WO2018029861A1 - 電源回路基板、電源回路、電力変換装置及び誤実装検出方法 - Google Patents

電源回路基板、電源回路、電力変換装置及び誤実装検出方法 Download PDF

Info

Publication number
WO2018029861A1
WO2018029861A1 PCT/JP2016/073793 JP2016073793W WO2018029861A1 WO 2018029861 A1 WO2018029861 A1 WO 2018029861A1 JP 2016073793 W JP2016073793 W JP 2016073793W WO 2018029861 A1 WO2018029861 A1 WO 2018029861A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
connection part
parallel connection
series connection
positive
Prior art date
Application number
PCT/JP2016/073793
Other languages
English (en)
French (fr)
Inventor
奥田 哲也
泰宏 遠藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201690000894.7U priority Critical patent/CN207573252U/zh
Priority to PCT/JP2016/073793 priority patent/WO2018029861A1/ja
Priority to JP2017506441A priority patent/JP6157776B1/ja
Publication of WO2018029861A1 publication Critical patent/WO2018029861A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/10Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode arranged for operation in series, e.g. for multiplication of voltage

Definitions

  • the present invention relates to a power supply circuit board, a power supply circuit, a power conversion device, and an erroneous mounting detection method.
  • Conventional power converters for driving motors have, for example, single-phase 100V, single-phase 200V, three-phase 200V, and three-phase 400V as the types of AC power supplies, and are dedicated to the power supply voltage and the number of phases, respectively. There was a need to design parts and components.
  • one or more capacitors connected in parallel are used for a three-phase or single-phase 200 V input, and one or more sets are connected in series for a three-phase 400 V input.
  • a set of capacitors is used, and one or more sets of capacitors connected in series are used for a single-phase 100V input.
  • Patent Document 1 discloses a power conversion device including a three-phase input terminal, an intermediate potential terminal connected to a wiring connecting two smoothing capacitors, and a short-circuit piece for short-circuiting the input terminal.
  • the present invention has been made in view of the above, and is a power circuit board, power circuit, power conversion device, and erroneous mounting that can be applied to an AC power supply having different numbers of different phases without requiring additional members on the same substrate.
  • An object is to provide a detection method.
  • a power conversion device includes a first AC terminal, a second AC terminal, and a three-phase AC voltage or a single-phase AC voltage applied thereto.
  • Two parallel connection portions a positive terminal of the first series connection portion, a positive terminal of the first parallel connection portion, and a positive terminal of the second parallel connection portion are electrically connected to the first DC terminal. Connected to the negative terminal of the first parallel connection portion and the second The negative terminal of the column connection part and the negative terminal of the second parallel connection part are electrically connected to the second DC terminal, and the negative terminal of the first series connection part and the second series connection The positive terminal of the part is electrically connected to the third AC terminal.
  • FIG. 1 is a circuit diagram showing a configuration of a power supply circuit board according to a first embodiment.
  • the circuit diagram which showed the structure in the case of rectifying the three-phase 200V alternating voltage of the power supply circuit which concerns on Embodiment 1.
  • the circuit diagram which showed the structure in the case of voltage doubler rectification of the single phase 100V alternating voltage of the power supply circuit which concerns on Embodiment 1
  • the circuit diagram which showed the structure in the case of voltage doubler rectification of the single phase 100V alternating voltage of the other power supply circuit which concerns on Embodiment 1 1 is a circuit diagram showing a configuration of a power conversion device according to a first embodiment.
  • circuit diagram which shows the structure of the power supply circuit board concerning Embodiment 2 The circuit diagram which shows the structure of the power supply circuit board which concerns on Embodiment 3.
  • FIG. 1 is a circuit diagram showing a configuration of a power supply circuit board 50a according to the first embodiment.
  • FIG. 2 is a circuit diagram showing a configuration in the case of rectifying the three-phase 200V AC voltage of the power supply circuit 70a according to the first embodiment.
  • FIG. 3 is a circuit diagram showing a configuration in the case of double voltage rectification of the single-phase 100V AC voltage of the power supply circuit 70a according to the first embodiment.
  • FIG. 4 is a circuit diagram showing a configuration in the case of double voltage rectification of a single-phase 100V AC voltage of another power supply circuit 70a according to the first embodiment.
  • FIG. 5 is a circuit diagram showing a configuration of power conversion device 100a according to the first embodiment.
  • the power supply circuit board 50a includes a first AC terminal L1, a second AC terminal L2, a third AC terminal L3, a first DC terminal 5, and a second DC terminal. 6, the first series connection portion 41a, the first parallel connection portion 42a, the second series connection portion 43a, the second parallel connection portion 44a, the voltage doubler rectification pattern 8, and the series-parallel connection. Pattern 9 for use.
  • the power supply circuit board 50a is a printed board, but the power supply circuit board 50a is not limited to the printed board.
  • the first AC terminal L1, the second AC terminal L2, and the third AC terminal L3 are terminal blocks to which the three-phase power source 7 or the single-phase power source 10 is connected.
  • the three-phase power source 7 applies a three-phase AC voltage to the first AC terminal L1, the second AC terminal L2, and the third AC terminal L3.
  • the single-phase power supply 10 applies a single-phase AC voltage to the first AC terminal L1 and the third AC terminal L3.
  • the three-phase power source 7 is a power source that supplies three-phase 200V or three-phase 400V.
  • the single-phase power supply 10 is a power supply that supplies a single-phase 100V or a single-phase 200V.
  • the first DC terminal 5 and the second DC terminal 6 are terminal blocks that output a DC voltage generated by a rectifier circuit 1 described later.
  • the first series connection part 41a has a positive terminal 21a of the first series connection part and a negative terminal 22a of the first series connection part.
  • the first parallel connection part 42a includes a positive terminal 23a of the first parallel connection part and a negative terminal 24a of the first parallel connection terminal.
  • the second series connection portion 43a includes a positive electrode terminal 31a of the second series connection portion and a negative electrode terminal 32a of the second series connection portion.
  • the second parallel connection portion 44a includes a positive electrode terminal 33a of the second parallel connection portion and a negative electrode terminal 34a of the second parallel connection portion.
  • the positive terminal 31a, the negative terminal 32a of the first series connection part, the positive terminal 33a of the second parallel connection part, and the negative terminal 34a of the second parallel connection part are, for example, a conductor pad or a power circuit board 50a. It is a conductor portion formed on the inner wall surface of the through hole.
  • the positive terminal 21a of the first series connection section, the negative terminal 22a of the first series connection section, the positive terminal 23a of the first parallel connection section, and the negative terminal 24a of the first parallel connection section are described below.
  • condenser 20 is electrically connected to these.
  • the positive terminal 31a of the second series connection part, the negative terminal 32a of the second series connection part, the positive terminal 33a of the second parallel connection part, and the negative terminal 34a of the second parallel connection part are described later.
  • the capacitor 30 is mounted. More specifically, the terminals of the second capacitor 30 are electrically connected to these.
  • the terminals of the first capacitor 20 and the second capacitor 30 include lead wires.
  • the positive terminal 21a of the first series connection section, the negative terminal 22a of the first series connection section, the positive terminal 23a of the first parallel connection section, and the negative terminal 24a of the first parallel connection section are shown in FIG.
  • the power supply circuit board 50a is provided.
  • the positive terminal 31a of the second series connection section, the negative terminal 32a of the second series connection section, the positive terminal 33a of the second parallel connection section, and the negative terminal 34a of the second parallel connection section are shown in FIG.
  • the power supply circuit board 50a is provided.
  • the voltage doubler rectification pattern 8 is a wiring pattern formed on the power supply circuit board 50a. As shown in FIG. 1, the voltage doubler rectification pattern 8 electrically connects the negative terminal 22a of the first series connection portion, the positive terminal 31a of the second series connection portion, and the third AC terminal L3. .
  • the series / parallel connection pattern 9 is a wiring pattern formed on the power circuit board 50a.
  • the series-parallel connection pattern 9 includes a first DC terminal 5, a positive terminal 21 a of the first series connection portion, a positive terminal 23 a of the first parallel connection portion, and a second parallel connection portion.
  • the positive electrode terminal 33a is electrically connected.
  • the series-parallel connection pattern 9 includes a second DC terminal 6, a negative terminal 24 a of the first parallel connection part, a negative terminal 32 a of the second series connection part, and a second parallel connection part.
  • the negative electrode terminal 34a is electrically connected.
  • the power supply circuit 70a according to the first embodiment includes a power supply circuit board 50a, a rectifier circuit 1, an inrush current suppression circuit 2, and a smoothing circuit 3.
  • the first AC terminal L1, the second AC terminal L2, and the third AC terminal L3 of the power circuit board 50a are connected to a 200V three-phase AC power source.
  • the rectifier circuit 1 has six diodes 4. As shown in FIG. 2, the diode 4 is provided between the first AC terminal L1, the second AC terminal L2, and the third AC terminal L3, and the first DC terminal 5 and the second DC terminal 6. Bridge connected. The rectifier circuit 1 forms a full-wave rectifier circuit by the diodes 4 connected in a bridge. The rectifier circuit 1 rectifies the three-phase AC voltage applied from the three-phase power source 7 to the first AC terminal L1, the second AC terminal L2, and the third AC terminal L3 into a DC voltage.
  • the inrush current suppression circuit 2 includes a switch 26, a resistor 28, and a control device 80.
  • the switch 26 is provided in the series-parallel connection pattern 9 as shown in FIG.
  • the resistor 28 is connected in parallel with the switch 26 as shown in FIG.
  • the control device 80 is connected to the switch 26, a first capacitor 20 described later, and a second capacitor 30 described later.
