでに前記出力配分制御を終了させる。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記出力配分制御部は、前記第1系統と前記第2系統のうち異常が検出された側の操舵力の出力割合を、前記異常確定部が異常を確定するまでに0とする。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記コントローラは、前記第1トルク信号または前記第2トルク信号に基づき、前記操舵機構に付与する操舵力の必要量を演算し、前記出力配分制御部は、前記必要量が、前記第1アクチュエーション部または前記第2アクチュエーション部単独で出力可能な操舵力を超えるとき、前記異常検出部が異常を検出してから前記異常確定部が異常を確定するまでの間、前記第1系統と前記第2系統のうち異常が検出された側も操舵力の付与を継続するように前記出力配分制御を行う。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記コントローラは、前記第1トルク信号または前記第2トルク信号に基づき、前記操舵機構に付与する操舵力の必要量を演算し、前記出力配分制御部は、前記必要量が、前記第1アクチュエーション部または前記第2アクチュエーション部単独で出力可能な操舵力以下のとき、前記第1系統と前記第2系統のうち異常が検出された側の操舵力の出力割合を、前記異常確定部が異常を確定するまでに0とする。
 さらに別の好ましい態様では、上記態様のいずれかにおいて、前記異常判断部は、前記第1マイクロプロセッサに設けられ、前記第1系統の異常の有無を判断する第1異常判断部と、前記第2マイクロプロセッサに設けられ、前記第2系統の異常の有無を判断する第2異常判断部とを有し、前記出力配分制御部は、前記第1マイクロプロセッサに設けられた第1出力配分制御部と、前記第2マイクロプロセッサに設けられた第2出力配分制御部とを有し、前記第1出力配分制御部は、前記第2異常判断部から前記第2系統に異常が有ることの信号を受信した場合、前記出力配分制御を開始し、前記第2出力配分制御部は、前記第1異常判断部から前記第1系統に異常が有ることの信号を受信した場合、前記出力配分制御を開始する。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記第1異常判断部は、前記第2マイクロプロセッサに前記第1系統の異常の原因に関する信号を送信し、前記第2異常判断部は、前記第1マイクロプロセッサに前記第2系統の異常の原因に関する信号を送信する。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記第1出力配分制御部は、前記第2系統の異常の原因が前記第2インバータまたは前記第2アクチュエーション部によるものの場合には、前記第2検出部によるものの場合よりも前記出力配分制御を早く終了させ、前記第2出力配分制御部は、前記第1系統の異常の原因が前記第1インバータまたは前記第1アクチュエーション部によるものの場合には、前記第1検出部によるものの場合よりも前記出力配分制御を早く終了させる。
 さらに別の好ましい態様では、上記態様のいずれかにおいて、前記第1出力配分制御部は、前記第2系統の異常の原因が前記第2インバータまたは前記第2アクチュエーション部によるものの場合には、前記第2異常判断部から前記第2系統に異常が有ることの信号を受信したとき、前記第2アクチュエーション部の操舵力の出力割合が直ぐに0となるように前記出力配分制御を行い、前記第2出力配分制御部は、前記第1系統の異常の原因が前記第1インバータまたは前記第1アクチュエーション部によるものの場合には、前記第1異常判断部からの前記第1系統に異常が有ることの信号を受信したとき、前記第1アクチュエーション部の操舵力の出力割合が直ぐに0となるように前記出力配分制御を行う。