WO2018037910A1 - 電池用カーボンブラック、電極用導電性組成物、電池用電極、および電池 - Google Patents

電池用カーボンブラック、電極用導電性組成物、電池用電極、および電池 Download PDF

Info

Publication number
WO2018037910A1
WO2018037910A1 PCT/JP2017/028762 JP2017028762W WO2018037910A1 WO 2018037910 A1 WO2018037910 A1 WO 2018037910A1 JP 2017028762 W JP2017028762 W JP 2017028762W WO 2018037910 A1 WO2018037910 A1 WO 2018037910A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
carbon black
electrode
batteries
conductive composition
Prior art date
Application number
PCT/JP2017/028762
Other languages
English (en)
French (fr)
Inventor
達也 永井
真一朗 大角
大貴 池田
哲哉 伊藤
横田 博
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to KR1020197008250A priority Critical patent/KR102411086B1/ko
Priority to US16/327,265 priority patent/US11098201B2/en
Priority to EP17843395.9A priority patent/EP3506402B1/en
Priority to CN201780051852.5A priority patent/CN109643802B/zh
Priority to JP2018535587A priority patent/JP6937761B2/ja
Publication of WO2018037910A1 publication Critical patent/WO2018037910A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • C09C1/54Acetylene black; thermal black ; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a carbon black for a battery, an electrode conductive composition using the same, a battery electrode, and a battery.
  • the content of the conductive agent in the electrode mixture is typically 2 mass percent or less, and more preferably 1 mass percent or less.
  • carbon black which is a conductive agent, is required to exhibit sufficient electronic conductivity even when added in a small amount.
  • carbon black has a structure in which primary particles close to a spherical shape are connected on a bead as a common structure, and such a structure is called a structure.
  • a structure In general, the smaller the primary particle diameter, the more electrical contacts exist in the same mass of the conductive agent, and the electronic conductivity is improved. Also, the longer the structure is connected, the greater the distance that can be conducted without contact resistance, so that the electron conductivity is improved.
  • carbon black with a small primary particle size and a long structure is excellent in conductivity, but has an aspect that it is difficult to disintegrate and easily aggregate because the interaction between particles is large. Therefore, a method of applying a conductive composition for an electrode in which an active material, a conductive agent, and a binder are dispersed in water or an organic solvent to a metal foil is generally used at the time of manufacturing an electrode, but carbon having a small primary particle size and a long structure.
  • black is used as the conductive agent, aggregates of the conductive agent remain in the conductive composition for the electrode, resulting in unevenness on the electrode, or the viscosity in the conductive composition for the electrode is too high to be applied. Insufficient dispersion of the conductive agent is likely to occur.
  • Patent Document 1 proposes to perform kneading in two stages of kneading and dilution / dispersion.
  • the carbon black having a small primary particle diameter and a long structure as described above exhibits a sufficient effect.
  • Patent Document 2 As a means for overcoming the poor dispersion of the conductive agent, there is a method of adding a polyvinyl pyrrolidone polymer and a nonionic surfactant as a dispersant (Patent Document 2).
  • Patent Document 3 proposes that carbon black has a crystallite diameter (La) in the range of 22 to 50 mm to exhibit high conductivity, but the dispersibility of carbon black is sufficient. The effect cannot be demonstrated.
  • An object of the present invention is to provide a carbon black for a battery that has good dispersibility, electronic conductivity, and oxidation resistance in view of the above problems and circumstances.
  • the conductive composition for low-viscosity electrodes produced using this carbon black, the low-resistance battery electrode produced using them, and the battery having excellent cycle characteristics and excellent high output characteristics The purpose is to provide.
  • this invention which solves the said subject is comprised from the following.
  • a carbon black for a battery characterized in that the number of CO 2 desorption molecules per unit is 8.0 ⁇ 10 16 to 15 ⁇ 10 16 molecules / m 2 .
  • the inventors of the present invention have a BET specific surface area of 50 to 220 m 2 / g, a crystallite diameter (La) of 30 to 42 mm, and a temperature-programmed desorption gas analysis method (measurement temperature 50 ° C.).
  • the carbon black for a battery having a CO 2 desorption molecule number per unit surface area of 8.0 ⁇ 10 16 to 15 ⁇ 10 16 molecules / m 2 at a temperature of up to 1200 ° C. can achieve both high dispersibility and high conductivity. I found it.
  • the conductive composition for an electrode manufactured using the carbon black for a battery has a high viscosity reducing effect, the battery electrode manufactured using these has a low electrode plate resistance, the battery has a high output characteristic and a good cycle. It has the characteristics of excellent characteristics.
  • the carbon black for a battery of the present invention has a BET specific surface area of 50 to 220 m 2 / g, a crystallite diameter (La) of 30 to 42 mm, and a temperature programmed desorption gas analysis method (measurement temperature 50 ° C. to
  • the carbon black for batteries is characterized in that the number of CO 2 desorption molecules per unit surface area at 1200 ° C. is 8.0 ⁇ 10 16 to 15 ⁇ 10 16 molecules / m 2 .
  • the carbon black for batteries in the present invention is selected from acetylene black, furnace black, channel black and the like, as is carbon black as a general battery conductive agent. Among these, acetylene black having excellent crystallinity and purity is more preferable.
  • the BET specific surface area of the battery carbon black in the present invention is 50 to 220 m 2 / g, more preferably 60 to 175 m 2 / g, and still more preferably 60 to 150 m 2 / g.
  • the BET specific surface area is 50 to 220 m 2 / g, more preferably 60 to 175 m 2 / g, and still more preferably 60 to 150 m 2 / g.
  • the crystallite diameter (La) of the battery carbon black in the present invention is a value measured in accordance with JIS R7651. Note that La means a value obtained by measuring the crystallite diameter in the a-axis direction of the carbon black crystal layer.
  • the crystallite diameter (La) of the battery carbon black in the present invention is 30 to 42 mm, preferably 34 to 40 mm.
  • the crystallite diameter (La) is 30 to 42 mm or less, the particle shape becomes more rounded, so that the interparticle interaction is suppressed and high dispersibility is easily obtained.
  • the crystallite diameter (La) is 30 mm or more, electrons easily move through the crystal layer, and good electron conductivity is easily obtained.
  • the number of CO 2 desorbed molecules per unit surface area (CO 2 M 2 [number / m 2 ]) of the carbon black for battery in the present invention is the number of CO 2 desorbed molecules per unit mass (CO 2 M 1 [number / g]. ]) Divided by the BET specific surface area (a BET [m 2 / g]).
  • CO 2 M 2 CO 2 M 1 / a BET (1)
  • the number of CO 2 desorbed molecules per unit surface area by the temperature-programmed desorption gas analysis method (measurement temperature 50 ° C. to 1200 ° C.) of the carbon black for batteries in the present invention is 8.0 ⁇ 10 16 to 15 ⁇ 10 16 / m 2 , more preferably 8.0 ⁇ 10 16 to 13 ⁇ 10 16 pieces / m 2 , and even more preferably 8.0 ⁇ 10 16 to 10 ⁇ 10 16 pieces / m 2 .
  • the DBP oil absorption of the carbon black for batteries in the present invention is a value measured according to JIS K6217-4.
  • the DBP oil absorption amount of the carbon black for batteries in the present invention is preferably 240 to 310 mL / 100 g, and more preferably 240 to 260 mL / 100 g.
  • the DBP oil absorption amount of the carbon black for batteries in the present invention is preferably 240 to 310 mL / 100 g, and more preferably 240 to 260 mL / 100 g.
  • the total number of electron spins (N) per unit mass of the carbon black for a battery is a value defined as in equation (3).
  • N I / I REF ⁇ ⁇ s (s + 1) ⁇ / ⁇ S (S + 1) ⁇ ⁇ N REF / M (3)
  • I is the electron spin resonance (hereinafter referred to as ESR) signal intensity of the carbon black for batteries
  • I REF is the ESR signal intensity of the standard sample
  • s is The spin quantum number of the standard sample
  • N REF is the spin number of the standard sample
  • M is the mass of the carbon black for batteries.
  • the type of the standard sample is not particularly limited.
  • a polyethylene film in which ions having a known spin quantum number are implanted by an electrochemical method can be used.
  • the method for determining the spin number (N REF ) of the standard sample is not particularly limited.
  • a method of measuring the concentration of ions having a known spin quantum number by titration can be used.
  • the number of conduction electron spins (N c ) per unit mass of the carbon black for a battery is a value defined as in equation (4).
  • N A / T + N c (4)
  • the localized electron spin density per unit surface area at 23 ° C. of the battery carbon black in the present invention is preferably 8.0 ⁇ 10 16 atoms / m 2 or less, and usually 1.0 ⁇ 10 16 atoms / m 2 or more. is there.
  • the localized electron spin density is smaller, the number of sites called lattice defects and edges that are liable to cause a side reaction such as a decomposition reaction of an electrolytic solution under a high voltage is reduced, and thus high oxidation resistance is easily obtained.
  • a raw material gas such as hydrocarbon or natural gas is supplied from a nozzle installed at the top of a vertical reactor. Then, carbon black for a battery is manufactured by a thermal decomposition reaction and / or a combustion reaction, and collected from a bag filter directly connected to the lower part of the reaction furnace.
  • the raw material gas to be used is not particularly limited, but it is preferable to use an acetylene gas having few impurities such as a sulfur content.
  • a baking furnace such as a muffle furnace is used and heated at 1000 to 1500 ° C. for 1 hour or more in an inert atmosphere or in an inert air current. Thus, the sulfur content can be removed.
  • hydrocarbon gas in addition to acetylene gas, oxygen gas, and water vapor, for example, hydrocarbon gas, hydrogen gas, carbon dioxide gas, or the like can be added to the raw material gas used in the production of battery carbon black in the present invention.
  • hydrocarbon gas are gasified gases such as methane, ethane, propane, ethylene, propylene, butadiene, etc., and oily hydrocarbons such as benzene, toluene, xylene, gasoline, kerosene, light oil, heavy oil, etc. .
  • the electrode conductive composition of the present invention comprises an active material, a polymer binder, and the above-described carbon black for a battery.
  • the conductive composition for electrodes of the present invention may further contain a removable component such as a solvent. Since the conductive composition for electrodes of the present invention uses the above-described carbon black for batteries, the interparticle interaction is suppressed and the viscosity is low.
  • the active material in the present invention is a composite oxide having a layered rock salt structure such as lithium cobaltate, lithium nickelate, nickel cobalt lithium manganate, nickel cobalt lithium aluminumate, etc. for positive electrode, lithium manganate, nickel manganate lithium, etc.
  • Composite oxides having a spinel structure, composite oxides having an olivine structure such as lithium iron phosphate, lithium manganese phosphate, lithium manganese manganese phosphate, etc. are used as negative electrode for artificial graphite, natural graphite, soft carbon, Examples thereof include carbon-based materials such as hard carbon, metal-based materials alloyed with alkali metals such as silicon and tin, and metal composite oxides such as lithium titanate.
  • the polymer binder in the present invention includes polyvinylidene fluoride, polytetrafluoroethylene, styrene-butadiene copolymer, polyvinyl alcohol, acrylonitrile-butadiene copolymer, carboxylic acid-modified (meth) acrylic acid ester copolymer, etc.
  • Examples include polymers.
  • polyvinylidene fluoride is preferred from the viewpoint of oxidation resistance when used for the positive electrode
  • polyvinylidene fluoride or styrene-butadiene copolymer is preferred from the viewpoint of adhesive strength when used for the negative electrode.
  • a well-known method can be used for manufacture of the electroconductive composition for electrodes in this invention. For example, it is obtained by mixing a solvent dispersion solution of carbon black for battery, active material and polymer binder with a ball mill, sand mill, twin-screw kneader, rotation and revolution type stirrer, planetary mixer, disper mixer, etc. Specifically, it is used as a slurry.
  • a solvent dispersion solution of carbon black for battery, active material and polymer binder with a ball mill, sand mill, twin-screw kneader, rotation and revolution type stirrer, planetary mixer, disper mixer, etc. Specifically, it is used as a slurry.
  • carbon black for battery, active material, and polymer binder those described above may be used.
  • Examples of the dispersion medium for the electrode conductive composition include water, N-methylpyrrolidone, cyclohexane, methyl ethyl ketone, and methyl isobutyl ketone.
  • N-methylpyrrolidone is preferable from the viewpoint of solubility, and water is preferable when using a styrene-butadiene copolymer.
  • the battery electrode of the present invention contains the above-described battery carbon black. Since the battery electrode of the present invention uses carbon black having good electron conductivity, it becomes a low resistance electrode.
  • a well-known method can be used for manufacturing the battery electrode in the present invention.
  • the above-described carbon black for a battery is made into a slurry-like conductive composition for an electrode by the above-described method, applied onto a current collector such as an aluminum foil or a copper foil, and then the solvent contained in the slurry is removed by heating. Then, an electrode mixture layer, which is a porous body in which the active material is bound to the surface of the current collector through a polymer binder, is formed.
  • the target battery electrode can be obtained by pressurizing the current collector and the electrode mixture layer with a roll press or the like to bring them into close contact with each other.
  • the battery of the present invention includes the above-described battery electrode.
  • the battery of the present invention has excellent high output characteristics due to the small resistance of the electrodes, and also has good cycle characteristics due to good oxidation resistance.
  • the battery manufacturing method used in the present invention is not particularly limited and may be performed using a conventionally known secondary battery manufacturing method.
  • a conventionally known secondary battery manufacturing method for example, in the configuration schematically shown in FIG. Can also be produced. That is, after welding the aluminum tab 4 to the positive electrode 1 using the electrode and welding the nickel tab 5 to the negative electrode 2, the polyolefin microporous film 3 serving as an insulating layer is disposed between the electrodes, It can be prepared by injecting the positive electrode 1, the negative electrode 2, and the polyolefin microporous film 3 until the non-aqueous electrolyte is sufficiently infiltrated and sealing with the exterior 6.
  • the use of the battery of the present invention is not particularly limited, for example, a digital AV camera, a video camera, a portable audio player, a portable AV device such as a portable liquid crystal television, a portable information terminal such as a notebook computer, a smartphone, a mobile PC, etc. It can be used in a wide range of fields such as portable game devices, electric tools, electric bicycles, hybrid cars, electric cars, and power storage systems.
  • the raw material gas mixture ratio was 65% by volume of acetylene gas, 17.5% by volume of oxygen gas, 0% by volume of water vapor, and 17.5% by volume of toluene gas as hydrocarbon gas, and a carbon black production furnace (furnace length 5 m, furnace diameter) 0.5m) sprayed from a nozzle installed at the top of the furnace to produce carbon black for the battery using thermal decomposition and / or combustion reaction of acetylene gas, and carbon black for the battery from the bag filter directly connected to the lower part of the furnace Was collected.
  • the jet speed of the raw material gas was set to 6.5 m / s by adjusting the nozzle diameter.
  • the carbon black for batteries produced under the production conditions was referred to as carbon black A (CBA).
  • K is a form factor constant of 0.9
  • is an X-ray wavelength of 1.54 mm
  • is an angle indicating a maximum value in the (110) plane diffraction line absorption band
  • is a half in the (110) plane diffraction line absorption band.