  • the control device 80 is a microcomputer including an arithmetic processing unit configured with a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory). It is not limited to.
  • the inrush current suppression circuit 2 suppresses an inrush current flowing through the power supply circuit 70a when an AC voltage is applied to the power supply circuit 70a. Specifically, when the first capacitor 20 and the second capacitor 30 described later do not reach a preset charge amount, the control device 80 opens the switch 26 to suppress the inrush current. The control device 80 turns on the switch 26 when a first capacitor 20 and a second capacitor 30 (to be described later) reach a preset charge amount.
  • the smoothing circuit 3 includes a first capacitor 20 and a second capacitor 30.
  • the first capacitor 20 and the second capacitor 30 are capacitors having a withstand voltage performance of 200V.
  • the first capacitor 20 includes a positive electrode and a negative electrode.
  • the second capacitor 30 includes a positive electrode and a negative electrode.
  • the positive electrode of the first capacitor 20 is electrically connected to the positive terminal 23a of the first parallel connection portion.
  • the negative electrode of the first capacitor 20 is electrically connected to the negative terminal 24a of the first parallel connection portion.
  • the positive electrode of the second capacitor 30 is electrically connected to the positive electrode terminal 33a of the second parallel connection portion.
  • the negative electrode of the second capacitor 30 is electrically connected to the negative electrode terminal 34a of the second parallel connection portion.
  • the configuration in the case of rectifying the three-phase 200V AC voltage of the power supply circuit 70a according to the first embodiment is a three-phase power source 7 in which the first AC terminal L1, the second AC terminal L2, and the third AC terminal L3 are 200V.
  • the first AC terminal L1 and the third AC terminal L3 may be connected to the 200V single-phase power supply 10. If it does in this way, it can respond also to a single phase 200V power supply.
  • the configuration in the case of rectifying the three-phase 200V AC voltage of the power supply circuit 70a according to the first embodiment assumes that the first capacitor 20 and the second capacitor 30 have a withstand voltage performance of 200V.
  • the second capacitor 30 may have a withstand voltage performance of 400V. If it does in this way, it can respond also to a three-phase 400V power supply.
  • the configuration of the power supply circuit 70a in the case of voltage rectifying the single-phase 100V AC voltage is the same as the configuration in the case of rectifying the three-phase 200V AC voltage and the single-phase 200V AC voltage except for the smoothing circuit 3.
  • the smoothing circuit 3 includes a first capacitor 20 and a second capacitor 30.
  • the first capacitor 20 and the second capacitor 30 are capacitors having a withstand voltage performance of 100V.
  • the first capacitor 20 includes a positive electrode and a negative electrode.
  • the second capacitor 30 includes a positive electrode and a negative electrode.
  • the positive electrode of the first capacitor 20 is electrically connected to the positive terminal 21a of the first series connection portion.
  • the negative electrode of the first capacitor 20 is electrically connected to the negative terminal 22a of the first series connection portion.
  • the positive electrode of the second capacitor 30 is electrically connected to the positive electrode terminal 31a of the second series connection part.
  • the negative electrode of the second capacitor 30 is electrically connected to the negative terminal 32a of the second series connection part.
  • the configuration in which the single-phase 100V AC voltage of the power supply circuit 70a according to the first embodiment is double-voltage rectified is a configuration in which six diodes 4 are mounted. However, as shown in FIG. 4 may be implemented. By doing in this way, it becomes possible to reduce the number of diodes 4 required for rectification, and to reduce work man-hours and material costs.
  • the configuration in the case of voltage doubler rectification of the single-phase 100V AC of the power supply circuit 70a according to the first embodiment assumes that the first capacitor 20 and the second capacitor 30 have a withstand voltage performance of 100V. 20 and the second capacitor 30 may have a withstand voltage performance of 200V. If it does in this way, it can respond also to the double voltage rectification of a single phase 200V alternating current power supply.
  • the power conversion device 100a includes a power supply circuit 70a, a display unit 81, an inverter circuit 11, and a voltage detection circuit 15.
  • the power conversion device 100a is the same as the power supply circuit 70a except that the power conversion device 100a includes a display unit 81, an inverter circuit 11, and a voltage detection circuit 15.
  • the display unit 81 is connected to the control device 80.
  • the display unit 81 is a display that displays information received from the control device 80.
  • the inverter circuit 11 is electrically connected to the first DC terminal 5 and the second DC terminal 6 as shown in FIG.
  • the inverter circuit 11 includes six switching elements 12.
  • the switching element 12 is a bipolar element using, for example, Si (silicon). As shown in FIG. 5, six switching elements 12 are mounted on the power supply circuit board 50a, and are bridge-connected by a switching element connection pattern 13 formed on the power supply circuit board 50a.
  • the plurality of switching elements 12 are connected to the control device 80.
  • the inverter circuit 11 converts the DC voltage output from the smoothing circuit 3 into an AC voltage by causing the control device 80 to turn on and off the switching element 12.
  • the inverter circuit 11 is connected to a load.
  • the inverter circuit 11 outputs AC power to the load.
  • the load is an electric motor. Examples of the electric motor include, but are not limited to, an induction motor, a synchronous motor, a switched reluctance motor stepping motor, and a voice coil motor.
  • the voltage detection circuit 15 is electrically connected to the first DC terminal 5 and the second DC terminal 6 as shown in FIG.
  • the voltage detection circuit 15 is connected to the control device 80.
  • the voltage detection circuit 15 is a detector used for measuring the output voltage of the power conversion device 100a, and is permanently installed in the power conversion device 100a.
  • the voltage detection circuit 15 detects the value of the DC voltage output from the smoothing circuit 3.
  • the value of the DC voltage detected by the voltage detection circuit 15 is appropriately referred to as a detection voltage.
  • the voltage detection circuit 15 outputs the detected detection voltage to the control device 80.
  • the control device 80 displays an abnormality on the display unit 81.
  • the detected voltage is abnormal, when the first capacitor 20 and the second capacitor 30 are connected in series, the positive electrode and the negative electrode of the first capacitor 20 are connected to the positive terminal 21a of the first series connection portion.
  • the output voltage of the smoothing circuit 3 is not smoothed as a result of being mounted on the positive terminal 23a of the first parallel connection part.
  • the positive electrode and the negative electrode of the second capacitor 30 are the negative electrode terminal 32a of the second series connection part and the negative electrode of the second parallel connection part.
  • the output voltage of the smoothing circuit 3 is not smoothed as a result of being mounted on the terminal 34a.
  • the switching element 12 of the power conversion device 100a is a bipolar element using Si (silicon), but is not limited thereto. At least one of the switching elements 12 may be a normally-on unipolar element using, for example, SiC (silicon carbide) or GaN (gallium nitride) which is a wide band gap semiconductor.
  • the power conversion device 100a When the detected voltage output from the voltage detection circuit 15 is abnormal, the power conversion device 100a causes the display unit 81 to display that there is an abnormality. This enables the voltage detection circuit 15 to detect an abnormal output voltage of the power conversion device 100a when the mounting positions of the positive and negative electrodes of the first capacitor 20 and the second capacitor 30 are wrong. Incorrect mounting can be detected without requiring any equipment cost.
  • the power conversion device 100a outputs the detection voltage detected by the voltage detection circuit 15 to the control device 80, and when the detection voltage output from the voltage detection circuit 15 is abnormal, the display unit 81 Is displayed to indicate that it is abnormal, and erroneous mounting is detected.
  • the present invention is not limited to this.
  • the erroneous mounting detection method includes, for example, a measurement process in which a unit tester is brought into contact with the first capacitor 20 and the second capacitor 30 to measure the terminal voltage, and the voltages of the first capacitor 20 and the second capacitor 30 are measured. It is good also as an incorrect mounting detection method including an incorrect mounting determination step for determining whether or not it is erroneous mounting based on. More specifically, the erroneous mounting determination step detects erroneous mounting depending on whether or not the measured value of the terminal voltage measured by the unit tester is included in a predetermined voltage range. Further, as a method for detecting erroneous mounting, for example, erroneous mounting of an electronic component may be detected by visual inspection and image inspection.
  • the power supply circuit board 50a, the power supply circuit 70a, and the power conversion device 100a are connected in series with the positive terminal 21a of the first series connection portion that connects the first capacitor 20 and the second capacitor 30 in series.
  • the power supply circuit board 50a, the power supply circuit 70a, and the power conversion device 100a include the positive terminal 23a of the first parallel connection portion that connects the first capacitor 20 and the second capacitor 30 in parallel and the first parallel connection portion.
  • a negative electrode terminal 24a, a second parallel connection portion positive electrode terminal 33a, and a second parallel connection portion negative electrode terminal 34a are provided.
  • the power supply circuit board 50a, the power supply circuit 70a, and the power conversion device 100a select the connection positions of the first capacitor 20 and the second capacitor 30 to thereby select the first capacitor 20 and the second capacitor 30.
  • the connection of the capacitor 30 can be connected in series or in parallel.
  • the present invention can be applied to an AC power supply having different voltages and different phases using the same substrate.
  • FIG. FIG. 6 is a circuit diagram showing a configuration of a power supply circuit board 50b according to the second embodiment.
  • the same reference numerals as those of the power supply circuit board 50a are used for the same configuration as the power supply circuit board 50a, and the detailed description thereof is omitted.
