WO2018025586A1 - 熱伝導シート - Google Patents

熱伝導シート Download PDF

Info

Publication number
WO2018025586A1
WO2018025586A1 PCT/JP2017/025047 JP2017025047W WO2018025586A1 WO 2018025586 A1 WO2018025586 A1 WO 2018025586A1 JP 2017025047 W JP2017025047 W JP 2017025047W WO 2018025586 A1 WO2018025586 A1 WO 2018025586A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive sheet
heat conductive
resin
heat
carbon material
Prior art date
Application number
PCT/JP2017/025047
Other languages
English (en)
French (fr)
Inventor
村上 康之
大介 内海
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2018531800A priority Critical patent/JPWO2018025586A1/ja
Publication of WO2018025586A1 publication Critical patent/WO2018025586A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a heat conductive sheet.
  • a method of promoting heat dissipation by attaching a heat sink such as a metal heat sink, heat sink, heat sink or the like to a heat generator such as an electronic component is adopted.
  • a radiator in order to efficiently transfer heat from the heating element to the radiator, the heating element and the heating element are connected via a sheet-like member (thermal conduction sheet) that exhibits good thermal conductivity.
  • the radiator is in close contact. And it is calculated
  • the heat conductive sheet a sheet molded using a composite mixture in which a resin and a component exhibiting heat conductivity are usually used.
  • many studies have been made on the constituents of the composite mixture in order to make the sheet exhibit favorable properties.
  • a heat conductive sheet having a high film strength and high compression recovery property obtained by reacting a polymer compound containing a predetermined amount of carboxyl groups with a curing agent containing a predetermined amount of epoxy groups.
  • the heat conductive sheet described in Patent Document 1 is excellent in film strength and compression recovery property because the polymer compound and the curing agent react with each other.
  • the heat conductive sheet described in Patent Document 1 has an alignment structure in which anisotropic graphite powder, which is a component that exhibits heat conductivity, is aligned in the thickness direction of the heat conductive sheet. Such an orientation structure provides thermal conductivity in the thickness direction of the thermal conductive sheet.
  • thermal conductive sheets that are placed between adherends such as heating elements and radiators and used in an environment where pressure is applied from above and below reduce the decrease in thermal conductivity at the interface with the adherend.
  • flexibility has been required.
  • the heat conductive sheet having the alignment structure of the heat conductive material as described above the alignment structure may be easily deformed due to pressurization from the adherend due to excessively increased flexibility.
  • Asker C hardness is high.
  • Asker C hardness was not an index that can directly evaluate the resistance to deformation of the alignment structure caused by pressurization.
  • an object of this invention is to provide the heat conductive sheet which has the high deformation
  • the present inventors have intensively studied to achieve the above object.
  • Asker C hardness has been generally used as an index of flexibility of the heat conductive sheet.
  • a heat conductive sheet is flexible, it has been thought that the adhesiveness between a to-be-adhered body and a heat conductive sheet is favorable, and interface resistance can be reduced and heat conductivity can be improved.
  • the present inventors have noticed that high thermal conductivity cannot always be achieved even if the Asker C hardness of the thermal conductive sheet is lowered to increase the flexibility of the thermal conductive sheet itself.
  • the inventors of the present invention have a heat conduction sheet whose stress relaxation rate is less than or equal to a predetermined value, and the orientation structure is not easily deformed by pressurization, that is, has high compression deformation resistance and is in the thickness direction.
  • the present inventors have newly found that it has excellent thermal conductivity and completed the present invention.
  • the correlation between the stress relaxation rate due to pressurization and the Asker C hardness of the heat conductive sheet is low, and the heat conductive sheet obtained in the present invention is based on the conventional development policy using the Asker C hardness as an index. Did not follow.
  • the present invention aims to advantageously solve the above-mentioned problems, and the heat conductive sheet of the present invention comprises a pre-containing material containing a particulate carbon material and a resin component composed of one or more kinds of resins.
  • the heat conductive sheet is formed by laminating a plurality of layers in a direction transverse to the thickness direction of the heat conductive sheet, and a stress relaxation rate by pressurization is 85% or less.
  • a heat conductive sheet having a stress relaxation rate by pressurization of 85% or less has high resistance to compression deformation and is excellent in heat conductivity in the thickness direction.
  • the “stress relaxation rate due to pressurization” of the heat conductive sheet is the value before and after the elapse of the predetermined time when a load is applied to the heat conductive sheet in the thickness direction of the heat conductive sheet for a predetermined time. By comparing the load, it refers to the stress relaxation rate resulting from strain caused by pressing for a predetermined time. Such stress relaxation rate can be measured by the method described in the examples of the present specification.
  • the heat conductive sheet of the present invention preferably has an Asker C hardness of 70 or less. If the Asker C hardness is 70 or less, the strength is moderate and the ease of mounting is excellent.
  • the “Asker C hardness” can be measured at a temperature of 23 ° C. using a hardness meter in accordance with the Asker C method of the Japan Rubber Association Standard (SRIS).
  • the resin component preferably contains one or more kinds of resins having thermoplasticity. If it contains a resin having thermoplasticity, it is possible to improve the adhesion to the adherend during mounting of the heat conductive sheet, and to further increase the heat conductivity.
  • At least one of the resin components is a resin having a solid Asker C hardness of 70 or less at normal temperature and pressure.
  • at least one kind of resin having such characteristics is contained, it is possible to impart an appropriate strength to the heat conductive sheet and effectively suppress an excessive increase in the stress relaxation rate due to pressurization.
  • the Mooney viscosity of the at least one resin is preferably 90 (ML 1 + 4 , 100 ° C.) or less.
  • a heat conductive sheet containing at least one resin having a Mooney viscosity of 90 (ML 1 + 4 , 100 ° C.) or less is more excellent in heat conductivity in the thickness direction.
  • “Mooney viscosity (ML 1 + 4 , 100 ° C.)” can be measured according to JIS-K6300.
  • the content rate of the said particulate carbon material is 25 volume% or more in the heat conductive sheet of this invention.
  • a heat conductive sheet having a particulate carbon material content of 25% by volume or more is further excellent in heat conductivity.
  • At least one of the resin components may be a resin that is liquid at normal temperature and pressure.
  • the heat conductive sheet in which at least one of the resin components is a liquid resin at normal temperature and pressure is further excellent in heat conductivity.
  • the heat conductive sheet of the present invention can be used by directly adhering to the heating element, or can be used by being sandwiched between the heating element and the radiator when the radiator is attached to the heating element. At this time, a heat conductive sheet may be used individually by 1 sheet, and may use multiple sheets together.
  • the heat conductive sheet of this invention can also comprise a heat radiating device with heat generating bodies and heat sinks, such as a heat sink, a heat sink, and a heat radiating fin.
  • the heat conductive sheet of the present invention is formed by laminating a plurality of pre-heat conductive sheets containing a particulate carbon material and a resin component in a direction transverse to the thickness direction of the heat conductive sheet. If the pre-heat conductive sheet does not contain the particulate carbon material, the heat conductivity of the heat conductive sheet is insufficient. Furthermore, if the pre-heat conductive sheet does not contain a resin component, the heat conductive sheet lacks flexibility. Furthermore, the heat conductive sheet of the present invention is characterized in that the stress relaxation rate is 85% or less.
  • the heat conductive sheet of this invention comprises the laminated structure of a pre heat conductive sheet, naturally the content component of a pre heat conductive sheet can be contained in a heat conductive sheet.
  • the plurality of pre-heat conductive sheets are bonded directly or through a very thin adhesive layer preferably formed of a resin having the same composition as the resin component of the pre-heat conductive sheet or a double-sided tape. For this reason, all the components and ratios thereof contained in the “pre-heat conductive sheet constituting the heat conductive sheet of the present invention” also apply to the “heat conductive sheet of the present invention”.
  • the particulate carbon material included in the heat conductive sheet of the present invention is not particularly limited, for example, artificial graphite, flake graphite, exfoliated graphite, natural graphite, acid-treated graphite, expansive graphite, expanded Graphite such as graphitized graphite; carbon black; and the like can be used. These may be used individually by 1 type and may use 2 or more types together. Among them, it is preferable to use expanded graphite as the particulate carbon material. This is because if the expanded graphite is used, the thermal conductivity of the thermal conductive sheet can be improved.
  • the expanded graphite that can be suitably used as the particulate carbon material is, for example, finely expanded after heat-treating expandable graphite obtained by chemically treating graphite such as scaly graphite with sulfuric acid or the like. Can be obtained.
  • expanded graphite include EC1500, EC1000, EC500, EC300, EC100, and EC50 (all trade names) manufactured by Ito Graphite Industries Co., Ltd.
  • the particle diameter of the particulate carbon material contained in the heat conductive sheet of the present invention is preferably 100 ⁇ m or more, more preferably 150 ⁇ m or more, and 300 ⁇ m or less in volume reference mode diameter. Is preferable, and it is more preferable that it is 250 micrometers or less. If the particle diameter of the particulate carbon material is equal to or greater than the above lower limit, the particulate carbon materials are brought into contact with each other in the heat conductive sheet to form a good heat transfer path, so that the heat conductive sheet exhibits high thermal conductivity. Because it can.
  • the heat conduction sheet is given higher flexibility and heat transfer from the heating element to the heat conduction sheet when in contact with the heating element is improved. Because you can.
  • the aspect ratio (major axis / minor axis) of the particulate carbon material contained in the heat conductive sheet of the present invention is preferably 1 or more and 10 or less, and more preferably 1 or more and 5 or less.
  • the “volume reference mode diameter” can be determined according to the method described in the examples of the present specification using a laser diffraction / scattering particle size distribution measuring apparatus.
  • the “aspect ratio of the particulate carbon material” is determined by observing the particulate carbon material obtained by dissolving and removing the resin in the heat conductive sheet in a solvent with an SEM (scanning electron microscope). Measure the maximum diameter (major axis) and the particle diameter (minor axis) in the direction perpendicular to the maximum diameter and measure the average value of the ratio of major axis to minor axis (major axis / minor axis). Can be obtained by calculating.
  • the content rate of the particulate carbon material in the heat conductive sheet of the present invention is preferably 25% by volume or more, more preferably 30% by volume or more, where the total volume of the heat conductive sheet is 100% by volume. It is preferably 40% by volume or more, more preferably 50% by volume or more, and usually 60% by volume or less.
  • the pre-heat conductive sheet in which the content ratio of the particulate carbon material in the heat conductive sheet is equal to or more than the above lower limit makes it easy for the particulate carbon materials to come into contact with each other in the pre-heat conductive sheet, thereby forming a good heat transfer path. It becomes easy to do.
  • the heat conductive sheet in which a plurality of pre-heat conductive sheets are laminated in the transverse direction with respect to the thickness direction of the heat conductive sheet can exhibit higher thermal conductivity in the thickness direction.
  • the content ratio of the particulate carbon material in the heat conductive sheet is within the above range, the composite particles are likely to be subjected to a force due to pressurization such as roll rolling.
  • the particles in the pre heat conductive sheet This is because the carbonaceous material can be oriented better in the desired direction.
  • the “content ratio (volume%)” can be obtained as a theoretical value according to the method described in the examples of the present specification.
  • the heat conductive sheet of the present invention may optionally further contain a fibrous carbon material.
  • the fibrous carbon material arbitrarily contained is not particularly limited, and for example, carbon nanotubes, vapor-grown carbon fibers, carbon fibers obtained by carbonizing organic fibers, and cut products thereof are used. Can do. These may be used individually by 1 type and may use 2 or more types together. And if fibrous carbon material is contained in the heat conductive sheet of this invention, while being able to further improve the heat conductivity of a heat conductive sheet, the powder-off of particulate carbon material can also be prevented.
  • the fibrous carbon material it is preferable to use a fibrous carbon nanostructure such as a carbon nanotube, and it is more preferable to use a fibrous carbon nanostructure including a carbon nanotube. This is because if a fibrous carbon nanostructure such as a carbon nanotube is used, the thermal conductivity and compression deformation resistance of the thermal conductive sheet obtained using the thermal conductive sheet can be further improved.
  • the fibrous carbon nanostructure containing carbon nanotubes that can be suitably used as the fibrous carbon material may be composed only of carbon nanotubes (hereinafter sometimes referred to as “CNT”).
  • CNT carbon nanotubes
  • a mixture of CNT and a fibrous carbon nanostructure other than CNT may be used.
  • the CNT in the fibrous carbon nanostructure is not particularly limited, and single-walled carbon nanotubes and / or multi-walled carbon nanotubes can be used. Nanotubes are preferable, and single-walled carbon nanotubes are more preferable. This is because if single-walled carbon nanotubes are used, the thermal conductivity and compression deformation resistance of the thermal conductive sheet obtained using the thermal conductive sheet can be further improved as compared with the case where multi-walled carbon nanotubes are used.
  • the fibrous carbon nanostructure containing CNT has a ratio (3 ⁇ / Av) of a value (3 ⁇ ) obtained by multiplying the standard deviation ( ⁇ ) of the diameter by 3 with respect to the average diameter (Av) is more than 0.20. It is preferable to use a carbon nanostructure of less than 0.60, more preferably a carbon nanostructure with 3 ⁇ / Av exceeding 0.25, and a carbon nanostructure with 3 ⁇ / Av exceeding 0.50. More preferably. If a fibrous carbon nanostructure containing CNTs with 3 ⁇ / Av of more than 0.20 and less than 0.60 is used, even if the amount of the carbon nanostructure is small, it can be obtained using a heat conductive sheet.
  • the thermal conductivity and strength of the thermal conductive sheet can be sufficiently increased. Therefore, the thermal conductivity of the thermal conductive sheet and the resistance to compression deformation are suppressed by suppressing the increase in the hardness of the thermal conductive sheet (that is, the flexibility is lowered) by blending the fibrous carbon nanostructure containing CNT. This is because they can be juxtaposed at a sufficiently high level.
  • the “average diameter (Av) of the fibrous carbon nanostructure” and the “standard deviation of the diameter of the fibrous carbon nanostructure ( ⁇ : sample standard deviation)” are respectively measured using a transmission electron microscope. It can be determined by measuring the diameter (outer diameter) of 100 randomly selected fibrous carbon nanostructures.
  • the average diameter (Av) and standard deviation ((sigma)) of the fibrous carbon nanostructure containing CNT are adjusted by changing the manufacturing method and manufacturing conditions of the fibrous carbon nanostructure containing CNT. Alternatively, it may be adjusted by combining a plurality of types of fibrous carbon nanostructures containing CNTs obtained by different production methods.
  • the diameter measured as described above is plotted on the horizontal axis
  • the frequency is plotted on the vertical axis
  • a normal distribution is obtained when approximated by Gaussian. Things are usually used.
  • the fibrous carbon nanostructure containing CNT has a peak of Radial Breathing Mode (RBM) when evaluated using Raman spectroscopy. Note that there is no RBM in the Raman spectrum of a fibrous carbon nanostructure composed of only three or more multi-walled carbon nanotubes.
  • RBM Radial Breathing Mode
  • the average diameter (Av) of the fibrous carbon nanostructure containing CNTs is preferably 0.5 nm or more, more preferably 1 nm or more, preferably 15 nm or less, and preferably 10 nm or less. More preferably it is. If the average diameter (Av) of the fibrous carbon nanostructure is 0.5 nm or more, the aggregation of the fibrous carbon nanostructure can be suppressed and the dispersibility of the carbon nanostructure can be increased. . Moreover, if the average diameter (Av) of the fibrous carbon nanostructure is 15 nm or less, the thermal conductivity and compression deformation resistance of the thermal conductive sheet obtained using the thermal conductive sheet can be sufficiently increased. is there.
  • the BET specific surface area of the fibrous carbon nanostructure containing CNTs is preferably 600 m 2 / g or more, more preferably 800 m 2 / g or more, and 2500 m 2 / g or less. Preferably, it is 1200 m 2 / g or less. Furthermore, when the CNT in the fibrous carbon nanostructure is mainly opened, the BET specific surface area is preferably 1300 m 2 / g or more. If the BET specific surface area of the fibrous carbon nanostructure containing CNTs is 600 m 2 / g or more, the thermal conductivity and strength of the thermal conductive sheet obtained using the thermal conductive sheet can be sufficiently increased. is there.
  • the BET specific surface area of the fibrous carbon nanostructure containing CNT is 2500 m 2 / g or less, the aggregation of the fibrous carbon nanostructure is suppressed and the dispersibility of the CNT in the heat conductive sheet is increased. Because it can.
  • the “BET specific surface area” refers to a nitrogen adsorption specific surface area measured using the BET method.
  • the fibrous carbon nanostructure containing CNTs having the above-described properties can be obtained, for example, by supplying a raw material compound and a carrier gas onto a base material having a catalyst layer for producing carbon nanotubes on the surface thereof.
  • CVD method phase growth method
  • oxidizing agent catalyst activation material
  • the fibrous carbon nanostructure containing CNT produced by the super-growth method may be composed only of SGCNT, and in addition to SGCNT, other carbon nanostructures such as non-cylindrical carbon nanostructures may be used. Carbon nanostructures may be included.
  • the average fiber diameter of the fibrous carbon material which can be contained in a heat conductive sheet is preferably 1 nm or more, more preferably 3 nm or more, preferably 2 ⁇ m or less, and preferably 1 ⁇ m or less. More preferred. If the average fiber diameter of the fibrous carbon material is within the above range, the thermal conductivity, flexibility and compression deformation resistance of the thermal conductive sheet obtained using the thermal conductive sheet can be juxtaposed at a sufficiently high level. It is.