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記異常判断部は、前記第1マイクロプロセッサに設けられ、前記第1異常検出部が前記第1系統の異常を検出した後、異常の確定をする第1異常確定部と、前記第2マイクロプロセッサに設けられ、前記第2異常検出部が前記第2系統の異常を検出した後、異常の確定をする第2異常確定部とを有し、前記第1出力配分制御部は、前記第2系統の異常の原因が前記第2検出部によるものの場合には、前記第1異常確定部により前記第2系統の異常が確定した後においても前記第1トルク信号を用いて前記第2アクチュエーション部が操舵力の付与を継続するように前記出力配分制御を行い、前記第2出力配分制御部は、前記第1系統の異常の原因が前記第1検出部によるものの場合には、前記第2異常確定部により前記第1系統の異常が確定した後においても前記第2トルク信号を用いて前記第1アクチュエーション部が操舵力の付与を継続するように前記出力配分制御を行う。
 さらに別の好ましい態様では、上記態様のいずれかにおいて、前記第1出力配分制御部は、前記第2異常判断部から前記第2系統に異常が有ることの信号を受信した場合、前記第1アクチュエーション部と前記第2アクチュエーション部の操舵力の出力割合を決定し、前記第2出力配分制御部は、前記第1異常判断部から前記第1系統に異常があることの信号を受信した場合、前記第1アクチュエーション部と前記第2アクチュエーション部の操舵力の出力割合を決定する。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記第1出力配分制御部は、前記第2異常判断部から前記第2系統に異常が有ることの信号を受信した場合、前記第2マイクロプロセッサに対しトルク指令値を出力し、前記第2出力配分制御部は、前記第1異常判断部から前記第1系統に異常が有ることの信号を受信した場合、前記第1マイクロプロセッサに対しトルク指令を出力する。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記出力配分制御部は、前記第1アクチュエーション部と前記第2アクチュエーション部の操舵力のうち一方の操舵力の出力割合を連続的に増加させると共に他方の操舵力の出力割合を連続的に減少させる。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記コントローラは、前記出力配分制御部を通過した前記第1駆動指令信号および前記第2駆動指令信号に対し上限値を設定する第1上限値設定部および第2上限値設定部を有する。
 本願は、2016年8月31日出願の日本特許出願番号2016-169974号に基づく優先権を主張する。2016年8月31日出願の日本特許出願番号2016-169974号の明細書、特許請求の範囲、図面及び要約書を含む全ての開示内容は、参照により全体として本願に組み込まれる。
1 操舵機構、2 ステアリングホイール、3 前輪(転舵輪)、11 電動モータ(第1アクチュエーション部、第2アクチュエーション部)、11a 第1巻線組(第1アクチュエーション部)、11b 第2巻線組(第2アクチュエーション部)、15a 第1操舵トルクセンサ(第1検出部)、15b 第2操舵トルクセンサ(第2検出部)、16 ECU(コントローラ)、23a 第1MPU(第1マイクロプロセッサ)、23b 第2MPU(第2マイクロプロセッサ)、25a 第1インバータ、25b 第2インバータ、45a 第1診断機能部(第1異常判断部)、44b 第2診断機能部(第2異常判断部)、46a 第1出力配分制御部、46b 第2出力配分制御部47a、 第1アシスト制限部(第1上限値設定部)、47b 第2アシスト制限部(第2上限値設定部)、51a 第1異常検出部、51b 第2異常検出部、52a 第1異常確定部、52b 第2異常確定部