  • the power supply circuit board 50b includes a positive terminal 21a of the first series connection part, a negative terminal 22a of the first series connection part, a positive terminal 23a of the first parallel connection part, a negative terminal 24a of the first parallel connection part, Instead of the positive terminal 31a of the second series connection part, the negative terminal 32a of the second series connection part, the positive terminal 33a of the second parallel connection part and the negative terminal 34a of the second parallel connection part, Positive terminal 21b of the series connection part, negative terminal 22b of the first series connection part, positive terminal 23b of the second parallel connection part, negative terminal 24b of the second parallel connection part, positive terminal of the second series connection part.
  • the power supply circuit according to Embodiment 1 except that 31b, the negative terminal 32b of the second series connection part, the positive terminal 33b of the second parallel connection part, and the negative terminal 34b of the second parallel connection part are provided. It is the same as the substrate 50a.
  • the positive terminal 21b of the first series connection part, the negative terminal 22b of the first series connection part, the positive terminal 23b of the first parallel connection part, and the negative terminal 24b of the first parallel connection part are shown in FIG.
  • the power supply circuit board 50b is provided.
  • the positive terminal 31b of the second series connection part, the negative terminal 32b of the second series connection part, the positive terminal 33b of the second parallel connection part, and the negative terminal 34b of the second parallel connection part are shown in FIG.
  • the power supply circuit board 50b is provided.
  • the positive terminal 21b of the first series connection part, the negative terminal 22b of the first series connection part, the positive terminal 23b of the first parallel connection part, the negative terminal 24b of the first parallel connection part, and the second series connection part are, for example, a conductor pad or a through hole. It is the conductor part formed in the wall surface.
  • the positive terminal 21b of the first series connection part, the negative terminal 22b of the first series connection part, the positive terminal 23b of the first parallel connection part, the negative terminal 24b of the first parallel connection part, and the second series connection part The positive terminal 31b, the negative terminal 32b of the second series connection part, the positive terminal 33b of the second parallel connection part, and the negative terminal 34b of the second parallel connection part have a rectangular shape. In detail, the shape when these are seen from the direction orthogonal to the mounting surface of the power supply circuit board 50b is a rectangle.
  • the positive terminal 21b of the first series connection portion is arranged in a direction in which the longitudinal direction of the positive terminal 21b of the first series connection portion and the longitudinal direction of the negative terminal 22b of the first series connection portion intersect.
  • the positive terminal 23b of the first parallel connection portion is arranged in a direction in which the longitudinal direction of the positive terminal 23b of the first parallel connection portion and the longitudinal direction of the negative terminal 24b of the first parallel connection portion intersect.
  • the positive terminal 31b of the second series connection portion is arranged in a direction in which the longitudinal direction of the positive terminal 31b of the second series connection portion and the longitudinal direction of the negative terminal 32b of the second series connection portion intersect.
  • the positive terminal 33b of the second parallel connection portion is arranged in a direction in which the longitudinal direction of the positive terminal 33b of the second parallel connection portion intersects the longitudinal direction of the negative terminal 34b of the second parallel connection portion.
  • the longitudinal directions of the terminals are orthogonal to each other, but the present invention is not limited to this.
  • the power supply circuit board 50b has a structure in which the positive and negative electrodes have a rectangular cross section, and a capacitor disposed at a position where the longitudinal direction of the positive electrode and the longitudinal direction of the negative electrode cross each other has the positive electrode and the negative electrode. Can be inserted in the power supply circuit board 50b with the positive and negative electrodes reversed.
  • FIG. 7 is a circuit diagram showing a configuration of a power supply circuit board 50c according to the third embodiment.
  • FIG. 8 is an enlarged view showing the capacitor mounted on the power supply circuit board 50c according to the third embodiment.
  • the power supply circuit board 50c uses the same code group as the power supply circuit board 50a for the same configuration as the power supply circuit board 50a, and a detailed description thereof is omitted.
  • the power supply circuit board 50c includes a positive terminal 21a of the first series connection part, a negative terminal 22a of the first series connection part, a positive terminal 23a of the first parallel connection part, a negative terminal 24a of the first parallel connection part, Instead of the positive terminal 31a of the second series connection part, the negative terminal 32a of the second series connection part, the positive terminal 33a of the second parallel connection part and the negative terminal 34a of the second parallel connection part, Positive terminal 21c of the series connection part, negative terminal 22c of the first series connection part, positive terminal 23c of the second parallel connection part, negative terminal 24c of the second parallel connection part, positive terminal of the second series connection part.
  • the power supply according to Embodiment 1 except that 31c, the negative terminal 32c of the second series connection part, the positive terminal 33c of the second parallel connection part, and the negative terminal 34c of the second parallel connection part are provided. It is the same as the circuit board 50a.
  • the positive terminal 21c of the first series connection part, the negative terminal 22c of the first series connection part, the positive terminal 23c of the first parallel connection part, and the negative terminal 24c of the first parallel connection part are shown in FIG.
  • the power supply circuit board 50c is provided.
  • the positive terminal 31c of the second series connection part, the negative terminal 32c of the second series connection part, the positive terminal 33c of the second parallel connection part, and the negative terminal 34c of the second parallel connection part are shown in FIG.
  • the power supply circuit board 50c is provided.
  • the positive terminal 31c, the negative terminal 32c of the first series connection part, the positive terminal 33c of the second parallel connection part, and the negative terminal 34c of the second parallel connection part are, for example, a conductor pad or a through hole It is the conductor part formed in the wall surface.
  • the positive terminal 21c of the first series connection section and the negative terminal 22c of the first series connection section are respectively positioned at positions facing the positive terminal 23c of the first parallel connection section and the negative terminal 24c of the first parallel connection section. Be placed.
  • the positive terminal 31c of the second series connection part and the negative terminal 32c of the second series connection part are respectively located at positions facing the positive terminal 33c of the second parallel connection part and the negative terminal 34c of the second parallel connection part.
  • the positive terminal 23c of the first parallel connection portion and the negative terminal 24c of the first parallel connection portion are respectively positioned so as to face the negative terminal 34c of the second parallel connection portion and the positive terminal 33c of the second parallel connection portion. Be placed.
  • the power circuit board 50c has the same direction in which the lead 35c of the first capacitor 20c is bent and the direction in which the lead 36c of the second capacitor 30c is bent, and the polarity of the first capacitor 20c is incorrect.
  • the first capacitor 20c is mounted in a direction approaching the second capacitor 30c.
  • the direction in which the leads 35c and 36c are bent is, for example, when the capacitor is viewed from above in the vertical direction, the positive electrodes of the leads 35c and 36c are located on the upper side, and the negative electrodes of the leads 35c and 36c are located on the lower side. In this case, it is a direction to bend rightward or a direction to bend leftward.
  • the direction in which the lead 35c of the first capacitor 20c is bent is the same as the direction in which the lead 36c of the second capacitor 30c is bent, and the polarity of the second capacitor 30c is mistakenly mounted.
  • the second capacitor 30c is mounted in a direction approaching the first capacitor 20c.
  • the direction in which the lead 35c of the first capacitor 20c is bent and the direction in which the lead 36c of the second capacitor 30c are bent are the same.
  • the types of electronic components to be mounted on the power circuit board 50c can be reduced, the number of man-hours required for component management can be reduced, and the manufacturing cost can be reduced.
  • FIG. 9 is a circuit diagram showing a configuration of a power supply circuit board 50d according to the fourth embodiment.
  • the power supply circuit board 50d uses the same code group as that of the power supply circuit board 50a in the same configuration as the power supply circuit board 50a, and a detailed description thereof is omitted.
  • the power supply circuit board 50d includes the power supply circuit board 50a according to the first embodiment except that the power supply circuit board 50d includes the short-circuit component 36, the first short-circuit component connection portion 38, and the second short-circuit component connection portion 39. The same.
  • the short-circuit component 36 is, for example, a zero ohm resistor or a short-circuit jumper wire.
  • the short-circuit component 36 is connected to the first short-circuit component connection portion 38 and the second short-circuit component connection portion 39.
  • the first short-circuit component connection portion 38 and the second short-circuit component connection portion 39 are, for example, conductors formed on conductor pads and inner wall surfaces of the through holes.
  • the first short-circuit component connection part 38 is electrically connected to the negative terminal 22d of the first series connection part and the positive terminal 31d of the second series connection part.
  • the second short-circuit component connecting portion 39 is electrically connected to the third AC terminal L3.
  • the power supply circuit board 50d when the power supply circuit board 50d is mounted with the first capacitor 20 and the second capacitor 30 in series with the power supply circuit board 50d with the short-circuit component 36 not mounted, the first capacitor 20 and Even if the withstand voltage performance of the second capacitor 30 is 200V, it can correspond to a three-phase 400V power source.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit and change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Abstract

