WO2018041102A1 - 在线稳定化学钢化玻璃表面压应力的方法 - Google Patents

在线稳定化学钢化玻璃表面压应力的方法 Download PDF

Info

Publication number
WO2018041102A1
WO2018041102A1 PCT/CN2017/099520 CN2017099520W WO2018041102A1 WO 2018041102 A1 WO2018041102 A1 WO 2018041102A1 CN 2017099520 W CN2017099520 W CN 2017099520W WO 2018041102 A1 WO2018041102 A1 WO 2018041102A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
salt bath
basket
stabilizer
tempered
Prior art date
Application number
PCT/CN2017/099520
Other languages
English (en)
French (fr)
Inventor
胡伟
谈宝权
陈芳华
冯建彬
陈振宇
Original Assignee
深圳市东丽华科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市东丽华科技有限公司 filed Critical 深圳市东丽华科技有限公司
Priority to US15/800,122 priority Critical patent/US10618841B2/en
Publication of WO2018041102A1 publication Critical patent/WO2018041102A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/02Tempering or quenching glass products using liquid
    • C03B27/03Tempering or quenching glass products using liquid the liquid being a molten metal or a molten salt
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions

Definitions

  • the invention relates to a glass chemical tempering technology, in particular to a method for chemically tempering glass containing a salt bath of potassium nitrate, and more particularly to a method for compressing the surface compressive stress of a chemically tempered glass on-line.
  • CS Compressive Stress
  • the concentration of sodium and lithium ions in the salt bath containing potassium nitrate is gradually increased, and the concentration of potassium nitrate in the salt bath containing potassium nitrate is gradually decreased, resulting in a decrease in the CS value of the tempered glass.
  • the general operation is to take out a salt bath containing potassium nitrate having a reduced purity, and replace the fresh salt bath containing potassium nitrate.
  • the disadvantages of this approach are:
  • a salt bath containing potassium nitrate with low purity is discarded as waste.
  • the salt bath containing potassium nitrate discarded as waste is reduced from a molten state of about 400 ° C to a normal temperature, it becomes a large hardness and is not easily broken.
  • the potassium nitrate manufacturer needs to be crushed and dissolved at a high temperature before being recovered and purified, which consumes a large amount of energy, wastes resources, and has high cost.
  • the invention is directed to the fact that in the actual glass chemical tempering process, the sodium and lithium ion concentrations in the salt bath containing potassium nitrate are gradually increased with the increase of the glass area of the salt bath containing potassium nitrate, and the concentration of potassium nitrate in the salt bath containing potassium nitrate.
  • the problem of decreasing the CS value of the tempered glass is gradually reduced, and a method for stably compressing the surface compressive stress of the chemically tempered glass is proposed, which can stabilize the potassium nitrate by periodically adding a stabilizer to the salt bath containing potassium nitrate.
  • the content of sodium ions in the salt bath ensures that the CS value of the glass after chemical tempering can be stabilized in the required range, and at the same time solves the problem that the frequency of salt bath replacement in the chemical tempering production is too fast.
  • the invention provides a method for online compressing the surface compressive stress of a chemically tempered glass, comprising the following steps:
  • the glass and the stabilizer are taken out together with the strengthening furnace after reacting for a certain period of time under a certain temperature condition.
  • the mass of the stabilizer is 0.3% to 2% of the mass of the glass tempered salt bath.
  • the method comprises the following steps:
  • the basket is slowly placed in the strengthening furnace.
  • the carrier is fixed at the bottom of the basket.
  • the carrier includes:
  • a cubic storage box composed of a steel plate and a steel mesh for holding the stabilizer
  • a cubic frame structure composed of steel bars, and a plurality of the storage boxes are placed in the steel frame structure.
  • the basket has a plurality of square receiving compartments, and the plurality of fixing brackets are placed in a plurality of the receiving compartments in a one-to-one correspondence.
  • the top of the basket has a pulling portion for connecting a mechanical device capable of lifting or lowering the basket.
  • the method for implementing the on-line stable chemical tempered glass surface compressive stress has the following beneficial effects: the tempered glass and the stabilizer are placed together in a strengthening furnace containing a glass tempered salt bath, The presence of a stabilizer makes the impurity ion content in the glass tempering salt bath tend to be stable, thereby ensuring that the concentration of potassium nitrate therein tends to be stable, thereby ensuring that the CS value of the chemically tempered glass can be stabilized in a required range, and At the same time, it solves the problem that the frequency of replacement of potassium nitrate in the prior art chemical tempering production is too fast, resulting in an increase in production cost, a decrease in production efficiency, and an increase in environmental pollution.
  • the technical problem to be solved by the present invention is: in the actual production process of the strength of the salt bath tempered glass containing potassium nitrate, the sodium ion and lithium on the surface of the glass increase with the increase of the amount of the glass product in the salt bath containing potassium nitrate.
  • the ions pass through the ion exchange reaction and continuously enter the salt bath containing potassium nitrate.
  • the concentration of impurity ions such as sodium and lithium in the salt bath containing potassium nitrate is gradually increased, and the concentration of potassium nitrate in the salt bath containing potassium nitrate is gradually reduced, resulting in tempering.
  • the CS value of the glass drops.
  • the technical solution to solve the technical problem proposed by the present invention is to propose a method for stabilizing the tempering ability of a salt bath containing potassium nitrate with a chemical tempering glass.
  • the core idea is to put the glass to be tempered together with the stabilizer into the glass.