  • the aspect ratio of the fibrous carbon material preferably exceeds 10.
  • the “average fiber diameter” refers to a fibrous carbon material obtained by dissolving and removing the resin in the heat conductive sheet in a solvent by SEM (scanning electron microscope) or TEM (transmission electron microscope). It can be obtained by observing, measuring the fiber diameter of any 50 fibrous carbon materials, and calculating the number average value of the measured fiber diameters. In particular, when the fiber diameter is small, it is preferable to observe the same cross section with a TEM (transmission electron microscope). Further, in the present invention, the “aspect ratio of the fibrous carbon material” refers to the observation of the fibrous carbon material obtained by dissolving and removing the resin in the heat conductive sheet with a TEM (transmission electron microscope), and an arbitrary 50 pieces.
  • For the fibrous carbon material measure the maximum diameter (major axis) and the particle diameter (minor axis) in the direction orthogonal to the maximum diameter, and calculate the average value of the ratio of the major axis to the minor axis (major axis / minor axis). It can ask for.
  • the resin component included in the heat conductive sheet of the present invention preferably includes one or more kinds of resins having thermoplasticity. Furthermore, the resin component included in the heat conductive sheet of the present invention preferably includes an unvulcanized resin.
  • rubber and elastomer are included in “resin”.
  • unvulcanized means such a resin or resin composition regardless of whether or not a vulcanizing agent (crosslinking agent) is contained in the resin composition as a resin or resin material. It means a state where no cross-linking reaction is caused by heating or the like.
  • thermoplastic means a property of being softened by heating to become moldable and further solidified by cooling.
  • thermoplastic the polymer structure of the solidified resin usually does not contain a crosslinked structure.
  • resins may be broadly classified into “thermoplastic resins” and “thermosetting resins”.
  • thermoplastic resins even a resin that can be generally classified as a “thermosetting resin” may not form a crosslinked structure in the polymer structure if it is solidified in the absence of a crosslinking agent. Therefore, in this specification, regardless of whether it is generally classified as a thermoplastic resin or a thermosetting resin, the resins having “thermoplasticity” as defined above are collectively referred to as “thermoplasticity”. It is referred to as “resin having”.
  • the adhesiveness between members such as a heat conductive sheet and a heat generating body, a heat radiator, can be improved.
  • the “resin having thermoplasticity” can enhance the flexibility of the heat conductive sheet in a high temperature environment when the heat conductive sheet is used (at the time of heat dissipation).
  • the content of the thermoplastic resin in the heat conductive sheet is preferably 65% by mass or more, more preferably 70% by mass or more, based on the total organic content of the heat conductive sheet, 85 More preferably, it is at least mass%. This is because if the content of the thermoplastic resin in the heat conductive sheet is equal to or higher than the above lower limit value, the adhesion with the adherend during mounting can be further improved.
  • the “total organic component constituting the heat conductive sheet” is a concept including all resin components contained in the heat conductive sheet and an organic compound as an additive that may be optionally contained, It is a concept that does not include inorganic substances such as fibrous carbon materials and fibrous carbon materials, and other arbitrary inorganic compounds.
  • thermoplastic resin examples include poly (2-ethylhexyl acrylate), a copolymer of acrylic acid and 2-ethylhexyl acrylate, an acrylic resin such as polymethacrylic acid or an ester thereof, polyacrylic acid or an ester thereof; silicone Fluorine resin; Polyethylene; Polypropylene; Ethylene-propylene copolymer; Polymethylpentene; Polyvinyl chloride; Polyvinylidene chloride; Polyvinyl acetate; Ethylene-vinyl acetate copolymer; Polyvinyl alcohol; Polyacetal; Polyethylene terephthalate; Polyethylene naphthalate; Polystyrene; Polyacrylonitrile; Styrene-acrylonitrile copolymer; Acrylonitrile-butadiene copolymer (nitrile rubber); Acrylonitrile-butyl Diene-styrene copolymer (ABS resin);
  • the resin having thermoplasticity is preferably a fluororesin. This is because if the thermoplastic resin is a fluororesin, the heat resistance, oil resistance, and chemical resistance of the heat conductive sheet can be improved.
  • the resin includes a resin that is in a liquid state under normal temperature and normal pressure, and a resin that is in a solid state under normal temperature and normal pressure.
  • “normal temperature” refers to 23 ° C.
  • “normal pressure” refers to 1 atm (absolute pressure).
  • the fluororesin that is liquid at room temperature and normal pressure and has thermoplasticity include, for example, vinylidene fluoride / hexafluoropropylene copolymer, vinylidene fluoride-hexafluoropentene-tetrafluoroethylene terpolymer, and perfluoroethylene.
  • Examples include propene oxide polymers and tetrafluoroethylene-propylene-vinylidene fluoride copolymers.
  • fluororesins that are liquid under normal temperature and normal pressure and have thermoplasticity
  • Commercial products such as SIFEL series manufactured by Shin-Etsu Chemical Co., Ltd. can also be used.
  • the resin component of the heat conductive sheet contains a liquid resin under normal temperature and normal pressure, the heat conductivity of the heat conductive sheet can be further improved.
  • the viscosity of the fluororesin that is liquid under normal temperature and normal pressure is not particularly limited. However, the viscosity at 105 ° C. is good because kneadability, fluidity, cross-linking reactivity is good, and moldability is excellent. 500 to 30,000 cps is preferable, and 550 to 25,000 cps is more preferable.
  • examples of the fluororesin having a solid thermoplasticity at normal temperature and pressure include, for example, fluorine-containing monomers such as vinylidene fluoride fluororesin, tetrafluoroethylene-propylene fluororesin, tetrafluoroethylene-purple chlorovinyl ether fluororesin, etc. And an elastomer obtained by polymerizing the above.
  • polytetrafluoroethylene tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-ethylene copolymer, polyvinylidene fluoride, polychloro Trifluoroethylene, ethylene-chlorofluoroethylene copolymer, tetrafluoroethylene-perfluorodioxole copolymer, polyvinyl fluoride, tetrafluoroethylene-propylene copolymer, vinylidene fluoride-hexafluoropropylene copolymer, Vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, acrylic modification of polytetrafluoroethylene, ester modification of polytetrafluoroethylene Epoxy-modified product of polytetrafluoroethylene and polytetrafluor
  • polytetrafluoroethylene polytetrafluoroethylene modified acrylic, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride -A hexafluoropropylene-tetrafluoroethylene copolymer is preferred.
  • fluororesins having a thermoplastic property at room temperature and normal pressure include, for example, Daiel (registered trademark) G-300 series / G-700 series / G-7000 series (manufactured by Daikin Industries, Ltd.) Vinylidene fluoride-hexafluoropropylene binary copolymer), Daiel G-550 series / G-600 series (vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer), Daiel G-800 series (Vinylidene fluoride-hexafluoropropylene binary copolymer), Daiel G-900 series (vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer); KYNAR (registered trademark) manufactured by ALKEMA Series (bifluoride (Ridene-based fluororesin), KYNAR FLEX® series (
  • the resin that is solid under normal temperature and normal pressure and the resin that is liquid under normal temperature and normal pressure can be used singly or in combination.
  • At least one resin of the resin components of the heat conductive sheet is preferably a resin having an Asker C hardness of 70 or less, which is solid at normal temperature and pressure, and an Asker C hardness of 55 or less. More preferably, the resin having an Asker C hardness of 50 or less is more preferable. If such at least one kind of resin is solid at normal temperature and normal pressure, the flexibility of the heat conductive sheet is improved and the heat conductive sheet and the heating element are improved in a high temperature environment during use (heat dissipation). This is because the handling property of the heat conductive sheet can be enhanced in a room temperature environment such as when being attached while being in close contact. If the Asker C hardness of the above-mentioned at least one resin is not more than the above upper limit value, it is possible to impart moderate softness to the obtained heat conductive sheet and to reduce the interface resistance value with the adherend surface.
  • the Mooney viscosity (ML 1 + 4 , 100 ° C.) of a resin having a solid Asker C hardness of 70 or less at normal temperature and normal pressure is preferably 90 (ML 1 + 4 , 100 ° C.) or less. ML 1 + 4 , 100 ° C.) or higher. If the Mooney viscosity of the resin contained in the heat conductive sheet is not more than the above upper limit, the heat conductivity of the heat conductive sheet can be increased.
  • the Asker C hardness and Mooney viscosity of resin contained in a heat conductive sheet can be measured as follows, for example. First, after dissolving the heat conductive sheet in a solvent capable of dissolving the resin constituting the heat conductive sheet, the target resin is isolated to prepare a sample for measuring Asker C hardness and a sample for measuring Mooney viscosity. And according to the Asker C method of the Japan Rubber Association Standard (SRIS), the Asker C hardness can be measured at a temperature of 23 ° C. using a hardness meter. The Mooney viscosity can be obtained by measuring the sample according to JIS-K6300 (ML 1 + 4 , 100 ° C.). In addition, the value of Asker C hardness / Mooney viscosity measured / obtained in this way is, in principle, substantially the same as the value of Asker C hardness / Mooney viscosity of the resin component in the material stage.
  • SRIS Japan Rubber Association Standard
  • the heat conductive sheet may contain other resins.
  • Other resins that can be generally classified as thermosetting resins, such as natural rubber; butadiene rubber; isoprene rubber; nitrile rubber; hydrogenated nitrile rubber; chloroprene rubber; ethylene propylene rubber; Chlorosulfonated polyethylene; Butyl rubber; Halogenated butyl rubber; Polyisobutylene rubber; Epoxy resin; Polyimide resin; Bismaleimide resin; Benzocyclobutene resin; Phenolic resin; Unsaturated polyester; Diallyl phthalate resin; And polyphenylene ether; thermosetting modified polyphenylene ether; and the like. These may be used individually by 1 type and may use 2 or more types together.
  • the content rate of all the resin components in the heat conductive sheet of this invention is preferable that it is 75 volume% or less by making the whole volume of a heat conductive sheet into 100 volume%, and it is more preferable that it is 60 volume% or less. 50% by volume or less is more preferable, and 40% by volume or more is preferable. If the content rate of all the resin components in a heat conductive sheet is below the said upper limit, high heat conductivity can be exhibited with a heat conductive sheet. Moreover, if the content ratio of all resin components in the heat conductive sheet is equal to or higher than the above lower limit value, the heat conductive sheet is given high flexibility, and heat transfer from the heat generator to the heat conductive sheet when in contact with the heat generator is achieved. Can be better.
  • the heat conductive sheet of the present invention can be blended with known additives that can be used for producing the heat conductive sheet.
  • Additives that can be blended in the heat conductive sheet are not particularly limited, for example, plasticizers such as fatty acid esters; flame retardants such as red phosphorus flame retardants and phosphate ester flame retardants; fluorine oil ( Additives that serve as both plasticizers and flame retardants, such as Daikin Industries Ltd.'s demnam series; toughness improvers such as urethane acrylate; moisture absorbents such as calcium oxide and magnesium oxide; silane coupling agents, titanium couplings Agents, adhesive improvers such as acid anhydrides; wettability improvers such as nonionic surfactants and fluorosurfactants; ion trapping agents such as inorganic ion exchangers, and the like.
  • the heat conduction sheet of the present invention needs to have a stress relaxation rate by pressing of 85% or less, more preferably 60% or less, preferably 50% or less, and 30% or more. It is preferable that it is 40% or more. If the stress relaxation rate by pressurization is less than or equal to the above upper limit value, the thermal conductivity in the thickness direction of the thermal conductive sheet can be increased, and appropriate strength and compression deformation resistance can be imparted to the thermal conductive sheet. The reason why the thermal conductivity of the heat conductive sheet can be enhanced by setting the stress relaxation rate by pressurization to the upper limit value or less is not clear, but is presumed to be as follows.
  • the heat conductive sheet of the present invention has a structure in which a plurality of pre-heat conductive sheets containing a particulate carbon material and a resin component are laminated in a direction transverse to the thickness direction of the heat conductive sheet.
  • the thermal conductivity is exhibited by the interaction of the particulate carbon material, which is a thermal conductive material, in each pre-heat conductive sheet laminated in the transverse direction with respect to the thickness direction, and the thermal conductivity in the thickness direction. Occurs.
  • the heat conductive sheet having such a structure is pressed by both adherends when the heat conductive sheet is disposed between adherends such as a heating element and a heat radiating body.
  • the heat conductive sheet of this invention suppresses the collapse of the orientation of a pre heat conductive sheet by suppressing the stress relaxation rate by pressurization below a predetermined value, and improves the heat conductivity of the thickness direction of a heat conductive sheet. be able to.
  • the stress relaxation rate by pressurization is a predetermined value or less, in other words, the heat conductive sheet having a small amount of deformation by pressurization has an adhesion property to an adherend when compared with a flexible sheet. Can be inferior.
  • the adhesion to the adherend is low, the thermal resistance at the interface between the heat conductive sheet and the adherend (hereinafter also referred to as “interface resistance”) tends to be high.
  • interface resistance the thermal resistance at the interface between the heat conductive sheet and the adherend
  • the thermal conductivity that can be deteriorated by increasing the interface resistance is compensated, Furthermore, it is speculated that it can be enhanced.
  • the heat conductive sheet of the present invention preferably has an Asker C hardness of 70 or less.
  • Asker C hardness is 70 or less, the strength of the heat conductive sheet is appropriate, and the mounting ease of the heat conductive sheet can be improved.
  • the Asker C hardness of a heat conductive sheet is below the said upper limit, the handleability of a heat conductive sheet can be improved.
  • the value of Asker C hardness of a heat conductive sheet can be adjusted by selecting the content rate of the particulate carbon material mix
  • the heat conductive sheet of the present invention preferably has an Asker C hardness of 20 or more, more preferably 40 or more, and still more preferably 60 or more. If the Asker C hardness is less than 20, a problem arises in handling due to the softness of the heat conductive sheet. Further, if the Asker C hardness is more than 70, the heat conductive sheet itself is hard, and the interface resistance at the interface with the adherend may be excessively increased.
  • the thermal conductivity in the thickness direction is preferably 20 W / m ⁇ K or more, more preferably 24 W / m ⁇ K or more, and 29 W / m ⁇ K or more. Further preferred. This is because if the thermal conductivity of the heat conductive sheet is equal to or higher than the lower limit, for example, when the heat conductive sheet and the heating element are used in close contact, heat can be efficiently dissipated from the heating element.
  • the “thermal conductivity in the thickness direction” of the heat conductive sheet can be calculated by the method described in Examples.
  • the heat conductive sheet of the present invention is a pre-heat conductive sheet comprising the above-mentioned particulate carbon material and resin component, and any additive, and a plurality of layers in a direction transverse to the thickness direction of the heat conductive sheet. It has a laminated structure. Furthermore, in the pre-heat conductive sheet, the particulate carbon material is preferably oriented along the surface direction of the pre-heat conductive sheet (in a direction transverse to the thickness direction of the pre-heat conductive sheet). This is because if the particulate carbon material is oriented along the surface direction of the pre-heat conductive sheet, the thermal conductivity in the thickness direction of the heat conductive sheet can be increased.
  • the evidence that “the heat conductive sheet was obtained by laminating and slicing a plurality of pre-heat conductive sheets in a direction transverse to the thickness direction of the heat conductive sheet” is, for example, A comprehensive determination can be made using a method of observing under a microscope or a method of determining whether or not the thermal conductivity in the planar direction of the heat conductive sheet is anisotropic.
  • the thickness of a heat conductive sheet is not specifically limited, For example, it may be 0.05 mm or more and 10 mm or less. In general, if the thickness of the heat conductive sheet is too thick, the heat resistance of the heat conductive sheet increases and the thermal conductivity decreases, and if the thickness of the heat conductive sheet is too small, the thermal conductivity of the heat conductive sheet is sufficient. This is because it cannot be used.
  • a plurality of heat conductive sheets having a certain thickness stacked in the thickness direction and integrated by standing for a predetermined time can be used as the heat conductive sheet.
  • the thermal conductivity of a thick (thickness x) thermal conductive sheet obtained by laminating a plurality of thin thermal conductive sheets in the thickness direction is substantially the same as that of a single thermal conductive sheet having the same thickness (thickness x). It is thought to have an equivalent thermal conductivity.
  • the manufacturing method for manufacturing the heat conductive sheet of the present invention is not particularly limited, and a manufacturing method that can be used at the time of manufacturing a heat conductive sheet in which a plurality of pre-heat conductive sheets are laminated in the plane direction is adopted. be able to.
  • Examples of the production method include a step of preparing a composite mixture containing a particulate carbon material and a resin component composed of one or more kinds of resins, a step of pressing the composite mixture to obtain a pre-heat conductive sheet, The manufacturing method including the process of obtaining the laminated body of a heat conductive sheet, and a slicing process is mentioned.
  • a composite mixture containing the particulate carbon material and the resin is prepared.
  • the step of preparing the composite mixture is not particularly limited, and includes a particulate carbon material and a resin component composed of one or more kinds of resins, and an arbitrary fibrous carbon material and / or additive.
  • a complex mixture may be prepared by complexing in a known manner.
  • the composite mixture may be prepared by purchasing a commercially available composite mixture containing a particulate carbon material and a resin component composed of one or more kinds of resins.
  • a composite mixture is obtained by mixing and kneading a particulate carbon material, a resin component composed of one or more kinds of resins, and an arbitrary fibrous carbon material and / or additive.