同一基板上で追加の部材を要することなく異電圧異相数の交流電源に適用可能な電源回路基板を提供することを目的とする。 三相又は単相の交流電圧が印加される第1,第2及び第3の交流端子(L1,L2,L3)と、 整流回路が生成した直流電圧を出力する第1及び第2の直流端子(5,6)と、 正極端子(21a,31a)及び負極端子(22a,32a)を有する第1及び第2直列接続部(41a,43a)と、 正極端子(23a,33a)及び負極端子(24a,34a)を有する第1及び第2の並列接続部(42a,44a)と、 正極端子(21a,23a,33a)は、第1の直流端子(5)に電気的に接続され、 負極端子(24a,32a,34a)は、第2の直流端子(6)に電気的に接続され、 負極端子(22a)及び正極端子(31a)は、第3の交流端子(L3)に電気的に接続されている電源回路基板(50a)。

Description

電源回路基板、電源回路、電力変換装置及び誤実装検出方法
 本発明は、電源回路基板、電源回路、電力変換装置及び誤実装検出方法に関する。
 従来のモータを駆動する電力変換装置は、交流電源の種別として、例えば単相100V、単相200V、三相200V及び三相400Vがあり、適用する電源の電圧及び相数に応じてそれぞれ専用に部品及び部材を設計する必要があった。
 また、電力変換装置で使用される平滑コンデンサは、三相又は単相200V入力においては1つ又は並列に接続されたコンデンサが用いられ、三相400V入力においては直列に接続された1組又は複数組のコンデンサが用いられ、単相100V入力においては直列に接続された1組又は複数組のコンデンサが用いられる。
 特許文献1には、三相入力の端子と2つの平滑コンデンサを繋ぐ配線に接続される中間電位の端子と入力端子を短絡させる短絡片とを備える電力変換装置が開示されている。
特許第3063354号公報
 特許文献1の電力変換装置は、2つの平滑コンデンサを同一基板上で並列に実装することができないため、平滑コンデンサの容量が不足した場合には付属平滑部を設置して容量を補う必要があり、追加の部材を要するという問題があった。
 本発明は、上記に鑑みてなされたものであって、同一基板上で追加の部材を要することなく異電圧異相数の交流電源に適用可能な電源回路基板、電源回路、電力変換装置及び誤実装検出方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る電力変換装置は、三相の交流電圧又は単相の交流電圧が印加される第1の交流端子、第2の交流端子及び第3の交流端子と、前記三相の交流電圧又は前記単相の交流電圧が印加された整流回路が生成した直流電圧を出力する第1の直流端子及び第2の直流端子と、正極端子及び負極端子を有する第1の直列接続部と、正極端子及び負極端子を有する第1の並列接続部と、正極端子及び負極端子を有する第2の直列接続部と、正極端子及び負極端子を有する第2の並列接続部と、前記第1の直列接続部の正極端子と前記第1の並列接続部の正極端子と前記第2の並列接続部の正極端子とは、前記第1の直流端子に電気的に接続され、前記第1の並列接続部の負極端子と前記第2の直列接続部の負極端子と前記第2の並列接続部の負極端子とは、前記第2の直流端子に電気的に接続され、前記第1の直列接続部の負極端子及び前記第2の直列接続部の正極端子は、前記第3の交流端子に電気的に接続されている。
 本発明によれば、同一基板上で追加の部材を要することなく異電圧異相数の交流電源に適用可能な電源回路基板、電源回路及び電力変換装置を提供できるという効果を奏する。
実施の形態1に係る電源回路基板の構成を示す回路図 実施の形態1に係る電源回路の三相200V交流電圧を整流する場合の構成を示した回路図 実施の形態1に係る電源回路の単相100V交流電圧を倍電圧整流する場合の構成を示した回路図 実施の形態1に係る他の電源回路の単相100V交流電圧を倍電圧整流する場合の構成を示した回路図 実施の形態1に係る電力変換装置の構成を示す回路図 実施の形態2に係る電源回路基板の構成を示す回路図 実施の形態3に係る電源回路基板の構成を示す回路図 実施の形態3に係る電源回路基板に実装するコンデンサを拡大して示す拡大図 実施の形態4に係る電源回路基板の構成を示す回路図
 以下に、本発明の実施の形態に係る電源回路基板、電源回路及び電力変換装置を図面に基づいて詳細に説明する。実施の形態により本発明が限定されるものではない。
実施の形態1.
 図1は、実施の形態1に係る電源回路基板50aの構成を示す回路図である。図2は、実施の形態1に係る電源回路70aの三相200V交流電圧を整流する場合の構成を示した回路図である。図3は、実施の形態1に係る電源回路70aの単相100V交流電圧を倍電圧整流する場合の構成を示した回路図である。図4は、実施の形態1に係る他の電源回路70aの単相100V交流電圧を倍電圧整流する場合の構成を示した回路図である。図5は、実施の形態1に係る電力変換装置100aの構成を示す回路図である。
 電源回路基板50aは、図1に示すように、第1の交流端子L1と、第2の交流端子L2と、第3の交流端子L3と、第1の直流端子5と、第2の直流端子6と、第1の直列接続部41aと、第1の並列接続部42aと、第2の直列接続部43aと、第2の並列接続部44aと、倍電圧整流用パターン8と、直並列接続用パターン9と、を備える。実施の形態1において、電源回路基板50aはプリント基板であるが、電源回路基板50aはプリント基板に限定されない。
 第1の交流端子L1、第2の交流端子L2及び第3の交流端子L3は、三相電源7又は単相電源10が接続される端子台である。三相電源7は、三相の交流電圧を第1の交流端子L1、第2の交流端子L2及び第3の交流端子L3に印加する。単相電源10は単相の交流電圧を第1の交流端子L1及び第3の交流端子L3に印加する。三相電源7は、三相200V又は三相400Vを供給する電源である。単相電源10は、単相100V又は単相200Vを供給する電源である。
 第1の直流端子5及び第2の直流端子6は、後述する整流回路1が生成した直流電圧を出力する端子台である。
 第1の直列接続部41aは、第1の直列接続部の正極端子21a及び第1の直列接続部の負極端子22aを有する。第1の並列接続部42aは、第1の並列接続部の正極端子23a及び第1の並列接続端子の負極端子24aを有する。第2の直列接続部43aは、第2の直列接続部の正極端子31a及び第2の直列接続部の負極端子32aを有する。第2の並列接続部44aは、第2の並列接続部の正極端子33a及び第2の並列接続部の負極端子34aを有する。
 第1の直列接続部の正極端子21a、第1の直列接続部の負極端子22a、第1の並列接続部の正極端子23a、第1の並列接続部の負極端子24a、第2の直列接続部の正極端子31a、第1の直列接続部の負極端子32a、第2の並列接続部の正極端子33a及び第2の並列接続部の負極端子34aは、例えば、導体のパッド又は電源回路基板50aのスルーホールの内壁面に形成された導体部分である。
 第1の直列接続部の正極端子21aと第1の直列接続部の負極端子22aと第1の並列接続部の正極端子23aと第1の並列接続部の負極端子24aとは、後述する第1のコンデンサ20が実装される接続部である。より詳細には、これらには第1のコンデンサ20の端子が電気的に接続される。第2の直列接続部の正極端子31aと第2の直列接続部の負極端子32aと第2の並列接続部の正極端子33aと第2の並列接続部の負極端子34aとは、後述する第2のコンデンサ30が実装される接続部である。より詳細には、これらには第2のコンデンサ30の端子が電気的に接続される。第1のコンデンサ20及び第2のコンデンサ30の端子は、リード線を含む。第1の直列接続部の正極端子21aと第1の直列接続部の負極端子22aと第1の並列接続部の正極端子23aと第1の並列接続部の負極端子24aとは、図1に示すように、電源回路基板50aに設けられる。第2の直列接続部の正極端子31aと第2の直列接続部の負極端子32aと第2の並列接続部の正極端子33aと第2の並列接続部の負極端子34aとは、図1に示すように、電源回路基板50aに設けられる。
