WO2018025578A1 - 排気管温度推定装置及びこれを使用した排気センサのセンサヒータ制御装置 - Google Patents

排気管温度推定装置及びこれを使用した排気センサのセンサヒータ制御装置 Download PDF

Info

Publication number
WO2018025578A1
WO2018025578A1 PCT/JP2017/024905 JP2017024905W WO2018025578A1 WO 2018025578 A1 WO2018025578 A1 WO 2018025578A1 JP 2017024905 W JP2017024905 W JP 2017024905W WO 2018025578 A1 WO2018025578 A1 WO 2018025578A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust pipe
pipe temperature
combustion engine
internal combustion
temperature
Prior art date
Application number
PCT/JP2017/024905
Other languages
English (en)
French (fr)
Inventor
高田 健司
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US16/322,081 priority Critical patent/US10975792B2/en
Priority to DE112017002955.4T priority patent/DE112017002955B4/de
Priority to JP2018531796A priority patent/JP6591680B2/ja
Publication of WO2018025578A1 publication Critical patent/WO2018025578A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1494Control of sensor heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • F01N11/005Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus the temperature or pressure being estimated, e.g. by means of a theoretical model
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/065Introducing corrections for particular operating conditions for engine starting or warming up for starting at hot start or restart
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • F02D41/1447Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1458Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/263Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor the program execution being modifiable by physical parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00

Definitions

  • the present invention relates to an exhaust pipe temperature estimation device for an exhaust pipe of an internal combustion engine and a sensor heater control device for an exhaust sensor using the exhaust pipe temperature estimation device.
  • the amount of fuel injected from a fuel injection valve is controlled by detecting an exhaust gas component (for example, oxygen concentration) by placing an exhaust sensor (for example, an oxygen concentration sensor) in the exhaust pipe.
  • Air-fuel ratio feedback control is performed.
  • the sensor element provided in the exhaust sensor is generally activated while being heated to a predetermined temperature or higher, and can measure the oxygen concentration.
  • the exhaust gas sensor is provided with a sensor heater for heating the sensor element, and the outside of the sensor is covered with a metal protector having a plurality of ventilation holes for protecting the sensor element and narrowing the exhaust gas.
  • the exhaust gas in the exhaust pipe condenses in the exhaust pipe after the previous engine stop and water remains in the exhaust pipe at the time of cold start such as immediately after the start, or from the internal combustion engine after the start. Condensed water is generated by the exhaust gas that is discharged condensing by touching the low temperature exhaust pipe wall. For this reason, when condensed water is applied to the sensor element that has become high temperature due to the heating operation of the sensor heater, there has been a problem that the sensor element may be damaged due to thermal shock (thermal shock).
  • thermal shock thermal shock
  • Patent Document 1 a temperature sensor is disposed outside the exhaust pipe, and the temperature of the exhaust pipe is measured by this temperature sensor. Based on the temperature, it is determined whether or not condensed water can exist in the exhaust pipe. If the condensed water can exist, the exhaust pipe is heated and condensed by high-temperature water heated by a combustion burner. Propose to evaporate water. This prevents the sensor element of the exhaust sensor from being damaged.
  • Patent Document 1 since a combustion burner for heating the exhaust pipe, a high-temperature water jacket and the like are provided in the exhaust pipe, there is a problem that a large change of the exhaust pipe is necessary and new parts are required. Therefore, it is desired to avoid damage due to element cracking of the sensor element without adding parts as much as possible.
  • the exhaust pipe temperature at the next restart of the internal combustion engine is estimated based on the amount of change in the cooling water temperature when the internal combustion engine is stopped, and the condensed water evaporates when the exhaust pipe temperature is higher than a predetermined value.
  • it has been proposed to start the operation of the sensor heater.
  • it does not cope with changes in environmental conditions related to the internal combustion engine, and the estimation accuracy is low.
  • automobiles having an idle stop function have recently become widespread, and since the internal combustion engine is frequently stopped and restarted, it is necessary to accurately estimate the temperature of the exhaust pipe.
  • the heater control function unit does not heat the exhaust sensor because it misrecognizes that there is a large amount of condensed water. There arises a problem that the exhaust amount of exhaust gas harmful components increases. Conversely, if the exhaust pipe temperature is incorrectly estimated to be high, the heater control function section incorrectly recognizes that the condensed water is low and the exhaust sensor heats up, causing the condensed water to adhere to the hot exhaust sensor and cause element cracking. The problem of end up occurs.
  • An object of the present invention is to accurately estimate an estimated exhaust pipe temperature when the internal combustion engine is stopped and restarted in response to a change in the environmental state of the internal combustion engine, and the like. It is an object of the present invention to provide a novel exhaust pipe temperature estimation device that controls the operation of a sensor heater based on the above and a sensor heater control device for an exhaust sensor using the same.
  • representative examples of changes in environmental conditions include temporal temperature characteristics depending on the exhaust pipe temperature when the internal combustion engine is stopped, temperature characteristics of the space around the exhaust pipe, and characteristics of the outside air flowing near the exhaust pipe. Changes in wind speed and atmospheric temperature.
  • the features of the present invention are: first correction information based on changes in exhaust pipe temperature and elapsed time at the time of stop, second correction information based on changes in internal combustion engine temperature at the time of stop of the internal combustion engine, and from stop to restart.
  • the third correction information based on the change in the degree of cooling due to the outside air during stoppage is obtained, and when the internal combustion engine is restarted, the estimated exhaust pipe temperature during stoppage is corrected using at least one correction information and restarted
  • the estimated exhaust pipe temperature at the time of restart is estimated, and the estimated exhaust pipe temperature at the time of restart is set as an initial value to obtain an estimated exhaust pipe temperature during the subsequent operation of the internal combustion engine. Then, the heating operation of the sensor heater is started.