  • a dispersion containing a particulate carbon material, a resin component composed of one or more kinds of resins, and any fibrous carbon material and / or additive is dried and granulated to obtain a composite mixture.
  • a composite mixture is obtained by spraying a particulate carbon material and an arbitrary fibrous carbon material with a resin component composed of one or more kinds of resins.
  • the method (I) it is desirable to use the method (I) from the viewpoint of ease of work.
  • the resin component composed of one or more kinds of resins, and the optional fibrous carbon material and / or additive the above-described heat conductive sheet may include particulates.
  • the same components as the carbon material, the resin component composed of one or more kinds of resins, and any fibrous carbon material and / or additive can be used, and the preferred content ratio can also be the same.
  • the mixing and kneading method is not particularly limited, and can be performed using a known mixing apparatus such as a kneader, roll, Henschel mixer, Hobart mixer or the like. And mixing and kneading
  • mixing time can be made into 5 hours or more and 6 hours or less, for example. Moreover, mixing and kneading
  • mixing temperature can be made into 5 to 150 degreeC, for example.
  • mixing and kneading may be performed in the presence of a solvent such as ethyl acetate.
  • the solvent is removed prior to crushing / pulverizing the composite mixture described later. It is preferable.
  • the removal of the solvent may be performed by a known drying method, or may be performed while arbitrarily defoaming the composite mixture. For example, if defoaming is performed using vacuum defoaming, the solvent can be removed simultaneously with defoaming.
  • the resulting composite mixture includes a particulate carbon material and a resin component composed of one or more resins, and optionally further includes a fibrous carbon material and an additive.
  • the composite mixture is usually a lump having a diameter of about 1 mm to 200 mm.
  • a pulverization step for pulverizing the composite mixture into particles may be performed.
  • the obtained composite mixture is pulverized by an arbitrary method to obtain composite particles.
  • the obtained composite mixture may be pulverized and then classified by any method to obtain composite particles.
  • the pulverization of the composite mixture can be performed by a known method without particular limitation as long as the obtained composite particles are a powder fluid rather than a lump of the composite mixture. Prior to pulverization, pulverization or the like for loosening the lump may be performed.
  • the complex mixture can be pulverized / pulverized using, for example, a known pulverization / pulverization machine utilizing a shearing action or an attrition action or an agitated known pulverization / pulverization machine.
  • Examples of the known crushing / pulverizing machine include a hammer crusher, a cutter mill, a hammer mill, a bead mill, a vibration mill, a meteor ball mill, a sand mill, a ball mill, a roll mill, a three-roll mill, a jet mill, and a high-speed rotary pulverizer. , A fine pulverizer, a pulverizing and sizing machine, and a nano jet mizer.
  • the conditions such as the type of the crushing / pulverizing machine, energy during crushing / crushing, and time are appropriately selected according to the state of the aggregate of the composite mixture, the desired powder fluid state such as the particle size of the composite particles, Adjust it.
  • the composite mixture is not particularly limited and is preferably pulverized to a particle size of less than 1000 ⁇ m by sieve classification.
  • Step of obtaining a pre-heat conductive sheet In the step of obtaining the pre-heat conductive sheet, the composite mixture or composite particles obtained in the previous step are pressed by an arbitrary method and formed into a sheet shape.
  • the method for pressurizing the pre-heat conductive sheet is not particularly limited as long as it is a molding method in which pressure is applied.
  • the pre-heat conductive sheet can be formed into a sheet shape by using a known forming method such as press forming, rolling forming or extrusion forming. Especially, it is preferable to shape
  • a protective film it does not specifically limit, The polyethylene terephthalate (PET) film etc. which performed the sandblast process can be used.
  • the roll temperature can be 5 ° C. or more and 150 ° C.
  • the thickness of a pre heat conductive sheet is not specifically limited, For example, it can be 0.05 mm or more and 2 mm or less. Further, from the viewpoint of improving the thermal conductivity of the heat conductive sheet by increasing the heat conductivity of the pre heat conductive sheet, the thickness of the pre heat conductive sheet is not more than 5000 times the average particle diameter of the particulate carbon material. Is preferred.
  • Step of obtaining a laminate In the step of obtaining a laminate, a plurality of the pre-heat conductive sheets obtained in the previous step are laminated in the thickness direction of the pre-heat conductive sheet, or the pre-heat conductive sheet obtained in the previous step is folded or wound. Thereby, a laminated body is formed.
  • stacking of a pre heat conductive sheet is not specifically limited, You may carry out using a lamination apparatus, and may carry out manually.
  • formation of the laminated body by folding of a pre heat conductive sheet is not specifically limited, It can carry out by folding a heat conductive primary sheet by fixed width using a folder.
  • the formation of the laminate by winding the pre-heat conductive sheet is not particularly limited, and by rolling the pre-heat conductive sheet around an axis parallel to the short direction or the long direction of the pre-heat conductive sheet. It can be carried out.
  • the adhesive force between the surfaces of the pre-heat conductive sheets is sufficiently obtained by the pressure when the pre-heat conductive sheets are laminated and the pressure when folding or winding.
  • the laminate may be formed in a state where the surface of the pre-heat conductive sheet is slightly dissolved with a solvent. Then, the laminate may be formed in a state where an adhesive is applied to the surface of the pre-heat conductive sheet or in a state where an adhesive layer is provided on the surface of the pre-heat conductive sheet.
  • dissolving the surface of a pre heat conductive sheet it is not specifically limited, The known solvent which can melt
  • coated to the surface of a pre heat conductive sheet A commercially available adhesive agent and adhesive resin can be used.
  • the adhesive it is preferable to use a resin having the same composition as the resin component contained in the pre-heat conductive sheet.
  • coated to the surface of a pre heat conductive sheet can be 10 micrometers or more and 1000 micrometers or less, for example.
  • the adhesive layer provided on the surface of the pre-heat conductive sheet is not particularly limited, and a double-sided tape or the like can be used.
  • the obtained laminate is pressed at a pressure of 0.05 MPa or more and 1.0 MPa or less in the stacking direction at 20 ° C. or more and 150 ° C. or less for 1 minute or more and 30 minutes or less It is preferable to press.
  • the particulate carbon material and any fibrous carbon material are oriented in a direction substantially orthogonal to the laminating direction.
  • the laminated body obtained in the above-described step is sliced at an angle of 45 ° or less with respect to the laminating direction to obtain a heat conductive sheet composed of sliced pieces of the laminated body.
  • the method for slicing the laminate is not particularly limited, and examples thereof include a multi-blade method, a laser processing method, a water jet method, and a knife processing method. Especially, the knife processing method is preferable at the point which makes the thickness of a heat conductive sheet uniform.
  • the cutting tool for slicing the laminate is not particularly limited, and includes a slice member (for example, a sharp blade) having a smooth board surface having a slit and a blade portion protruding from the slit portion. Canna and slicer) can be used.
  • the angle at which the laminate is sliced is preferably 30 ° or less with respect to the stacking direction, and more preferably 15 ° or less with respect to the stacking direction. Preferably, it is approximately 0 ° with respect to the stacking direction (that is, the direction along the stacking direction).
  • the temperature of the laminate during slicing is preferably ⁇ 20 ° C. or more and 40 ° C. or less, and more preferably 10 ° C. or more and 30 ° C. or less.
  • the laminated body to be sliced is preferably sliced while applying a pressure in a direction perpendicular to the lamination direction, and a pressure of 0.1 MPa to 0.5 MPa in the direction perpendicular to the lamination direction. It is more preferable to slice while loading.
  • the heat conductive sheet obtained according to the manufacturing method as described above is formed through a step of obtaining a laminate and a slicing step, the particulate carbon material and any fibrous carbon material are in the thickness direction of the heat conductive sheet. It is presumed that they are oriented. Therefore, for example, the heat generated from the heat generating element can be efficiently dissipated in the thickness direction of the heat conductive sheet by satisfactorily adhering the heat generating element and the heat conductive sheet.
  • the heat conductive sheet obtained according to the manufacturing method of this invention is excellent in heat-conductivity while being rich in pressure deformation resistance, and is also excellent in intensity
  • various devices and devices are not particularly limited, and are electronic devices such as servers, server personal computers, desktop personal computers, etc .; portable electronic devices such as notebook personal computers, electronic dictionaries, PDAs, mobile phones, and portable music players.
  • Liquid crystal display including backlight), plasma display, LED, organic EL, inorganic EL, liquid crystal projector, display device such as clock; ink jet printer (ink head), electrophotographic device (developing device, fixing device, heat roller, Image forming apparatuses such as heat belts; semiconductor-related components such as semiconductor elements, semiconductor packages, semiconductor encapsulating cases, semiconductor die bonding, CPUs, memories, power transistors, power transistor cases; rigid wiring boards, flexible wiring boards, ceramic wirings Board, bi Wiring boards such as doup-up wiring boards and multilayer boards (wiring boards include printed wiring boards); manufacturing equipment such as vacuum processing equipment, semiconductor manufacturing equipment, display equipment manufacturing equipment; heat insulating materials, vacuum heat insulating materials, radiation heat insulating materials Thermal insulation equipment for materials, etc .; DVD (optical pickup,
  • Mooney viscosity The Mooney viscosity of the resin used for the production of the heat conductive sheet is obtained by cutting a section from the resin and using a Mooney viscometer (manufactured by Shimadzu Corporation, “MOONEY VISCOMETER SMV-202”) according to JIS-K6300 (ML 1 + 4 , 100 ° C). A similar section was cut out from the obtained heat conductive sheet and measured in the same manner.
  • ⁇ Content ratio of particulate carbon material> The theoretical value in the volume fraction was used for the content ratio of the particulate carbon material in the heat conductive sheet. Specifically, for each component of the particulate carbon material, the resin, and any fibrous carbon material and additive contained in the heat conductive sheet, the volume (from the density (g / cm 3 ) and the blending amount (g) ( cm 3 ) was calculated, and the content ratio of the particulate carbon material in the heat conductive sheet was determined as a volume fraction (volume%).
  • ⁇ Asker C hardness> In accordance with the Asker C method of the Japan Rubber Association Standard (SRIS), the hardness was measured at a temperature of 23 ° C. using a hardness meter (trade name “ASKER CL-150LJ” manufactured by Kobunshi Keiki Co., Ltd.). Specifically, in the case of a resin, a block body molded into a width of 30 mm ⁇ a length of 60 mm ⁇ a thickness of 12.0 mm, and in the case of a heat conductive sheet, a size of 30 mm wide ⁇ 60 mm long ⁇ 0.5 mm thick is prepared.
  • SRIS Japan Rubber Association Standard
  • thermal conductivity of thermal conductive sheet In calculating the thermal conductivity of the thermal conductive sheet, first, the thermal resistance value was measured using a resin material thermal resistance tester (trade name “C47108” manufactured by Hitachi Technology & Service Co., Ltd.). In the measurement, the heat conductive sheet was cut into a 1 cm square and used as a measurement sample. And the thermal resistance value R of the measurement sample under the conditions of a test temperature of 50 ° C. and a pressure of 0.5 MPa was measured. It shows that it is excellent in thermal conductivity, and is excellent in the thermal radiation characteristic when it interposes between a heat generating body and a heat radiator as a heat resistance value R, and is set as a heat radiating device.
  • a resin material thermal resistance tester trade name “C47108” manufactured by Hitachi Technology & Service Co., Ltd.
  • thermal conductivity [W / m ⁇ K] thickness d [m] of thermal conductive sheet / thermal resistance value R [m 2 ⁇ K / W] (I)
  • Example 1 Preparation of fibrous carbon nanostructure containing CNT> According to the description of WO 2006/011655, fibrous carbon nanostructures containing SGCNTs were obtained by the super-growth method.
  • the obtained fibrous carbon nanostructure had a BET specific surface area of 800 m 2 / g.
  • the average diameter (Av) was 3.3 nm
  • the sample standard deviation ( ⁇ ) of the diameter was The value (3 ⁇ ) multiplied by 3 was 1.9 nm, and the ratio (3 ⁇ / Av) was 0.58.
  • the obtained fibrous carbon nanostructure was mainly composed of single-walled CNT (also referred to as “SGCNT”).
  • the obtained mixture was vacuum degassed for 30 minutes, and ethyl acetate was removed at the same time as degassing to obtain a composite mixture containing a particulate carbon material, a resin, a fibrous carbon material, and a flame retardant. And the obtained composite mixture was thrown into the crusher and crushed for 10 seconds.
  • Step of obtaining pre-heat conductive sheet Subsequently, 5 g of the composite mixture obtained above was sandwiched between sandblasted PET films (protective film) having a thickness of 50 ⁇ m, a roll gap of 550 ⁇ m, a roll temperature of 50 ° C., a roll linear pressure of 50 kg / cm, and a roll speed of 1 m / A pre-heat conductive sheet having a thickness of 0.5 mm was obtained by rolling under the condition of minutes.
  • the pre-heat conductive sheet obtained above was cut into a length of 6 cm, a width of 6 cm and a thickness of 0.5 mm, and 120 sheets were laminated in the thickness direction to obtain a laminate having a thickness of about 6 cm.
  • the obtained laminate was subjected to thermocompression bonding by adjusting the pressure and pressing time so that the press temperature was 120 ° C. and the compression ratio of the laminate after pressing was 5 to 10% with a hot press.
  • the pressing time was 1 to 5 minutes, and the pressing pressure was 0.1 to 0.25 MPa.
  • a two-blade blade having a blade angle of 22 ° with a front blade angle of 0.11 mm was used.
  • About the obtained heat conductive sheet, Asker C hardness, heat conductivity, and stress relaxation rate were measured by the above-mentioned method. The results are shown in Table 1.
  • Example 2 In the step of preparing the composite mixture, the resin is made of a thermoplastic fluororesin that is solid at room temperature and atmospheric pressure different from that in Example 1 (manufactured by Kemers, trade name “Viton (registered trademark) A-200”, Mooney viscosity: 52 .3ML 1 + 4 , 100 ° C.), a heat conductive sheet was produced in the same manner as in Example 1. Various measurements similar to those in Example 1 were performed. The results are shown in Table 1.
  • Example 3 In the step of preparing the composite mixture, the resin is made of a thermoplastic fluororesin that is solid at room temperature and atmospheric pressure different from Example 1 (manufactured by 3M Japan, trade name “Dyneon (registered trademark) FC-2211”, Mooney viscosity). : 30.2 ML 1 + 4 , 100 ° C.), a heat conductive sheet was produced in the same manner as in Example 1. Various measurements similar to those in Example 1 were performed. The results are shown in Table 1.
  • Example 4 The amount of expanded graphite as the particulate carbon material was changed to 100 parts.
  • the resin is a thermoplastic fluororesin that is solid at room temperature and atmospheric pressure, which is different from that in Example 1 (manufactured by 3M Japan, trade name “Dyneon (registered trademark) FC-2211”, Mooney viscosity: 30.2 ML 1+ 4 and 100 ° C.)
  • a heat conductive sheet was produced in the same manner as in Example 1 except that the heat conductive sheet was changed.
  • Various measurements similar to those in Example 1 were performed. The results are shown in Table 1.
  • Example 5 The amount of expanded graphite as a particulate carbon material was changed to 70 parts.
  • the resin is a thermoplastic fluororesin that is solid at room temperature and atmospheric pressure, which is different from that in Example 1 (manufactured by 3M Japan, trade name “Dyneon (registered trademark) FC-2211”, Mooney viscosity: 30.2 ML 1+ 4 and 100 ° C.). Except for these points, a heat conductive sheet was produced in the same manner as in Example 1. Various measurements similar to those in Example 1 were performed. The results are shown in Table 1.
  • Example 6 The amount of expanded graphite as the particulate carbon material was changed to 85 parts.
  • the resin is made of a thermoplastic fluororesin that is solid at room temperature and atmospheric pressure, which is different from that in Example 1 (trade name “DAI_EL (registered trademark) G-704BP”, manufactured by Daikin Industries, Ltd.), Mooney viscosity.
  • thermoplastic fluororesin that is liquid under normal temperature and normal pressure
  • DOS sebacic acid ester
  • Example 7 In the step of preparing the composite mixture, 100 parts of expanded graphite (made by Ito Graphite Industries Co., Ltd., trade name “EC-100”, average particle diameter: 190 ⁇ m) as the particulate carbon material, and as the fibrous carbon material 0.1 parts of an easily dispersible aggregate of carbon nanostructures and a thermoplastic fluororesin that is liquid under normal temperature and normal pressure (made by Daikin Industries, Ltd., trade name “DAI_EL (registered trademark) G-101”) as a resin 50 parts was stirred and mixed with a Hobart mixer at 80 ° C. for 30 minutes to obtain a mixture. And the obtained mixture was thrown into a wonder crush mill (Osaka Chemical Co., Ltd. make, brand name "D3V-10”), and it disintegrated for 1 minute. Except for these points, a heat conductive sheet was produced in the same manner as in Example 1. Various measurements similar to those in Example 1 were performed. The results are shown in Table 1.
  • Example 8 In the step of preparing the composite mixture, the amount of expanded graphite as the particulate carbon material was changed to 220 parts.
  • the resin was changed to a thermoplastic nitrile rubber that was solid at room temperature and normal pressure (manufactured by Nippon Zeon, trade name “Nipol (registered trademark) DN3335”, Mooney viscosity: 35.0 ML 1 + 4 , 100 ° C.). Except for these points, a heat conductive sheet was produced in the same manner as in Example 1. Various measurements similar to those in Example 1 were performed. The results are shown in Table 1.
  • Example 9 In the step of preparing the composite mixture, the amount of expanded graphite as the particulate carbon material was changed to 160 parts. Implemented except that the resin was changed to a solid thermoplastic silicone resin (manufactured by Shin-Etsu Chemical Co., Ltd., trade name “KE-931-U”, Mooney viscosity: 18.0 ML 1 + 4 , 100 ° C.) under normal temperature and normal pressure. A heat conductive sheet was produced in the same manner as in Example 1. Various measurements similar to those in Example 1 were performed. The results are shown in Table 1.
  • the heat conductive sheet having a predetermined structure in which the stress relaxation rate by pressurization is 85% or less is excellent in the heat conductivity in the thickness direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Medicinal Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本発明の熱伝導シートは、粒子状炭素材料と、一種又は複数種の樹脂からなる樹脂成分とを含むプレ熱伝導シートが、熱伝導シートの厚み方向に対して横断方向に複数層積層されてなり、加圧による応力緩和率が85%以下である。