  • the concentration of impurity ions in the glass tempering salt bath tends to be stabilized due to the presence of the stabilizer, thereby ensuring that the concentration of potassium nitrate therein is stabilized at a relatively high level.
  • the strength of the chemical tempered glass is improved, the frequency of replacement of potassium nitrate is lowered, the production cost is lowered, the productivity of the chemical tempering production and the production capacity are increased, and environmental pollution is reduced.
  • the method for onlinely stabilizing the surface compressive stress of chemically tempered glass comprises the following steps:
  • a plurality of glasses to be tempered are vertically arranged in a holder made of a stainless steel material.
  • the fixing frame is provided with two layers, each layer accommodating 30 to 40 pieces of glass to be tempered, and a gap between adjacent two glasses, thereby ensuring that the surface of each piece of glass can be fully chemically tempered with glass. contact.
  • the basket has 20 to 40 square receiving compartments, and the fixing brackets are placed in the receiving compartments one by one.
  • the top of the basket has a pull-up for attaching a mechanical device that can lift or lower the basket.
  • a stabilizer having a mass of 0.3% to 2% by mass of the glass tempered salt bath is laid in a carrier made of a stainless steel material.
  • the stabilizer belongs to an ion sieve material and is in the form of flakes, including SiO 2 , an auxiliary material and a functional metal oxide.
  • SiO 2 is an essential component of the ceramic substrate; the auxiliary material forms a covalent bond with SiO 2 .
  • the functional metal oxide absorbs impurity ions in the glass chemical tempering salt bath by chemically reacting with impurity ions in the glass chemical tempering salt bath.
  • the carrier comprises a cubic storage box composed of a steel plate and a steel mesh, and a cubic frame structure composed of a steel strip.
  • the stabilizer is uniformly laid in the storage box, and then the The storage box is placed in the steel frame structure, thereby facilitating the addition and replacement of the stabilizer.
  • the basket is slowly lifted from the reinforced furnace, and then the glass in the holder is taken out and washed to obtain a glass having a stable stress value.
  • the stabilizer in the vehicle depending on the actual production situation, it may be selected and removed together with the tempered glass of the batch, or may continue to be used together with the next batch of tempered glass.
  • the embodiment provides a method for stably compressing the surface compressive stress of a chemically tempered glass, comprising the following steps:
  • the first batch of glass to be tempered (the model of the glass is Gorrila 4 glass manufactured by Corning Incorporated, USA) is vertically arranged in a holder made of stainless steel.
  • the holder holds 30 sheets of tempered glass per layer, and the adjacent two glasses are parallel to each other and 10 cm apart.
  • the basket has 30 square receiving compartments, and the fixing brackets are placed in the receiving compartments one by one.
  • a stabilizer having a mass of 0.8% by mass of the glass tempered salt bath was uniformly spread in a carrier made of a stainless steel material.
  • the composition of the stabilizer is shown in Table 1-1.
  • the method for compressing the surface compressive stress of the on-line stabilized chemically tempered glass provided by the present embodiment can effectively stabilize the surface compressive stress value of the tempered glass produced in each batch, and the stable range is 817-823 Mpa. between
  • the embodiment provides a method for stably compressing the surface compressive stress of a chemically tempered glass, comprising the following steps:
  • a solid salt of 80 kg of potassium nitrate and 20 kg of sodium nitrate was added to the fortified furnace, heated to 450 ° C to be melted into a molten liquid, and stirred uniformly to obtain a glass tempered salt bath.
  • the first batch of glass to be tempered (the model of the glass is Gorilla 5 glass manufactured by Corning, Inc.) is vertically arranged in a holder made of stainless steel.
  • the holder holds 30 sheets of tempered glass per layer, and the adjacent two glasses are parallel to each other and 10 cm apart.
  • the basket has 30 square receiving compartments, and the fixing brackets are placed in the receiving compartments one by one.
  • a stabilizer having a mass of 2% by mass of the glass tempered salt bath was uniformly spread in a carrier made of a stainless steel material.
  • the composition of the stabilizer is shown in Table 2-1.
  • the stabilizer in the carrier is replaced once, and the added amount is still 2% of the mass of the glass tempered salt bath.
  • a total of ten batches of tempered glass were produced, and the average surface compressive stress values of each batch of tempered glass were respectively measured, as shown in Table 2-2.
  • the method for compressing the surface compressive stress of the in-line stabilized chemically tempered glass provided by the embodiment can also effectively stabilize the surface compressive stress value of the tempered glass produced in each batch, and the stable range is 817-825 Mpa. between.
  • the method for implementing the on-line stable chemical tempered glass surface compressive stress provided by the present invention has the following beneficial effects:
  • the tempered glass and the stabilizer are placed together in a strengthening furnace containing a glass tempering salt bath. Since the stabilizer absorbs impurity ions such as sodium and lithium in the glass tempering salt bath, the effective substance content in the salt bath tends to be Stable, it can ensure that the concentration of potassium nitrate is stable at a high level, thus ensuring that the surface compressive stress value of the glass after chemical tempering can be stabilized at a higher level, and at the same time, the prior art chemical tempering production is solved. The replacement frequency of potassium nitrate is too fast, resulting in an increase in production costs, a decrease in production efficiency, and an increase in environmental pollution.
  • the fixed frame, the carrier and the basket are used as carriers for the tempered glass and the stabilizer, which facilitates the batch input and removal of the glass in the production process, and the replacement of the stabilizer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