  • the exhaust sensor can be appropriately heated and early activation of the exhaust sensor can be achieved while suppressing damage to the sensor element of the exhaust sensor. As a result, the start of air-fuel ratio feedback can be accelerated, and reduction of exhaust gas harmful components can be promoted.
  • FIG. 1 is a configuration diagram of an internal combustion engine system to which the present invention is applied. It is a block diagram which shows the structure of the control apparatus shown in FIG. It is a block diagram which shows the schematic structure of an exhaust sensor. It is a fragmentary sectional view of the sensor element of an exhaust sensor. It is a block diagram which shows the connection state of an exhaust sensor and a control apparatus. It is a characteristic view which shows the temperature change of the surface area
  • the illustrated internal combustion engine 10 has a combustion chamber formed at the top of a cylinder 12 in which a temperature state detection unit (water temperature sensor) 11 is disposed, and an ignition voltage is applied to the combustion chamber from an ignition coil 13.
  • a spark plug 14 is provided.
  • a crank angle sensor 15 and a cam angle sensor 16 are provided for detecting the rotational phase of the crank shaft and the cam shaft of the intake / exhaust valve operating mechanism.
  • a fuel injection valve 18, a throttle valve 19, a throttle position sensor 20, an intake pipe pressure sensor 21, an air flow sensor 22, an intake air temperature sensor 23, and the like are disposed.
  • the fuel that has been adjusted to a constant pressure is pumped from the fuel tank 24 through the fuel pump 25 and the fuel pressure control valve 26 to the fuel injection valve 18.
  • an exhaust sensor 28, an exhaust temperature sensor 29, an exhaust gas purification catalyst 30 and the like shown in FIG. 3 are arranged in the exhaust pipe 27 constituting the exhaust system.
  • the control device (control unit) ECU to which the present embodiment is applied is a sensor heater control function unit that controls a sensor heater that heats a sensor element provided in the exhaust sensor 28, and fuel by the fuel injection valve 18.
  • a fuel injection control function unit that controls the injection amount and the fuel injection timing, an ignition control function unit that controls the ignition timing of the spark plug 14, and the like are provided.
  • control unit ECU is provided with a CPU 31 that performs arithmetic processing, a ROM 32 that stores programs used by the CPU 31 and data used for arithmetic operations, and a RAM 33 that temporarily stores data.
  • an A / D converter 34 that takes in analog signals (sensor voltage, battery voltage, etc.) from each sensor and converts them into digital signals, and switch signals (electric load switches, ignition switches, etc.) from the switches that indicate operating conditions )
  • a pulse input circuit 36 that counts the time interval of pulse signals (reference signal, cam angle signal, etc.) and the number of pulses within a predetermined time.
  • a digital output circuit 37 that performs on / off operations of actuators such as fuel pump relays and stepping motors, a pulse output circuit 38 that operates actuators such as injectors and igniters, a self-diagnosis tool and a debug monitor
  • the communication circuit 39 which communicates with is provided.
  • the communication circuit 39 outputs data to the outside, and can change the internal state by a communication command from the outside.
  • FIG. 3A and 3B show a schematic configuration of the exhaust sensor.
  • the exhaust sensor 28 is fixed to the exhaust pipe 27, and the sensor element 40 is disposed inside the exhaust pipe 27. It is covered with a protector 41. A small hole 42 is formed in the protector 41 so that exhaust gas flows into the protector 41 and comes into contact with the sensor element 40. Further, outside the exhaust pipe 27, a sensor tube 43 is fixed and a heater wire for supplying electric power to the sensor heater inside, and a signal detection wire connected to the reference electrode and the detection electrode of the sensor element 40 are provided.
  • a detection electrode 45 and a reference electrode 46 are arranged between the stacked substrates 44, and a sensor heater 47 is also arranged to heat each electrode. Therefore, when the sensor heater 47 is energized, the substrate 44 is heated to activate the detection electrode and the reference electrode, and in this state, air-fuel ratio feedback can be started.
  • FIG. 4 shows the connection relationship between the control device ECU, the exhaust sensor 28 and the sensor heater 47, and a signal representing the oxygen concentration obtained from the sensor element 40 of the exhaust sensor 28 is sent via the sensor signal processing circuit 48 to the control device ECU. Is input.
  • the sensor heater 47 is energized from the battery 50 according to ON (conducting) / OFF (non-conducting) of the transistor 49, generates heat according to the energization amount (time), and heats the sensor element 40.
  • a control signal (duty signal) for turning on / off the transistor 49 is supplied from the control unit ECU.
  • the voltage value (or current value) at both ends of the transistor 49 is taken into the monitor input terminal of the control unit ECU for use in failure diagnosis of the sensor heater 47 and the like.
  • the transistor 49 is controlled by a sensor heater control function unit provided in the control unit ECU.
  • the condensed water attached to the surface area 40S of the sensor element 40 starts to evaporate, and the surface area 40S of the sensor element 40 and the sensor heater 47 are arranged by the heat of vaporization.
  • the temperature difference between the inner regions 40IN of the sensor element 40 being increased may increase, and the substrate 44 forming the sensor element 40 may be damaged by thermal shock.
  • the condensed water adhering to the wall surface of the exhaust pipe 27 is scattered by the flow of the exhaust gas.
  • the sensor element 40 is heated by the sensor heater 47, the condensed water scattered from the wall surface of the exhaust pipe 27.
  • a part may adhere to the surface area 40S of the heated sensor element 40, and similarly, the substrate 44 of the sensor element 40 may be damaged by thermal shock.
  • the sensor element 40 of the exhaust sensor Damage can be prevented.