 倍電圧整流用パターン8は、電源回路基板50aに形成される配線パターンである。倍電圧整流用パターン8は、図1に示すように、第1の直列接続部の負極端子22aと第2の直列接続部の正極端子31aと第3の交流端子L3とを電気的に接続する。
 直並列接続用パターン9は、電源回路基板50aに形成される配線パターンである。直並列接続用パターン9は、図1に示すように、第1の直流端子5と第1の直列接続部の正極端子21aと第1の並列接続部の正極端子23aと第2の並列接続部の正極端子33aとを電気的に接続する。直並列接続用パターン9は、図1に示すように、第2の直流端子6と第1の並列接続部の負極端子24aと第2の直列接続部の負極端子32aと第2の並列接続部の負極端子34aとを電気的に接続する。
 次に、図2を用いて、実施の形態1に係る電源回路70aの三相200V交流電圧を整流する場合の構成を説明する。第1の実施形態に係る電源回路70aは、電源回路基板50aと、整流回路1と、突入電流抑制回路2と、平滑回路3と、を備える。電源回路基板50aの第1の交流端子L1、第2の交流端子L2及び第3の交流端子L3は、200Vの三相交流電源に接続される。
 整流回路1は、ダイオード4を6個有する。ダイオード4は、図2に示すように、第1の交流端子L1、第2の交流端子L2及び第3の交流端子L3と、第1の直流端子5及び第2の直流端子6との間にブリッジ接続される。整流回路1は、ブリッジ接続されたダイオード4により、全波整流回路を形成する。整流回路1は、三相電源7から第1の交流端子L1、第2の交流端子L2及び第3の交流端子L3へ印加される三相の交流電圧を直流電圧に整流する。
 突入電流抑制回路2は、スイッチ26と、抵抗28と、制御装置80と、を備える。スイッチ26は、図2に示すように、直並列接続用パターン9に設けられている。抵抗28は、図2に示すように、スイッチ26と並列に接続されている。制御装置80は、スイッチ26と、後述する第1のコンデンサ20と、後述する第2のコンデンサ30とに接続されている。実施の形態1において、制御装置80は、CPU(Central Processing Unit)で構成された演算処理装置、ROM(Read Only Memory)及びRAM(Random Access Memory)を備えるマイクロコンピュータであるが、このようなものには限定されない。
 突入電流抑制回路2は、電源回路70aに交流電圧が印加された場合に、電源回路70aに流れる突入電流を抑制する。詳細には、後述する第1のコンデンサ20及び第2のコンデンサ30が予め設定された充電量に達しない場合に制御装置80がスイッチ26を開放することで、突入電流を抑制する。制御装置80は、後述する第1のコンデンサ20及び第2のコンデンサ30が予め設定された充電量に達した場合に、スイッチ26を投入する。
 平滑回路3は、第1のコンデンサ20と、第2のコンデンサ30と、を備える。第1のコンデンサ20及び第2のコンデンサ30は、200Vの耐圧性能を有するコンデンサである。第1のコンデンサ20は、正極及び負極を備える。第2のコンデンサ30は、正極及び負極を備える。
 第1のコンデンサ20の正極は、第1の並列接続部の正極端子23aと電気的に接続される。第1のコンデンサ20の負極は、第1の並列接続部の負極端子24aと電気的に接続される。第2のコンデンサ30の正極は、第2の並列接続部の正極端子33aと電気的に接続される。第2のコンデンサ30の負極は、第2の並列接続部の負極端子34aと電気的に接続される。
 実施の形態1に係る電源回路70aの三相200V交流電圧を整流する場合の構成は、第1の交流端子L1、第2の交流端子L2及び第3の交流端子L3が200Vの三相電源7に接続されるとしたが、第1の交流端子L1及び第3の交流端子L3が200Vの単相電源10に接続される構成としてもよい。このようにすると、単相200V電源にも対応することができる。
 実施の形態1に係る電源回路70aの三相200V交流電圧を整流する場合の構成は、第1のコンデンサ20及び第2のコンデンサ30が200Vの耐圧性能を有するとしたが、第1のコンデンサ20及び第2のコンデンサ30が400Vの耐圧性能を有してもよい。このようにすると、三相400V電源にも対応することができる。
 次に、図3を用いて、実施の形態1に係る電源回路70aの単相100V交流電圧を倍電圧整流する場合の構成を説明する。なお、単相100V交流電圧を倍電圧整流する場合の電源回路70aの構成は、平滑回路3以外は三相200V交流電圧及び単相200V交流電圧を整流する場合の構成と同じである。
 平滑回路3は、第1のコンデンサ20と、第2のコンデンサ30と、を備える。第1のコンデンサ20及び第2のコンデンサ30は、100Vの耐圧性能を有するコンデンサである。第1のコンデンサ20は、正極及び負極を備える。第2のコンデンサ30は、正極及び負極を備える。
 第1のコンデンサ20の正極は、第1の直列接続部の正極端子21aと電気的に接続される。第1のコンデンサ20の負極は、第1の直列接続部の負極端子22aと電気的に接続される。第2のコンデンサ30の正極は、第2の直列接続部の正極端子31aと電気的に接続される。第2のコンデンサ30の負極は、第2の直列接続部の負極端子32aと電気的に接続される。
 実施の形態1に係る電源回路70aの単相100V交流電圧を倍電圧整流する場合の構成は、6個のダイオード4が実装された構成としたが、図4に示すように、2個のダイオード4が実装された構成としてもよい。このようにすることで、整流に必要なダイオード4の数を減らすことを可能にし、作業工数及び材料費を低減させることができる。
 実施の形態1に係る電源回路70aの単相100V交流を倍電圧整流する場合の構成は、第1のコンデンサ20及び第2のコンデンサ30が100Vの耐圧性能を有するとしたが、第1のコンデンサ20及び第2のコンデンサ30が200Vの耐圧性能を有するとしてもよい。このようにすると、単相200V交流電源の倍電圧整流にも対応することができる。
 次に、図5を用いて、実施の形態1に係る電力変換装置100aの構成を説明する。電力変換装置100aは、電源回路70aと、表示部81と、インバータ回路11と、電圧検出回路15と、を備える。電力変換装置100aは、表示部81とインバータ回路11と電圧検出回路15とを備えていること以外は、電源回路70aと同じである。
 表示部81は、制御装置80に接続される。表示部81は、制御装置80から受け取った情報を表示するディスプレイである。
 インバータ回路11は、図5に示すように、第1の直流端子5及び第2の直流端子6に電気的に接続される。インバータ回路11は、6個のスイッチング素子12を備える。スイッチング素子12は、例えば、Si(シリコン)を使用したバイポーラ型素子である。スイッチング素子12は、図5に示すように、電源回路基板50aに6個実装され、電源回路基板50aに形成されたスイッチング素子接続用パターン13によりブリッジ接続される。複数のスイッチング素子12は、制御装置80と接続される。インバータ回路11は、制御装置80がスイッチング素子12をオンオフ動作することで、平滑回路3から出力される直流電圧を交流電圧に変換する。インバータ回路11は負荷に接続されている。インバータ回路11は、負荷に交流電力を出力する。実施の形態1において、負荷とは電動機である。電動機は、誘導モータ、同期モータ、スイッチトリラクタンスモータステッピングモータ及びボイスコイルモータが例示されるが、これらには限定されない。