Description

熱伝導シート
 本発明は、熱伝導シートに関する。
 近年、プラズマディスプレイパネル(PDP)や集積回路(IC)チップ等の電子部品は、高性能化に伴って発熱量が増大している。その結果、電子部品を用いた電子機器では、電子部品の温度上昇による機能障害対策を講じる必要が生じている。
 電子部品の温度上昇による機能障害対策としては、一般に、電子部品等の発熱体に対し、金属製のヒートシンク、放熱板、放熱フィン等の放熱体を取り付けることによって、放熱を促進させる方法が採られている。また、放熱体を使用する際には、発熱体から放熱体へと熱を効率的に伝えるために、良好な熱伝導性を発揮するシート状の部材(熱伝導シート)を介して発熱体と放熱体とを密着させている。そして、発熱体と放熱体との間に配設される熱伝導シートには、厚み方向の熱伝導性に富むことが求められている。
 ここで、熱伝導シートとしては、通常、樹脂と、熱伝導性を発揮する成分などとが混合された、複合混合物を用いて成形したシートが用いられている。近年、シートに好ましい性状を発揮させるために、複合混合物の構成成分について多くの検討がなされてきた。
 具体的には、従来、所定量のカルボキシル基を含む高分子化合物と、所定量のエポキシ基を含む硬化剤とを反応させて得られる、膜強度及び圧縮復元性の高い熱伝導シートが提案されてきた(例えば、特許文献1参照)。特許文献1に記載の熱伝導シートは、上記高分子化合物と硬化剤とが反応してなるため、膜強度及び圧縮復元性に優れている。また、特許文献1に記載の熱伝導シートは、熱伝導性を発揮する成分である異方性黒鉛粉が熱伝導シートの厚み方向に配向されてなる配向構造を有する。かかる配向構造により、熱伝導シートの厚み方向における熱伝導性がもたらされる。
特許第5316254号
 また、発熱体や放熱体といった被接着体間に配設され、上下から加圧される環境下で用いられる熱伝導シートには、被接着体との間の界面における熱伝導性の低下を低減すべく、従来は柔軟性が求められていた。しかし、上述したような、熱伝導性物質の配向構造を有する熱伝導シートでは、柔軟性を過度に高めることにより、被接着体からの加圧に起因して配向構造が変形しやすくなる虞があった。
 ここで、特許文献1の熱伝導シートは、膜強度及び圧縮復元性を向上させるために、高分子化合物と硬化剤とを反応させているため、アスカーC硬度が高い。しかし、アスカーC硬度は、加圧に起因する配向構造の変形への耐性を直接評価しうる指標ではなかった。また、特許文献1の熱伝導シートは、厚み方向の熱伝導性に改善の余地があった。
 そこで、本発明は、加圧による配向構造の変形耐性が高く、且つ厚み方向の熱伝導性に優れる熱伝導シートを提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意検討を行った。ここで、従来、熱伝導シートの柔軟性の指標としてアスカーC硬度が一般的に用いられてきた。そして、熱伝導シートが柔軟であれば被接着体と、熱伝導シートとの間の密着性が良好であり、界面抵抗を低減して熱伝導性を向上しうると考えられてきた。しかし、本発明者らは、熱伝導シートのアスカーC硬度を低くして熱伝導シート自体の柔軟性を高めても、必ずしも高い熱伝導性を達成することができるわけではないことに着眼した。そして、本発明者らは、加圧による応力緩和率の値が所定値以下である熱伝導シートは、加圧によって配向構造が変形しにくく、すなわち、圧縮変形耐性が高く、且つ、厚み方向の熱伝導性に優れることを新たに見出し、本発明を完成させた。なお、加圧による応力緩和率と、熱伝導シートのアスカーC硬度との間の相関性は低く、本発明で得られるような熱伝導シートは、アスカーC硬度を指標とした従来の開発方針には従うものではなかった。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の熱伝導シートは、粒子状炭素材料と、一種又は複数種の樹脂からなる樹脂成分とを含むプレ熱伝導シートが、前記熱伝導シートの厚み方向に対して横断方向に複数層積層されてなり、加圧による応力緩和率が85%以下であることを特徴とする。加圧による応力緩和率が85%以下である熱伝導シートは、圧縮変形耐性が高く、且つ、厚み方向の熱伝導性に優れる。
 なお、本明細書において、熱伝導シートの「加圧による応力緩和率」は、熱伝導シートに対して所定時間にわたって熱伝導シートの厚み方向に荷重を作用させた場合に、所定時間経過前後の荷重を比較して、所定時間の加圧により生じたひずみに起因する応力緩和率を指す。かかる応力緩和率は、本明細書の実施例に記載の方法により測定することができる。
 ここで、本発明の熱伝導シートは、アスカーC硬度が70以下であることが好ましい。アスカーC硬度が70以下であれば、強度が適度であり実装容易性に優れる。
 ここで、「アスカーC硬度」は、日本ゴム協会規格(SRIS)のアスカーC法に準拠し、硬度計を用いて温度23℃で測定することができる。
 そして、本発明の熱伝導シートは、前記樹脂成分が、熱可塑性を有する一種又は複数種の樹脂を含むことが好ましい。熱可塑性有する樹脂を含んでいれば、熱伝導シートの実装時に被接着体との間の密着性を向上させることができ、熱伝導性を一層高めることができる。
 そして、本発明の熱伝導シートは、前記樹脂成分のうちの少なくとも一種の樹脂が、常温常圧下で固体のアスカーC硬度が70以下の樹脂であることが好ましい。かかる特性を有する少なくとも一種の樹脂を含有させれば、熱伝導シートに適度な強度を付与して、加圧による応力緩和率が過剰に高くなることを効果的に抑制することができる。
 そして、本発明の熱伝導シートは、前記少なくとも一種の樹脂のムーニー粘度が、90(ML1+4、100℃)以下であることが好ましい。ムーニー粘度が90(ML1+4、100℃)以下である少なくとも一種の樹脂を含む熱伝導シートは、厚み方向の熱伝導性に一層優れる。
 ここで、本明細書において、「ムーニー粘度(ML1+4,100℃)」は、JIS-K6300に従って測定することができる。
 そして、本発明の熱伝導シートは、前記粒子状炭素材料の含有割合が25体積%以上であることが好ましい。粒子状炭素材料の含有割合が25体積%以上の熱伝導シートは、熱伝導性に一層優れる。
 そして、本発明の熱伝導シートは、前記樹脂成分のうちの少なくとも一種の樹脂が、常温常圧下で液体の樹脂であっても良い。樹脂成分のうちの少なくとも一種の樹脂が、常温常圧下で液体の樹脂である熱伝導シートは、熱伝導性に一層優れる。
 本発明によれば、圧縮変形耐性が高く、且つ、厚み方向の熱伝導性に優れる熱伝導シートを提供することができる。
 以下、本発明をその実施形態に基づき詳細に例示説明する。
 本発明の熱伝導シートは、発熱体に対して直接接着させて使用することもできるし、発熱体に放熱体を取り付ける際に発熱体と放熱体との間に挟み込んで使用することもできる。このとき、熱伝導シートは、1枚を単独で使用してもよく、複数枚を併用してもよい。加えて、本発明の熱伝導シートは、発熱体と、ヒートシンク、放熱板、放熱フィン等の放熱体と共に放熱装置を構成することもできる。
(熱伝導シート)
 本発明の熱伝導シートは、粒子状炭素材料と樹脂成分とを含むプレ熱伝導シートが熱伝導シートの厚み方向に対して横断方向に複数層積層されてなる。プレ熱伝導シートが粒子状炭素材料を含有していなければ、熱伝導シートの熱伝導性が不十分となる。さらに、プレ熱伝導シートが樹脂成分を含有していなければ、熱伝導シートが柔軟性に欠く。さらに、本発明の熱伝導シートは、応力緩和率が85%以下であることを特徴とする。熱伝導シートの応力緩和率が85%以下であれば、熱伝導シートの圧縮変形耐性を高め、更に、熱伝導性を高めることができる。
 なお、本発明の熱伝導シートは、プレ熱伝導シートの積層構造を含んでなるため、プレ熱伝導シートの含有成分は、当然、全て熱伝導シートに含まれうる。また、複数のプレ熱伝導シート同士は直接、或いは、好ましくはプレ熱伝導シートの樹脂成分と同一組成の樹脂又は両面テープ等により形成されるごく薄い接着層を介して接着される。このため、「本発明の熱伝導シートを構成するプレ熱伝導シート」が含有する成分及びその比率は、全て「本発明の熱伝導シート」についてもあてはまる。
<組成>
[粒子状炭素材料]
 ここで、本発明の熱伝導シートが含む粒子状炭素材料としては、特に限定されることなく、例えば、人造黒鉛、鱗片状黒鉛、薄片化黒鉛、天然黒鉛、酸処理黒鉛、膨張性黒鉛、膨張化黒鉛などの黒鉛;カーボンブラック;などを用いることができる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 中でも、粒子状炭素材料としては、膨張化黒鉛を用いることが好ましい。膨張化黒鉛を使用すれば、熱伝導シートの熱伝導性を向上させることができるからである。
-膨張化黒鉛-
 ここで、粒子状炭素材料として好適に使用し得る膨張化黒鉛は、例えば、鱗片状黒鉛などの黒鉛を硫酸などで化学処理して得た膨張性黒鉛を、熱処理して膨張させた後、微細化することにより得ることができる。そして、膨張化黒鉛としては、例えば、伊藤黒鉛工業株式会社製のEC1500、EC1000、EC500、EC300、EC100、EC50(いずれも商品名)等が挙げられる。
-粒子状炭素材料の性状-
 ここで、本発明の熱伝導シートに含まれている粒子状炭素材料の粒子径は、体積基準モード径で100μm以上であることが好ましく、150μm以上であることがより好ましく、300μm以下であることが好ましく、250μm以下であることがより好ましい。粒子状炭素材料の粒子径が上記下限以上であれば、熱伝導シート中で粒子状炭素材料同士が接触して良好な伝熱パスを形成するため、熱伝導シートにより高い熱伝導性を発揮させることができるからである。また、粒子状炭素材料の粒子径が上記上限以下であれば、熱伝導シートにより高い柔軟性を与え、発熱体と接した際の発熱体から熱伝導シートへの伝熱をより良好にすることができるからである。
 また、本発明の熱伝導シートに含まれている粒子状炭素材料のアスペクト比(長径/短径)は、1以上10以下であることが好ましく、1以上5以下であることがより好ましい。
 なお、本発明において「体積基準モード径」は、レーザー回折/散乱式粒子径分布測定装置を用いて、本明細書の実施例に記載した方法に従って求めることができる。
 また、本発明において、「粒子状炭素材料のアスペクト比」は、熱伝導シート中の樹脂を溶媒中で溶解除去して得られる粒子状炭素材料をSEM(走査型電子顕微鏡)で観察し、任意の50個の粒子状炭素材料について、最大径(長径)と、最大径に直交する方向の粒子径(短径)とを測定し、長径と短径の比(長径/短径)の平均値を算出することにより求めることができる。
-粒子状炭素材料の含有割合-
 そして、本発明の熱伝導シート中の粒子状炭素材料の含有割合は、熱伝導シートの全体積を100体積%として、25体積%以上であることが好ましく、30体積%以上であることがより好ましく、40体積%以上であることがさらに好ましく、50体積%以上であることが更により好ましく、通常、60体積%以下である。熱伝導シート中の粒子状炭素材料の含有割合が上記下限以上となるようなプレ熱伝導シートは、プレ熱伝導シート中で粒子状炭素材料同士が接触しやすくなり、良好な伝熱パスを形成しやすくなる。その結果、プレ熱伝導シートが熱伝導シートの厚み方向に対して横断方向に複数層積層されてなる熱伝導シートに、厚み方向におけるより高い熱伝導性を発揮させることができるからである。さらに、熱伝導シート中の粒子状炭素材料の含有割合が上記範囲内であれば、当該複合粒子がロール圧延等の加圧による力を受け易くなるため、結果として、プレ熱伝導シート中で粒子状炭素材料を所望方向により良好に配向させることができるからである。
 なお、本発明において、「含有割合(体積%)」は、本明細書の実施例に記載した方法に従って理論値として求めることができる。
[繊維状炭素材料]
 本発明の熱伝導シートは、任意に繊維状炭素材料を更に含有してもよい。任意に含有される繊維状炭素材料としては、特に限定されることなく、例えば、カーボンナノチューブ、気相成長炭素繊維、有機繊維を炭化して得られる炭素繊維、及びそれらの切断物などを用いることができる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 そして、本発明の熱伝導シートに繊維状炭素材料を含有させれば、熱伝導シートの熱伝導性を更に向上させることができると共に、粒子状炭素材料の粉落ちを防止することもできる。なお、繊維状炭素材料を配合することで粒子状炭素材料の粉落ちを防止することができる理由は、明らかではないが、繊維状炭素材料が三次元網目構造を形成することにより、熱伝導性や強度を高めつつ粒子状炭素材料の脱離を防止しているためであると推察される。
 上述した中でも、繊維状炭素材料としては、カーボンナノチューブなどの繊維状の炭素ナノ構造体を用いることが好ましく、カーボンナノチューブを含む繊維状の炭素ナノ構造体を用いることがより好ましい。カーボンナノチューブなどの繊維状の炭素ナノ構造体を使用すれば、熱伝導シートを用いて得られる熱伝導シートの熱伝導性及び圧縮変形耐性を更に向上させることができるからである。
-カーボンナノチューブを含む繊維状の炭素ナノ構造体-
 ここで、繊維状炭素材料として好適に使用し得る、カーボンナノチューブを含む繊維状の炭素ナノ構造体は、カーボンナノチューブ(以下、「CNT」と称することがある。)のみからなるものであってもよいし、CNTと、CNT以外の繊維状の炭素ナノ構造体との混合物であってもよい。
 なお、繊維状の炭素ナノ構造体中のCNTとしては、特に限定されることなく、単層カーボンナノチューブ及び/または多層カーボンナノチューブを用いることができるが、CNTは、単層から5層までのカーボンナノチューブであることが好ましく、単層カーボンナノチューブであることがより好ましい。単層カーボンナノチューブを使用すれば、多層カーボンナノチューブを使用した場合と比較し、熱伝導シートを用いて得られる熱伝導シートの熱伝導性及び圧縮変形耐性を更に向上させることができるからである。
 また、CNTを含む繊維状の炭素ナノ構造体としては、平均直径(Av)に対する、直径の標準偏差(σ)に3を乗じた値(3σ)の比(3σ/Av)が0.20超0.60未満の炭素ナノ構造体を用いることが好ましく、3σ/Avが0.25超の炭素ナノ構造体を用いることがより好ましく、3σ/Avが0.50超の炭素ナノ構造体を用いることが更に好ましい。3σ/Avが0.20超0.60未満のCNTを含む繊維状の炭素ナノ構造体を使用すれば、炭素ナノ構造体の配合量が少量であっても、熱伝導シートを用いて得られる熱伝導シートの熱伝導性及び強度を十分に高めることができるからである。従って、CNTを含む繊維状の炭素ナノ構造体の配合により熱伝導シートの硬度が上昇する(即ち、柔軟性が低下する)のを抑制して、熱伝導シートの熱伝導性及び圧縮変形耐性を十分に高いレベルで並立させることができるからである。
 なお、「繊維状の炭素ナノ構造体の平均直径(Av)」及び「繊維状の炭素ナノ構造体の直径の標準偏差(σ:標本標準偏差)」は、それぞれ、透過型電子顕微鏡を用いて無作為に選択した繊維状の炭素ナノ構造体100本の直径(外径)を測定して求めることができる。そして、CNTを含む繊維状の炭素ナノ構造体の平均直径(Av)及び標準偏差(σ)は、CNTを含む繊維状の炭素ナノ構造体の製造方法や製造条件を変更することにより調整してもよいし、異なる製法で得られたCNTを含む繊維状の炭素ナノ構造体を複数種類組み合わせることにより調整してもよい。