  • the number of CO 2 desorption molecules per unit surface area measured by the temperature programmed desorption gas analysis method was measured by the following method. Using a temperature-programmed desorption gas analyzer (Electronic Science Co., Ltd., TDS1200II), 2 mg of battery carbon black was placed on a quartz sample pan, covered with a SiC lid (with a hole), then set in the chamber, The vacuum was drawn to a vacuum of 1 ⁇ 10 ⁇ 6 Pa or less. After the degree of vacuum was stabilized, the temperature was raised from a measurement temperature of 50 ° C. to 1200 ° C.
  • DBP oil absorption The DBP oil absorption was measured according to JIS K6217-4. The evaluation results are shown in Table 1.
  • the localized electron spin density per unit surface area at 23 ° C. was measured by the following method. Using an electron spin resonance measuring apparatus (ESP350E manufactured by Bruker) at a sample temperature of ⁇ 263, ⁇ 253, ⁇ 233, ⁇ 173, ⁇ 113, ⁇ 53, and 23 ° C. under conditions of a central magnetic field of 3383 Gauss and a magnetic field sweep width of 200 Gauss. The ESR signal of carbon black was measured. Since the ESR signal is output in a differential format, the ESR signal intensity was calculated by integrating the ESR signal twice in the entire region.
  • ESR electron spin resonance measuring apparatus
  • the ESR signal intensity of an ion-implanted polyethylene film having a known spin number was measured under the same conditions, and this was used as a standard sample for carbon at each temperature.
  • the total electron spin number of black was calculated.
  • a graph with the total electron spin number on the vertical axis and the reciprocal of the sample temperature expressed in absolute temperature on the horizontal axis was created, and the conduction electron spin number was calculated as an intercept of the regression line calculated using the method of least squares.
  • the localized electron spin density was calculated by dividing the localized electron spin number obtained by subtracting the conduction electron spin number from the total electron spin number at 23 ° C. by the BET specific surface area of the carbon black for the battery. .
  • the evaluation results are shown in Table 1.
  • the oxidation resistance of the carbon black for batteries was measured by the following method. 100 mg of carbon black CBA for a battery, 100 mg of polyvinylidene fluoride (manufactured by Arkema, “HSV900”, hereinafter referred to as PVdF) as a polymer binder, and 300 mg of NMP as a solvent are weighed, and a rotating / revolving mixer (Sinky) After mixing until uniform using Awatori Nertaro ARV-310) manufactured by the company, it was coated on an aluminum foil so that the thickness after drying was 20 ⁇ m, and dried at 105 ° C. for 1 hour. A test piece was obtained.
  • cyclic voltammetry hereinafter abbreviated as CV is performed at 2.5 ° C. at a scanning speed of 10 mV / sec at 25 ° C.
  • the current value at 5.0 V was determined as the oxidative decomposition current value of the carbon black for batteries. It is judged that the lower the oxidative decomposition current value, the less oxidative decomposition is and the higher the oxidation resistance.
  • the evaluation results are shown in Table 1.
  • the prepared conductive composition for an electrode was formed into a film on an aluminum foil (manufactured by UACJ) having a thickness of 15 ⁇ m with an applicator, and was left to stand in a dryer and preliminarily dried at 105 ° C. for one hour. Next, the film was pressed at a linear pressure of 200 kg / cm with a roll press machine so that the thickness of the film containing an aluminum foil having a thickness of 15 ⁇ m was 60 ⁇ m. In order to remove a volatile component, it vacuum-dried at 170 degreeC for 3 hours, and obtained the electrode for batteries.
  • Electrode plate resistance of battery electrodes The produced battery electrode was cut into a disk shape with a diameter of 14 mm, and the front and back surfaces were sandwiched between flat electrodes made of SUS304, using an electrochemical measurement system (Solartron Corporation, function generator 1260 and potentiogalvanostat 1287). The AC impedance was measured at 10 mV and a frequency range of 1 Hz to 100 kHz. The resistance value obtained by multiplying the obtained resistance component value by the disk-shaped area cut out was defined as an electrode plate resistance. The evaluation results are shown in Table 1.
  • Tori-Taro ARV-310) was mixed until uniform. Further, SBR is weighed so that the solid content is 2% by mass, added to the above mixture, and mixed until it becomes uniform using a rotating / revolving mixer (Shinky Corp., Awatori Kentaro ARV-310). As a result, a negative electrode slurry for a non-aqueous battery was obtained. Next, a negative electrode slurry for a non-aqueous battery was formed into a film on a copper foil having a thickness of 10 ⁇ m (manufactured by UACJ) with an applicator, and allowed to stand in a dryer and pre-dried at 60 ° C. for one hour.
  • the film was pressed with a roll press at a linear pressure of 100 kg / cm so that the thickness of the film including the copper foil was 40 ⁇ m.
  • vacuum drying was performed at 120 ° C. for 3 hours to obtain a negative electrode.
  • the battery electrode is processed to 40 ⁇ 40 mm to be a positive electrode, and the negative electrode is processed to 44 ⁇ 44 mm so that the electrode mixture coating surfaces face each other at the center. Furthermore, a polyolefin microporous film processed to 45 ⁇ 45 mm was disposed between the electrodes.
  • the aluminum laminate sheet cut and processed into a 70 ⁇ 140 mm square was folded in half at the center of the long side, and placed and sandwiched so that the current collecting tab of the electrode was exposed to the outside of the laminate sheet.
  • the battery performance of the fabricated battery was evaluated by the following method.
  • Example 2 Carbon black for batteries was obtained in the same manner as in Example 1 except that the hydrocarbon gas of Example 1 was changed to benzene (the carbon black for batteries produced under the production conditions was carbon black B (CBB)).
  • CBB carbon black B
  • a conductive composition for electrodes, a battery electrode and a battery were prepared and evaluated. The evaluation results are shown in Table 1.
  • Example 3 The raw material gas mixture ratio of Example 1 was changed to 69% by volume of oxygen gas and 31% by volume of hydrocarbon gas, and the hydrocarbon gas was changed to benzene (the carbon black for a battery manufactured under the manufacturing conditions was changed to carbon black C Except for (CBC), a carbon black for a battery, a conductive composition for an electrode, a battery electrode and a battery were produced in the same manner as in Example 1, and each evaluation was performed. The evaluation results are shown in Table 1.
  • Example 4 The raw material gas mixing ratio in Example 1 was changed to acetylene gas 60% by volume, oxygen gas 2% by volume, water vapor 19% by volume and hydrocarbon gas 19% by volume, and the hydrocarbon gas was changed to benzene (in the production conditions) Except for the produced carbon black for battery was carbon black D (CBD)), carbon black for battery, conductive composition for electrode, battery electrode and battery were prepared in the same manner as in Example 1. Each evaluation was performed. The evaluation results are shown in Table 1.
  • Example 5 The raw material gas mixing ratio in Example 1 was changed to 55% by volume of acetylene gas, 10% by volume of oxygen gas, 10% by volume of water vapor, and 25% by volume of toluene gas as a hydrocarbon gas (carbon for battery manufactured under the manufacturing conditions)
  • a carbon black for a battery, a conductive composition for an electrode, a battery electrode and a battery were prepared in the same manner as in Example 1 except that the black was carbon black E (CBE).
  • CBE carbon black E
  • Example 6> The raw material gas mixing ratio of Example 1 was changed to 62% by volume of acetylene gas, 18% by volume of oxygen gas, 2% by volume of water vapor and 18% by volume of hydrocarbon gas, and the hydrocarbon gas was changed to benzene (in the production conditions) Except for the produced carbon black for battery was carbon black F (CBF).), Carbon black for battery, conductive composition for electrode, battery electrode and battery were prepared in the same manner as in Example 1. Each evaluation was performed. The evaluation results are shown in Table 1.
  • Example 7 The raw material gas mixing ratio in Example 1 was changed to 25% by volume of acetylene gas, 40% by volume of oxygen gas, 17.5% by volume of water vapor, and 17.5% by volume of toluene gas as a hydrocarbon gas (manufactured under the production conditions).
  • the battery carbon black, the electrode conductive composition, the battery electrode, and the battery were prepared in the same manner as in Example 1 except that the carbon black for the battery was carbon black G (CBG). Carried out.
  • CBG carbon black G
  • Example 1 The raw material gas mixing ratio in Example 1 was changed to 82% by volume of acetylene gas and 18% by volume of hydrocarbon gas, and the hydrocarbon gas was changed to benzene (the carbon black for batteries manufactured under the manufacturing conditions was changed to carbon black H Except for (CBH), a carbon black for a battery, a conductive composition for an electrode, a battery electrode and a battery were prepared in the same manner as in Example 1, and each evaluation was performed. The evaluation results are shown in Table 1. In the case of the carbon black for battery used in Comparative Example 1, the dispersibility and oxidation resistance were good, but the electron conductivity was poor and the electrode plate resistance was also high. Also in the battery evaluation, the discharge capacity maintenance rate during 3C discharge was low.
  • Example 2 The raw material gas mixing ratio of Example 1 was changed to 67% by volume of acetylene gas, 15% by volume of oxygen gas, 15% by volume of water vapor, and 3% by volume of toluene gas as a hydrocarbon gas (carbon for battery manufactured under the manufacturing conditions)
  • a carbon black for a battery, a conductive composition for an electrode, a battery electrode and a battery were prepared in the same manner as in Example 1 except that the black was carbon black I (CBI).
  • CBI carbon black I
  • Table 1 The evaluation results are shown in Table 1. In the case of the carbon black for battery used in Comparative Example 2, the dispersibility was poor, the viscosity was high, the oxidation resistance was poor, and the electrode plate resistance was also high. Also in the battery evaluation, the discharge capacity maintenance rate during 3C discharge was low.
  • Example 3 The carbon black for battery of Example 1 is shown in Table 1. BET specific surface area, crystallite diameter (La), CO 2 desorption molecules per unit surface area by temperature programmed desorption gas analysis method (measurement temperature 50 ° C. to 1200 ° C.) The carbon black for the battery and the conductive composition for the electrode were prepared in the same manner as in Example 1 except that the number was changed to SuperPLi (made by Imeris) with the DBP oil absorption and the localized electron spin density per unit surface area at 23 ° C. Products, battery electrodes and batteries were prepared and evaluated. The evaluation results are shown in Table 1. In the case of the carbon black for battery used in Comparative Example 3, the dispersibility and oxidation resistance were good, but the electron conductivity was poor and the electrode plate resistance was also high. Also in the battery evaluation, the discharge capacity maintenance rate during 3C discharge was low.
  • Example 4 The carbon black for battery of Example 1 is shown in Table 1. BET specific surface area, crystallite diameter (La), CO 2 desorption molecules per unit surface area by temperature programmed desorption gas analysis method (measurement temperature 50 ° C. to 1200 ° C.) The carbon black for the battery and the electrode in the same manner as in Example 1 except that the number was changed to ECP (manufactured by Lion Specialty Chemicals) having DBP oil absorption and localized electron spin density per unit surface area at 23 ° C. Conductive compositions, battery electrodes and batteries were prepared and evaluated. The evaluation results are shown in Table 1.
  • ECP manufactured by Lion Specialty Chemicals
  • Example 5 The raw material gas mixing ratio in Example 1 was changed to acetylene gas 60 volume%, oxygen gas 2 volume%, water vapor 25 volume%, and hydrocarbon gas 13 volume%, and the hydrocarbon gas was changed to benzene (in the production conditions)
  • a battery carbon black, an electrode conductive composition, a battery electrode and a battery were produced in the same manner as in Example 1 except that the produced carbon black for a battery was carbon black J (CBJ).
  • CBJ carbon black J
  • Table 1 The evaluation results are shown in Table 1. In the case of the carbon black for battery used in Comparative Example 5, the dispersibility was poor, the viscosity was high, the oxidation resistance was poor, and the electrode plate resistance was also high. Also in the battery evaluation, the discharge capacity maintenance rate during 3C discharge was low.
  • Example 6 The raw material gas mixing ratio in Example 1 was changed to 57% by volume of acetylene gas, 3% by volume of oxygen gas, 20% by volume of water vapor and 20% by volume of hydrocarbon gas, and the hydrocarbon gas was changed to benzene (in the production conditions)
  • a battery carbon black, an electrode conductive composition, a battery electrode and a battery were produced in the same manner as in Example 1 except that the produced carbon black for a battery was carbon black K (CBK).
  • CBK carbon black K
  • Table 1 The evaluation results are shown in Table 1. In the case of the battery carbon black used in Comparative Example 6, the oxidation resistance was good, but the dispersibility was poor, the viscosity was high, and the electrode plate resistance was also high. Also in the battery evaluation, the discharge capacity maintenance rate during 3C discharge was low.
  • Example 7 The raw material gas mixing ratio of Example 1 was changed to 80% by volume of acetylene gas, 5% by volume of oxygen gas, 7.5% by volume of water vapor, and 7.5% by volume of hydrocarbon gas, and the hydrocarbon gas was changed to benzene (
  • the battery carbon black, the electrode conductive composition, the battery electrode, and the battery were produced in the same manner as in Example 1 except that the battery carbon black produced under the production conditions was carbon black L (CBL).
  • CBL carbon black L
  • Table 1 The evaluation results are shown in Table 1. In the case of the carbon black for battery used in Comparative Example 7, the dispersibility and oxidation resistance were good, but the electron conductivity was poor and the electrode plate resistance was also high. Also in the battery evaluation, the discharge capacity maintenance rate during 3C discharge was low.
  • Example 8 The raw material gas mixing ratio in Example 1 was changed to 65% by volume of acetylene gas, 16% by volume of oxygen gas, 3% by volume of water vapor, and 16% by volume of toluene gas as a hydrocarbon gas (carbon for battery manufactured under the manufacturing conditions)
  • a carbon black for a battery, a conductive composition for an electrode, a battery electrode and a battery were prepared in the same manner as in Example 1 except that the black was carbon black M (CBM).
  • CBM carbon black M
  • Table 1 The evaluation results are shown in Table 1. In the case of the carbon black for battery used in Comparative Example 8, the dispersibility and oxidation resistance were good, but the electron conductivity was poor and the electrode plate resistance was also high. Also in the battery evaluation, the discharge capacity maintenance rate during 3C discharge was low.
  • Example 9 The raw material gas mixing ratio of Example 1 was changed to acetylene gas 40% by volume, oxygen gas 10% by volume, water vapor 25% by volume and hydrocarbon gas 25% by volume, and the hydrocarbon gas was changed to benzene (in the production conditions)
  • a battery carbon black, an electrode conductive composition, a battery electrode and a battery were produced in the same manner as in Example 1 except that the produced carbon black for the battery was carbon black N (CBN).
  • CBN carbon black N
  • Each evaluation was performed.
  • the evaluation results are shown in Table 1.
  • the battery carbon black used in Comparative Example 9 had poor dispersibility, high viscosity, poor oxidation resistance, and high electrode plate resistance. Also in the battery evaluation, the discharge capacity maintenance rate during 3C discharge was low.
  • the carbon black for batteries of Examples 1 to 7 can achieve both dispersibility, electronic conductivity and oxidation resistance as compared with the carbon blacks for batteries of Comparative Examples 1 to 9.
  • the conductive composition for electrodes of the examples of the present invention had a low viscosity, and the battery electrode using the conductive composition for electrodes had a low electrode plate resistance, so that a voltage drop during discharge could be suppressed. .
  • the batteries of Examples 1 to 7 were found to have higher discharge rate characteristics and higher cycle characteristics than the batteries of Comparative Examples 1 to 9. As a result, it was found that a battery using the carbon black for a battery of the present invention can suppress a decrease in output accompanying an increase in discharge current and has a long life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Conductive Materials (AREA)