 電圧検出回路15は、図5に示すように、第1の直流端子5と第2の直流端子6とに電気的に接続される。電圧検出回路15は、制御装置80に接続されている。電圧検出回路15は、電力変換装置100aの出力電圧の計測に用いられる検出器であり、電力変換装置100aに常設されてあるものである。
 電圧検出回路15は、平滑回路3から出力される直流電圧の値を検出する。以下において、電圧検出回路15が検出した直流電圧の値を適宜、検出電圧と称する。電圧検出回路15は、検出した検出電圧を制御装置80へ出力する。制御装置80は、電圧検出回路15から出力される検出電圧に異常があった場合に、表示部81に異常であることを表示させる。検出電圧に異常があった場合とは、第1のコンデンサ20と第2のコンデンサ30とを直列接続する場合において、第1のコンデンサ20の正極及び負極が第1の直列接続部の正極端子21a及び第1の並列接続部の正極端子23aにそれぞれ実装された結果、平滑回路3の出力電圧が平滑されない場合が例示される。また、第1のコンデンサ20と第2のコンデンサ30とを並列接続する場合において、第2のコンデンサ30の正極及び負極が第2の直列接続部の負極端子32a及び第2の並列接続部の負極端子34aにそれぞれ実装された結果、平滑回路3の出力電圧が平滑されない場合が例示される。
 電力変換装置100aのスイッチング素子12は、Si(シリコン)を使用したバイポーラ型素子であるとしたがこれに限定されない。スイッチング素子12のうち少なくとも1つは、例えば、ワイドバンドギャップ半導体であるSiC(シリコンカーバイド)又はGaN(ガリウムナイトライド)を使用したノーマリーオン型のユニポーラ素子でもよい。
 電力変換装置100aは、制御装置80が電圧検出回路15から出力される検出電圧に異常があった場合に表示部81に異常であることを表示させる。これにより、第1のコンデンサ20及び第2のコンデンサ30の正極及び負極の実装位置を誤った場合に、電圧検出回路15が電力変換装置100aの異常な出力電圧を検出することを可能にし、追加の設備コストを要することなく誤実装を検出することができる。なお、電力変換装置100aは、電圧検出回路15が検出した検出電圧を制御装置80へ出力し、制御装置80が電圧検出回路15から出力される検出電圧に異常があった場合に、表示部81に異常であることを表示させ、誤実装を検出するとしたが、これに限定されない。誤実装の検出方法は、例えば、ユニットテスタを第1のコンデンサ20及び第2のコンデンサ30に接触させて端子電圧を測定する測定工程と、第1のコンデンサ20及び第2のコンデンサ30の電圧に基づいて誤実装であるか否かを判定する誤実装判定ステップと、を含む誤実装検出方法としてもよい。より詳細には、誤実装判定ステップは、ユニットテスタが測定した端子電圧の測定値が予め定められた電圧域に含まれるか否かによって誤実装を検出する。また、誤実装の検出方法は、例えば、目視検査及び画像検査によって電子部品の誤実装を検出するようにしてもよい。
 以上より、電源回路基板50a、電源回路70a及び電力変換装置100aは、第1のコンデンサ20及び第2のコンデンサ30を直列に接続する第1の直列接続部の正極端子21aと第1の直列接続部の負極端子22aと第2の直列接続部の正極端子31aと第2の直列接続部の負極端子32aとを備える。また電源回路基板50a、電源回路70a及び電力変換装置100aは、第1のコンデンサ20及び第2のコンデンサ30を並列に接続する第1の並列接続部の正極端子23aと第1の並列接続部の負極端子24aと第2の並列接続部の正極端子33aと第2の並列接続部の負極端子34aとを備える。このような構成により、電源回路基板50a、電源回路70a及び電力変換装置100aは、第1のコンデンサ20及び第2のコンデンサ30の接続位置を選択することで、第1のコンデンサ20及び第2のコンデンサ30の接続を直列又は並列に接続することができる。その結果、同一基板を用いて異電圧異相数の交流電源に適用することができる。
実施の形態2.
 図6は、実施の形態2に係る電源回路基板50bの構成を示す回路図である。電源回路基板50bの説明において、電源回路基板50aと同様の構成には電源回路基板50aと同一の符号群を用い、その詳細な説明を省略する。電源回路基板50bは、第1の直列接続部の正極端子21a、第1の直列接続部の負極端子22a、第1の並列接続部の正極端子23a、第1の並列接続部の負極端子24a、第2の直列接続部の正極端子31a、第2の直列接続部の負極端子32a、第2の並列接続部の正極端子33a及び第2の並列接続部の負極端子34aに代えて、第1の直列接続部の正極端子21b、第1の直列接続部の負極端子22b、第2の並列接続部の正極端子23b、第2の並列接続部の負極端子24b、第2の直列接続部の正極端子31b、第2の直列接続部の負極端子32b、第2の並列接続部の正極端子33b及び第2の並列接続部の負極端子34bを備えていること以外は、実施の形態1に係る電源回路基板50aと同じである。
 第1の直列接続部の正極端子21bと第1の直列接続部の負極端子22bと第1の並列接続部の正極端子23bと第1の並列接続部の負極端子24bとは、図6に示すように、電源回路基板50bに設けられる。第2の直列接続部の正極端子31bと第2の直列接続部の負極端子32bと第2の並列接続部の正極端子33bと第2の並列接続部の負極端子34bとは、図6に示すように、電源回路基板50bに設けられる。第1の直列接続部の正極端子21bと第1の直列接続部の負極端子22bと第1の並列接続部の正極端子23bと第1の並列接続部の負極端子24bと第2の直列接続部の正極端子31bと第1の直列接続部の負極端子32bと第2の並列接続部の正極端子33bと第2の並列接続部の負極端子34bとは、例えば、導体のパッド又はスルーホールの内壁面に形成された導体部分である。
 第1の直列接続部の正極端子21bと第1の直列接続部の負極端子22bと第1の並列接続部の正極端子23bと第1の並列接続部の負極端子24bと第2の直列接続部の正極端子31bと第2の直列接続部の負極端子32bと第2の並列接続部の正極端子33bと第2の並列接続部の負極端子34bとは、矩形の形状を有する。詳細には、電源回路基板50bの実装面と直交する方向からこれらを見た場合の形状が矩形である。
 第1の直列接続部の正極端子21bは、第1の直列接続部の正極端子21bの長手方向と第1の直列接続部の負極端子22bの長手方向とが交差する向きに配置される。第1の並列接続部の正極端子23bは、第1の並列接続部の正極端子23bの長手方向と第1の並列接続部の負極端子24bの長手方向とが交差する向きに配置される。第2の直列接続部の正極端子31bは、第2の直列接続部の正極端子31bの長手方向と第2の直列接続部の負極端子32bの長手方向とが交差する向きに配置される。第2の並列接続部の正極端子33bは、第2の並列接続部の正極端子33bの長手方向と第2の並列接続部の負極端子34bの長手方向とが交差する向きに配置される。実施の形態2において、端子の長手方向同士は直交しているが、これに限定されない。