 そして、CNTを含む繊維状の炭素ナノ構造体としては、前述のようにして測定した直径を横軸に、その頻度を縦軸に取ってプロットし、ガウシアンで近似した際に、正規分布を取るものが通常使用される。
 更に、CNTを含む繊維状の炭素ナノ構造体は、ラマン分光法を用いて評価した際に、Radial Breathing Mode(RBM)のピークを有することが好ましい。なお、三層以上の多層カーボンナノチューブのみからなる繊維状の炭素ナノ構造体のラマンスペクトルには、RBMが存在しない。
 また、CNTを含む繊維状の炭素ナノ構造体の平均直径(Av)は、0.5nm以上であることが好ましく、1nm以上であることが更に好ましく、15nm以下であることが好ましく、10nm以下であることが更に好ましい。繊維状の炭素ナノ構造体の平均直径(Av)が0.5nm以上であれば、繊維状の炭素ナノ構造体の凝集を抑制して炭素ナノ構造体の分散性を高めることができるからである。また、繊維状の炭素ナノ構造体の平均直径(Av)が15nm以下であれば、熱伝導シートを用いて得られる熱伝導シートの熱伝導性及び圧縮変形耐性を十分に高めることができるからである。
 更に、CNTを含む繊維状の炭素ナノ構造体のBET比表面積は、600m2/g以上であることが好ましく、800m2/g以上であることが更に好ましく、2500m2/g以下であることが好ましく、1200m2/g以下であることが更に好ましい。更に、繊維状の炭素ナノ構造体中のCNTが主として開口したものにあっては、BET比表面積が1300m2/g以上であることが好ましい。CNTを含む繊維状の炭素ナノ構造体のBET比表面積が600m2/g以上であれば、熱伝導シートを用いて得られる熱伝導シートの熱伝導性及び強度を十分に高めることができるからである。また、CNTを含む繊維状の炭素ナノ構造体のBET比表面積が2500m2/g以下であれば、繊維状の炭素ナノ構造体の凝集を抑制して熱伝導シート中のCNTの分散性を高めることができるからである。
 なお、本発明において、「BET比表面積」とは、BET法を用いて測定した窒素吸着比表面積を指す。
 そして、上述した性状を有するCNTを含む繊維状の炭素ナノ構造体は、例えば、カーボンナノチューブ製造用の触媒層を表面に有する基材上に、原料化合物及びキャリアガスを供給して、化学的気相成長法(CVD法)によりCNTを合成する際に、系内に微量の酸化剤(触媒賦活物質)を存在させることで、触媒層の触媒活性を飛躍的に向上させるという方法(スーパーグロース法;国際公開第2006/011655号参照)に準じて、効率的に製造することができる。なお、以下では、スーパーグロース法により得られるカーボンナノチューブを「SGCNT」と称することがある。
 ここで、スーパーグロース法により製造したCNTを含む繊維状の炭素ナノ構造体は、SGCNTのみから構成されていてもよいし、SGCNTに加え、例えば、非円筒形状の炭素ナノ構造体等の他の炭素ナノ構造体が含まれていてもよい。
-繊維状炭素材料の性状-
 そして、熱伝導シートに含まれ得る繊維状炭素材料の平均繊維径は、1nm以上であることが好ましく、3nm以上であることがより好ましく、2μm以下であることが好ましく、1μm以下であることがより好ましい。繊維状炭素材料の平均繊維径が上記範囲内であれば、熱伝導シートを用いて得られる熱伝導シートの熱伝導性、柔軟性及び圧縮変形耐性を十分に高いレベルで並立させることができるからである。
 ここで、繊維状炭素材料のアスペクト比は、10を超えることが好ましい。
 なお、本発明において、「平均繊維径」は、熱伝導シート中の樹脂を溶媒中で溶解除去して得られる繊維状炭素材料をSEM(走査型電子顕微鏡)又はTEM(透過型電子顕微鏡)で観察し、任意の50個の繊維状炭素材料について繊維径を測定し、測定した繊維径の個数平均値を算出することにより求めることができる。特に、繊維径が小さい場合は、同様の断面をTEM(透過型電子顕微鏡)にて観察することが好適である。
 また、本発明において「繊維状炭素材料のアスペクト比」は、熱伝導シート中の樹脂を溶解除去して得られる繊維状炭素材料をTEM(透過型電子顕微鏡)で観察し、任意の50個の繊維状炭素材料について、最大径(長径)と、最大径に直交する方向の粒子径(短径)とを測定し、長径と短径の比(長径/短径)の平均値を算出することにより求めることができる。
[樹脂]
 ここで、本発明の熱伝導シートが含む樹脂成分は、熱可塑性を有する一種又は複数種の樹脂を含むことが好ましい。さらに、本発明の熱伝導シートが含む樹脂成分は、未加硫の樹脂を含むことが好ましい。なお、本明細書において、ゴム及びエラストマーは、「樹脂」に含まれるものとする。また、本明細書において、「未加硫」とは、樹脂又は樹脂の材料となる樹脂組成物中に加硫剤(架橋剤)が含有されているか否かにかかわらず、かかる樹脂又は樹脂組成物に対して加熱等により架橋反応を生じさせていない状態を意味する。さらに、本明細書において、「熱可塑性」とは、加熱によって軟化し、成形可能な状態となり、さらに、冷却により固化する特性を意味する。さらに、樹脂が「熱可塑性」である場合、通常、固化状態の樹脂のポリマー構造内に架橋構造を含まない。ここで、一般的に、樹脂は、「熱可塑性樹脂」と、「熱硬化性樹脂」とに大別される場合がある。しかし、一般的に「熱硬化性樹脂」として分類されうる樹脂であっても、架橋剤の非存在下で固化すれば、ポリマー構造内に架橋構造が形成されない場合がある。よって、本明細書では、一般的に熱可塑性樹脂と分類されるか熱硬化性樹脂として分類されるかにかかわらず、上記定義したような「熱可塑性」を有する樹脂を総じて、「熱可塑性を有する樹脂」と称する。
 そして、熱可塑性を有する樹脂によれば、熱伝導シートと発熱体や放熱体等の部材との間の密着性を向上させることができる。「熱可塑性を有する樹脂」は、熱伝導シートの使用時(放熱時)の高温環境下で、熱伝導シートの柔軟性を高めることができるからである。
 さらに、熱可塑性を有する樹脂の熱伝導シート中における含有割合は、熱伝導シートを構成する全有機分中の65質量%以上であることが好ましく、70質量%以上であることがより好ましく、85質量%以上であることが更に好ましい。
 熱可塑性を有する樹脂の熱伝導シート中における含有割合が上記下限値以上であれば、実装時の被接着体との間の密着性を一層向上することができるからである。
 なお、本明細書において、「熱伝導シートを構成する全有機分」とは、熱伝導シートに含まれる全樹脂成分及び、任意で含有されうる添加剤としての有機化合物を含む概念であり、粒子状炭素材料や繊維状炭素材料等の無機物や、その他の任意の無機化合物は含まない概念である。
-熱可塑性を有する樹脂-
 熱可塑性を有する樹脂としては、ポリ(アクリル酸2-エチルヘキシル)、アクリル酸とアクリル酸2-エチルヘキシルとの共重合体、ポリメタクリル酸またはそのエステル、ポリアクリル酸またはそのエステルなどのアクリル樹脂;シリコーン樹脂;フッ素樹脂;ポリエチレン;ポリプロピレン;エチレン-プロピレン共重合体;ポリメチルペンテン;ポリ塩化ビニル;ポリ塩化ビニリデン;ポリ酢酸ビニル;エチレン-酢酸ビニル共重合体;ポリビニルアルコール;ポリアセタール;ポリエチレンテレフタレート;ポリブチレンテレフタレート;ポリエチレンナフタレート;ポリスチレン;ポリアクリロニトリル;スチレン-アクリロニトリル共重合体;アクリロニトリル-ブタジエン共重合体(ニトリルゴム);アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂);スチレン-ブタジエンブロック共重合体またはその水素添加物;スチレン-イソプレンブロック共重合体またはその水素添加物;ポリフェニレンエーテル;変性ポリフェニレンエーテル;脂肪族ポリアミド類;芳香族ポリアミド類;ポリアミドイミド;ポリカーボネート;ポリフェニレンスルフィド;ポリサルホン;ポリエーテルサルホン;ポリエーテルニトリル;ポリエーテルケトン;ポリケトン;ポリウレタン;液晶ポリマー;アイオノマー等が挙げられる。これらは、1種を単独で使用してもよいし、2種以上を併用してもよい。
 さらに、熱可塑性を有する樹脂は、フッ素樹脂であることが好ましい。熱可塑性を有する樹脂がフッ素樹脂であれば、熱伝導シートの耐熱性、耐油性、及び耐薬品性を向上させることができるからである。
 ここで、樹脂には常温常圧下で液体状態である樹脂と、常温常圧下で固体状態である樹脂とがある。本明細書において、「常温」とは23℃を指し、「常圧」とは、1atm(絶対圧)を指す。そして、常温常圧下で液状の、熱可塑性を有するフッ素樹脂としては、例えば、ビニリデンフルオライド/ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-ヘキサフルオロペンテン-テトラフルオロエチレン3元共重合体、パーフルオロプロペンオキサイド重合体、テトラフルオロエチレン-プロピレン-フッ化ビニリデン共重合体などが挙げられる。これら常温常圧下で液状の、熱可塑性を有するフッ素樹脂として、例えば、ケマーズ社製のバイトン(登録商標)LM、ダイキン工業株式会社製のダイエル(登録商標)G101、スリーエム株式会社製のダイニオンFC2210、信越化学工業株式会社製のSIFELシリーズなどの市販品を使用することもできる。
 熱伝導シートの樹脂成分が常温常圧下で液状の樹脂を含んでいれば、熱伝導シートの熱伝導率を一層向上させることができる。
 常温常圧下で液状の、熱可塑性を有するフッ素樹脂の粘度は、特には限定されないが、混練性、流動性、架橋反応性が良好で、成形性にも優れるという点から、105℃における粘度が、500~30,000cpsであることが好ましく、550~25,000cpsであることがより好ましい。
 また、常温常圧下で固体の熱可塑性を有するフッ素樹脂としては、例えば、フッ化ビニリデン系フッ素樹脂、テトラフルオロエチレン-プロピレン系フッ素樹脂、テトラフルオロエチレン-パープルオロビニルエーテル系フッ素樹脂等、フッ素含有モノマーを重合して得られるエラストマーなどが挙げられる。より具体的には、ポリテトラフルオロエチレン、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-エチレン共重合体、ポリビニリデンフルオライド、ポリクロロトリフルオロエチレン、エチレン-クロロフルオロエチレン共重合体、テトラフルオロエチレン-パーフルオロジオキソール共重合体、ポリビニルフルオライド、テトラフルオロエチレン-プロピレン共重合体、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体、ポリテトラフルオロエチレンのアクリル変性物、ポリテトラフルオロエチレンのエステル変性物、ポリテトラフルオロエチレンのエポキシ変性物及びポリテトラフルオロエチレンのシラン変性物等が挙げられる。これらの中でも、加工性の観点から、ポリテトラフルオロエチレン、ポリテトラフルオロエチレンのアクリル変性物、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体が好ましい。
 また、市販されている、常温常圧下で固体の熱可塑性を有するフッ素樹脂としては、例えば、ダイキン工業株式会社製のダイエル(登録商標)G-300シリーズ/G-700シリーズ/G-7000シリーズ(ビニリデンフルオライド-ヘキサフルオロプロピレン2元系共重合体)、ダイエルG-550シリーズ/G-600シリーズ(ビニリデンフルオライド-ヘキサフルオロプロピレン-テトラフルオロエチレン3元系共重合体)、ダイエルG-800シリーズ(ビニリデンフルオライド-ヘキサフルオロプロピレン2元系共重合体)、ダイエルG-900シリーズ(ビニリデンフルオライド-ヘキサフルオロプロピレン-テトラフルオロエチレン3元系共重合体);ALKEMA社製のKYNAR(登録商標)シリーズ(フッ化ビニリデン系フッ素樹脂)、KYNAR FLEX(登録商標)シリーズ(ビニリデンフロライド-ヘキサフルオロプロピレン-テトラフルオロエチレン3元系共重合体);ケマーズ社製のA-100(ビニリデンフルオライド-ヘキサフルオロプロピレン2元系共重合体);スリーエムジャパン社製のDyneon(登録商標)(ビニリデンフルオライド-ヘキサフルオロプロピレン2元系共重合体)などが挙げられる。
 なお、常温常圧下で固体の樹脂と常温常圧下で液体の樹脂とは、一種単独で、或いは複数種を組み合わせて用いることができる。
 さらに、熱伝導シートの樹脂成分のうちの少なくとも一種の樹脂が、常温常圧下で固体の、アスカーC硬度が70以下の樹脂であることが好ましく、アスカーC硬度が55以下の樹脂であることがより好ましく、アスカーC硬度が50以下の樹脂であることがさらに好ましい。かかる少なくとも一種の樹脂が常温常圧下で固体であれば、使用時(放熱時)の高温環境下においては、熱伝導シートの柔軟性をより向上させ、熱伝導シートと発熱体とをより良好に密着させつつ、取り付け時などの常温環境下においては、熱伝導シートのハンドリング性を高めることができるからである。上述した少なくとも一種の樹脂のアスカーC硬度が上記上限値以下であれば、得られる熱伝導シートに適度な柔らかさを付与して、被接着面との界面抵抗値を下げることができる。
 なお、常温常圧下で固体のアスカーC硬度が70以下の樹脂のムーニー粘度(ML1+4、100℃)は90(ML1+4、100℃)以下であることが好ましく、通常、15(ML1+4、100℃)以上である。熱伝導シートに含まれる樹脂のムーニー粘度が上記上限値以下であれば、熱伝導シートの熱伝導性を高めることが出来る。
 なお、熱伝導シート中に含まれる樹脂のアスカーC硬度やムーニー粘度は、例えば、以下のようにして測定することができる。まず、熱伝導シートを、当該熱伝導シートを構成する樹脂を溶解可能な溶剤に溶解した後に目的とする樹脂を単離して、アスカーC硬度測定用試料やムーニー粘度測定用試料を調製する。そして、得られた試料について、日本ゴム協会規格(SRIS)のアスカーC法に準拠し、硬度計を用いて温度23℃でアスカーC硬度を測定することができる。また、試料について、JIS-K6300に従い(ML1+4,100℃)を測定することで、ムーニー粘度を取得することができる。また、このようにして測定/取得したアスカーC硬度/ムーニー粘度の値は、原則として、材料段階の樹脂成分のアスカーC硬度/ムーニー粘度の値と略同一となる。
-その他の樹脂-
 さらに、本発明の効果を著しく損なわない限りにおいて、熱伝導シートに、その他の樹脂を含有させても良い。
 その他の樹脂としては、一般的に熱硬化性樹脂として分類されうる各種樹脂、例えば、天然ゴム;ブタジエンゴム;イソプレンゴム;ニトリルゴム;水素化ニトリルゴム;クロロプレンゴム;エチレンプロピレンゴム;塩素化ポリエチレン;クロロスルホン化ポリエチレン;ブチルゴム;ハロゲン化ブチルゴム;ポリイソブチレンゴム;エポキシ樹脂;ポリイミド樹脂;ビスマレイミド樹脂;ベンゾシクロブテン樹脂;フェノール樹脂;不飽和ポリエステル;ジアリルフタレート樹脂;ポリイミドシリコーン樹脂;ポリウレタン;熱硬化型ポリフェニレンエーテル;熱硬化型変性ポリフェニレンエーテル;などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
-樹脂の含有割合-