一种在线稳定化学钢化玻璃表面压应力的方法,包括以下步骤:将待钢化玻璃与稳定剂一起放入盛有玻璃钢化盐浴的强化炉中;在一定的温度条件下反应一段时间后将该玻璃和稳定剂一起取出强化炉。该稳定剂与玻璃钢化盐浴中的杂质离子发生化学反应去除盐浴中的杂质离子,使得玻璃钢化盐浴中的杂质离子含量趋于稳定,而不逐步累积,可保证盐浴主要成分浓度趋于稳定,从而保证经化学钢化处理后的玻璃的表面压应力(CS)值能稳定在符合要求的区间。

Description

在线稳定化学钢化玻璃表面压应力的方法
本发明涉及玻璃化学钢化技术,尤其涉及一种含有硝酸钾的盐浴化学钢化玻璃的方法,更具体而言,涉及一种在线稳定化学钢化玻璃表面压应力的方法。
在玻璃加工业中,经常利用化学钢化技术提高普通玻璃的强度,其原理是把需要钢化的玻璃或玻璃制品放置在高温熔融的含有硝酸钾的盐浴中浸泡一定时间,通过将玻璃中小离子半径的钠、锂离子和含有硝酸钾的盐浴中更大离子半径的钾离子进行置换,从而使玻璃表面产生压缩应力层,达到提高玻璃强度的目的。
业内人士通常以表面压缩应力(Compressive Stress:CS)作为评价玻璃化学钢化效果的指标,试验表明,含有硝酸钾的盐浴中的硝酸钾纯度越高,钢化后玻璃CS值越高,玻璃化学钢化的效果越好。反之,当含有硝酸钾的盐浴中的硝酸钾纯度降低时,钢化后玻璃CS值越低,玻璃化学钢化的效果越差。分析表明,CS值下降的主要原因在于:含有硝酸钾的盐浴被因离子交换而从玻璃中释放出的钠、锂离子稀释、污染,随着含有硝酸钾的盐浴处理玻璃面积的增加,含有硝酸钾的盐浴中钠、锂离子浓度逐步增加,含有硝酸钾的盐浴中硝酸钾浓度逐步减小,造成钢化玻璃的CS值下降。
目前,为了能够获得CS值符合要求的钢化玻璃,一般作业就是将纯度降低的含有硝酸钾的盐浴取出,重新更换新鲜的含有硝酸钾的盐浴。这种处理方法的弊端有:
1)纯度低的含有硝酸钾的盐浴则当成废弃物丢弃。当成废弃物丢弃的含有硝酸钾的盐浴从400℃左右的熔融态降到常温时会变成硬度较强的大块,不易破碎。要想回收当成废弃物丢弃的硝酸钾,硝酸钾厂家回收提纯前需要对其进行破碎和高温溶解处理,能耗较大,浪费资源,成本高。
2)更换一次含有硝酸钾的盐浴包括停机清理废弃盐浴以及化学强化炉内壁,加入含有硝酸钾的盐浴再加热融化以及恒温,更换盐浴到再生产的整个过程需停止生产 4~5天,因此而导致机台稼动率(指一台机器设备可能的生产数量与实际生产数量的比值)降低,生产的实际产能效率降低。
3)含有硝酸钾的盐浴的消耗为化学钢化生产的主要成本,玻璃强度要求越高,其更换频率越高,化学钢化成本也随着增加。
因此,为了何降低含有硝酸钾的盐浴的更换频率,提高盐浴的利用率,为企业降低成本,创造效益,有必要设计一种在线稳定化学钢化玻璃表面压应力的方法。
发明内容
本发明针对在实际玻璃化学钢化工艺中,随着含有硝酸钾的盐浴处理玻璃面积的增加,含有硝酸钾的盐浴中钠、锂离子浓度逐步增加,含有硝酸钾的盐浴中硝酸钾浓度逐步减小,造成钢化玻璃的CS值下降的问题,提出了一种在线稳定化学钢化玻璃表面压应力的方法,其可通过向含有硝酸钾的盐浴中定时地添加稳定剂来稳定含有硝酸钾的盐浴中钠离子的含量,从而保证经化学钢化处理后的玻璃的CS值能稳定在符合要求的区间,且同时解决了化学钢化生产中盐浴更换频率过快的问题。
本发明提出的技术方案如下:
本发明提供了一种在线稳定化学钢化玻璃表面压应力的方法,包括以下步骤:
将待钢化玻璃与稳定剂一起放入盛有玻璃钢化盐浴的强化炉中;