 電源回路基板50bは、前述したような構造により、正極及び負極の断面が矩形の形状を有し、かつ正極の長手方向と負極の長手方向とが交差する位置に配置されたコンデンサを正極及び負極を逆にして電源回路基板50bに挿入しようとした場合に、正極及び負極を逆にして挿入することを防止できる。
実施の形態3.
 図7は、実施の形態3に係る電源回路基板50cの構成を示す回路図である。図8は、実施の形態3に係る電源回路基板50cに実装されるコンデンサを拡大して示す拡大図である。電源回路基板50cは、電源回路基板50aと同様の構成には電源回路基板50aと同一の符号群を用い、その詳細な説明を省略する。電源回路基板50cは、第1の直列接続部の正極端子21a、第1の直列接続部の負極端子22a、第1の並列接続部の正極端子23a、第1の並列接続部の負極端子24a、第2の直列接続部の正極端子31a、第2の直列接続部の負極端子32a、第2の並列接続部の正極端子33a及び第2の並列接続部の負極端子34aに代えて、第1の直列接続部の正極端子21c、第1の直列接続部の負極端子22c、第2の並列接続部の正極端子23c、第2の並列接続部の負極端子24c、第2の直列接続部の正極端子31c、第2の直列接続部の負極端子32c、第2の並列接続部の正極端子33c及び第2の並列接続部の負極端子34cとを備えていること以外は、実施の形態1に係る電源回路基板50aと同じである。
 第1の直列接続部の正極端子21cと第1の直列接続部の負極端子22cと第1の並列接続部の正極端子23cと第1の並列接続部の負極端子24cとは、図7に示すように、電源回路基板50cに設けられる。第2の直列接続部の正極端子31cと第2の直列接続部の負極端子32cと第2の並列接続部の正極端子33cと第2の並列接続部の負極端子34cとは、図7に示すように、電源回路基板50cに設けられる。第1の直列接続部の正極端子21cと第1の直列接続部の負極端子22cと第1の並列接続部の正極端子23cと第1の並列接続部の負極端子24cと第2の直列接続部の正極端子31cと第1の直列接続部の負極端子32cと第2の並列接続部の正極端子33cと第2の並列接続部の負極端子34cとは、例えば、導体のパッド又はスルーホールの内壁面に形成された導体部分である。
 第1の直列接続部の正極端子21c及び第1の直列接続部の負極端子22cは、第1の並列接続部の正極端子23c及び第1の並列接続部の負極端子24cとそれぞれ対向する位置に配置される。第2の直列接続部の正極端子31c及び第2の直列接続部の負極端子32cは、第2の並列接続部の正極端子33c及び第2の並列接続部の負極端子34cとそれぞれ対向する位置に配置される。第1の並列接続部の正極端子23c及び第1の並列接続部の負極端子24cは、第2の並列接続部の負極端子34c及び第2の並列接続部の正極端子33cとそれぞれ対向する位置に配置される。
 以上説明した構造により、電源回路基板50cは、第1のコンデンサ20cのリード35cを折り曲げる方向及び第2のコンデンサ30cのリード36cを折り曲げる方向が同じであり、かつ第1のコンデンサ20cの極性を誤って実装した場合に、第1のコンデンサ20cが第2のコンデンサ30cに近づく方向に実装される。ここで、リード35c、36cを折り曲げる方向とは、例えば、コンデンサを鉛直方向上側から見て、リード35c、36cの正極が上側に位置し、リード35c、36cの負極が下側に位置している場合に、右向きに折り曲げる方向または左向きに折り曲げる方向である。また、電源回路基板50cは、第1のコンデンサ20cのリード35cを折り曲げる方向及び第2のコンデンサ30cのリード36cを折り曲げる方向が同じであり、かつ第2のコンデンサ30cの極性を誤って実装した場合に、第2のコンデンサ30cが第1のコンデンサ20cに近づく方向に実装される。その結果、第1のコンデンサ20cまたは第2のコンデンサ30cの極性を誤って実装した場合に、第1のコンデンサ20cと第2のコンデンサ30cとを干渉させることができ、第1のコンデンサ20c及び第2のコンデンサ30cの誤実装の発生を抑制することができる。また、電源回路基板50cは、第1のコンデンサ20cのリード35cを折り曲げる方向及び第2のコンデンサ30cのリード36cを折り曲げる方向が同じである。その結果、電源回路基板50cに実装する電子部品の種類を少なくすることができ、部品管理に要する工数を減らすことができ、製造コストを低減させることができる。また、第1のコンデンサ20cと第2のコンデンサ30cとの折り曲げる方向が異なる電子部品を調達する場合と比べて、少ない種類でより多くの数の部品を調達することができ、電子部品の調達コストを抑えることができる。
実施の形態4.
 図9は、実施の形態4に係る電源回路基板50dの構成を示す回路図である。電源回路基板50dは、電源回路基板50aと同様の構成に、電源回路基板50aと同一の符号群を用い、その詳細な説明を省略する。電源回路基板50dは、短絡用部品36と第1の短絡用部品接続部38と第2の短絡用部品接続部39とを備えていること以外は、実施の形態1に係る電源回路基板50aと同じである。
 短絡用部品36は、例えば、零オーム抵抗又は短絡ジャンパー線である。短絡用部品36は、第1の短絡用部品接続部38及び第2の短絡用部品接続部39に接続される。第1の短絡用部品接続部38及び第2の短絡用部品接続部39は、例えば、導体のパッド及びスルーホールの内壁面に形成された導体である。第1の短絡用部品接続部38は、第1の直列接続部の負極端子22d及び第2の直列接続部の正極端子31dと電気的に接続される。第2の短絡用部品接続部39は、第3の交流端子L3と電気的に接続される。
 以上説明した構成により、電源回路基板50dは、短絡用部品36を未実装として第1のコンデンサ20及び第2のコンデンサ30を電源回路基板50dに直列に実装した場合に、第1のコンデンサ20及び第2のコンデンサ30の耐圧性能が200Vでも、三相400Vの電源に対応することができる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略及び変更することも可能である。
 1 整流回路、2 突入電流抑制回路、3 平滑回路、4 ダイオード、5 第1の直流端子、6 第2の直流端子、7 三相電源、8 倍電圧整流用パターン、9 直並列接続用パターン、10 単相電源、11 インバータ回路、12 スイッチング素子、13 スイッチング素子接続用パターン、20 第1のコンデンサ、21a,21b,21c,21d 第1の直列接続部の正極端子、22a,22b,22c,22d 第1の直列接続部の負極端子、23a,23b,23c,23d 第1の並列接続部の正極端子、24a,24b,24c,24d 第1の並列接続部の負極端子、26 スイッチ、28 抵抗、30,30c 第2のコンデンサ、31a,31b,31c,31d 第2の直列接続部の正極端子、32a,32b,32c,32d 第2の直列接続部の負極端子、33a,33b,33c,33d 第2の並列接続部の正極端子、34a,34b,34c,34d 第2の並列接続部の負極端子、35 リード、36 短絡用部品、38 第1の短絡用部品接続部、39 第2の短絡用部品接続部、41a,41b,41c,41d 第1の直列接続部、42a,42b,42c,42d 第1の並列接続部、43a,43b,43c,43d 第2の直列接続部、44a,44b,44c,44d 第2の並列接続部、50a,50b,50c,50d 電力回路基板、70a 電源回路、80 制御装置、81 表示部、100a 電力変換装置、L1 第1の交流端子、L2 第2の交流端子、L3 第3の交流端子。