 そして、本発明の熱伝導シート中の全樹脂成分の含有割合は、熱伝導シートの全体積を100体積%として、75体積%以下であることが好ましく、60体積%以下であることがより好ましく、50体積%以下であることがさらに好ましく、40体積%以上であることが好ましい。熱伝導シート中の全樹脂成分の含有割合が上記上限値以下であれば、熱伝導シートにより高い熱伝導性を発揮させることができる。また、熱伝導シート中の全樹脂成分の含有割合が上記下限値以上であれば、熱伝導シートにより高い柔軟性を与え、発熱体と接した際の発熱体から熱伝導シートへの伝熱をより良好にすることができる。
[添加剤]
 本発明の熱伝導シートには、必要に応じて、熱伝導シートの製造に使用され得る既知の添加剤を配合することができる。そして、熱伝導シートに配合し得る添加剤としては、特に限定されることなく、例えば、脂肪酸エステルなどの可塑剤;赤リン系難燃剤、リン酸エステル系難燃剤などの難燃剤;フッ素オイル(ダイキン工業株式会社製のデムナムシリーズ)のように可塑剤と難燃剤とを兼ねる添加剤;ウレタンアクリレートなどの靭性改良剤;酸化カルシウム、酸化マグネシウムなどの吸湿剤;シランカップリング剤、チタンカップリング剤、酸無水物などの接着力向上剤;ノニオン系界面活性剤、フッ素系界面活性剤などの濡れ性向上剤;無機イオン交換体などのイオントラップ剤;等が挙げられる。
<性状>
[加圧による応力緩和率]
 本発明の熱伝導シートは、加圧による応力緩和率が85%以下であることが必要であり、60%以下であることがより好ましく、50%以下であることが好ましく、30%以上であることが好ましく、40%以上であることがより好ましい。加圧による応力緩和率が上記上限値以下であれば、熱伝導シートの厚み方向の熱伝導性を高めると共に、適度な強度及び圧縮変形耐性を熱伝導シートに付与することができる。加圧による応力緩和率を上記上限値以下とすることで熱伝導シートの熱伝導性を高めることができる理由は明らかではないが、以下の通りであると推察される。
 本発明の熱伝導シートは、粒子状炭素材料と樹脂成分とを含むプレ熱伝導シートが、熱伝導シートの厚み方向に対して横断方向に複数層積層されてなる構造を有している。そして、厚み方向に対して横断方向に積層された各プレ熱伝導シート中で熱伝導性物質である粒子状炭素材料が相互作用することで熱伝導性を発揮して、厚み方向の熱伝導性が生じる。このような構造の熱伝導シートは、熱伝導シートを発熱体や放熱体等の被接着体間に配置した場合に、両被接着体により加圧される。かかる加圧により、熱伝導シート中で厚み方向に対して横断方向に複数層積層されてなるプレ熱伝導シートの配向が崩れる虞がある。そして、熱伝導シート中におけるプレ熱伝導シートの配向が崩れれば、厚み方向の熱伝導性が損なわれる。そこで、本発明の熱伝導シートは、加圧による応力緩和率を所定値以下に抑えることで、プレ熱伝導シートの配向の崩れを抑制して、熱伝導シートの厚み方向の熱伝導性を高めることができる。ここで、加圧による応力緩和率が所定値以下である、換言すれば、加圧による変形量が少ない熱伝導シートは、柔軟性に富むシートと比較した場合に、被接着体との密着性に劣りうる。通常、被接着体との密着性が低ければ、熱伝導シートと被接着体との界面における熱抵抗(以下、「界面抵抗」とも称する)が高くなる傾向がある。しかし、本発明の熱伝導シートでは、応力緩和率を所定値以下に抑制してプレ熱伝導シートの配向を崩れにくくすることで、界面抵抗が高くなることにより劣化しうる熱伝導性を補い、さらには、増強することができると推察される。
 一方で応力緩和率が上記下限値未満の場合、熱伝導シートの加圧による変形量が少なく、厚み方向における粒子状炭素材料の配向は保持できるが、その硬さゆえ被接着体との密着性が確保できず、満足な熱伝導性は得られない。
[アスカーC硬度]
 本発明の熱伝導シートは、アスカーC硬度が70以下であることが好ましい。アスカーC硬度が70以下であれば、熱伝導シートの強度が適度であり、熱伝導シートの実装容易性を向上させることができる。また、熱伝導シートのアスカーC硬度が上記上限値以下であれば、熱伝導シートの取扱性を向上させることができる。なお、熱伝導シートのアスカーC硬度の値は、熱伝導シートに配合する粒子状炭素材の含有割合や、用いる樹脂成分を選択することで調節することができる。さらに、本発明の熱伝導シートは、アスカーC硬度が20以上であることが好ましく、40以上であることがより好ましく、60以上であることがさらに好ましい。アスカーC硬度が20未満であれば、熱伝導シートの柔らかさ故にハンドリングに問題が生じる。また、アスカーC硬度が70超であれば熱伝導シートそのものが硬く、被接着体との界面における界面抵抗が過度に増大する虞がある。
[熱伝導性]
 本発明の熱伝導シートは、厚み方向の熱伝導率が、20W/m・K以上であることが好ましく24W/m・K以上であることがより好ましく、29W/m・K以上であることが更に好ましい。熱伝導シートの熱伝導率が上記下限以上であれば、例えば、熱伝導シートと発熱体とを密着させて使用した場合、発熱体から熱を効率的に放散させることができるからである。
 なお、本明細書において、熱伝導シートの「厚み方向の熱伝導率」は、実施例に記載の方法により算出することができる。
[構造]
 また、本発明の熱伝導シートは、上述した粒子状炭素材料及び樹脂成分、並びに任意の添加剤等を含んでなるプレ熱伝導シートが、熱伝導シートの厚み方向に対して横断方向に複数層積層されてなる構造を有する。さらに、プレ熱伝導シート内において、粒子状炭素材料はプレ熱伝導シートの面方向に沿って(プレ熱伝導シートの厚み方向に対して横断方向に)配向していることが好ましい。粒子状炭素材料がプレ熱伝導シートの面方向に沿って配向していれば、熱伝導シートの厚み方向の熱伝導率を高めることができるからである。そして、「熱伝導シートがプレ熱伝導シートを熱伝導シートの厚み方向に対して横断方向に複数枚積層してスライスして得られた」という証拠は、例えば、熱伝導シートの厚み方向断面を顕微鏡観察する方法や、熱伝導シートの平面方向の熱伝導性に異方性があるか否かを判定する方法を使い、総合的に判断することが出来る。
[厚み]
 熱伝導シートの厚みは、特に限定されることなく、例えば、0.05mm以上10mm以下でありうる。一般に、熱伝導シートの厚みが厚すぎれば熱伝導シートの熱抵抗が高まるため熱伝導性が低下し、また、熱伝導シートの厚みを小さくし過ぎると熱伝導シートが有する熱伝導率を十分に活用することができなくなるからである。
 さらに、ある厚みの熱伝導シートを厚み方向に複数枚重ね合わせて、所定の時間静置することによって一体化させたものを、熱伝導シートとして使用することもできる。このようにして得られた熱伝導シート内では、粒子状炭素材料及び任意の繊維状炭素材料が熱伝導シートの厚み方向に配向したままであると推察される。よって、複数枚の薄手の熱伝導シートを厚み方向に積層させて得た厚手(厚みx)の熱伝導シートの熱伝導性は、同じ厚さ(厚みx)の一枚の熱伝導シートと略同等の熱伝導率を有すると考えられる。このため、様々な厚みの熱伝導シートを準備することなく、所定の厚みの(薄手の)熱伝導シートを複数枚準備することで、熱伝導シートを適用したい箇所の厚みに応じた厚みの熱伝導シートを得ることができる。
(熱伝導シートの製造方法)
 本発明の熱伝導シートを製造するための製造方法は、特に限定されることなく、プレ熱伝導シートが面方向に複数枚積層されてなる熱伝導シートの製造時に利用可能な製造方法を採用することができる。かかる製造方法としては、例えば、粒子状炭素材料及び一種又は複数種の樹脂からなる樹脂成分を含有する複合混合物を準備する工程と、複合混合物を加圧してプレ熱伝導シートを得る工程と、プレ熱伝導シートの積層体を得る工程と、スライス工程とを含む製造方法が挙げられる。
<複合混合物を準備する工程>
 複合混合物を準備する工程では、粒子状炭素材料及び樹脂を含有する複合混合物を準備する。具体的には、複合混合物を準備する工程では、特に制限されることなく、粒子状炭素材料及び一種又は複数種の樹脂からなる樹脂成分と、任意の繊維状炭素材料及び/または添加剤とを、既知の手法で複合化することにより複合混合物を準備してもよい。また、複合混合物を準備する工程では、粒子状炭素材料及び一種又は複数種の樹脂からなる樹脂成分を含有する市販品の複合混合物を購入することにより準備してもよい。上記複合化することにより複合混合物を準備する場合には、より具体的には、例えば、以下の(I)~(III)の方法を用いることができる。
(I)粒子状炭素材料と、一種又は複数種の樹脂からなる樹脂成分と、任意の繊維状炭素材料及び/または添加剤とを混合、混練して複合混合物を得る。
(II)粒子状炭素材料と、一種又は複数種の樹脂からなる樹脂成分と、任意の繊維状炭素材料及び/または添加剤とを含む分散液を乾燥造粒して複合混合物を得る。
(III)粒子状炭素材料及び任意の繊維状炭素材料に一種又は複数種の樹脂からなる樹脂成分などを噴霧して複合混合物を得る。
 中でも、作業の容易性の観点から(I)の方法を用いることが望ましい。
 なお、複合混合物を準備する工程で用いる粒子状炭素材料、一種又は複数種の樹脂からなる樹脂成分、任意の繊維状炭素材料及び/または添加剤としては、上述の熱伝導シートが含み得る粒子状炭素材料、一種又は複数種の樹脂からなる樹脂成分、任意の繊維状炭素材料及び/または添加剤と同じ成分を用いることができ、好適な含有割合も同様とすることができる。
[混合、混練方法]
 混合、混練方法としては、特に限定されることなく、ニーダー、ロール、ヘンシェルミキサー、ホバートミキサー等の既知の混合装置を用いて行うことができる。そして、混合、混練時間は、例えば5分以上6時間以下とすることができる。また、混合、混練温度は、例えば5℃以上150℃以下とすることができる。
 ここで、混合、混練は、酢酸エチル等の溶媒の存在下で行ってもよいが、混合、混練時に溶媒を用いる場合には、後述する複合混合物の解砕/粉砕に先立って溶媒を除去することが好ましい。溶媒の除去は既知の乾燥方法にて行ってもよく、複合混合物を任意に脱泡しながら行ってもよい。例えば、真空脱泡を用いて脱泡を行えば、脱泡時に溶媒の除去も同時に行うことができる。
[複合混合物]
 そして、得られる複合混合物は粒子状炭素材料及び一種又は複数種の樹脂からなる樹脂成分を含み、任意に繊維状炭素材料及び添加剤を更に含む。また、複合混合物は、通常、直径1mm~200mm程度の塊状体である。
 任意で、複合混合物を粒子状に粉砕する粉砕工程を実施しても良い。この場合、粉砕工程では、得られた複合混合物を任意の方法で粉砕して複合粒子を得る。また、複合粒子を得る工程では、得られた複合混合物を粉砕した後に任意の方法で分級を行って複合粒子を得てもよい。
 複合混合物の粉砕は、得られる複合粒子が複合混合物の塊状体よりも粉流体となっていれば特に限定されることなく、既知の方法で行うことができる。また、粉砕に先立ち、塊状体をほぐす解砕などを行っても良い。そして、複合混合物の解砕/粉砕は、例えば、せん断作用や摩砕作用を利用した既知の解砕/粉砕機または撹拌式の既知の解砕/粉砕機等を用いて行うことができる。上述した既知の解砕/粉砕機としては、例えば、ハンマークラッシャー、カッターミル、ハンマーミル、ビーズミル、振動ミル、流星型ボールミル、サンドミル、ボールミル、ロールミル、三本ロールミル、ジェットミル、高速回転式粉砕機、微粉砕機・解砕整粒機、ナノジェットマイザー等を挙げることができる。
 これらの解砕/粉砕機の種類、解砕/粉砕に際してのエネルギー、時間などの条件は、複合混合物の塊状体の状態、複合粒子の粒子径などの所望の粉流体状態に合わせて適宜選択、調整すればよい。
 ここで、複合混合物は、特に制限されることなく、ふるい分級で1000μm未満の粒子径にまで粉砕されることが好ましい。
<プレ熱伝導シートを得る工程>
 プレ熱伝導シートを得る工程では、前工程で得られた複合混合物又は複合粒子を任意の方法で加圧してシート状に成形する。
[加圧方法]
 プレ熱伝導シートの加圧方法は、圧力が負荷される成形方法であれば特に限定されない。プレ熱伝導シートは、例えば、プレス成形、圧延成形または押し出し成形などの既知の成形方法を用いてシート状に成形することができる。中でも、熱伝導シートは、圧延成形によりシート状に成形することが好ましく、保護フィルムに挟んだ状態でロール間を通過させてシート状に成形することがより好ましい。なお、保護フィルムとしては、特に限定されることなく、サンドブラスト処理を施したポリエチレンテレフタレート(PET)フィルム等を用いることができる。また、ロール温度は5℃以上150℃とすることができる。
 なお、プレ熱伝導シートの厚みは、特に限定されることなく、例えば、0.05mm以上2mm以下とすることができる。また、プレ熱伝導シートの熱伝導性を高めて熱伝導シートの熱伝導性を向上させる観点からは、プレ熱伝導シートの厚みは、粒子状炭素材料の平均粒子径の5000倍以下であることが好ましい。
<積層体を得る工程>
 積層体を得る工程では、前工程で得たプレ熱伝導シートを、プレ熱伝導シートの厚み方向に複数枚積層して、或いは、前工程で得たプレ熱伝導シートを折畳または捲回することにより、積層体を形成する。
[積層方法]
 プレ熱伝導シートの積層による積層体の形成は、特に限定されることなく、積層装置を用いて行ってもよく、手作業にて行ってもよい。また、プレ熱伝導シートの折畳による積層体の形成は、特に限定されることなく、折畳機を用いて熱伝導一次シートを一定幅で折り畳むことにより行うことができる。さらに、プレ熱伝導シートの捲回による積層体の形成は、特に限定されることなく、プレ熱伝導シートの短手方向または長手方向に平行な軸の回りにプレ熱伝導シートを捲き回すことにより行うことができる。
 ここで、通常、積層体を得る工程において、プレ熱伝導シートの表面同士の接着力は、プレ熱伝導シートを積層する際の圧力や折畳または捲回する際の圧力により充分に得られる。しかし、接着力が不足する場合や、積層体の層間剥離を十分に抑制する必要がある場合には、プレ熱伝導シートの表面を溶剤で若干溶解させた状態で積層体を形成してもよいし、プレ熱伝導シートの表面に接着剤を塗布した状態またはプレ熱伝導シートの表面に接着層を設けた状態で積層体を形成してもよい。
 なお、プレ熱伝導シートの表面を溶解させる際に用いる溶剤としては、特に限定されることなく、プレ熱伝導シート中に含まれている樹脂成分を溶解可能な既知の溶剤を用いることができる。
 また、プレ熱伝導シートの表面に塗布する接着剤としては、特に限定されることなく、市販の接着剤や粘着性の樹脂を用いることができる。中でも、接着剤としては、プレ熱伝導シート中に含まれている樹脂成分と同じ組成の樹脂を用いることが好ましい。そして、プレ熱伝導シートの表面に塗布する接着剤の厚みは、例えば、10μm以上1000μm以下とすることができる。
 更に、プレ熱伝導シートの表面に設ける接着層としては、特に限定されることなく、両面テープなどを用いることができる。
 なお、層間剥離を抑制する観点からは、得られた積層体は、積層方向に0.05MPa以上1.0MPa以下の圧力で押し付けながら、20℃以上150℃以下で1分以上30分以下の間プレスすることが好ましい。
 なお、プレ熱伝導シートを積層、折畳または捲回して得られる積層体では、粒子状炭素材料及び任意の繊維状炭素材料が積層方向に略直交する方向に配向していると推察される。
<スライス工程>
 また、スライス工程では、上述の工程で得られた積層体を、積層方向に対して45°以下の角度でスライスすることにより、積層体のスライス片よりなる熱伝導シートを得る。