在一定的温度条件下反应一段时间后将所述玻璃和稳定剂一起取出所述强化炉。
在本发明提供的在线稳定化学钢化玻璃表面压应力的方法中,所述稳定剂的质量为所述玻璃钢化盐浴质量的0.3%~2%。
在本发明提供的在线稳定化学钢化玻璃表面压应力的方法中,所述方法包括以下步骤:
将多块所述玻璃竖直地排列在由不锈钢材料制成固定架中;
将所述稳定剂铺设在由不锈钢材料制成载具中;
将多个所述固定架放置于由不锈钢材料制成的提篮中;
将所述载具固定于所述体提篮上;
将所述提篮缓慢放入所述强化炉中。
在本发明提供的在线稳定化学钢化玻璃表面压应力的方法中,将所述载具固定在所述提篮的底部。
在本发明提供的在线稳定化学钢化玻璃表面压应力的方法中,
所述载具包括:
由钢板和钢网构成的呈立方状的收容盒,用于盛放所述稳定剂;
由钢条构成的呈立方状的框架结构,多个所述收容盒放置于所述钢架结构中。
在本发明提供的在线稳定化学钢化玻璃表面压应力的方法中,所述提篮具有多个方形的收容格,多个所述固定架一一对应的放置于多个所述收容格中。
在本发明提供的在线稳定化学钢化玻璃表面压应力的方法中,所述提篮具顶部具有一提拉部,用于连接可将所述提篮提起或放下的机械装置。
与现有技术相比,实施本发明提供的在线稳定化学钢化玻璃表面压应力的方法,具有以下有益效果:将待钢化玻璃与稳定剂一起放入盛有玻璃钢化盐浴的强化炉中,由于稳定剂存在使得玻璃钢化盐浴中的杂质离子含量趋于稳定,即可保证其中的硝酸钾浓度趋于稳定,从而保证经化学钢化处理后的玻璃的CS值能稳定在符合要求的区间,且同时解决了现有技术化学钢化生产中硝酸钾更换频率过快而造成生产成本增加,生产效率降低,环境污染加重的问题。
具体实施方式
本发明所要解决的技术问题是:在实际的含有硝酸钾的盐浴钢化玻璃强度的生产工艺中,随着投入含有硝酸钾的盐浴中的玻璃产品的数量增加,玻璃表面的钠离子、锂离子通过离子交换反应,不断进入到含有硝酸钾的盐浴中,含有硝酸钾的盐浴中钠、锂等杂质离子浓度逐步增加,含有硝酸钾的盐浴中硝酸钾浓度逐步减小,造成钢化玻璃的CS值下降的。本发明提出的解决该技术问题的技术方案是:提出一种稳定玻璃化学钢化用含有硝酸钾的盐浴钢化能力的方法,其核心思想是:将待钢化玻璃与稳定剂一起放入盛有玻璃钢化盐浴的强化炉中,由于稳定剂存在使得玻璃钢化盐浴中的杂质离子含量趋于稳定,即可保证其中的硝酸钾浓度稳定在较高水平。由此,与现有技术相比,提高了化学钢化玻璃的强度,降低了硝酸钾的更换频率,降低生产成本,提升的化学钢化生产的机台稼动率以及产能,减少了环境污染。
为了使本发明的技术目的、技术方案以及技术效果更为清楚,以便于本领域技术人员理解和实施本发明,下面将结合附图及具体实施例对本发明做进一步详细的说明。
本发明提供的在线稳定化学钢化玻璃表面压应力的方法中,包括以下步骤:
(1)制备玻璃化学钢化盐浴。在强化炉中加入含有固体硝酸钾的盐,加热至380~450℃使其融化成熔融液体,并搅拌均匀,由此得到玻璃化学钢化盐浴。
(2)将若干个待钢化的玻璃竖直地排列在一个由不锈钢材料制成固定架中。所述固定架共设有两层,每层容纳30~40片待钢化的玻璃,相邻的两个玻璃之间具有间隙,由此保证每片玻璃的表面均能与玻璃化学钢化盐浴充分接触。
(3)将20~40个摆放有待钢化玻璃的所述固定架放置于一个由不锈钢材料制成的提篮中。所述提篮具有20~40个方形的收容格,所述固定架一一对应的放置于所述收容格中。所述提篮具顶部具有一提拉部,用于连接可将所述提篮提起或放下的机械装置。