Claims (10)

  1.  三相の交流電圧又は単相の交流電圧が印加される第1の交流端子、第2の交流端子及び第3の交流端子と、
     前記第1の交流端子、前記第2の交流端子及び前記第3の交流端子から前記三相の交流電圧又は前記単相の交流電圧が印加された整流回路が生成した直流電圧を出力する第1の直流端子及び第2の直流端子と、
     正極端子及び負極端子を有する第1の直列接続部と、
     正極端子及び負極端子を有する第1の並列接続部と、
     正極端子及び負極端子を有する第2の直列接続部と、
     正極端子及び負極端子を有する第2の並列接続部と、
     前記第1の直列接続部の正極端子と前記第1の並列接続部の正極端子と前記第2の並列接続部の正極端子とは、前記第1の直流端子に電気的に接続され、
     前記第1の並列接続部の負極端子と前記第2の直列接続部の負極端子と前記第2の並列接続部の負極端子とは、前記第2の直流端子に電気的に接続され、
     前記第1の直列接続部の負極端子及び前記第2の直列接続部の正極端子は、前記第3の交流端子に電気的に接続されていることを特徴とする電源回路基板。
  2.  前記第1の直列接続部の正極端子及び負極端子と、前記第1の並列接続部の正極端子及び負極端子と、前記第2の直列接続部の正極端子及び負極端子と、前記第2の並列接続部の正極端子及び負極端子とは、矩形の形状であり、
     前記第1の直列接続部の正極端子は、前記第1の直列接続部の正極端子の長手方向と前記第1の直列接続部の負極端子の長手方向とが交差する向きに配置され、
     前記第1の並列接続部の正極端子は、前記第1の並列接続部の正極端子の長手方向と前記第1の並列接続部の負極端子の長手方向とが交差する向きに配置され、
     前記第2の直列接続部の正極端子は、前記第2の直列接続部の正極端子の長手方向と前記第2の直列接続部の負極端子の長手方向とが交差する向きに配置され、
     前記第2の並列接続部の正極端子は、前記第2の並列接続部の正極端子の長手方向と前記第2の並列接続部の負極端子の長手方向とが交差する向きに配置されていることを特徴とする請求項1に記載の電源回路基板。
  3.  前記第1の直列接続部の正極端子及び負極端子は、前記第1の並列接続部の正極端子及び負極端子とそれぞれ対向する位置に配置され、
     前記第2の直列接続部の正極端子及び負極端子は、前記第2の並列接続部の正極端子及び負極端子とそれぞれ対向する位置に配置され、
     前記第1の並列接続部の正極端子及び負極端子は、前記第2の並列接続部の負極端子及び正極端子とそれぞれ対向する位置に配置されていることを特徴とする請求項1に記載の電源回路基板。
  4.  第1の短絡部品接続部と、
     第2の短絡部品接続部と、を備え、
     前記第1の直列接続部の負極端子及び前記第2の直列接続部の正極端子は、前記第3の交流端子に接続されず、
     前記第1の短絡部品接続部は、前記第1の直列接続部の負極端子及び前記第2の直列接続部の正極端子と電気的に接続され、
     前記第2の短絡部品接続部は、前記第3の交流端子と電気的に接続されることを特徴とする請求項1から3のいずれか一項に記載の電源回路基板。
  5.  請求項1から4のいずれか一項に記載の電源回路基板を備え、
     前記第1の交流端子は、ダイオードが前記第1の直流端子との間、及び前記第2の直流端子との間にそれぞれ電気的に接続され、前記整流回路を構成することを特徴とする電源回路。
  6.  請求項5に記載の前記電源回路と、
     複数のスイッチング素子を有し、複数の前記スイッチング素子のオンオフ動作により、前記直流電圧を交流電圧に変換するインバータ回路と、を備え、
     前記インバータ回路は、前記第1の直流端子及び前記第2の直流端子と電気的に接続されていることを特徴とする電力変換装置。
  7.  複数の前記スイッチング素子は、少なくとも1つがワイドバンドギャップ半導体のユニポーラ型素子であることを特徴とする請求項6に記載の電力変換装置。
  8.  前記インバータ回路に接続される負荷は、モータであることを特徴とする請求項6又は7に記載の電力変換装置。
  9.  前記第1の直流端子及び前記第2の直流端子と電気的に接続される電圧検出回路と、
     前記電圧検出回路の検出電圧値を受け取る制御装置と、
     表示部と、を備え、
     前記制御装置は、前記電圧検出回路から出力される前記検出電圧値に異常があった場合に、前記表示部に異常であることを表示させることを特徴とする請求項6から8のいずれか一項に記載の電力変換装置。
  10.  請求項1から4のいずれか1項に記載の電源回路基板に実装された電子部品の誤実装検出方法であって、
     ユニットテスタを用いて、前記電源回路基板に実装された前記電子部品の端子電圧を測定する端子電圧測定工程と、
     前記端子電圧の測定値に基づいて前記電子部品が誤実装されているか否かを判定する誤実装判定工程と、
     を含むことを特徴とする誤実装検出方法。
PCT/JP2016/073793 2016-08-12 2016-08-12 電源回路基板、電源回路、電力変換装置及び誤実装検出方法 WO2018029861A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201690000894.7U CN207573252U (zh) 2016-08-12 2016-08-12 电源电路板、电源电路和电力转换装置
PCT/JP2016/073793 WO2018029861A1 (ja) 2016-08-12 2016-08-12 電源回路基板、電源回路、電力変換装置及び誤実装検出方法
JP2017506441A JP6157776B1 (ja) 2016-08-12 2016-08-12 電源回路基板、電源回路、電力変換装置及び誤実装検出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/073793 WO2018029861A1 (ja) 2016-08-12 2016-08-12 電源回路基板、電源回路、電力変換装置及び誤実装検出方法

Publications (1)

Publication Number Publication Date
WO2018029861A1 true WO2018029861A1 (ja) 2018-02-15

Family

ID=59272885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073793 WO2018029861A1 (ja) 2016-08-12 2016-08-12 電源回路基板、電源回路、電力変換装置及び誤実装検出方法

Country Status (3)

Country Link
JP (1) JP6157776B1 (ja)
CN (1) CN207573252U (ja)
WO (1) WO2018029861A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113165540A (zh) * 2018-12-12 2021-07-23 纬湃科技有限责任公司 车辆侧充电装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026465A (ja) * 1983-07-22 1985-02-09 Nec Corp 倍電圧整流回路
JPS6165885U (ja) * 1984-10-02 1986-05-06
JP2009254125A (ja) * 2008-04-07 2009-10-29 Panasonic Corp 整流電源回路
JP2016035962A (ja) * 2014-08-01 2016-03-17 セイコーエプソン株式会社 基板、電子機器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026465A (ja) * 1983-07-22 1985-02-09 Nec Corp 倍電圧整流回路
JPS6165885U (ja) * 1984-10-02 1986-05-06
JP2009254125A (ja) * 2008-04-07 2009-10-29 Panasonic Corp 整流電源回路
JP2016035962A (ja) * 2014-08-01 2016-03-17 セイコーエプソン株式会社 基板、電子機器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113165540A (zh) * 2018-12-12 2021-07-23 纬湃科技有限责任公司 车辆侧充电装置
KR20210101276A (ko) * 2018-12-12 2021-08-18 비테스코 테크놀로지스 게엠베하 차량-측면 충전 디바이스
US11731523B2 (en) 2018-12-12 2023-08-22 Vitesco Technologies GmbH Vehicle-side charging device
KR102601772B1 (ko) * 2018-12-12 2023-11-13 비테스코 테크놀로지스 게엠베하 차량-측면 충전 디바이스
CN113165540B (zh) * 2018-12-12 2024-10-18 纬湃科技有限责任公司 车辆侧充电装置

Also Published As

Publication number Publication date
JP6157776B1 (ja) 2017-07-05
CN207573252U (zh) 2018-07-03
JPWO2018029861A1 (ja) 2018-08-16

Similar Documents

Publication Publication Date Title
JP5622043B2 (ja) インバータ装置
EP2164161B1 (en) AC/DC converter for a compressor driver and air conditioner with a troubleshooting mechanism for faulty bidirectional switches
JP2011193646A (ja) 半導体装置
JP2008058035A (ja) 電流測定装置および電流測定方法
JP2008271696A (ja) 電力変換装置
KR20180102542A (ko) 절연 저항 측정 장치
JP2020124030A (ja) パワー半導体モジュールおよびそれを用いた電力変換装置
CN109245508B (zh) 电子设备
JP6157776B1 (ja) 電源回路基板、電源回路、電力変換装置及び誤実装検出方法
JP6352200B2 (ja) 半導体装置
US20180254724A1 (en) Starting power generation apparatus and starting power generation method
JP2008128915A (ja) 電流測定装置および電流測定機能を備える半導体モジュール
US7848127B2 (en) Direct-current power supply apparatus with improved power factor
CN109155594B (zh) 电力变换装置以及具备该电力变换装置的空气调节机
US3745375A (en) Phase unbalance or open-phase detecting apparatus
JP7280124B2 (ja) 2つの直流電圧モードを有する電力変換装置及びモータ駆動装置
JP2005323440A (ja) インバータ装置
JP2005166987A (ja) 半導体装置
JP2022035655A (ja) 電力変換装置及び電流検出装置
CN110221112A (zh) 电路板及电力电子设备
JP2019212858A (ja) 電解コンデンサ用劣化度測定方法及び電解コンデンサ用劣化度測定装置
JP2019106784A (ja) 電力変換装置
JP2002112550A (ja) 空気調和機の電源装置
JP2017022839A (ja) 自動電圧調整器
JPH0547074B2 (ja)

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017506441

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16912741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16912741

Country of ref document: EP

Kind code of ref document: A1