  • the exhaust sensor since the exhaust sensor is not heated until a predetermined time set in advance, the exhaust sensor cannot be activated at an early stage, and the start of air-fuel ratio feedback is delayed and the exhaust amount of exhaust gas harmful components increases. This is undesirable.
  • the estimated exhaust pipe temperature at the next restart of the internal combustion engine is estimated based on the amount of change in the coolant temperature when the internal combustion engine is stopped, and the estimated exhaust pipe temperature is predetermined. If it is higher than the value, it has been proposed to start the operation of the sensor heater on the assumption that the condensed water has evaporated. However, the estimation accuracy is low because it does not correspond to a change in the environmental state related to the internal combustion engine.
  • the heater control function unit does not heat the exhaust sensor because it misrecognizes that there is a large amount of condensed water. There arises a problem that the exhaust amount of exhaust gas harmful components increases. Conversely, if the exhaust pipe temperature is incorrectly estimated to be high, the heater control function section incorrectly recognizes that the condensed water is low and the exhaust sensor heats up, causing the condensed water to adhere to the hot exhaust sensor and cause element cracking. The problem of end up occurs.
  • the estimated exhaust pipe temperature when the internal combustion engine is stopped and restarted is accurately estimated in response to a change in the environmental state of the internal combustion engine, etc.
  • the present invention proposes an exhaust pipe temperature estimation device that obtains an estimated exhaust pipe temperature using a tube temperature as an initial value and controls the operation of a sensor heater based on the estimated exhaust pipe temperature, and a sensor heater control device for an exhaust sensor using the exhaust pipe temperature estimation device.
  • the control unit ECU determines the condensed water adhesion state of the surface region 40S of the sensor element 40 at the time of restart of the internal combustion engine based on the estimated exhaust pipe temperature at the time of restart, and the surface region 40S. If there is a possibility that condensed water is attached to the sensor element 40, immediately after restarting, the temperature (heating amount) of the sensor heater 47 is suppressed to a relatively low temperature without rapidly increasing the temperature of the sensor element 40. Warm-up control is performed to keep the temperature of the sensor heater 47 low so that the temperature difference between the inner region 40IN and the surface region 40S in the vicinity of the sensor heater 47 does not exceed a predetermined value.
  • the warm-up control is continued until it is considered that the condensed water in the surface region 40S of the sensor element 40 has almost evaporated.
  • the period until the condensed water evaporates is determined by the estimated exhaust pipe temperature that rises due to the operation of the internal combustion engine with the restart estimated pipe temperature at the time of restart as the starting point (initial value). That is, since the condensed water adhesion amount is estimated based on the estimated exhaust pipe temperature, the condensed water in the surface region 40S of the sensor element 40 is almost evaporated when reaching the estimated exhaust pipe temperature where it is assumed that there is no condensed water adhesion. Judging. Therefore, it is important to accurately estimate the initial value (Tp *) of the estimated exhaust pipe temperature at the time of restart, which is the starting point.
  • the power to the sensor heater 47 is increased to change the temperature of the sensor element 40 to the activation temperature (about 600 °).
  • the sensor activation promotion control is executed to raise the temperature to C or higher).
  • the temperature of the sensor element 40 is maintained so as to operate at an optimum temperature (for example, about 750 to 760 ° C.) by temperature feedback control.
  • the temperature feedback control requires the actual temperature of the sensor element 40.
  • the actual temperature of the sensor element 40 is obtained from the sensor element 40 when the temperature of the sensor element 40 reaches 400 ° C to 500 ° C. Can be determined based on the current signal generated.
  • the internal combustion engine In response to changes in environmental conditions, the estimated exhaust pipe temperature during restart is accurately estimated.
  • changes in environmental conditions include temporal temperature characteristics depending on the exhaust pipe temperature when the internal combustion engine is stopped, temperature characteristics of the space around the exhaust pipe, and characteristics of the outside air flowing near the exhaust pipe. Changes in wind speed and atmospheric temperature.
  • the control unit ECU estimates the condensed water amount Mcon generated in the exhaust pipe 27 by the condensed water amount estimation function unit.
  • a method for estimating the amount of condensed water Mcon generated in the exhaust pipe 27 will be described.
  • the intake air amount, rotation speed, cooling water temperature, and the like described below are well known as operating state quantities of the internal combustion engine, and other information can also be handled as operating state quantities of the internal combustion engine.
  • the estimated exhaust gas temperature Tg (for example, the exhaust gas temperature in the vicinity of the exhaust port) is estimated based on the intake air amount, the rotational speed of the internal combustion engine, and the like.
  • the exhaust gas temperature Tg may be detected by a temperature sensor.
  • the estimated exhaust pipe temperature Tp (for example, the exhaust pipe temperature in the vicinity of the exhaust sensor) is estimated by a method described later.
  • the condensation ratio C is a ratio of the water vapor (water vapor in the exhaust gas) generated by the combustion reaction between the fuel and the intake air that will be condensed in the exhaust pipe 27.
  • the two-dimensional map of the condensation ratio C is created in advance using the relationship between the estimated exhaust gas temperature Tg, the estimated exhaust pipe temperature Tp, and the condensation ratio C obtained based on experimental data, design data, and the like. Is stored in the ROM.
  • the water vapor amount Mwgs is multiplied by the condensation ratio C and the calculation cycle ⁇ t to calculate a condensate increase amount ⁇ Mcon [g] per calculation cycle ⁇ t.
  • ⁇ Mcon Mwgs ⁇ C ⁇ ⁇ t (1)
  • the current condensed water increase amount ⁇ Mcon is added to the condensed water amount estimated value Mcon obtained in the previous calculation.
  • the condensate amount estimated value Mcon [g] is obtained.
  • Mcon Mcon + ⁇ Mcon (2)
  • the condensate amount estimated value Mcon is stored in the backup RAM (storage means) of the control unit ECU and is sequentially updated every calculation cycle ⁇ t.