Abstract

分散性、電子伝導性および耐酸化性に優れた電池用カーボンブラックを提供する。さらに、この電池用カーボンブラックを用いて製造される粘度が低い電極用導電性組成物、この電極用導電性組成物を用いて製造される極板抵抗が低い電池用電極、および高エネルギー密度、高出力特性、高サイクル特性を有する電池を提供する。 BET比表面積が50~220m/gであり、かつ結晶子径(La)が30~42Åであり、かつ昇温脱離ガス分析法(測定温度50℃~1200℃)による単位表面積あたりのCO脱離分子数が8.0×1016~15×1016個/mであることを特徴とする電池用カーボンブラックは、分散性、電子伝導性および耐酸化性に優れ、これを用いることにより低粘度の電極用導電性組成物、低抵抗な電池用電極及び高出力特性、高サイクル特性を有する電池が得られる。 

Description

電池用カーボンブラック、電極用導電性組成物、電池用電極、および電池
  本発明は、電池用カーボンブラック、ならびにそれを用いた電極用導電性組成物、電池用電極、および電池に関する。
 環境・エネルギー問題の高まりから、化石燃料への依存度を減らす低炭素社会の実現に向けた技術の開発が盛んに行われている。このような技術開発の例としては、ハイブリッド電気自動車や電気自動車等の低公害車の開発、太陽光発電や風力発電等の自然エネルギー発電・蓄電システムの開発、電力を効率よく供給し、送電ロスを減らす次世代送電網の開発等があり、多岐に渡っている。
 これらの技術に共通して必要となるキーデバイスの一つが電池であり、このような電池に対しては、システムを小型化するための高いエネルギー密度が求められる。また、使用環境温度に左右されずに安定した電力の供給を可能にするための高い出力特性が求められる。さらに、長期間の使用に耐えうる良好なサイクル特性等も求められている。そのため、従来の鉛蓄電池、ニッケル-カドミウム電池、ニッケル-水素電池から、より高いエネルギー密度、出力特性およびサイクル特性を有するリチウムイオン二次電池への置き換えが急速に進んでいる。
 近年ではこのリチウムイオン二次電池のエネルギー密度のさらなる向上が求められている。このため電極合材中における導電剤の含有量をより少なくすることが求められるようになっている。例えばデジタル機器等の民生用電池においては、正極合材中、導電剤の含有量は典型的には2質量パーセント以下、さらには1質量パーセント以下であることが好ましいとされている。
 かかる事情から、導電剤であるカーボンブラックには添加量が少量であっても十分な電子伝導性を発揮することが要求されている。
 ところで、カーボンブラックはその共通の構造として球形に近い1次粒子が数珠上に繋がりあった構造を有しており、このような構造をストラクチャと呼ぶ。一般に、1次粒子径が小さいほど、同質量の導電剤の中に、より多数の電気的接点が存在することになり、電子伝導性が向上する。また、ストラクチャが長く連結しているほど、接触抵抗なく電子伝導できる距離が大きくなるため、電子伝導性が向上する。
 一方、1次粒子径が小さくストラクチャが長いカーボンブラックは、導電性に優れる反面、粒子同士の相互作用が大きくなるため、解砕し難く凝集し易いという側面を持つ。したがって、一般に電極製造時には活物質、導電剤および結着材を水または有機溶剤に分散した電極用導電組成物を金属箔に塗布する方法がとられるが、1次粒子径が小さくストラクチャが長いカーボンブラックを導電剤として用いた場合、電極用導電性組成物中に導電剤の凝集物が残存して電極に凹凸が生じたり、電極用導電性組成物中の粘度が高すぎて塗布不能になったりといった導電剤の分散不良が発生しやすい。
  かかる課題を克服するために、例えば特許文献1では、固練りと希釈分散の2段階の混練を行うことを提案している。しかしながら、前記したような1次粒子径が小さくストラクチャが長いカーボンブラックに対しては必ずしも十分な効果を発揮するとはいえない。
  また、導電剤の分散不良を克服する手段として、ポリビニルピロリドン系高分子とノニオン系界面活性剤を分散剤として添加する方法がある(特許文献2)。しかしながら特許文献2に記載の方法では、カーボンブラックの分散不良を改善できるものの、前記分散剤を含有した電極をリチウムイオン電池として使用した際に4.45V以上の電圧において前記分散剤が酸化分解してしまうことで電池の容量が低下するといった問題があった。また、特許文献3では、カーボンブラックの結晶子径(La)が22Å~50Åの範囲にすることで、高い導電性を発揮することが提案されているが、カーボンブラックの分散性については十分な効果が発揮できない。
特開2012-59466号公報 WO2012/014616号公報 特表2015-509119号公報
  本発明は、上記問題と実情に鑑み、分散性、電子伝導性及び耐酸化性が良好な電池用カーボンブラックを提供することを目的とする。加えて、このカーボンブラックを用いて製造される低粘度な電極用導電性組成物、さらにそれらを用いて製造される低抵抗な電池用電極および高出力特性に優れ、良好なサイクル特性を有する電池を提供することを目的とする。
 すなわち、上記課題を解決する本発明は、下記より構成される。
 (1)BET比表面積が50~220m/gであり、かつ結晶子径(La)が30~42Åであり、かつ昇温脱離ガス分析法(測定温度50℃~1200℃)による単位表面積あたりのCO脱離分子数が8.0×1016~15×1016個/mであることを特徴とする電池用カーボンブラック。
 (2)DBP吸油量が240~310mL/100gであることを特徴とする(1)に記載の電池用カーボンブラック。
 (3)23℃における単位表面積あたりの局在電子スピン密度が8.0×1016個/m以下であることを特徴とする(1)または(2)に記載の電池用カーボンブラック。
 (4)前記電池用カーボンブラックがアセチレンブラックであることを特徴とする(1)~(3)の何れか一項に記載の電池用カーボンブラック。
 (5)活物質、高分子結着材および(1)~(4)の何れか一項に記載の電池用カーボンブラックを含むことを特徴とする電極用導電性組成物。
 (6)(5)に記載の電極用導電性組成物を金属箔上に塗布してなる電池用電極。
 (7)(6)に記載の電池用電極を正極または負極の少なくとも一方として用いた電池。
 なお、本願明細書において、特にことわりがない限り、「~」という記号は両端の値「以上」および「以下」の範囲を意味する。例えば、「A~B」というのは、A以上、B以下であるという意味である。
  本発明者らは鋭意研究の結果、BET比表面積が50~220m/gであり、かつ結晶子径(La)が30~42Åであり、かつ昇温脱離ガス分析法(測定温度50℃~1200℃)による単位表面積あたりのCO脱離分子数が8.0×1016~15×1016個/mである電池用カーボンブラックは、高い分散性と高い導電性を両立できることを見出した。加えて、前記電池用カーボンブラックを用いて製造した電極用導電組成物の粘度低減効果も高く、これらを用いて製造した電池用電極は極板抵抗が低く、電池は高い出力特性および良好なサイクル特性に優れるという特徴を持つ。
本発明における電池の模式図である。
 以下、本発明を詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。
 以下、本発明の構成材料について詳細に説明する。
 <電池用カーボンブラック>
  本発明の電池用カーボンブラックは、BET比表面積が50~220m/gであり、かつ結晶子径(La)が30~42Åであり、かつ昇温脱離ガス分析法(測定温度50℃~1200℃)による単位表面積あたりのCO脱離分子数が8.0×1016~15×1016個/mであることを特徴とする電池用カーボンブラックである。
  本発明における電池用カーボンブラックは、一般の電池用導電剤としてのカーボンブラック同様、アセチレンブラック、ファーネスブラック、チャンネルブラックなどの中から選ばれるものである。中でも、結晶性および純度に優れるアセチレンブラックがより好ましい。
  本発明における電池用カーボンブラックのBET比表面積は、吸着ガスとして窒素を用い、相対圧p/p=0.30±0.04の条件でBET一点法にて測定した値である。
 本発明における電池用カーボンブラックのBET比表面積は、50~220m/gであり、60~175m/gがより好ましく、60~150m/gがさらに好ましい。BET比表面積を220m/g以下とすることで、粒子間相互作用が抑制されて高い分散性が得られ易くなる。また、BET比表面積を50m/g以上とすることで、同質量の電池用カーボンブラックの中により多数の電気的接点が存在することになり、良好な電子伝導性が得られ易くなる。さらに、BET比表面積を60~150m/gとすることで、高い分散性と高い電子伝導性の両立が得られ易くなる。
  本発明における電池用カーボンブラックの結晶子径(La)は、JIS R7651に準拠して測定した値である。なお、Laは、カーボンブラック結晶層のa軸方向の結晶子径を測定した値を意味する。
 本発明における電池用カーボンブラックの結晶子径(La)は、30~42Åであり、好ましくは34~40Åである。結晶子径(La)を42Å以下とすることで、粒子形状がより丸みを帯び易くなることで粒子間相互作用が抑制されて高い分散性が得られ易くなる。また、結晶子径(La)を30Å以上とすることで、電子が結晶層を移動し易くなり、良好な電子伝導性が得られ易くなる。
 (単位表面積あたりのCO脱離分子数の定義)
  本発明における電池用カーボンブラックの単位表面積あたりのCO脱離分子数(CO[個/m])は単位質量あたりのCO脱離分子数(CO[個/g])をBET比表面積(aBET[m/g])で割った式(1)のように定義される値である。
 CO=CO/aBET   (1)
 なお、本発明における電池用カーボンブラックの昇温脱離ガス分析法(測定温度50℃~1200℃)による単位質量あたりのCO脱離分子数(CO[個/g])は、電池用カーボンブラックを真空下で50℃~1200℃まで昇温した際に脱離したCOガスを質量分析計で測定した値である。