(4)将质量为所述玻璃钢化盐浴质量的0.3%~2%的稳定剂铺设在由不锈钢材料制成载具中。所述稳定剂属于一种离子筛材料,呈薄片状,包括SiO2,辅料和功能性金属氧化物,其中,SiO2作为陶瓷基材是必备的组分;辅料和SiO2形成共价键来组成离子筛网络结构的骨架;功能性金属氧化物通过与所述玻璃化学钢化盐浴中的杂质离子发生化学反应而吸收玻璃化学钢化盐浴中的杂质离子。所述载具包括由钢板和钢网构成的呈立方状的收容盒以及由钢条构成的呈立方状的框架结构,先将所述稳定剂均匀的铺设在所述收容盒中,再将所述收容盒放置于所述钢架结构中,由此方便所述稳定剂的添加与更换。
(5)将所述载具固定在所述提篮的底部。由于在玻璃钢化作业过程中,所述强化炉中底部的玻璃钢化盐浴更容易积累杂质离子,将盛有稳定剂的载具固定在提篮的底部有利于玻璃钢化盐浴中杂质离子的去除。
(6)将所述提篮缓慢放入所述预热炉中,使得预热炉中的熔融液体浸没提篮中全部的待钢化的玻璃,在300~380℃的温度条件下预热0.5~1h。
(7)将所述提篮从预热炉中缓慢的转移至强化炉中,使得强化炉中的玻璃钢化盐浴浸没提篮中全部的待钢化的玻璃,在400~450℃的温度条件下进行离子交换反应3~5小时。
(8)将所述提篮从强化炉中慢慢提出,随后将固定架中的玻璃取出并洗净即可得到应力值处于一个稳定区间的玻璃。而对于载具中的稳定剂,则根据实际生产情况,可选择与该批次经钢化后的玻璃一起取出并更新,也可选择继续随下一批待钢化玻璃一起使用。
下面将通过具体实施例对本发明进行详细说明。
实施例1
本实施例提供一种在线稳定化学钢化玻璃表面压应力的方法,包括以下步骤:
(1)在强化炉中加入100kg硝酸钾固体,加热至420℃使其融化成熔融液体,并搅拌均匀,得到玻璃钢化盐浴。
(2)将第一批待钢化的玻璃(玻璃的型号是美国康宁公司生产的Gorrila4玻璃)竖直地排列在一个由不锈钢材料制成固定架中。所述固定架每层容纳30片待钢化的玻璃,相邻的两个玻璃相互平行且相距10cm。
(3)将30个摆放有待钢化玻璃的所述固定架放置于一个由不锈钢材料制成的提篮中。所述提篮具有30个方形的收容格,所述固定架一一对应的放置于所述收容格中。
(4)将质量为所述玻璃钢化盐浴质量的0.8%的稳定剂均匀地平铺在由不锈钢材料制成的载具中。所述稳定剂的组成如表1-1所示。
组分名称 质量比
SiO2 35.0
辅料 B2O3 10.0
Al2O3 10.0
ZrO2 5.0
Bi2O3 15.0
功能性金属氧化物 K2O 25.0
总计 100.0
(5)将所述载具固定在所述提篮的底部。
(6)将所述提篮缓慢放入所述预热炉中,在温度为300℃的空气中预热0.5h。
(7)将所述提篮从预热炉中缓慢的转移至强化炉中,使得强化炉中的玻璃钢化盐浴浸没提篮中全部的待钢化的玻璃,在420℃的温度条件下进行离子交换反应5小时。
(8)将所述提篮从强化炉中慢慢提出,随后将固定架中的玻璃取出并洗净即可得到第一批钢化玻璃。同时,取出载具中的稳定剂。
(9)在固定架中放入第二批待钢化的玻璃,在载具中均匀的铺设新的质量为所述玻璃钢化盐浴质量的0.8%的稳定剂,将固定架与载具重新固定在提篮中,然后重复步骤(6)、(7)、(8)得到第二批钢化玻璃。
本实施例按上述步骤生产了六批钢化玻璃,并分别检测了每一批钢化玻璃的平均表面压应力值,如表1-2所示。
批次 表面压应力/Mpa
第一批 823