  • the data stored in the backup RAM of the control unit ECU is retained even when the internal combustion engine in which an ignition switch (not shown) is turned off is stopped.
  • the condensed water amount estimated value Mcon stored immediately before the previous stop of the internal combustion engine (that is, the amount of condensed water remaining in the exhaust pipe 27 during the stop of the internal combustion engine). Estimated value) is the initial value.
  • the condensed water amount estimated value Mcon when the intake air amount Mail exceeds the predetermined value Mth, the condensed water amount estimated value Mcon is reset to “0”.
  • the condensed water amount estimated value Mcon may be decreased in accordance with the intake air amount Mail.
  • the condensed water accumulated in the exhaust pipe 27 is blown off by the exhaust gas and discharged out of the exhaust pipe 27.
  • the condensate amount estimated value Mcon can be reset or reduced to “0”.
  • the control unit ECU estimates the estimated exhaust pipe temperature Tp based on the “exhaust temperature estimation function unit” shown in FIG. 6 during the operation of the internal combustion engine (period from the start of the internal combustion engine to the ignition switch being turned off). .
  • the heat-receiving-side heat transfer coefficient Kin for obtaining the amount of heat received from the exhaust gas to the exhaust pipe 27 is calculated.
  • a heat radiation side heat transfer coefficient Kout for calculating a heat radiation amount radiated from the exhaust pipe 27 to the outside air is calculated.
  • the heat-receiving-side heat transfer coefficient calculating unit 51 uses the rotation speed of the internal combustion engine (substitution information of the exhaust flow velocity) and the load (substitution information of the exhaust pressure) as parameters. With reference to the map of ⁇ , a correction coefficient ⁇ corresponding to the current rotational speed and load of the internal combustion engine is calculated.
  • the correction coefficient ⁇ is a coefficient for correcting the heat receiving side heat transfer coefficient basic value Kin0.
  • the map of the correction coefficient ⁇ is created in advance using the relationship between the rotational speed obtained based on experimental data, design data, and the like, the load, and the amount of heat received by the exhaust pipe 27, and is stored in the ROM of the control unit ECU. .
  • the amount of heat received by the exhaust pipe 27 decreases as the rotational speed increases and the exhaust flow rate increases, and the amount of heat received by the exhaust pipe 27 increases as the load increases and the exhaust pressure increases.
  • the map of the correction coefficient ⁇ has a smaller correction coefficient ⁇ and a smaller heat receiving side heat transfer coefficient Kin as the rotational speed becomes higher, and a larger correction coefficient ⁇ and a larger heat receiving side heat transfer coefficient Kin as the load increases. It is set to be large.
  • the heat receiving side heat transfer coefficient Kin is obtained by multiplying the heat receiving side heat transfer coefficient basic value Kin0 by the correction coefficient ⁇ in the following equation (3).
  • Kin Kin0 ⁇ ⁇ (3)
  • the heat-receiving-side heat transfer coefficient basic value Kin0 is corrected according to the rotational speed (substitution information of exhaust flow velocity) and load (substitution information of exhaust pressure) of the internal combustion engine.
  • the side heat transfer coefficient Kin can be obtained.
  • the heat receiving side temperature difference calculating unit 53 obtains the difference (Tg ⁇ Tp) between the estimated exhaust gas temperature Tg and the estimated exhaust pipe temperature Tp, and the heat receiving amount calculating unit At 54, the heat receiving side heat transfer coefficient Kin is multiplied to obtain a heat receiving amount ⁇ Kin ⁇ (Tg ⁇ Tp) ⁇ of the exhaust pipe 27.
  • the exhaust gas temperature Tg and the exhaust pipe temperature Tp are obtained by estimation at a predetermined calculation cycle, and the previously estimated exhaust gas temperature Tg and the estimated exhaust pipe temperature Tp are used.
  • the heat dissipation side heat transfer coefficient calculation unit 52 refers to the map of the correction coefficient ⁇ using the radiator fan rotation speed and the vehicle speed as parameters, and the current radiator fan rotation A correction coefficient ⁇ corresponding to the speed and the vehicle speed is calculated.
  • the correction coefficient ⁇ is a coefficient for correcting the heat radiation side heat transfer coefficient basic value Kout0.
  • the map of the correction coefficient ⁇ is created in advance using the relationship between the rotational speed of the radiator fan, the vehicle speed, and the heat dissipation amount of the exhaust pipe 27 obtained based on experimental data, design data, and the like, and is stored in the ROM of the control unit ECU. ing.
  • the heat dissipation amount of the exhaust pipe 27 increases as the rotational speed of the radiator fan or the vehicle speed increases. Therefore, the map of the correction coefficient ⁇ increases as the rotational speed of the radiator fan or the vehicle speed increases and the correction coefficient ⁇ increases. Kout is set to be large.
  • the heat radiation side heat transfer coefficient Kout is obtained by multiplying the heat radiation side heat transfer coefficient basic value Kout0 by the correction coefficient ⁇ in the following equation (4).
  • Kout Kout0 ⁇ ⁇ (4)
  • the heat radiation side heat transfer coefficient Kout can be obtained by correcting the heat radiation side heat transfer coefficient basic value Kout0 according to the rotational speed of the radiator fan and the vehicle speed.
  • the heat radiation side temperature difference calculation unit 55 obtains the difference (Tp ⁇ Ta) between the estimated exhaust pipe temperature Tp and the outside air temperature Ta, and the heat radiation amount calculation unit 56
  • the heat dissipation amount ⁇ Kout ⁇ (Tp ⁇ Ta) ⁇ of the exhaust pipe 27 is obtained by multiplying by the heat dissipation side heat transfer coefficient Kout.