Claims (16)

  1.  パワーステアリング装置であって、
     ステアリングホイールの操舵操作を転舵輪に伝達する操舵機構と、
     前記操舵機構に操舵力を付与する第1アクチュエーション部および第2アクチュエーション部と、
     前記第1アクチュエーション部を駆動制御する第1駆動指令信号および前記第2アクチュエーション部を駆動制御する第2駆動指令信号を出力するコントローラと、
     を備え、
     前記コントローラは、前記第1駆動指令信号の出力の割合と前記第2駆動指令信号の出力の割合とを変更する出力分配制御部であって、前記第1駆動指令信号および前記第2駆動指令信号のうち一方の出力割合を増加させると共に他方の出力割合を0よりも大きな値まで減少させる出力分配制御を行う出力分配制御部を備える
     パワーステアリング装置。
  2.  請求項1に記載のパワーステアリング装置であって、
     前記操舵機構の操舵トルクを検出して第1トルク信号を出力する第1検出部と、前記操舵トルクを検出して第2トルク信号を出力する第2検出部と、を有するトルクセンサを備え、
     前記コントローラは、
      前記第1トルク信号に基づき前記第1駆動指令信号を出力する第1マイクロプロセッサと、
      前記第1駆動指令信号に基づき前記第1アクチュエーション部に電力を供給する第1インバータと、
      前記第2トルク信号に基づき前記第2駆動指令信号を出力する第2マイクロプロセッサと、
      前記第2駆動指令信号に基づき前記第2アクチュエーション部に電力を供給する第2インバータと、
      前記トルクセンサ、前記第1マイクロプロセッサ、前記第1インバータ、前記第2マイクロプロセッサ、前記第2インバータ、前記第1アクチュエーション部、または前記第2アクチュエーション部の異常の有無を判断する異常判断部と
      を備え、
     前記出力分配制御部は、
      前記第1検出部、前記第1マイクロプロセッサ、前記第1インバータ、および前記第1アクチュエーション部から構成される第1系統のうちの何れかに異常有りと判断するとき、前記第1駆動指令信号の出力割合を減少させると共に前記第2駆動指令信号の出力割合を増加させ、
      前記第2検出部、前記第2マイクロプロセッサ、前記第2インバータ、および前記第2アクチュエーション部から構成される第2系統のうちの何れかに異常有りと判断するとき、前記第2駆動指令信号の出力割合を減少させると共に前記第1駆動指令信号の出力割合を増加させる
     パワーステアリング装置。
  3.  請求項2に記載のパワーステアリング装置であって、
     前記異常判断部は、前記第1系統または前記第2系統の異常を検出する異常検出部と、前記異常検出部が異常を検出した後、異常の確定をする異常確定部と、を備え、
     前記出力分配制御部は、前記異常検出部が異常を検出してから前記異常確定部が異常を確定するまでの間、前記出力分配制御を行う
     パワーステアリング装置。
  4.  請求項3に記載のパワーステアリング装置であって、
     前記出力分配制御部は、前記異常確定部が異常を確定するまでに前記出力分配制御を終了させる
     パワーステアリング装置。
  5.  請求項4に記載のパワーステアリング装置であって、
     前記出力分配制御部は、前記第1系統および前記第2系統のうち異常が検出された系統の出力割合を、前記異常確定部が異常を確定するまでに0とする
     パワーステアリング装置。
  6.  請求項3に記載のパワーステアリング装置であって、
     前記コントローラは、前記第1トルク信号または前記第2トルク信号に基づき、前記操舵機構に付与する前記操舵力の必要量を演算し、
     前記出力分配制御部は、前記必要量が、前記第1アクチュエーション部または前記第2アクチュエーション部単独で出力可能な操舵力を超えるとき、前記異常検出部が異常を検出してから前記異常確定部が異常を確定するまでの間、前記第1系統および前記第2系統のうち異常が検出された系統も継続して前記操舵力を発生するように前記出力分配制御を行う
     パワーステアリング装置。
  7.  請求項3に記載のパワーステアリング装置であって、
     前記コントローラは、前記第1トルク信号または前記第2トルク信号に基づき、前記操舵機構に付与する前記操舵力の必要量を演算し、
     前記出力分配制御部は、前記必要量が、前記第1アクチュエーション部または前記第2アクチュエーション部単独で出力可能な操舵力以下のとき、前記第1系統および前記第2系統のうち異常が検出された系統の出力割合を、前記異常確定部が異常を確定するまでに0とする
     パワーステアリング装置。
  8.  請求項2に記載のパワーステアリング装置であって、
     前記異常判断部は、前記第1マイクロプロセッサに設けられ、前記第1系統の異常の有無を判断する第1異常判断部と、前記第2マイクロプロセッサに設けられ、前記第2系統の異常の有無を判断する第2異常判断部と、を備え、
     前記出力分配制御部は、前記第1マイクロプロセッサに設けられた第1出力分配制御部と、前記第2マイクロプロセッサに設けられた第2出力分配制御部と、を備え、
     前記第1出力分配制御部は、前記第2系統に異常が有ることを表す信号を前記第2異常判断部から受信するとき、前記出力分配制御を開始し、
     前記第2出力分配制御部は、前記第1系統に異常が有ることを表す信号を前記第1異常判断部から受信するとき、前記出力分配制御を開始する