第二批 821
第三批 819
第四批 822
第五批 817
第六批 818
由实际生产结果充分证明,本实施例提供的在线稳定化学钢化玻璃表面压应力的方法确实可以有效的稳定每一批次生产出的钢化玻璃的表面压应力值,其稳定区间在817~823 Mpa之间
实施例2
本实施例提供一种在线稳定化学钢化玻璃表面压应力的方法,包括以下步骤:
(1)在强化炉中加入80kg硝酸钾和20kg硝酸钠混合固体盐,加热至450℃使其融化成熔融液体,并搅拌均匀,得到玻璃钢化盐浴。
(2)将第一批待钢化的玻璃(玻璃的型号是美国康宁公司生产的Gorilla5玻璃)竖直地排列在一个由不锈钢材料制成固定架中。所述固定架每层容纳30片待钢化的玻璃,相邻的两个玻璃相互平行且相距10cm。
(3)将30个摆放有待钢化玻璃的所述固定架放置于一个由不锈钢材料制成的提篮中。所述提篮具有30个方形的收容格,所述固定架一一对应的放置于所述收容格中。
(4)将质量为所述玻璃钢化盐浴质量的2%的稳定剂均匀地平铺在由不锈钢材料制成载具中。所述稳定剂的组成如表2-1所示。
组分名称 质量比
SiO2 40.0
辅料 P2O5 5.0
B2O3 4.5
Al2O3 5.0
ZrO2 1.5
Bi2O3 2.0
TiO2 2.0
功能性金属氧化物 K2O 30.0
总计 100.0
(5)将所述载具固定在所述提篮的底部。
(6)将所述提篮缓慢放入所述预热炉中,在300℃温度空气条件下预热0.5h。
(7)将所述提篮从预热炉中缓慢的转移至强化炉中,使得强化炉中的玻璃钢化盐浴浸没提篮中全部的待钢化的玻璃,在450℃的温度条件下进行离子交换反应5小时。
(8)将所述提篮从强化炉中慢慢提出,随后将固定架中的玻璃取出并洗净即可得到第一批钢化玻璃。载具中的稳定剂不取出,随下一次钢化作业继续使用。
(9)在固定架中放入第二批待钢化的玻璃,将固定架重新固定在提篮中,然后重复步骤(6)、(7)、(8)得到第二批钢化玻璃。
在本实施例中,按上述步骤生产第六批钢化玻璃时,将载具中稳定剂进行一次更换,其添加量仍然是所述玻璃钢化盐浴质量的2%。本实施例总共生产了十批钢化玻璃,并分别检测了每一批钢化玻璃的平均表面压应力值,如表2-2所示。
批次 表面压应力/Mpa
第一批 823
第二批 821
第三批 819
第四批 820
第五批 817
第六批 825
第七批 820
第八批 818
第九批 817
第十批 819
由实际生产结果充分证明,本实施例提供的在线稳定化学钢化玻璃表面压应力的方法同样可以有效的稳定每一批次生产出的钢化玻璃的表面压应力值,其稳定区间在817~825 Mpa之间。
综上,实施本发明提供的在线稳定化学钢化玻璃表面压应力的方法,具有以下有益效果:
1、将待钢化玻璃与稳定剂一起放入盛有玻璃钢化盐浴的强化炉中,由于稳定剂吸收了玻璃钢化盐浴中的钠、锂等杂质离子,使得盐浴中有效物质含量趋于稳定,即可保证其中的硝酸钾浓度稳定在较高的水平,从而保证经化学钢化处理后的玻璃的表面压应力值能稳定在较高水平的区间,且同时解决了现有技术化学钢化生产中硝酸钾更换频率过快而造成生产成本增加,生产效率降低,环境污染加重的问题。
2、利用固定架、载具以及提篮作为待钢化玻璃和稳定剂的载体,方便生产过程中玻璃的批量投入与取出,以及稳定剂的更换。
应当理解的是,本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护范围之内。