  • the estimated exhaust pipe temperature Tp is obtained by estimation at a predetermined calculation cycle, and the exhaust pipe temperature Tp estimated last time is used.
  • the “heat difference calculation unit” 57 obtains the heat difference between the heat reception amount ⁇ Kin ⁇ (Tg ⁇ Tp) ⁇ of the exhaust pipe 27 and the heat release amount ⁇ Kout ⁇ (Tp ⁇ Ta) ⁇ of the exhaust pipe 27. Further, the heat capacity Cp of the exhaust pipe 27 is obtained by the “heat capacity calculation unit” 58, and the exhaust per operation cycle ⁇ t is calculated by the following equation (5) using the calculation cycle ⁇ t by the “exhaust pipe temperature change amount calculation unit” 59. A tube temperature change amount ⁇ Tp is calculated.
  • ⁇ Tp ⁇ Kin ⁇ (Tg ⁇ Tp) ⁇ Kout ⁇ (Tp ⁇ Ta) ⁇ / Cp ⁇ ⁇ t (5)
  • Tp Tp + ⁇ Tp (6)
  • This estimated exhaust pipe temperature estimated value Tp is stored in the backup RAM of the control unit ECU and used at the next restart.
  • the estimated exhaust pipe temperature at the next restart is corrected by correcting the estimated exhaust temperature when the internal combustion engine is stopped based on the amount of change in the coolant temperature when the internal combustion engine is stopped.
  • the estimated exhaust pipe temperature is higher than a predetermined value, the operation of the sensor heater is started assuming that the condensed water has evaporated.
  • the present embodiment proposes a method for accurately estimating the internal temperature of the exhaust pipe 27 when the internal combustion engine is stopped and then restarted.
  • first correction information based on changes in exhaust pipe temperature and elapsed time at the time of stop second correction information based on changes in internal combustion engine temperature at the time of stop of the internal combustion engine, and stop from stop to restart
  • the third correction information based on the change in the degree of cooling due to the outside air in the interior is obtained, and at least one correction information of these correction information is used to correct the estimated exhaust pipe temperature at the time of stop at the time of the stop.
  • An estimated exhaust pipe temperature (initial value) Tp * at restart is obtained.
  • First Correction Information based on changes in exhaust pipe temperature and elapsed time at the time of stop will be described.
  • a correction coefficient is set as the first correction information.
  • the amount of temperature decrease with respect to the elapsed time varies depending on the exhaust pipe temperature when the internal combustion engine is stopped (almost immediately after stopping). Compared to the temperature change amount when the exhaust pipe temperature is 200 ° C. within the same time interval, the temperature change amount when the exhaust pipe temperature is 400 ° C. is large, and similarly, the temperature change amount when the exhaust pipe temperature is 500 ° C. is larger. To change. Therefore, if the time from the stop to the restart of the internal combustion engine is the same, the amount of temperature decrease increases as the stop-time estimated exhaust pipe temperature Tpend at the time of stop increases.
  • first correction information is set for each predetermined estimated exhaust pipe temperature at the time of stoppage, and from the first correction information corresponding to the estimated exhaust pipe temperature at the time of stoppage Tpend at the time of stoppage, the estimated value at restart at the time of restart It is necessary to correct the exhaust pipe temperature Tp *.
  • the exhaust pipe temperature decrease coefficient Tx (“1.00” to “0.00”) is set corresponding to the elapsed time after the stop for every predetermined estimated exhaust pipe temperature when the internal combustion engine is stopped.
  • the exhaust pipe temperature decrease coefficient Tx is an “exhaust pipe temperature estimation reference map” created using the relationship between the exhaust pipe temperature and the elapsed time obtained in advance based on experimental data, design data, etc. Stored in ROM.
  • the exhaust pipe temperature decrease coefficient Tx satisfies the condition for starting the heating operation of the sensor heater 47 of the exhaust sensor 28 when the internal combustion engine is restarted as the elapsed time from the stop to the restart is longer. Is set to be relatively slow. That is, the longer the elapsed time is, the smaller the exhaust pipe temperature decrease coefficient Tx is, and the restart estimated exhaust pipe temperature Tp * at the time of restart is set to be lower.
  • the effective digit number of the exhaust pipe temperature decrease coefficient Tx is arbitrary.
  • the basic estimated exhaust pipe temperature Tpbase at the time of restart is obtained by multiplying the estimated exhaust pipe temperature Tpend at the time of stop by the exhaust pipe temperature decrease coefficient Tx.
  • the basic correction exhaust pipe temperature Tpbase reflects the following second correction information and third correction information.
  • Second Correction Information based on the change in the internal combustion engine temperature when the internal combustion engine is stopped (almost immediately after the stop) will be described.
  • a correction coefficient is set as the second correction information.
  • the change in the exhaust pipe temperature is affected by whether the internal combustion engine itself has been warmed up or not yet warmed up. For example, if a state in which the cooling water temperature when the internal combustion engine is stopped is 80 degrees or more is set as a complete warm-up state, a state where the cooling water temperature when the internal combustion engine is stopped is 80 degrees or less is an incomplete warm-up state. Become. As shown by a broken line circle S in FIG. 8, when the engine is in an incomplete warm-up state immediately after the internal combustion engine is stopped, the exhaust pipe temperature when the internal combustion engine is stopped is smaller than that in the complete warm-up state. It has been found that even when Tpend is the same, the amount of decrease in the exhaust pipe temperature within a predetermined time immediately after the stop is remarkably large.
  • the exhaust pipe temperature Tp * when the internal combustion engine is restarted is corrected and estimated. It is.
  • the coolant temperature is used as an index representing the temperature state of the internal combustion engine.