[スライス方法]
 積層体をスライスする方法としては、特に限定されることなく、例えば、マルチブレード法、レーザー加工法、ウォータージェット法、ナイフ加工法等が挙げられる。中でも、熱伝導シートの厚みを均一にし易い点で、ナイフ加工法が好ましい。また、積層体をスライスする際の切断具としては、特に限定されることなく、スリットを有する平滑な盤面と、このスリット部より突出した刃部とを有するスライス部材(例えば、鋭利な刃を備えたカンナやスライサー)を用いることができる。
 なお、熱伝導シートの熱伝導性を高める観点からは、積層体をスライスする角度は、積層方向に対して30°以下であることが好ましく、積層方向に対して15°以下であることがより好ましく、積層方向に対して略0°である(即ち、積層方向に沿う方向である)ことが好ましい。
 また、積層体を容易にスライスする観点からは、スライスする際の積層体の温度は-20℃以上40℃以下とすることが好ましく、10℃以上30℃以下とすることがより好ましい。更に、同様の理由により、スライスする積層体は、積層方向とは垂直な方向に圧力を負荷しながらスライスすることが好ましく、積層方向とは垂直な方向に0.1MPa以上0.5MPa以下の圧力を負荷しながらスライスすることがより好ましい。
 そして、上述したような製造方法に従って得られる熱伝導シートは、積層体を得る工程及びスライス工程を経て成形されているため、粒子状炭素材料及び任意の繊維状炭素材料が熱伝導シートの厚み方向に配向していると推察される。従って、例えば、発熱体と熱伝導シートとを良好に密着させることにより、発熱体から生じた熱を熱伝導シートの厚み方向へと効率的に放散させることができる。
(熱伝導シートの用途)
 そして、本発明の製造方法に従って得られる熱伝導シートは圧力変形耐性に富むと共に熱伝導性に優れ、通常、強度及び導電性にも優れている。従って、当該熱伝導シートは、例えば、各種機器及び装置などにおいて使用される放熱材料、放熱部品、冷却部品、温度調節部品、電磁波シールド部材、電磁波吸収部材、被圧着物を加熱圧着する場合に被圧着物と加熱圧着装置との間に介在させる熱圧着用ゴムシートとして好適である。
 ここで、各種機器及び装置などとしては、特に限定されることなく、サーバー、サーバー用パソコン、デスクトップパソコン等の電子機器;ノートパソコン、電子辞書、PDA、携帯電話、ポータブル音楽プレイヤー等の携帯電子機器;液晶ディスプレイ(バックライトを含む)、プラズマディスプレイ、LED、有機EL、無機EL、液晶プロジェクタ、時計等の表示機器;インクジェットプリンタ(インクヘッド)、電子写真装置(現像装置、定着装置、ヒートローラ、ヒートベルト)等の画像形成装置;半導体素子、半導体パッケージ、半導体封止ケース、半導体ダイボンディング、CPU、メモリ、パワートランジスタ、パワートランジスタケース等の半導体関連部品;リジッド配線板、フレキシブル配線板、セラミック配線板、ビルドアップ配線板、多層基板等の配線基板(配線板にはプリント配線板なども含まれる);真空処理装置、半導体製造装置、表示機器製造装置等の製造装置;断熱材、真空断熱材、輻射断熱材等の断熱装置;DVD(光ピックアップ、レーザー発生装置、レーザー受光装置)、ハードディスクドライブ等のデータ記録機器;カメラ、ビデオカメラ、デジタルカメラ、デジタルビデオカメラ、顕微鏡、CCD等の画像記録装置;充電装置、リチウムイオン電池、燃料電池等のバッテリー機器等が挙げられる。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「部」は、特に断らない限り、質量基準である。
 そして、実施例及び比較例において、樹脂のムーニー粘度;熱伝導シート中の粒子状炭素材料の含有割合;樹脂及び熱伝導シートのアスカーC硬度;熱伝導シートの熱伝導率;熱伝導シートの加圧による応力緩和率;は、それぞれ以下の方法を使用して測定、算出した。
<ムーニー粘度>
 熱伝導シートの製造に用いる樹脂のムーニー粘度は、樹脂から切片を切り出し、ムーニー粘度計(島津製作所製、「MOONEY VISCOMETER SMV-202」)を用いて、JIS-K6300に従い(ML1+4,100℃)を測定した。
 得られた熱伝導シートについても同様の切片を切り出し、同様にして測定した。
<粒子状炭素材料の含有割合>
 熱伝導シート中の粒子状炭素材料の含有割合には、体積分率での理論値を用いた。具体的には、熱伝導シートに含まれる粒子状炭素材料、樹脂、並びに任意の繊維状炭素材料及び添加剤の各成分について、密度(g/cm3)と配合量(g)とから体積(cm3)を算出し、熱伝導シート中の粒子状炭素材料の含有割合を体積分率(体積%)で求めた。
<アスカーC硬度>
 日本ゴム協会規格(SRIS)のアスカーC法に準拠し、硬度計(高分子計器社製、商品名「ASKER CL-150LJ」を使用して温度23℃で測定した。
 具体的には、樹脂の場合は幅30mm×長さ60mm×厚さ12.0mmに成型したブロック体、熱伝導シートの場合は幅30mm×長さ60mm×厚さ0.5mmの大きさに調製した熱伝導シートの試験片を24枚重ね合わせ、23℃で保たれた恒温室に48時間以上静置したものを試料としてアスカーC硬度を測定した。そして、指針が95~98となるようにダンパー高さを調整し、試料とダンパーとが衝突してから20秒後の硬度を5回測定して、その平均値を試料のアスカーC硬度とした。
<熱伝導シートの熱伝導率>
 熱伝導シートの熱伝導率を算出するに当たり、まず、樹脂材料熱抵抗試験器(日立テクノロジーアンドサービス製、商品名「C47108」)を使用して、熱抵抗値を測定した。測定にあたり、熱伝導シートを1cm角に切り出して測定試料とした。そして、試験温度50℃、圧力0.5MPaの条件下における測定試料の熱抵抗値Rを測定した。熱抵抗値Rが小さい程、熱伝導性に優れ、発熱体と放熱体との間に介在させて放熱装置とする際の放熱特性に優れていることを示す。
 そして、得られた熱抵抗値Rと加圧後の熱伝導シートの厚みdから、下式に従って、熱伝導率を算出した。
 熱伝導率[W/m・K]=熱伝導シートの厚みd[m]/熱抵抗値R[m2・K/W]・・・(I)
<熱伝導シートの加圧による応力緩和率>
 プローブタック試験機(レスカ社製、「TAC1000」)を使用して、熱伝導シートの応力緩和率を測定した。直径10mmのフラットな形状のプローブ先端を熱伝導シート表面に押付け、徐々に荷重を増加させ、荷重が0.5N(50gf)の荷重になった時点で荷重の増加を停止し、10秒間保持した。押付けた際の最大荷重をA、10秒間保持した後の荷重をBとした時、下記式(II)で緩和率を求めた。
  応力緩和率[%]=(A-B)/A×100 ・・・(II)
(実施例1)
<CNTを含む繊維状の炭素ナノ構造体の調製>
 国際公開第2006/011655号の記載に従って、スーパーグロース法によってSGCNTを含む繊維状の炭素ナノ構造体を得た。
 得られた繊維状の炭素ナノ構造体はBET比表面積が800m2/gであった。また、透過型電子顕微鏡を用い、無作為に選択した100本の繊維状の炭素ナノ構造体の直径を測定した結果、平均直径(Av)が3.3nm、直径の標本標準偏差(σ)に3を乗じた値(3σ)が1.9nm、それらの比(3σ/Av)が0.58であった。また、得られた繊維状の炭素ナノ構造体は、主に単層CNT(「SGCNT」とも称する)により構成されていた。
<繊維状の炭素ナノ構造体の易分散性集合体の調製>
[分散液の調製]
 繊維状炭素材料としての、上述で得られた繊維状の炭素ナノ構造体を400mg量り取り、溶媒としてのメチルエチルケトン2L中に混ぜ、ホモジナイザーにより2分間撹拌し、粗分散液を得た。次に、湿式ジェットミル(株式会社常光製、製品名「JN-20」)を使用し、得られた粗分散液を湿式ジェットミルの0.5mmの流路に100MPaの圧力で2サイクル通過させて、繊維状炭素ナノ構造体をメチルエチルケトンに分散させた。そして、固形分濃度0.20質量%の分散液を得た。
[溶媒の除去]
 その後、上述で得られた分散液をキリヤマろ紙(No.5A)を用いて減圧ろ過し、シート状の易分散性集合体を得た。
<熱伝導シートの製造>
[複合混合物を準備する工程]
 粒子状炭素材料としての膨張化黒鉛(伊藤黒鉛工業社製、商品名「EC-50」、平均粒子径:250μm)を130部と、繊維状炭素材料としての炭素ナノ構造体の易分散性集合体(表中、「SGCNT」として示す)を0.1部と、樹脂としての常温常圧下で固体の熱可塑性フッ素樹脂(ダイキン工業社製、商品名「DAI_EL(登録商標)G-912」ムーニー粘度:87.6ML1+4、100℃)を80部と、難燃剤としてのリン酸エステル(大八化学工業社製、商品名「PX-110」)を10部とを、溶媒としての酢酸エチル100部の存在下にてホバートミキサー(株式会社小平製作所製、商品名「ACM-5LVT型」)を用いて5分攪拌混合した。得られた混合物を30分間真空脱泡し、脱泡と同時に酢酸エチルの除去を行って、粒子状炭素材料、樹脂、繊維状炭素材料及び難燃剤を含有する複合混合物を得た。そして、得られた複合混合物を解砕機に投入し、10秒間解砕した。
[プレ熱伝導シートを得る工程]
 続いて、上述で得られた複合混合物5gを、サンドブラスト処理を施した厚み50μmのPETフィルム(保護フィルム)で挟み、ロール間隙550μm、ロール温度50℃、ロール線圧50kg/cm、ロール速度1m/分の条件にて圧延成形することにより、厚み0.5mmのプレ熱伝導シートを得た。
[積層体を得る工程]
 また、上述で得られたプレ熱伝導シートを縦6cm×横6cm×厚み0.5mmに裁断し、厚み方向に120枚積層し、厚みが約6cmの積層体を得た。そして、得られた積層体を熱プレス機にてプレス温度120℃、プレス後の積層体の圧縮率が5~10%になるように、圧力及びプレス時間を調整して熱圧着を行った。プレス時間は1~5分間、加圧の圧力に関しては0.1~0.25MPaでプレスした。
[スライス工程]
 そして、上記積層体の積層断面を、0.3MPaの圧力で押し付けながら、木工用スライサー(丸仲鐵工所製、商品名「超仕上げかんな盤スーパーメカS」)を用いて、積層方向に対して0度の角度でスライス(換言すれば、積層された熱伝導一次シートの主面の法線方向にスライス)し、縦6cm×横6cm×厚み150μmの熱伝導シートを得た。ここで、木工用スライサーのナイフは、2枚の片刃が、切刃の反対側同士で接触し、表刃の刃先の最先端が裏刃の刃先の最先端よりも0.5mm高くスリット部からの突出長さ0.11mmに配置され、表刃の刃角22°である2枚刃のものを用いた。
 得られた熱伝導シートについて、アスカーC硬度、熱伝導率、及び応力緩和率を上述の方法にて測定した。結果を表1に示す。
(実施例2)
 複合混合物を準備する工程において、樹脂を、実施例1とは異なる種類の常温常圧下で固体の熱可塑性フッ素樹脂(ケマーズ製、商品名「バイトン(登録商標)A‐200」、ムーニー粘度:52.3ML1+4、100℃)に変更した以外は実施例1と同様にして、熱伝導シートを製造した。そして、実施例1と同様の各種測定を行った。結果を表1に示す。
(実施例3)
 複合混合物を準備する工程において、樹脂を、実施例1とは異なる種類の常温常圧下で固体の熱可塑性フッ素樹脂(スリーエムジャパン社製、商品名「Dyneon(登録商標)FC‐2211」、ムーニー粘度:30.2ML1+4、100℃)に変更した以外は実施例1と同様にして、熱伝導シートを製造した。そして、実施例1と同様の各種測定を行った。結果を表1に示す。
(実施例4)
 粒子状炭素材料としての膨張化黒鉛の配合量を100部に変更した。また、樹脂を、実施例1とは異なる種類の常温常圧下で固体の熱可塑性フッ素樹脂(スリーエムジャパン社製、商品名「Dyneon(登録商標)FC‐2211」、ムーニー粘度:30.2ML1+4、100℃)に変更した以外は実施例1と同様にして、熱伝導シートを製造した。そして、実施例1と同様の各種測定を行った。結果を表1に示す。
(実施例5)
 粒子状炭素材料としての膨張化黒鉛の配合量を70部に変更した。また、樹脂を、実施例1とは異なる種類の常温常圧下で固体の熱可塑性フッ素樹脂(スリーエムジャパン社製、商品名「Dyneon(登録商標)FC‐2211」、ムーニー粘度:30.2ML1+4、100℃)に変更した。これらの点以外は実施例1と同様にして、熱伝導シートを製造した。そして、実施例1と同様の各種測定を行った。結果を表1に示す。
(実施例6)
 粒子状炭素材料としての膨張化黒鉛の配合量を85部に変更した。複合混合物を準備する工程において、樹脂を、実施例1とは異なる種類の常温常圧下で固体の熱可塑性フッ素樹脂(ダイキン工業社製、商品名「DAI_EL(登録商標)G‐704BP」、ムーニー粘度:62.4ML1+4、100℃、アスカーC硬度50)40部及び常温常圧下で液体の熱可塑性フッ素樹脂(ダイキン工業社製、商品名「DAI_EL(登録商標)G‐101」)45部に変更し、難燃剤は配合せず、可塑剤としてのセバシン酸エステル(大八化学工業株式会社製、商品名「DOS」)5質量部を配合した以外は実施例1と同様にして、熱伝導シートを製造した。そして、実施例1と同様の各種測定を行った。結果を表1に示す。なお、本実施例で用いた樹脂のうち、G‐101は常温常圧下で液体であるため、樹脂のムーニー粘度及びアスカーC硬度は、常温常圧下で固体のG-704BPについて測定した値を表1に示す。
(実施例7)
 複合混合物を準備する工程において、粒子状炭素材料としての膨張化黒鉛(伊藤黒鉛工業株式会社製、商品名「EC‐100」、平均粒子径:190μm)を100部と、繊維状炭素材料としての炭素ナノ構造体の易分散性集合体を0.1部と、樹脂としての常温常圧下で液体の熱可塑性フッ素樹脂(ダイキン工業社製、商品名「DAI_EL(登録商標)G‐101」)を50部とを、ホバートミキサーにより80℃で30分間撹拌混合して混合物を得た。そして、得られた混合物をワンダークラッシュミル(大阪ケミカル株式会社製、商品名「D3V‐10」)に投入して、1分間解砕した。これらの点以外は実施例1と同様にして、熱伝導シートを製造した。そして、実施例1と同様の各種測定を行った。結果を表1に示す。
(実施例8)
 複合混合物を準備する工程において、粒子状炭素材料としての膨張化黒鉛の配合量を220部に変更した。また、樹脂を、常温常圧下で固体の熱可塑性のニトリルゴム(日本ゼオン社製、商品名「Nipol(登録商標) DN3335」、ムーニー粘度:35.0ML1+4、100℃)に変更した。これらの点以外は実施例1と同様にして、熱伝導シートを製造した。そして、実施例1と同様の各種測定を行った。結果を表1に示す。
(実施例9)
 複合混合物を準備する工程において、粒子状炭素材料としての膨張化黒鉛の配合量を160部に変更した。樹脂を、常温常圧下で固体の熱可塑性のシリコーン樹脂(信越化学工業製、商品名「KE‐931‐U」、ムーニー粘度:18.0 ML1+4、100℃)に変更した以外は実施例1と同様にして、熱伝導シートを製造した。そして、実施例1と同様の各種測定を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、加圧による応力緩和率が85%以下である所定構造の熱伝導シートは、厚み方向の熱伝導率に優れていることが分かる。
 本発明によれば、圧縮変形耐性及び厚み方向の熱伝導性に優れる熱伝導シートを提供することができる。