Claims (7)

  1. 一种在线稳定化学钢化玻璃表面压应力的方法,其特征在于,所述方法包括以下步骤:
    将待钢化玻璃与稳定剂一起放入盛有玻璃钢化盐浴的强化炉中;
    在一定的温度条件下反应一段时间后将所述玻璃和稳定剂一起取出所述强化炉。
  2. 根据权利要求1所述的在线稳定化学钢化玻璃表面压应力的方法,其特征在于,所述稳定剂的质量为所述玻璃钢化盐浴质量的0.3%~2%。
  3. 根据权利要求1所述的在线稳定化学钢化玻璃表面压应力的方法,其特征在于,所述方法包括以下步骤:
    将多块所述玻璃竖直地排列在由不锈钢材料制成固定架中;
    将所述稳定剂铺设在由不锈钢材料制成载具中;
    将多个所述固定架放置于由不锈钢材料制成的提篮中;
    将所述载具固定于所述体提篮上;
    将所述提篮缓慢放入所述强化炉中。
  4. 根据权利要求3所述的在线稳定化学钢化玻璃表面压应力的方法,其特征在于,将所述载具固定在所述提篮的底部。
  5. 根据权利要求3所述的在线稳定化学钢化玻璃表面压应力的方法,其特征在于,所述载具包括:
    由钢板和钢网构成的呈立方状的收容盒,用于盛放所述稳定剂;
    由钢条构成的呈立方状的框架结构,多个所述收容盒放置于所述钢架结构中。
  6. 根据权利要求3所述的在线稳定化学钢化玻璃表面压应力的方法,其特征在于,所述提篮具有多个方形的收容格,多个所述固定架一一对应的放置于多个所述收容格中。
  7. 根据权利要求3所述的在线稳定化学钢化玻璃表面压应力的方法,其特征在于,所述提篮具顶部具有一提拉部,用于连接可将所述提篮提起或放下的机械装置。
PCT/CN2017/099520 2016-08-30 2017-08-29 在线稳定化学钢化玻璃表面压应力的方法 WO2018041102A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/800,122 US10618841B2 (en) 2016-08-30 2017-11-01 On-line method for stabilizing surface compressive stress of chemically-tempered glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610780982.XA CN107793044B (zh) 2016-08-30 2016-08-30 在线稳定化学钢化玻璃表面压应力的方法
CN201610780982.X 2016-08-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/800,122 Continuation US10618841B2 (en) 2016-08-30 2017-11-01 On-line method for stabilizing surface compressive stress of chemically-tempered glass

Publications (1)

Publication Number Publication Date
WO2018041102A1 true WO2018041102A1 (zh) 2018-03-08

Family

ID=61300128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099520 WO2018041102A1 (zh) 2016-08-30 2017-08-29 在线稳定化学钢化玻璃表面压应力的方法

Country Status (2)

Country Link
CN (1) CN107793044B (zh)
WO (1) WO2018041102A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113165968A (zh) * 2018-11-30 2021-07-23 康宁股份有限公司 输送固体化学物质及在熔融盐浴中保留淤渣的设备和方法
CN112645608B (zh) * 2019-10-16 2023-05-30 重庆鑫景特种玻璃有限公司 无硅盐浴提纯添加剂材料及其使用方法
CN112608033A (zh) * 2020-09-12 2021-04-06 重庆鑫景特种玻璃有限公司 一种化学强化微晶玻璃及强化方法
CN116768493A (zh) * 2020-09-12 2023-09-19 重庆鑫景特种玻璃有限公司 无硼、无磷高稳定性的离子筛及其制备和应用
CN113480196A (zh) * 2021-07-30 2021-10-08 Oppo广东移动通信有限公司 用于玻璃强化的组合物及其制备方法和玻璃强化方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103864283A (zh) * 2014-03-10 2014-06-18 中国洛阳浮法玻璃集团有限责任公司 一种薄玻璃化学钢化的离子交换工艺及熔盐
CN104743866A (zh) * 2013-12-30 2015-07-01 黄涛 一种化学强化盐浴添加剂及其制备方法
CN104788013A (zh) * 2015-04-13 2015-07-22 北京航玻新材料技术有限公司 化学钢化及去除化学钢化硝酸钾熔盐中杂质的方法
CN204702649U (zh) * 2015-05-30 2015-10-14 广东特纳江玻实业发展有限公司 一种用于玻璃钢化炉的吊篮