  • the reason why the temperature state of the internal combustion engine itself is taken into account is that the transition of the exhaust pipe temperature while the internal combustion engine is stopped is greatly influenced by the temperature of the space around the exhaust pipe 27. That is, the temperature of the space around the exhaust pipe 27 is typified by the temperature in the engine room of the automobile, and the heat source that greatly affects the temperature in the engine room is the temperature of the internal combustion engine itself.
  • the complete warm-up state and the incomplete warm-up state are determined from the coolant temperature when the internal combustion engine is stopped, and the warm-up heat dissipation coefficient Ty (“1.00” to “0” is determined for each coolant temperature. .00 ”) and the estimated exhaust pipe temperature Tp * at the time of restart is corrected by reflecting the warm-up heat dissipation coefficient Ty to the estimated exhaust pipe temperature Tpend when the internal combustion engine is stopped Can do.
  • the warm-up heat dissipation coefficient Ty is stored in the ROM of the control unit ECU in advance as a “warm-up heat dissipation correction table” created using a relationship with the coolant temperature obtained based on experimental data, design data, and the like. Yes.
  • the basic estimated exhaust pipe temperature Tpbase is corrected by multiplying the basic estimated exhaust pipe temperature Tpbase at the time of restart described above by the warm-up heat dissipation coefficient Ty.
  • the warm-up heat dissipation coefficient Ty may be changed according to the elapsed time.
  • the warm-up heat dissipation coefficient Ty is stored in advance in the ROM of the control unit ECU as a map created using the relationship between the coolant temperature obtained based on experimental data, design data, and the like and the elapsed time. It is good.
  • the warm-up heat dissipation coefficient Ty is set so that the condition for starting the heating operation of the sensor heater 47 of the exhaust sensor 28 is relatively delayed when the internal combustion engine is restarted as the cooling water temperature is lower. Has been. That is, the lower the cooling water temperature, the smaller the warm-up heat dissipation coefficient Ty, and the lower the estimated exhaust pipe temperature Tp * during restart at the time of restart.
  • the number of effective digits of the warm-up heat dissipation coefficient Ty is arbitrary.
  • the engine room temperature is replaced with the cooling water temperature of the internal combustion engine.
  • the oil temperature of the lubricating oil can be used, and further, the engine room temperature sensor is provided.
  • the engine room temperature sensor can be used to determine the warm-up heat dissipation coefficient Ty.
  • Third Correction Information based on a change in the degree of cooling due to outside air during stoppage from stop to restart will be described.
  • a correction coefficient is set as the third correction information.
  • the cooling water temperature at the time of stopping the internal combustion engine is compared with the cooling water temperature at the time of restart, and if the temperature difference occurs within the set time, it is determined that the cooling effect by the wind has an effect. is doing.
  • a cooling coefficient Tz set by the temperature change amount and the stop time of the internal combustion engine is set, and the cooling coefficient Tz (“1.00” to “0.0” is added to the estimated exhaust pipe temperature Tpend when the internal combustion engine is stopped. 00 ”) is reflected, the restart estimated exhaust pipe temperature Tp * at the time of restart can be corrected.
  • the cooling coefficient Tz is stored in the ROM of the control unit ECU as a “cooling correction map by wind” created using the relationship between the amount of change in the cooling water temperature and the elapsed time obtained in advance based on experimental data, design data, and the like. It is remembered. It is also possible to reflect the temperature of the outside air. In this case, the lower the outside air temperature, the smaller the value of the cooling coefficient Tz may be.
  • the cooling coefficient Tz the condition for starting the heating operation of the sensor heater 47 of the exhaust sensor 28 when the internal combustion engine is restarted is relatively late as the temperature change amount in a predetermined elapsed time is larger. It is set to be. In other words, the larger the temperature change amount in a certain elapsed time, the smaller the cooling coefficient Tz, so that the restart estimated exhaust pipe temperature Tp * at the time of restart becomes lower.
  • a plurality of temperature change amounts are set for each time zone, and a cooling coefficient Tz is assigned thereto. A plurality of time zones are set, and a time zone is selected corresponding to the elapsed time.
  • the number of effective digits of the cooling coefficient Tz is arbitrary.
  • the restart estimated exhaust pipe temperature Tp * is corrected by multiplying the basic estimated exhaust pipe temperature Tpbase by the cooling coefficient Tz.
  • the correction information obtained as described above is combined by the logic as shown in FIG. 10 to obtain the estimated exhaust pipe temperature Tp * at the time of restart.
  • the exhaust pipe temperature decrease coefficient Tx, the warm-up heat dissipation coefficient Ty, which are the correction information described above,
  • a cooling coefficient Tz is obtained.
  • the warm-up heat dissipation coefficient Ty is read from the warm-up heat dissipation correction table 61 based on the coolant temperature at the time of stoppage (preferably immediately after the stoppage).
  • the cooling coefficient Tz is read from the cooling correction map 62 based on the temperature difference between the cooling water temperature at the time of stop and the cooling water temperature at the time of restart and the elapsed time.
  • the restart estimated exhaust pipe temperature calculation unit 63 multiplies the basic estimated exhaust pipe temperature Tpbase at restart by the warm-up heat dissipation coefficient Ty and the cooling coefficient Tz as shown in the following equation (8), An estimated exhaust pipe temperature Tp * at the time of restart at the start is obtained.
  • Tp * Tpbase ⁇ Ty ⁇ Tz (8)
  • the above calculation makes it possible to accurately estimate the estimated exhaust pipe temperature Tp * during restart when the internal combustion engine is restarted.
  • the estimated exhaust pipe temperature Tp * at the time of restart is calculated as the estimated exhaust pipe temperature Tp during operation by the estimation method shown in FIG. 6 in accordance with the progress of the operation state of the internal combustion engine thereafter. Will go.