  本発明における電池用カーボンブラックの昇温脱離ガス分析法(測定温度50℃~1200℃)による単位表面積あたりのCO脱離分子数は、8.0×1016~15×1016個/mであり、8.0×1016~13×1016個/mがより好ましく、8.0×1016~10×1016個/mがさらに好ましい。昇温脱離ガス分析法(測定温度50℃~1200℃)による単位表面積あたりのCO脱離分子数を8.0×1016個/m以上とすることで、電池用カーボンブラックと溶媒との親和性が向上し、高い液分散性が得られ易くなる。昇温脱離ガス分析法(測定温度50℃~1200℃)による単位表面積あたりのCO脱離分子数を15×1016個/m以下とすることで、電池用カーボンブラックの表面COによる電子伝導の阻害が抑制されて良好な電子伝導性および高い耐酸化性が得られ易くなる。昇温脱離ガス分析法(測定温度50℃~1200℃)による単位表面積あたりのCO脱離分子数を10×1016個/m以下とすることで、高い液分散性と高い電子伝導性および高い耐酸化性の両立が得られ易くなる。
 本発明における電池用カーボンブラックのDBP吸油量は、JIS K6217-4に準拠して測定される値である。
  本発明における電池用カーボンブラックのDBP吸油量は、240~310mL/100gが好ましく、240~260mL/100gがより好ましい。DBP吸油量を310mL/100g以下とすることで、アグリゲート構造(ストラクチャ)同士の絡み合いによる凝集が抑えられ、高い分散性が得られ易くなる。また、DBP吸油量を240mL/100g以上とすることで、アグリゲート構造(ストラクチャ)が十分な長さを持ち、良好な電子伝導性が得られ易くなる。
 (局在電子スピン密度の定義)
  本発明における電池用カーボンブラックの単位表面積あたりの局在電子スピン密度(D[個/m])は単位質量あたりの局在電子スピン数(N[個/g])をBET比表面積(aBET[m/g])で割った式(2)のように定義される値である。
 D=N/aBET=(N-N)/aBET   (2)
 但し、Nは電池用カーボンブラックの単位質量あたりの総電子スピン数、Nは電池用カーボンブラックの単位質量あたりの伝導電子スピン数である。
 (総電子スピン数の定義)
  電池用カーボンブラックの単位質量あたりの総電子スピン数(N)は、式(3)のように定義される値である。
 N=I/IREF×{s(s+1)}/{S(S+1)}×NREF/M   (3)
 但し、Iは電池用カーボンブラックの電子スピン共鳴(以下ESR)信号強度、IREFは標準試料のESR信号強度、Sは電池用カーボンブラックのスピン量子数(すなわちS=1/2)、sは標準試料のスピン量子数、NREFは標準試料のスピン数、Mは電池用カーボンブラックの質量である。
  標準試料の種類は特に限定されるものではないが、例えば電気化学的な方法によりスピン量子数が既知のイオンを注入されたポリエチレンフィルムなどを用いることができる。また、標準試料のスピン数(NREF)を決定する方法は特に限定されるものではないが、例えば滴定法によりスピン量子数が既知のイオンの濃度を測定する方法を用いることができる。
 (伝導電子スピン数の定義)
  電池用カーボンブラックの単位質量あたりの伝導電子スピン数(N)は式(4)のように定義される値である。
 N=A/T+N   (4)
 但し、Aは定数、Tは電池用カーボンブラックの絶対温度[K]である。
 すなわち、電池用カーボンブラックの伝導電子スピン数(N)は、例えば下記のようにして決定することができる。まず、2点以上の異なる温度で電池用カーボンブラックの総電子スピン数(N)を測定する。Nを縦軸に、絶対温度単位で表した測定温度の逆数(1/T)を横軸にとったグラフを作成する。次いでそのグラフの回帰直線を最小自乗法により求め、その切片の値(すなわち1/T=0に外挿した値)をNとする方法である。
  本発明における電池用カーボンブラックの23℃における単位表面積あたりの局在電子スピン密度は8.0×1016個/m以下が好ましく、通常は、1.0×1016個/m以上である。局在電子スピン密度が少ないほど、高電圧下における電解液の分解反応などの副反応を引き起こしやすい格子欠陥やエッジと呼ばれる部位が少なくなるため、高い耐酸化性が得られ易くなる。
  本発明における電池用カーボンブラックの製造方法に制約はないが、電池用カーボンブラックを製造する工程では、炭化水素や天然ガスなどの原料ガスを縦型反応炉の炉頂に設置されたノズルから供給し、熱分解反応及び又は燃焼反応により電池用カーボンブラックを製造し、反応炉下部に直結されたバグフィルターから捕集する。使用する原料ガスは特に限定されないが、硫黄分などの不純物が少ないアセチレンガスを使用することが好ましい。また、得られたカーボンブラックから硫黄分を除去する場合には、例えば、マッフル炉等の焼成炉を使用し、不活性雰囲気中、又は不活性気流中、1000~1500℃で1時間以上加熱することで、硫黄分を除去することが出来る。
  本発明における電池用カーボンブラックの製造時に使用する原料ガスは、アセチレンガス、酸素ガスおよび水蒸気以外にも、例えば炭化水素ガス、水素ガス、二酸化炭素ガス等を添加することもできる。炭化水素ガスを例示すると、メタン、エタン、プロパン、エチレン、プロピレン、ブタジエン等のガスや、ベンゼン、トルエン、キシレン、ガソリン、灯油、軽油、重油等のオイル状炭化水素などをガス化したものである。これらのガスを添加すると、反応温度が変化するため、得られるカーボンブラックのBET比表面積、結晶子径および昇温脱離ガス分析法(測定温度50℃~1200℃)による単位質量あたりのCO脱離分子数を増減させることが容易となる。また、添加する酸素ガスや炭化水素ガス比率によっても、得られるカーボンブラックの昇温脱離ガス分析法(測定温度50℃~1200℃)による単位質量あたりのCO脱離分子数を増減させることが容易となる。
<電極用導電性組成物>
  本発明の電極用導電性組成物は、活物質、高分子結着材、及び上記の電池用カーボンブラックを含むものである。なお、本発明の電極用導電性組成物は、溶媒などの除去可能な成分をさらに含んでいても良い。
  本発明の電極用導電性組成物は、上述した電池用カーボンブラックを用いているため、粒子間相互作用が抑制されており、粘度が低いという特徴を有する。
 (活物質)
  本発明における活物質は、正極用としてコバルト酸リチウム、ニッケル酸リチウム、ニッケルコバルトマンガン酸リチウム、ニッケルコバルトアルミニウム酸リチウムなどの層状岩塩型構造を持つ複合酸化物、マンガン酸リチウム、ニッケルマンガン酸リチウムなどのスピネル型構造を持つ複合酸化物、リン酸鉄リチウム、リン酸マンガンリチウム、リン酸鉄マンガンリチウムなどのオリビン型構造を持つ複合酸化物などが、負極用として人造黒鉛、天然黒鉛、ソフトカーボン、ハードカーボンなどの炭素系材料、ケイ素、スズなどのアルカリ金属と合金化する金属系材料、チタン酸リチウムなどの金属複合酸化物などが挙げられる。
 (高分子結着材)
 本発明における高分子結着材は、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、スチレン-ブタジエン共重合体、ポリビニルアルコール、アクリロニトリル-ブタジエン共重合体、カルボン酸変性(メタ)アクリル酸エステル共重合体等の高分子が挙げられる。これらの中では、正極に用いる場合は耐酸化性の点でポリフッ化ビニリデンが好ましく、負極に用いる場合は接着力の点でポリフッ化ビニリデンまたはスチレン-ブタジエン共重合体が好ましい。
  <電極用導電性組成物の製造方法>
  本発明における電極用導電性組成物の製造には公知の方法を用いることができる。例えば、電池用カーボンブラック、活物質および高分子結着材の溶媒分散溶液をボールミル、サンドミル、二軸混練機、自転公転式攪拌機、プラネタリーミキサー、ディスパーミキサー等により混合することで得られ、一般的には、スラリーにして用いられる。前記の電池用カーボンブラック、活物質および高分子結着材としては、既述したものを用いれば良い。電極用導電性組成物の分散媒としては、水、N-メチルピロリドン、シクロヘキサン、メチルエチルケトン、メチルイソブチルケトン等が挙げられる。高分子結着材としてポリフッ化ビニリデンを使用する際は、溶解性の点でN-メチルピロリドンが好ましく、スチレン-ブタジエン共重合体を使用する際は水が好ましい。また、製造した電極用導電性組成物スラリーは、塗膜に欠陥が生じないようにして平滑性を確保するため、塗工前の段階で真空脱泡を行うことが好ましい。電極用導電性組成物スラリー中に気泡が存在すると、電池用電極に塗布した際に、塗膜に欠陥が生じ、平滑性を損なう原因となる。
 <電池用電極>
  本発明の電池用電極は、上記の電池用カーボンブラックを含むものである。本発明の電池用電極は、電子伝導性が良好なカーボンブラックを用いていることから、低抵抗な電極となる。
  本発明における電池用電極の製造には公知の方法を用いることができる。例えば、上記の電池用カーボンブラックを上述した方法でスラリー状の電極用導電性組成物とし、アルミニウム箔や銅箔等の集電体上に塗布した後、加熱によりスラリーに含まれる溶剤を除去し、活物質が高分子結着材を介して集電体表面に結着された多孔質体である電極合材層を形成する。さらに集電体と電極合材層をロールプレス等により加圧して密着させることにより、目的とする電池用電極を得ることができる。
 <電池>
  本発明の電池は、上記の電池用電極を備えるものである。本発明の電池は、電極の抵抗が小さいために高出力特性に優れ、耐酸化性が良好なためにサイクル特性も良好である。
  本発明に用いられる電池の作製方法には、特に制限は無く、従来公知の二次電池の作製方法を用いて行えば良いが、例えば、図1に模式的に示した構成で、以下の方法により作製することもできる。すなわち、前記の電極を用いた正極1にアルミ製タブ4を溶接し、負極2にニッケル製タブ5を溶接した後、各電極の間に絶縁層となるポリオレフィン製微多孔膜3を配し、正極1、負極2およびポリオレフィン製微多孔膜3の空隙部分に非水電解液が十分に染込むまで注液し、外装6で封止することで作製することができる。
  本発明の電池の用途は、特に限定されないが、例えば、デジタルカメラ、ビデオカメラ、ポータブルオーディオプレイヤー、携帯液晶テレビ等の携帯AV機器、ノート型パソコン、スマートフォン、モバイルPC等の携帯情報端末、その他、携帯ゲーム機器、電動工具、電動式自転車、ハイブリット自動車、電気自動車、電力貯蔵システム等の幅広い分野において使用することができる。
 以下、実施例および比較例を挙げて本発明をより具体的に説明するが、本発明は、その趣旨を損なわない限り、以下に示す実施例に限定されるものではない。