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101372392B (zh) * 2007-08-20 2012-01-25 比亚迪股份有限公司 一种用于玻璃化学强化的催化剂及其应用
CN101372393B (zh) * 2007-08-20 2011-10-12 比亚迪股份有限公司 一种玻璃化学强化的催化剂、制备方法及其应用
CN102092940A (zh) * 2009-12-11 2011-06-15 肖特公开股份有限公司 用于触摸屏的铝硅酸盐玻璃
CN102167507B (zh) * 2010-02-26 2016-03-16 肖特玻璃科技(苏州)有限公司 用于3d紧密模压的薄锂铝硅玻璃
WO2014045979A1 (ja) * 2012-09-18 2014-03-27 旭硝子株式会社 化学強化ガラスの製造方法
WO2014045977A1 (ja) * 2012-09-18 2014-03-27 旭硝子株式会社 ガラス化学強化用溶融塩の再生方法及び強化ガラスの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104743866A (zh) * 2013-12-30 2015-07-01 黄涛 一种化学强化盐浴添加剂及其制备方法
CN103864283A (zh) * 2014-03-10 2014-06-18 中国洛阳浮法玻璃集团有限责任公司 一种薄玻璃化学钢化的离子交换工艺及熔盐
CN104788013A (zh) * 2015-04-13 2015-07-22 北京航玻新材料技术有限公司 化学钢化及去除化学钢化硝酸钾熔盐中杂质的方法
CN204702649U (zh) * 2015-05-30 2015-10-14 广东特纳江玻实业发展有限公司 一种用于玻璃钢化炉的吊篮

Also Published As

Publication number Publication date
CN107793044A (zh) 2018-03-13
CN107793044B (zh) 2020-07-03

Similar Documents

Publication Publication Date Title
WO2018041102A1 (zh) 在线稳定化学钢化玻璃表面压应力的方法
US10618841B2 (en) On-line method for stabilizing surface compressive stress of chemically-tempered glass
US9764980B2 (en) Glass composition, glass composition for chemical strengthening, strengthened glass article, and cover glass for display
CN107793043B (zh) 提高玻璃化学强化盐浴使用寿命的方法
US9783451B2 (en) Glass composition, glass composition for chemical strengthening, strengthened glass article, and cover glass for display
US20150166407A1 (en) Strengthened glass and methods for making utilizing electric field assist
JP5964370B2 (ja) 表面損傷に対して優れた耐性を有するガラスおよびその製造方法
US20150368145A1 (en) Glass composition, glass composition for chemical strengthening, strengthened glass article, and cover glass for display
CN102503101A (zh) 添加剂及玻璃的化学钢化工艺
WO2015080095A1 (ja) ガラス化学強化用溶融塩の再生方法
EP2371779A1 (en) Method for producing flat glass and glass pane produced according to this method
CN110342834B (zh) 玻璃及其强化方法
US11648549B2 (en) Ion exchange systems and methods for ion exchanging glass articles
US20200062642A1 (en) Low temperature chemical strengthening process for glass
CN110577355A (zh) 一种纳米晶玻璃陶瓷的强化方法
KR20060005920A (ko) 유리패널의 제조방법
US9688573B2 (en) Glass composition, chemically strengthened glass, and glass substrate for information recording medium
US20230312410A1 (en) Regeneration material for regeneration of a salt melt used for a glass toughening and/or glass strengthening process
CN114292034A (zh) 一种抗耐摔锂铝硅玻璃化学强化方法
JP6041004B2 (ja) ガラス基板
CN114956575A (zh) 一种具有高表面压应力的微晶玻璃及其制备方法
CN117486503A (zh) 一种玻璃连续式化学强化系统、工艺及强化玻璃
TW202321176A (zh) 用於玻璃硬化和(或)玻璃強化製程的熔鹽的再生方法
CN108238709A (zh) 一种嵌套式石英砂熔炼炉及其工作方法
JPS6123314A (ja) 石英ガラス製炉芯管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845404

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17845404

Country of ref document: EP

Kind code of ref document: A1