  • the restart estimated exhaust pipe temperature Tp * at the time of restart is accurately estimated, so that an erroneous estimation of the amount of condensed water is avoided and the start timing of the heating operation of the exhaust sensor is optimized. .
  • FIG. 11 shows basic functional blocks.
  • reference numeral 70 is an exhaust gas temperature detecting means for estimating the temperature of exhaust gas flowing in the exhaust pipe, and as described above, this obtains the exhaust gas temperature based on the intake air amount, the rotational speed and the like. It is. It is also possible to determine the exhaust gas temperature using a temperature sensor.
  • Reference numeral 71 is time detection means for detecting an elapsed time since the internal combustion engine stopped, and can be detected by using a timer function built in the control unit ECU.
  • Reference numeral 72 is a temperature state detecting means for detecting the temperature state of the internal combustion engine itself, and a water temperature sensor for detecting the temperature of the cooling water can be used.
  • Reference numeral 73 is exhaust pipe temperature estimation / correction means, which has a function of estimating the exhaust pipe temperature by calculating heat transfer from the exhaust gas temperature detected by the exhaust gas temperature detection means to the exhaust pipe.
  • the elapsed time from the time detection means 71 is input to the exhaust pipe temperature estimation / correction means 73, and the exhaust pipe temperature decrease coefficient Tx is obtained.
  • the basic estimated exhaust pipe temperature Tpbase at the time of restart is obtained by the exhaust pipe temperature estimation / correction means 73, but in FIG. 11, it is obtained by the restart-time exhaust pipe temperature estimation means 77 described below. I have to.
  • Reference numeral 74 denotes warm-up correction means, which determines the warm-up state of the internal combustion engine from the coolant temperature detected by the temperature state detection means 72 of the internal combustion engine when the internal combustion engine is stopped (preferably immediately after the stop). It has a function to obtain the warm-up heat dissipation coefficient Ty.
  • Reference numeral 75 is a temperature difference detecting means for detecting the temperature difference between the cooling water temperature when the internal combustion engine is stopped and the cooling water temperature when the internal combustion engine is restarted, which is detected by the temperature state detecting means 72. This is one parameter for obtaining the cooling coefficient Tz due to the difference in wind speed.
  • reference numeral 76 is a cooling degree detecting means for obtaining the cooling effect by the wind from the elapsed time detected by the time detecting means and the temperature difference detected by the temperature difference calculating means, and has a function for obtaining the cooling coefficient Tz. I have.
  • Reference numeral 77 is a restart exhaust pipe temperature estimating means, and the exhaust pipe temperature lowering coefficient Tx, the warm-up heat dissipation coefficient Ty, and the cooling coefficient Tz of the restart exhaust pipe temperature estimating means 77 are inputted. Yes.
  • Reference numeral 78 denotes exhaust pipe temperature estimation means, which is inputted with the restart estimated exhaust pipe temperature Tp * at the time of restart, and the exhaust gas temperature shown in FIG. 6 with the exhaust pipe temperature restart estimated exhaust pipe temperature Tp * as an initial value.
  • the current estimated exhaust pipe temperature Tp is estimated by the temperature estimation control function unit. Therefore, since the exhaust pipe temperature estimating means 78 has the same function as a part of the exhaust pipe temperature estimating / correcting means 73, the exhaust pipe temperature estimating means 78 and the exhaust pipe temperature estimating / correcting means 73 are shared. Is also possible.
  • Reference numeral 79 is a heating control means, and the current estimated exhaust pipe temperature Tp is inputted to the heating control means 78.
  • the heating control unit 79 performs heating operation of the sensor heater when it is determined that the estimated exhaust pipe temperature Tp or the amount of condensed water estimated based on the difference between the exhaust gas temperature Tg and the estimated exhaust pipe temperature Tp is equal to or less than a predetermined value. It is controlled to allow.
  • condensate estimation is performed by the heating control means 79, but it is also possible to control the start operation of the sensor heater only by the estimated exhaust pipe temperature Tp without estimating the condensate.
  • the first correction information (Tx) based on the change in the exhaust pipe temperature and the elapsed time when the internal combustion engine is stopped
  • the second correction information (Ty) based on the change in the internal combustion engine temperature when the internal combustion engine is stopped.
  • the third correction information (Tz) based on the change in the degree of cooling due to the outside air from stop to restart, and at the time of restart using the at least one correction information when the internal combustion engine is restarted
  • the estimated exhaust pipe temperature Tp * at the time of restart is estimated by correcting the estimated exhaust pipe temperature at the time of restart.
  • the estimated exhaust pipe temperature Tp * at the time of restart is used as an initial value, and estimation during subsequent operation of the internal combustion engine is performed.
  • the exhaust pipe temperature Tp is obtained, and when the estimated exhaust pipe temperature Tp becomes equal to or higher than a predetermined value, the heating operation of the sensor heater is started.
  • the exhaust sensor can be heated appropriately and the exhaust sensor can be activated at an early stage while suppressing damage to the sensor element of the exhaust sensor.
  • control flow in FIG. 12 shows a flow until the estimated exhaust pipe temperature Tp * at the time of restart is obtained, and the subsequent heating start operation of the sensor heater can be performed because various methods can be performed. ing.
  • the start operation of the sensor heater can be controlled by the condensed water estimation or the estimated exhaust pipe temperature Tp.
  • the control flow in FIG. 12 is activated every predetermined time.
  • the control flow is activated every 10 ms.
  • This activation timing can use a compare match interrupt by an internal timer.