 <実施例1>
  原料ガス混合比をアセチレンガス65体積%、酸素ガス17.5体積%、水蒸気0体積%および炭化水素ガスとしてトルエンガス17.5体積%で混合し、カーボンブラック製造炉(炉全長5m、炉直径0.5m)の炉頂に設置されたノズルから噴霧し、アセチレンガスの熱分解および又は燃焼反応を利用して電池用カーボンブラックを製造し、炉下部に直結されたバグフィルターから電池用カーボンブラックを捕集した。なお、ノズル径の調整により原料ガスの噴出速度を6.5m/sとした。以降、該製造条件で製造された電池用カーボンブラックをカーボンブラックA(CBA)とした。
 [BET比表面積]
 BET比表面積は、吸着ガスとして窒素を用い、相対圧p/p=0.30±0.04の条件でBET一点法にて測定した。評価結果を表1に示す。
 [結晶子径(La)]
  結晶子径(La)は、JIS R7651に準拠して測定した値である。X線回折装置(Brucker社製「D8ADVANCE」)により、CuKα線を用いて測定範囲2θ=10~40゜、スリット幅0.5゜の条件でX線回折を行い、測定した。測定角度の校正にはX線標準用シリコン(三津和化学薬品社製金属シリコン)を用いた。得られた(110)面の回折線を用いて、Scherrerの式:
 La(Å)=(K×λ)/(β×cosθ)   (4)
 式(4)により結晶子サイズLaを求めた。但し、Kは形状因子定数0.9、λはX線の波長1.54Å、θは(110)面回折線吸収バンドにおける極大値を示す角度、βは(110)面回折線吸収バンドにおける半価幅(ラジアン)である。評価結果を表1に示す。
 [昇温脱離ガス分析法による単位表面積あたりのCO脱離分子数]
  昇温脱離ガス分析法による単位表面積あたりのCO脱離分子数は、以下の方法で測定した。昇温脱離ガス分析装置(電子科学社製、TDS1200II)を用いて、石英試料皿に電池用カーボンブラックを2mg載せ、SiC製の蓋(穴付き)を被せた後、チャンバー内にセットし、真空度1×10-6Pa以下まで真空に引いた。真空度が安定した後、測定温度50℃から1200℃まで昇温速度60℃/分で昇温させ、その際に脱離するCO分子数を昇温脱離ガス分析装置にて測定した。得られたCO分子数を電池用カーボンブラックのBET比表面積で割ることによって、単位表面積あたりのCO脱離分子数を算出した。評価結果を表1に示す。
 [DBP吸油量]
  DBP吸油量は、JIS K6217-4に準拠して測定した。評価結果を表1に示す。
 [23℃における単位表面積あたりの局在電子スピン密度]
  23℃における単位表面積あたりの局在電子スピン密度は、以下の方法で測定した。電子スピン共鳴測定装置(Bruker社製 ESP350E)を用いて、中心磁場3383Gauss、磁場掃引幅200Gaussの条件で、試料温度-263、-253、-233、-173、-113、-53、23℃におけるカーボンブラックのESR信号を測定した。ESR信号は微分形式で出力されるため、これを全領域で2回積分することにより、ESR信号強度を算出した。次いで、既知のスピン数をもつイオン注入されたポリエチレンフィルム(厚み300μm、スピン数5.5×1013個/g)のESR信号強度を同一条件で測定し、これを標準試料として各温度におけるカーボンブラックの総電子スピン数を算出した。次いで縦軸に総電子スピン数、横軸に絶対温度で表した試料温度の逆数を取ったグラフを作成し、最小自乗法を用いて算出した回帰直線の切片として、伝導電子スピン数を算出した。次いで23℃における総電子スピン数の値から伝導電子スピン数の値を減じることで得られる局在電子スピン数を電池用カーボンブラックのBET比表面積で割ることによって、局在電子スピン密度を算出した。評価結果を表1に示す。
 [電池用カーボンブラックの分散性評価]
  電池用カーボンブラックの分散性をJIS K5600-2-5に記載される粒ゲージを用いた方法で粗粒を評価した。具体的には、電池用カーボンブラックCBAを100mgおよび溶媒としてN-メチルピロリドン(関東化学株式会社製、以下、NMPと記載)を300mg秤量して、自転公転式混合機(シンキー社製、あわとり練太郎ARV-310)を用いて、均一になるまで混合した後、スクレパーを用い、CBAとNMPの混合溶液を10mg塗布し、試料面に10mm以上連続した線状痕が、一つの溝について3本以上並んだ箇所の目盛りを測定した。粒ゲージの数値が低い程、良好な分散性を意味する。評価結果を表1に示す。
 [電池用カーボンブラックの耐酸化性評価]
  電池用カーボンブラックの耐酸化性は、以下の方法で測定した。電池用カーボンブラックCBAを100mg、高分子結着材としてポリフッ化ビニリデン(アルケマ社製、「HSV900」、以下、PVdFと記載)100mgおよび溶媒としてNMPを300mg秤量して、自転公転式混合機(シンキー社製、あわとり練太郎ARV-310)を用いて、均一になるまで混合した後、アルミ箔上に乾燥後の厚さが20μmとなるように塗工し、105℃で1時間乾燥させて試験片とした。作用極に得られた試験片、対極及び参照極にリチウム金属(本城金属社製)、電解液にエチレンカーボネート/ジエチルカーボネート=1/2(体積比)+1M LiPF溶液(キシダ化学製、以下、電解液と記載)を用いて3極セル(東洋システム株式会社製)を組み立てた。電気化学測定システム(ソーラトロン社製、ファンクションジェネレーター1260およびポテンショガルバノスタット1287)を用いてサイクリックボルタンメトリー(以下CVと略す)を25℃で10mV/secの走査速度にて2.5V~5.0Vの範囲で行った。5.0V時の電流値を電池用カーボンブラックの酸化分解電流値と定めた。酸化分解電流値が低い程、酸化分解しにくく耐酸化性が高いと判断される。評価結果を表1に示す。
 (電極用導電性組成物の調製)
 製造した電池用カーボンブラックCBA、活物質としてLiCoO(ユミコア社製、「KD20」平均一次粒子径15μm)、溶媒としてNMP、高分子結着材としてPVdFをそれぞれ用意した。電池用カーボンブラックCBAが固形分で0.5質量%、LiCoOが固形分で98.5質量%およびPVdFが固形分で1.0質量%になるように秤量して混合し、この混合物に固形分含有量が78質量%になるようにNMPを添加し、自転公転式混合機(シンキー社製、あわとり練太郎ARV-310)を用いて、均一になるまで混合し電極用導電性組成物を得た。
 [電極用導電性組成物の分散性評価]
 電極用導電性組成物の分散性をJIS K7244-10に記載される回転型レオメータを用いた方法で粘度を評価した。具体的には、回転型レオメータ(アントンパール社製、MCR300)を用いて、固形分含有量が78質量%の電極組成物1gをディスク上に塗布し、せん断速度を100s-1~0.01s-1まで変化させて測定を行い、せん断速度1s-1の粘度を評価した。粘度の数値が低い程、良好な分散性を意味する。評価結果を表1に示す。
 (電池用電極の作製)
 調製した電極用導電性組成物を、厚さ15μmのアルミニウム箔(UACJ社製)上に、アプリケータにて成膜し、乾燥機内に静置して105℃、一時間で予備乾燥させた。次に、ロールプレス機にて200kg/cmの線圧でプレスし、厚さ15μmのアルミニウム箔を含んだ膜の厚さが60μmになるように調製した。揮発成分を除去するため、170℃で3時間真空乾燥して電池用電極を得た。
 [電池用電極の極板抵抗評価]
 作製した電池用電極を直径14mmの円盤状に切り抜き、表裏をSUS304製平板電極によって挟んだ状態で、電気化学測定システム(ソーラトロン社製、ファンクションジェネレーター1260およびポテンショガルバノスタット1287)を用いて、振幅電圧10mV、周波数範囲1Hz~100kHzにて交流インピーダンスを測定した。得られた抵抗成分値に切り抜いた円盤状の面積を掛けた抵抗値を極板抵抗とした。評価結果を表1に示す。
 (負極の作製)
 溶媒として純水(関東化学社製)、負極活物質として人造黒鉛(日立化成社製、「MAG-D」)、結着材としてスチレンブタジエンゴム(日本ゼオン社製、「BM-400B」、以下、SBRと記載)、分散剤としてカルボキシメチルセルロース(ダイセル社製、「D2200」、以下、CMCと記載)をそれぞれ用意した。次いで、CMCが固形分で1質量%、人造黒鉛が固形分で97質量%となるように秤量して混合し、この混合物に純水を添加し、自転公転式混合機(シンキー社製、あわとり練太郎ARV-310)を用いて、均一になるまで混合した。さらに、SBRが固形分で2質量%となるように秤量し、上記混合物に添加し、自転公転式混合機(シンキー社製、あわとり練太郎ARV-310)を用いて、均一になるまで混合し、非水系電池用負極スラリーを得た。次いで、非水系電池用負極スラリーを、厚さ10μmの銅箔(UACJ社製)上にアプリケータにて成膜し、乾燥機内に静置して60℃、一時間で予備乾燥させた。次に、ロールプレス機にて100kg/cmの線圧でプレスし、銅箔を含んだ膜の厚さが40μmになるように調製した。残留水分を完全に除去するため、120℃で3時間真空乾燥して負極を得た。
 (電池の作製)
  露点-50℃以下に制御したドライルーム内で、上記電池用電極を40×40mmに加工して正極とし、上記負極を44×44mmに加工した後、電極合材塗工面が中央で対向するようにし、さらに電極間に45×45mmに加工したポリオレフィン微多孔質膜を配置した。次に70×140mm角に切断・加工したアルミラミネートシートを、長辺の中央部で二つ折りにし、電極の集電用タブがラミネートシートの外部に露出するように配置して挟み込んだ。次にヒートシーラーを用いて、アルミラミネートシートの集電用タブが露出した辺を含む2辺を加熱融着した後、加熱融着していない一辺から、2gの電解液を注液し、上記電池用電極を用いた正極、負極およびポリオレフィン微多孔膜に十分に染み込ませてから、真空ヒートシーラーにより、電池の内部を減圧しながら、アルミラミネートシートの残り1辺を加熱融着して電池を得た。
 作製した電池について、以下の方法により電池性能を評価した。
 (電池の評価)
 [放電レート特性(3C放電時の容量維持率)]