     パワーステアリング装置。
  9.  請求項8に記載のパワーステアリング装置であって、
     前記第1異常判断部は、前記第1系統の異常の原因に関する信号を前記第2マイクロプロセッサに送信し、
     前記第2異常判断部は、前記第2系統の異常の原因に関する信号を前記第1マイクロプロセッサに送信する
     パワーステアリング装置。
  10.  請求項9に記載のパワーステアリング装置であって、
     前記第1出力分配制御部は、前記第2系統の異常の原因が前記第2インバータまたは前記第2アクチュエーション部に起因する場合、前記第2検出部に起因する場合に比べ、前記出力分配制御を早く終了させ、
     前記第2出力分配制御部は、前記第1系統の異常の原因が前記第1インバータまたは前記第1アクチュエーション部に起因する場合、前記第1検出部に起因する場合に比べ、前記出力分配制御を早く終了させる
     パワーステアリング装置。
  11.  請求項10に記載のパワーステアリング装置であって、
     前記第1出力分配制御部は、前記第2系統の異常の原因が前記第2インバータまたは前記第2アクチュエーション部に起因する場合、前記第2異常判断部から前記第2系統に異常が有ることを表す信号を受信後、すぐに前記第2アクチュエーション部の出力割合が0となるように前記出力分配制御を行い、
     前記第2出力分配制御部は、前記第1系統の異常の原因が前記第1インバータまたは前記第1アクチュエーション部に起因する場合、前記第1異常判断部からの前記第1系統に異常が有ることを表す信号を受信後、すぐに前記第1アクチュエーション部の出力割合が0となるように前記出力分配制御を行う
     パワーステアリング装置。
  12.  請求項10に記載のパワーステアリング装置であって、
     前記異常判断部は、前記第1マイクロプロセッサに設けられ、前記第1異常検出部が前記第1系統の異常を検出した後、異常の確定をする第1異常確定部と、前記第2マイクロプロセッサに設けられ、前記第2異常検出部が前記第2系統の異常を検出した後、異常の確定をする第2異常確定部と、を備え、
     前記第1出力分配制御部は、前記第2系統の異常の原因が前記第2検出部に起因する場合、前記第1異常確定部により前記第1系統の異常が確定した後においても前記第1トルク信号を用いて前記第2アクチュエーション部が操舵力の付与を継続するように前記出力分配制御を行い。
     前記第2出力分配制御部は、前記第1系統の異常の原因が前記第1検出部に起因する場合、前記第2異常確定部により前記第2系統の異常が確定した後においても前記第2トルク信号を用いて前記第1アクチュエーション部が操舵力の付与を継続するように前記出力分配制御を行う
     パワーステアリング装置。
  13.  請求項8に記載のパワーステアリング装置であって、
     前記第1出力分配制御部は、前記第2異常判断部から前記第2系統に異常が有ることの信号を受信するとき、前記第1アクチュエーション部と前記第2アクチュエーション部との両方の前記出力の割合を決定し、
     前記第2出力分配制御部は、前記第1異常判断部から前記第1系統に異常があることの信号を受信するとき、前記第1アクチュエーション部と前記第2アクチュエーション部との両方の前記出力の割合を決定する
     パワーステアリング装置。
  14.  請求項13に記載のパワーステアリング装置であって、
     前記第1出力分配制御部は、前記第2系統に異常が有ることを表す信号を前記第2異常判断部から受信するとき、前記第2マイクロプロセッサに対しトルク指令値を出力し、
     前記第2出力分配制御部は、前記第1系統に異常が有ることを表す信号を前記第1異常判断部から受信するとき、前記第1マイクロプロセッサに対しトルク指令を出力する
     パワーステアリング装置。
  15.  請求項1に記載のパワーステアリング装置であって、
     前記出力分配制御部は、前記第1駆動信号および前記第2駆動信号のうち一方の出力割合を連続的に増加させると共に他方の出力割合を連続的に減少させる
     パワーステアリング装置。
  16.  請求項1に記載のパワーステアリング装置であって、
     前記コントローラは、前記第1駆動指令信号に対し上限値を設定する第1上限値設定部と、前記第2駆動指令信号に対し上限値を設定する第2上限値設定部と、を備え、
     前記出力分配制御部は、前記第1上限値設定部と前記第2上限値設定部の夫々を通過した信号に基づき前記出力分配制御を行う
     パワーステアリング装置。
PCT/JP2017/010713 2016-08-31 2017-03-16 パワーステアリング装置 WO2018042729A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/329,201 US20190193774A1 (en) 2016-08-31 2017-03-16 Power steering apparatus
CN201780045673.0A CN109476339A (zh) 2016-08-31 2017-03-16 动力转向装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016169974A JP2018034676A (ja) 2016-08-31 2016-08-31 パワーステアリング装置
JP2016-169974 2016-08-31