Claims (7)

  1.  熱伝導シートであって、
     粒子状炭素材料と、一種又は複数種の樹脂からなる樹脂成分とを含むプレ熱伝導シートが、前記熱伝導シートの厚み方向に対して横断方向に複数層積層されてなり、
     加圧による応力緩和率が85%以下である、熱伝導シート。
  2.  アスカーC硬度が70以下である、請求項1に記載の熱伝導シート。
  3.  前記樹脂成分が、熱可塑性を有する一種又は複数種の樹脂を含む、請求項1又は2に記載の熱伝導シート。
  4.  前記樹脂成分のうちの少なくとも一種の樹脂が、常温常圧下で固体の、アスカーC硬度が70以下の樹脂である、請求項1~3の何れかに記載の熱伝導シート。
  5.  前記少なくとも一種の樹脂のムーニー粘度が、90(ML1+4、100℃)以下である、請求項4に記載の熱伝導シート。
  6.  前記粒子状炭素材料の含有割合が25体積%以上である、請求項1~5の何れかに記載の熱伝導シート。
  7.  前記樹脂成分のうちの少なくとも一種の樹脂が、常温常圧下で液体の樹脂である、請求項1~6の何れかに記載の熱伝導シート。
PCT/JP2017/025047 2016-08-03 2017-07-07 熱伝導シート WO2018025586A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018531800A JPWO2018025586A1 (ja) 2016-08-03 2017-07-07 熱伝導シート

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-152987 2016-08-03
JP2016152987 2016-08-03

Publications (1)

Publication Number Publication Date
WO2018025586A1 true WO2018025586A1 (ja) 2018-02-08

Family

ID=61073591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025047 WO2018025586A1 (ja) 2016-08-03 2017-07-07 熱伝導シート

Country Status (3)

Country Link
JP (1) JPWO2018025586A1 (ja)
TW (1) TWI731124B (ja)
WO (1) WO2018025586A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009142290A1 (ja) * 2008-05-23 2009-11-26 日立化成工業株式会社 放熱シート及び放熱装置
JP2010132856A (ja) * 2008-10-28 2010-06-17 Hitachi Chem Co Ltd 熱伝導シート、熱伝導シートの製造方法及び熱伝導シートを用いた放熱装置
WO2011158565A1 (ja) * 2010-06-17 2011-12-22 日立化成工業株式会社 伝熱シート、伝熱シートの作製方法、及び放熱装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009142290A1 (ja) * 2008-05-23 2009-11-26 日立化成工業株式会社 放熱シート及び放熱装置
JP2010132856A (ja) * 2008-10-28 2010-06-17 Hitachi Chem Co Ltd 熱伝導シート、熱伝導シートの製造方法及び熱伝導シートを用いた放熱装置
WO2011158565A1 (ja) * 2010-06-17 2011-12-22 日立化成工業株式会社 伝熱シート、伝熱シートの作製方法、及び放熱装置

Also Published As

Publication number Publication date
TWI731124B (zh) 2021-06-21
JPWO2018025586A1 (ja) 2019-05-30
TW201817848A (zh) 2018-05-16

Similar Documents

Publication Publication Date Title
JP6947158B2 (ja) 熱伝導シートおよびその製造方法、ならびに放熱装置
KR102567381B1 (ko) 열 전도 시트 및 그 제조 방법, 및 방열 장치
JP7327574B2 (ja) 放熱装置
JP6881429B2 (ja) 積層体およびその製造方法、ならびに二次シートおよび二次シートの製造方法
JP6915545B2 (ja) 複合材料シートおよび熱伝導シートの製造方法
JP2017141345A (ja) 複合材料シートおよび熱伝導シートの製造方法
WO2018025587A1 (ja) 熱伝導シート
JP2017183679A (ja) プレ熱伝導シートの製造方法および熱伝導シートの製造方法
JP2017183680A (ja) プレ熱伝導シートの製造方法および熱伝導シートの製造方法
JP7131142B2 (ja) 熱伝導シート
JP6705325B2 (ja) 熱伝導シート用複合粒子およびその製造方法、熱伝導一次シートおよび熱伝導二次シートの製造方法、熱伝導一次シート付き発熱体の製造方法、並びに、積層シート付き発熱体の製造方法
TWI731124B (zh) 熱傳導片材
JP7218510B2 (ja) 熱伝導シート

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018531800

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17836693

Country of ref document: EP

Kind code of ref document: A1