 作製した電池を、25℃において4.35V、0.2C制限の定電流定電圧充電をした後、0.2Cの定電流で3.0Vまで放電した。次いで、放電電流を0.2C、0.5C、1C、2C、3Cと変化させ、各放電電流に対する放電容量を測定した。各測定における回復充電は4.35V、0.2C制限の定電流定電圧充電を行った。そして、0.2C放電時に対する3C放電時の容量維持率を計算した。評価結果を表1に示す。
 [サイクル特性(サイクル後放電容量維持率)]
  作製した電池を、25℃において4.35V、1C制限の定電流定電圧充電をした後、1Cの定電流で3.0Vまで放電した。次いで、上記充放電を500サイクル繰り返し、放電容量を測定した。そして、1サイクル放電時に対する500サイクル放電時のサイクル後放電容量維持率を計算した。評価結果を表1に示す。
 <実施例2>
  実施例1の炭化水素ガスをベンゼンに変更した(該製造条件で製造された電池用カーボンブラックをカーボンブラックB(CBB)とした。)以外は、実施例1と同様な方法で電池用カーボンブラック、電極用導電性組成物、電池用電極および電池を作製し、各評価を実施した。評価結果を表1に示す。
 <実施例3>
  実施例1の原料ガス混合比を酸素ガス69体積%、炭化水素ガス31体積%に変更し、前記炭化水素ガスをベンゼンに変更した(該製造条件で製造された電池用カーボンブラックをカーボンブラックC(CBC)とした。)以外は、実施例1と同様な方法で電池用カーボンブラック、電極用導電性組成物、電池用電極および電池を作製し、各評価を実施した。評価結果を表1に示す。
 <実施例4>
  実施例1の原料ガス混合比をアセチレンガス60体積%、酸素ガス2体積%、水蒸気19体積%および炭化水素ガス19体積%に変更し、前記炭化水素ガスをベンゼンに変更した(該製造条件で製造された電池用カーボンブラックをカーボンブラックD(CBD)とした。)以外は、実施例1と同様な方法で電池用カーボンブラック、電極用導電性組成物、電池用電極および電池を作製し、各評価を実施した。評価結果を表1に示す。
 <実施例5>
  実施例1の原料ガス混合比をアセチレンガス55体積%、酸素ガス10体積%、水蒸気10体積%および炭化水素ガスとしてのトルエンガス25体積%に変更した(該製造条件で製造された電池用カーボンブラックをカーボンブラックE(CBE)とした。)以外は、実施例1と同様な方法で電池用カーボンブラック、電極用導電性組成物、電池用電極および電池を作製し、各評価を実施した。評価結果を表1に示す。
 <実施例6>
  実施例1の原料ガス混合比をアセチレンガス62体積%、酸素ガス18体積%、水蒸気2体積%および炭化水素ガス18体積%に変更し、前記炭化水素ガスをベンゼンに変更した(該製造条件で製造された電池用カーボンブラックをカーボンブラックF(CBF)とした。)以外は、実施例1と同様な方法で電池用カーボンブラック、電極用導電性組成物、電池用電極および電池を作製し、各評価を実施した。評価結果を表1に示す。
 <実施例7>
  実施例1の原料ガス混合比をアセチレンガス25体積%、酸素ガス40体積%、水蒸気17.5体積%および炭化水素ガスとしてのトルエンガス17.5体積%に変更した(該製造条件で製造された電池用カーボンブラックをカーボンブラックG(CBG)とした。)以外は、実施例1と同様な方法で電池用カーボンブラック、電極用導電性組成物、電池用電極および電池を作製し、各評価を実施した。評価結果を表1に示す。
 <比較例1>
  実施例1の原料ガス混合比をアセチレンガス82体積%、炭化水素ガス18体積%に変更し、前記炭化水素ガスをベンゼンに変更した(該製造条件で製造された電池用カーボンブラックをカーボンブラックH(CBH)とした。)以外は、実施例1と同様な方法で電池用カーボンブラック、電極用導電性組成物、電池用電極および電池を作製し、各評価を実施した。評価結果を表1に示す。比較例1で用いた電池用カーボンブラックの場合、分散性および耐酸化性は良好であるが、電子伝導性に乏しく、極板抵抗も高い値を示した。また、電池評価においても3C放電時の放電容量維持率が低い結果となった。
 <比較例2>
  実施例1の原料ガス混合比をアセチレンガス67体積%、酸素ガス15体積%、水蒸気15体積%および炭化水素ガスとしてのトルエンガス3体積%に変更した(該製造条件で製造された電池用カーボンブラックをカーボンブラックI(CBI)とした。)以外は、実施例1と同様な方法で電池用カーボンブラック、電極用導電性組成物、電池用電極および電池を作製し、各評価を実施した。評価結果を表1に示す。比較例2で用いた電池用カーボンブラックの場合、分散性に乏しく、粘度も高く、耐酸化性も乏しく、極板抵抗も高い値を示した。また、電池評価においても3C放電時の放電容量維持率が低い結果となった。
 <比較例3>
 実施例1の電池用カーボンブラックを表1に示すBET比表面積、結晶子径(La)、昇温脱離ガス分析法(測定温度50℃~1200℃)による単位表面積あたりのCO脱離分子数、DBP吸油量および23℃における単位表面積あたりの局在電子スピン密度を持つSuperPLi(イメリス社製)に変更した以外は、実施例1と同様な方法で電池用カーボンブラック、電極用導電性組成物、電池用電極および電池を作製し、各評価を実施した。評価結果を表1に示す。比較例3で用いた電池用カーボンブラックの場合、分散性および耐酸化性は良好であるが、電子伝導性に乏しく、極板抵抗も高い値を示した。また、電池評価においても3C放電時の放電容量維持率が低い結果となった。
 <比較例4>
  実施例1の電池用カーボンブラックを表1に示すBET比表面積、結晶子径(La)、昇温脱離ガス分析法(測定温度50℃~1200℃)による単位表面積あたりのCO脱離分子数、DBP吸油量および23℃における単位表面積あたりの局在電子スピン密度を持つECP(ライオン・スペシャリティ・ケミカルズ社製)に変更した以外は、実施例1と同様な方法で電池用カーボンブラック、電極用導電性組成物、電池用電極および電池を作製し、各評価を実施した。評価結果を表1に示す。比較例4で用いた電池用カーボンブラックの場合、分散性に乏しく、粘度も高く、耐酸化性も乏しく、極板抵抗も高い値を示した。また、電池評価においても3C放電時の放電容量維持率が低い結果となった。
 <比較例5>
 実施例1の原料ガス混合比をアセチレンガス60体積%、酸素ガス2体積%、水蒸気25体積%および炭化水素ガス13体積%に変更し、前記炭化水素ガスをベンゼンに変更した(該製造条件で製造された電池用カーボンブラックをカーボンブラックJ(CBJ)とした。)以外は、実施例1と同様な方法で電池用カーボンブラック、電極用導電性組成物、電池用電極および電池を作製し、各評価を実施した。評価結果を表1に示す。比較例5で用いた電池用カーボンブラックの場合、分散性に乏しく、粘度も高く、耐酸化性も乏しく、極板抵抗も高い値を示した。また、電池評価においても3C放電時の放電容量維持率が低い結果となった。
 <比較例6>
  実施例1の原料ガス混合比をアセチレンガス57体積%、酸素ガス3体積%、水蒸気20体積%および炭化水素ガス20体積%に変更し、前記炭化水素ガスをベンゼンに変更した(該製造条件で製造された電池用カーボンブラックをカーボンブラックK(CBK)とした。)以外は、実施例1と同様な方法で電池用カーボンブラック、電極用導電性組成物、電池用電極および電池を作製し、各評価を実施した。評価結果を表1に示す。比較例6で用いた電池用カーボンブラックの場合、耐酸化性は良好であるが、分散性に乏しく、粘度も高く、極板抵抗も高い値を示した。また、電池評価においても3C放電時の放電容量維持率が低い結果となった。
 <比較例7>
  実施例1の原料ガス混合比をアセチレンガス80体積%、酸素ガス5体積%、水蒸気7.5体積%および炭化水素ガス7.5体積%に変更し、前記炭化水素ガスをベンゼンに変更した(該製造条件で製造された電池用カーボンブラックをカーボンブラックL(CBL)とした。)以外は、実施例1と同様な方法で電池用カーボンブラック、電極用導電性組成物、電池用電極および電池を作製し、各評価を実施した。評価結果を表1に示す。比較例7で用いた電池用カーボンブラックの場合、分散性および耐酸化性は良好であるが、電子伝導性に乏しく、極板抵抗も高い値を示した。また、電池評価においても3C放電時の放電容量維持率が低い結果となった。
 <比較例8>
 実施例1の原料ガス混合比をアセチレンガス65体積%、酸素ガス16体積%、水蒸気3体積%および炭化水素ガスとしてのトルエンガス16体積%に変更した(該製造条件で製造された電池用カーボンブラックをカーボンブラックM(CBM)とした。)以外は、実施例1と同様な方法で電池用カーボンブラック、電極用導電性組成物、電池用電極および電池を作製し、各評価を実施した。評価結果を表1に示す。比較例8で用いた電池用カーボンブラックの場合、分散性および耐酸化性は良好であるが、電子伝導性に乏しく、極板抵抗も高い値を示した。また、電池評価においても3C放電時の放電容量維持率が低い結果となった。
 <比較例9>
 実施例1の原料ガス混合比をアセチレンガス40体積%、酸素ガス10体積%、水蒸気25体積%および炭化水素ガス25体積%に変更し、前記炭化水素ガスをベンゼンに変更した(該製造条件で製造された電池用カーボンブラックをカーボンブラックN(CBN)とした。)以外は、実施例1と同様な方法で電池用カーボンブラック、電極用導電性組成物、電池用電極および電池を作製し、各評価を実施した。評価結果を表1に示す。比較例9で用いた電池用カーボンブラックの場合、分散性に乏しく、粘度も高く、耐酸化性も乏しく、極板抵抗も高い値を示した。また、電池評価においても3C放電時の放電容量維持率が低い結果となった。
Figure JPOXMLDOC01-appb-T000001
 実施例1~7の電池用カーボンブラックは、比較例1~9の電池用カーボンブラックに比べて分散性、電子伝導性および耐酸化性を両立できることが明らかになった。これにより本発明の実施例の電極用導電性組成物は粘度が低く、電極用導電性組成物を用いた電池用電極は極板抵抗が低いため放電時の電圧降下を抑えられることが分かった。
  さらに、実施例1~7の電池は、比較例1~9の電池に比べて放電レート特性が高く、サイクル特性も高いことが明らかになった。これにより本発明の電池用カーボンブラックを用いた電池は放電電流の増加に伴う出力低下を抑えられ、高い寿命も兼ね備えていることが分かった。
 1 リチウムイオン電池正極
 2 リチウムイオン電池負極
 3 ポリオレフィン製微多孔膜
 4 アルミ製タブ
 5 ニッケル製タブ
 6 外装
 