Publications (1)

Publication Number Publication Date
WO2018042729A1 true WO2018042729A1 (ja) 2018-03-08

Family

ID=61301187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010713 WO2018042729A1 (ja) 2016-08-31 2017-03-16 パワーステアリング装置

Country Status (4)

Country Link
US (1) US20190193774A1 (ja)
JP (1) JP2018034676A (ja)
CN (1) CN109476339A (ja)
WO (1) WO2018042729A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201900005582A1 (it) * 2019-04-11 2020-10-11 Ognibene Power Spa Apparato di sterzatura per veicoli
EP3865356A4 (en) * 2018-10-09 2021-12-01 Mitsubishi Electric Corporation ELECTRIC VEHICLE BRAKING DEVICE AND RELATED CONTROL PROCEDURE
CN114829230A (zh) * 2019-11-18 2022-07-29 株式会社万都 转向控制装置及转向控制方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7096679B2 (ja) 2018-03-16 2022-07-06 日立Astemo株式会社 モータ制御装置
JP7155763B2 (ja) * 2018-09-03 2022-10-19 株式会社ジェイテクト 車両制御装置
KR20200046792A (ko) * 2018-10-25 2020-05-07 현대자동차주식회사 Mdps 제어 방법
JP7236248B2 (ja) * 2018-10-29 2023-03-09 株式会社ジェイテクト モータ制御装置
CN114026776B (zh) * 2019-07-05 2022-07-05 三菱电机株式会社 异常诊断系统及异常诊断方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014007880A (ja) * 2012-06-26 2014-01-16 Mitsubishi Electric Corp 交流回転機の制御装置、及びその制御装置を備えた電動パワーステアリング装置
JP2016055825A (ja) * 2014-09-11 2016-04-21 日立オートモティブシステムズ株式会社 電動機の制御装置及び制御方法
WO2016063367A1 (ja) * 2014-10-22 2016-04-28 三菱電機株式会社 電動パワーステアリング装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2884942B2 (ja) * 1992-09-17 1999-04-19 株式会社日立製作所 電気車制御装置
JP5387989B2 (ja) * 2009-12-25 2014-01-15 株式会社デンソー 電動機駆動装置、および、これを用いた電動パワーステアリング装置
JP5590076B2 (ja) * 2012-07-04 2014-09-17 株式会社デンソー 多相回転機の制御装置
CN103419835B (zh) * 2013-07-22 2015-12-23 湖南大学 一种汽车线控转向系统及其控制方法
JP5904181B2 (ja) * 2013-09-20 2016-04-13 株式会社デンソー モータ制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014007880A (ja) * 2012-06-26 2014-01-16 Mitsubishi Electric Corp 交流回転機の制御装置、及びその制御装置を備えた電動パワーステアリング装置
JP2016055825A (ja) * 2014-09-11 2016-04-21 日立オートモティブシステムズ株式会社 電動機の制御装置及び制御方法
WO2016063367A1 (ja) * 2014-10-22 2016-04-28 三菱電機株式会社 電動パワーステアリング装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3865356A4 (en) * 2018-10-09 2021-12-01 Mitsubishi Electric Corporation ELECTRIC VEHICLE BRAKING DEVICE AND RELATED CONTROL PROCEDURE
IT201900005582A1 (it) * 2019-04-11 2020-10-11 Ognibene Power Spa Apparato di sterzatura per veicoli
EP3722183A1 (en) * 2019-04-11 2020-10-14 Ognibene Power S.P.A. Steering apparatus for vehicles
CN114829230A (zh) * 2019-11-18 2022-07-29 株式会社万都 转向控制装置及转向控制方法
CN114829230B (zh) * 2019-11-18 2024-05-28 汉拿万都株式会社 转向控制装置及转向控制方法

Also Published As

Publication number Publication date
CN109476339A (zh) 2019-03-15
JP2018034676A (ja) 2018-03-08
US20190193774A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
WO2018042729A1 (ja) パワーステアリング装置
KR101837332B1 (ko) 차량 탑재 기기의 제어 장치 및 파워 스티어링 장치
EP1698540B1 (en) Steering control apparatus
KR101845183B1 (ko) 파워 스티어링 장치 및 파워 스티어링 장치의 제어 장치
JP6078444B2 (ja) パワーステアリング装置および車両搭載機器の制御装置
JP5217794B2 (ja) 電気式動力舵取装置
WO2015040960A1 (ja) パワーステアリング装置および車両搭載機器の制御装置
EP2279927A2 (en) Electric power steering system
JP2008068777A (ja) 電動パワーステアリング装置
US11352049B2 (en) Power steering apparatus
EP2168843A2 (en) Electric power steering apparatus
EP2476590B1 (en) Power supply status diagnostic method and device
EP3715214B1 (en) Motor controller
JP2018158600A (ja) パワーステアリング装置
JP4248960B2 (ja) 伝達比可変操舵装置
EP2574523B1 (en) Vehicle steering system
US10800448B2 (en) Steering control apparatus
JP2010202062A (ja) 電動パワーステアリング装置
JP2009046005A (ja) 電気式動力舵取装置
JP4600005B2 (ja) 電動パワーステアリング装置の制御装置
JP5181540B2 (ja) 電動パワーステアリング装置
JP2019069666A (ja) 車両用制御装置
JP2019064483A (ja) 操舵制御装置
JP2004224158A (ja) 車両用操舵制御装置
JP2007261344A (ja) 電動パワーステアリング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17845740

Country of ref document: EP

Kind code of ref document: A1