Claims (7)

  1.   BET比表面積が50~220m/gであり、結晶子径(La)が30~42Åであり、昇温脱離ガス分析法(測定温度50℃~1200℃)による単位表面積あたりのCO脱離分子数が8.0×1016~15.0×1016個/mである電池用カーボンブラック。
  2.   DBP吸油量が240~310mL/100gである請求項1に記載の電池用カーボンブラック。
  3.   23℃における単位表面積あたりの局在電子スピン密度が8.0×1016個/m以下である請求項1または2に記載の電池用カーボンブラック。
  4.   前記電池用カーボンブラックがアセチレンブラックである請求項1~3の何れか一項に記載の電池用カーボンブラック。
  5.   活物質、高分子結着材および請求項1~4の何れか一項に記載の電池用カーボンブラックを含む電極用導電性組成物。
  6.   請求項1~4の何れか一項に記載の電池用カーボンブラックを含む電池用電極。
  7.   請求項6記載の電池用電極を備える電池。
     
PCT/JP2017/028762 2016-08-24 2017-08-08 電池用カーボンブラック、電極用導電性組成物、電池用電極、および電池 WO2018037910A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197008250A KR102411086B1 (ko) 2016-08-24 2017-08-08 전지용 카본 블랙, 전극용 도전성 조성물, 전지용 전극 및 전지
US16/327,265 US11098201B2 (en) 2016-08-24 2017-08-08 Carbon black for batteries, conductive composition for electrodes, electrode for batteries, and battery
EP17843395.9A EP3506402B1 (en) 2016-08-24 2017-08-08 Carbon black for batteries, conductive composition for electrodes, electrode for batteries, and battery
CN201780051852.5A CN109643802B (zh) 2016-08-24 2017-08-08 电池用碳黑、电极用导电性组合物、电池用电极及电池
JP2018535587A JP6937761B2 (ja) 2016-08-24 2017-08-08 電池用カーボンブラック、電極用導電性組成物、電池用電極、および電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016163253 2016-08-24
JP2016-163253 2016-08-24

Publications (1)

Publication Number Publication Date
WO2018037910A1 true WO2018037910A1 (ja) 2018-03-01

Family

ID=61246609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028762 WO2018037910A1 (ja) 2016-08-24 2017-08-08 電池用カーボンブラック、電極用導電性組成物、電池用電極、および電池

Country Status (6)

Country Link
US (1) US11098201B2 (ja)
EP (1) EP3506402B1 (ja)
JP (1) JP6937761B2 (ja)
KR (1) KR102411086B1 (ja)
CN (1) CN109643802B (ja)
WO (1) WO2018037910A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021068552A (ja) * 2019-10-21 2021-04-30 デンカ株式会社 正極樹脂組成物、正極及び二次電池
WO2022118924A1 (ja) * 2020-12-04 2022-06-09 デンカ株式会社 カーボンブラック、スラリー及びリチウムイオン二次電池
WO2022118920A1 (ja) * 2020-12-04 2022-06-09 デンカ株式会社 カーボンブラック、スラリー及びリチウムイオン二次電池
WO2022270361A1 (ja) * 2021-06-25 2022-12-29 デンカ株式会社 正極組成物、正極、及び電池
WO2023054375A1 (ja) * 2021-09-30 2023-04-06 デンカ株式会社 カーボンブラック、組成物、積層体及び電池
WO2023054377A1 (ja) * 2021-09-30 2023-04-06 デンカ株式会社 カーボンブラック、組成物、積層体及び電池

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3167117A4 (en) * 2014-07-08 2018-02-28 Xyleco, Inc. Marking plastic-based products
CN109997253B (zh) * 2016-12-08 2022-07-22 松下知识产权经营株式会社 非水电解质二次电池用负极及非水电解质二次电池
CN112242551B (zh) * 2019-07-16 2021-12-07 宁德时代新能源科技股份有限公司 二次电池
JP7492806B2 (ja) * 2020-07-03 2024-05-30 リファインホールディングス株式会社 炭素質材料分散液およびその製造方法
KR20220019157A (ko) * 2020-08-06 2022-02-16 현대자동차주식회사 발열시트를 내장한 배터리 셀
WO2022118923A1 (ja) * 2020-12-04 2022-06-09 デンカ株式会社 カーボンブラック、スラリー及びリチウムイオン二次電池
US20220006093A1 (en) * 2021-07-01 2022-01-06 Refine Holdings Co., Ltd. Carbonaceous material dispersion and method for producing therof
CN114284465A (zh) * 2021-12-22 2022-04-05 蜂巢能源科技股份有限公司 正极浆料的制备方法、正极极片及锂离子电池
CN115312701B (zh) * 2022-09-29 2023-02-10 比亚迪股份有限公司 一种正极片及锂离子电池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234104A (ja) * 2002-02-08 2003-08-22 Ketjen Black International Co 電池、電気二重層型キャパシター電極用カーボンブラック
JP2009035598A (ja) * 2007-07-31 2009-02-19 Denki Kagaku Kogyo Kk アセチレンブラック、その製造方法及び用途
WO2012014616A1 (ja) 2010-07-30 2012-02-02 三洋電機株式会社 非水電解質二次電池
JP2012059466A (ja) 2010-09-07 2012-03-22 Toppan Printing Co Ltd リチウムイオン二次電池用正極合剤の製造方法および正極材
JP2013093171A (ja) * 2011-10-25 2013-05-16 Mitsubishi Chemicals Corp リチウム二次電池用正極およびそれを用いたリチウム二次電池
JP2015509119A (ja) 2011-12-22 2015-03-26 キャボット コーポレイションCabot Corporation カーボンブラックおよび鉛蓄電池のための電極における使用
WO2016063924A1 (ja) * 2014-10-21 2016-04-28 デンカ株式会社 燃料電池用カーボンブラック
WO2016088880A1 (ja) * 2014-12-04 2016-06-09 デンカ株式会社 電極用導電性組成物、非水系電池用電極及び非水系電池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001167767A (ja) 1999-12-07 2001-06-22 Sony Corp 非水電解液2次電池
JP4228593B2 (ja) * 2002-05-29 2009-02-25 ソニー株式会社 非水電解質二次電池
JP5648869B2 (ja) * 2010-10-21 2015-01-07 トヨタ自動車株式会社 電池用電極およびその利用
KR20120059466A (ko) 2012-04-25 2012-06-08 신한금융투자 주식회사 환율이 반영된 주가지수 제공 방법
KR102188630B1 (ko) * 2012-09-14 2020-12-08 미꾸니 시끼소 가부시키가이샤 아세틸렌블랙 분산 슬러리 및 리튬 이온 이차 전지
JP5755624B2 (ja) * 2012-10-15 2015-07-29 トヨタ自動車株式会社 空気電池用空気極及び空気電池
HUE035012T2 (en) 2013-06-21 2018-05-02 Cabot Corp Conductive carbon for lithium ion batteries
SI3011619T1 (sl) * 2013-06-21 2018-10-30 Cabot Corporation Aktivni materiali za litij ion baterije

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234104A (ja) * 2002-02-08 2003-08-22 Ketjen Black International Co 電池、電気二重層型キャパシター電極用カーボンブラック
JP2009035598A (ja) * 2007-07-31 2009-02-19 Denki Kagaku Kogyo Kk アセチレンブラック、その製造方法及び用途
WO2012014616A1 (ja) 2010-07-30 2012-02-02 三洋電機株式会社 非水電解質二次電池
JP2012059466A (ja) 2010-09-07 2012-03-22 Toppan Printing Co Ltd リチウムイオン二次電池用正極合剤の製造方法および正極材
JP2013093171A (ja) * 2011-10-25 2013-05-16 Mitsubishi Chemicals Corp リチウム二次電池用正極およびそれを用いたリチウム二次電池
JP2015509119A (ja) 2011-12-22 2015-03-26 キャボット コーポレイションCabot Corporation カーボンブラックおよび鉛蓄電池のための電極における使用
WO2016063924A1 (ja) * 2014-10-21 2016-04-28 デンカ株式会社 燃料電池用カーボンブラック
WO2016088880A1 (ja) * 2014-12-04 2016-06-09 デンカ株式会社 電極用導電性組成物、非水系電池用電極及び非水系電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3506402A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021068552A (ja) * 2019-10-21 2021-04-30 デンカ株式会社 正極樹脂組成物、正極及び二次電池
JP7423247B2 (ja) 2019-10-21 2024-01-29 デンカ株式会社 正極樹脂組成物、正極及び二次電池
WO2022118924A1 (ja) * 2020-12-04 2022-06-09 デンカ株式会社 カーボンブラック、スラリー及びリチウムイオン二次電池
WO2022118920A1 (ja) * 2020-12-04 2022-06-09 デンカ株式会社 カーボンブラック、スラリー及びリチウムイオン二次電池
WO2022270361A1 (ja) * 2021-06-25 2022-12-29 デンカ株式会社 正極組成物、正極、及び電池
WO2023054375A1 (ja) * 2021-09-30 2023-04-06 デンカ株式会社 カーボンブラック、組成物、積層体及び電池
WO2023054377A1 (ja) * 2021-09-30 2023-04-06 デンカ株式会社 カーボンブラック、組成物、積層体及び電池

Also Published As

Publication number Publication date
JPWO2018037910A1 (ja) 2019-06-20
EP3506402B1 (en) 2020-12-23
KR102411086B1 (ko) 2022-06-20
US20190177551A1 (en) 2019-06-13
EP3506402A4 (en) 2019-07-03
JP6937761B2 (ja) 2021-09-22
EP3506402A1 (en) 2019-07-03
CN109643802B (zh) 2022-08-19
CN109643802A (zh) 2019-04-16
KR20190040300A (ko) 2019-04-17
US11098201B2 (en) 2021-08-24

Similar Documents

Publication Publication Date Title
WO2018037910A1 (ja) 電池用カーボンブラック、電極用導電性組成物、電池用電極、および電池
CN110224129B (zh) 一种MOFs衍生物包覆NCM三元正极材料及其制备方法
Li et al. A facile recycling and regeneration process for spent LiFePO 4 batteries
Xue et al. Effect of particle size on rate capability and cyclic stability of LiNi 0.5 Mn 1.5 O 4 cathode for high-voltage lithium ion battery
CN109742489B (zh) 一种锂-氧气/空气电池及其制备方法
KR102387963B1 (ko) 전극용 도전성 조성물 및 이를 이용한 전극, 전지
Lee et al. Modified graphite and graphene electrodes for high-performance lithium ion hybrid capacitors
CN111969203B (zh) 含有微纳米级石墨烯包覆的单晶正极材料的锂离子电池电极
CN111969204B (zh) 含纳米级石墨烯包覆的单晶正极材料的锂离子电池电极
JPWO2019216275A1 (ja) リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
Feng et al. Designing hierarchical MnO/polypyrrole heterostructures to couple polysulfides adsorption and electrocatalysis in lithium-sulfur batteries
Yang et al. Nanosized tin and tin oxides loaded expanded mesocarbon microbeads as negative electrode material for lithium-ion batteries
Xu et al. Graphene-wrapped Cr2O3 hollow nanospheres with enhanced electrochemical performances for lithium-ion batteries
Deng et al. Disodium terephthalate/multiwall-carbon nanotube nanocomposite as advanced anode material for Li-ion batteries
CN116914112A (zh) 硅基负极材料及其制备方法
CN114743803B (zh) 一种高电压混合型锂离子超级电容器及其制备方法
JP6844236B2 (ja) 炭素質材料の製造方法
Kurc et al. Properties of Li 4 Ti 5 O 12 as an anode material in non-flammable electrolytes
Zhang et al. Preparation and electrochemical properties of carbon-coated Li4Ti5O12 anode materials for Lithium Ion Batteries
CN109802144B (zh) 一种气氛电池正极催化剂材料及其制备方法
Su et al. Preparation of graphene oxide/poly (o-phenylenediamine) hybrid composite via facile in situ assembly and post-polymerization technology for the anode material of lithium ion battery
KR102342207B1 (ko) 전지용 카본 블랙, 전지용 도공액, 비수계 전지용 정극 및 비수계 전지
Luo et al. NiCo2O4 Particles with Facile PPy Modification as an Anode Material for High‐Performance Lithium‐Ion Batteries
EP4333126A1 (en) Positive electrode composition, positive electrode, and battery
KR20220083015A (ko) 전도성 및 내산화성이 뛰어난 카본 블랙

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843395

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018535587

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197008250

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017843395

Country of ref document: EP

Effective date: 20190325