  • step S10 it is determined whether or not the internal combustion engine has been stopped. If not stopped, step S10 is repeated again. On the other hand, if it is determined in step S10 that the internal combustion engine has been stopped, the process proceeds to step S11 and information at the time of stop is stored. In this case, at least the stop-time estimated exhaust pipe temperature Tpend and the coolant temperature Twend at the time of stop are stored. These pieces of information are stored in the RAM area of the control unit ECU. Further, in synchronization with this stop determination, the internal timer starts measuring the elapsed time from the stop. When this control step ends, the process proceeds to the next step S12.
  • step S12 it is determined whether or not the internal combustion engine has been restarted. If not restarted, step S12 is repeated again. On the other hand, if it is determined in step S12 that the internal combustion engine has been restarted, the process proceeds to step S13 and information at the time of restart is stored. In this case, at least the elapsed time Time measured by the internal timer since the stop and the coolant temperature Twst at the time of restart are stored. The estimated exhaust pipe temperature Tp during stoppage cannot be estimated because the internal combustion engine is stopped, and is not updated or stored. When this control step ends, the process proceeds to the next step S14.
  • Steps S14 to S21 are control steps for obtaining the exhaust pipe temperature decrease coefficient Tx that is the first correction information described above. Steps S14, S16, S18, and S20 determine in which stop time zone the elapsed time Time is in a predetermined stop time zone.
  • step S14 it is determined whether the elapsed time Time is in the time zone [0 to a], in step S16, it is determined whether the elapsed time Time is in the time zone [a to b], and in step S18, the elapsed time Time is [ It is determined whether it is in the time zone b to c], and in step S20, it is determined whether the elapsed time Time is in the time zone [c to].
  • the stop time zone has a relationship of [0 to a] ⁇ [a to b] ⁇ [b to c] ⁇ [c to].
  • the exhaust pipe temperature decrease coefficient Tx is set to A in step S15, and if the elapsed time Time is in the time zone [a to b], in step S17. If the exhaust pipe temperature decrease coefficient Tx is set to B and the elapsed time Time is in the time zone [b to c], the exhaust pipe temperature decrease coefficient Tx is set to C in step S19, and the elapsed time Time is [c to]. If it is within the time zone, the exhaust pipe temperature decrease coefficient Tx is set to D in step S21.
  • the exhaust pipe temperature decrease coefficient Tx has a relationship of A> B> C> D, and is set to a value closer to “1.00” as the stop time is shorter. Therefore, as the stop time is shorter, the restart estimated exhaust pipe temperature Tp * at the time of restart becomes a value closer to the stop estimated exhaust pipe temperature Tpend at the time of stop.
  • Steps S22 to S28 are control steps for obtaining the warm-up heat dissipation coefficient Ty that is the second correction information described above. Steps S22, S24, S26, and S28 determine how much the engine is warmed up based on the coolant temperature Twend immediately after the stop. That is, it is determined which temperature zone the cooling water temperature Twend at the time of stop is in a predetermined temperature zone.
  • step S22 it is determined whether or not the cooling water temperature Tend is in the temperature range of [d to], in step S24, it is determined whether or not the cooling water temperature Twend is in the temperature range of [e to d], and in step S26, the cooling water temperature Tend is determined. Is in the temperature range of [f to e], and in step S28, it is determined whether or not the cooling water temperature Twend is in the temperature range of [g to f].
  • the temperature zone has a relationship of [d ⁇ ]> [e ⁇ d]> [f ⁇ e]> [g ⁇ f].
  • the warm-up heat dissipation coefficient Ty is set to E in step S23, and if the cooling water temperature Twend is in the temperature range [e ⁇ d], in step S25. If the warm-up heat dissipation coefficient Ty is set to F and the coolant temperature Tend is in the temperature range of [f to e], the warm-up heat dissipation coefficient Ty is set to G in step S27, and the coolant temperature Tend is set to [g to f ], The warm-up heat dissipation coefficient Ty is set to H in step S29.
  • the warm-up heat dissipation coefficient Ty has a relationship of E> F> G> H, and is set to a value closer to “1.00” as the coolant temperature increases. Therefore, the higher the coolant temperature, the closer to the estimated exhaust pipe temperature Tp * at the time of restart becomes closer to the estimated exhaust pipe temperature Tpend at the time of stop.
  • Steps S30 to S36 are control steps for obtaining the cooling coefficient Tz that is the third correction information described above.
  • Steps S30, S32, S34, and S36 are in a predetermined elapsed time zone in which the elapsed time Time is set in advance, and the temperature difference between the cooling water temperature at the time of stopping and the cooling water temperature at the time of restarting with respect to this elapsed time zone. It is judged whether the temperature difference zone exists. That is, the intersection of the elapsed time zone and the temperature difference zone is determined.
  • step S30 it is determined that the elapsed time Time is in the elapsed time zone [0 to h] and the temperature difference is in the temperature difference zone [0 to k].
  • step S32 the elapsed time Time is [h to i]. It is determined that it is in the elapsed time zone and the temperature difference is in the temperature difference zone [k to l].
  • step S34 the elapsed time Time is in the elapsed time zone of [i to j], and the temperature difference is in the temperature difference zone.
  • step S36 it is determined that the elapsed time Time is in the elapsed time zone of [j ⁇ ], and that the temperature difference is in the temperature difference zone [m ⁇ ].
  • steps S30, S32, S34, and S36 determine which temperature zone of the plurality of temperature difference zones the temperature difference of the cooling water temperature changed in the elapsed time zone in which the elapsed time Time is present.
  • the elapsed time zone has a relationship of [0 to h] ⁇ [h to i] ⁇ [i to j] ⁇ [j to].
  • the temperature difference band has a relationship of [0 to k] ⁇ [k to l] ⁇ [1 to m] ⁇ [m to]. Therefore, for example, only [0 to k], [k to l], [1 to m], and [m to] are prepared for the temperature difference bands with respect to the elapsed time zone [0 to h].
  • One temperature zone is selected from a plurality of temperature zones. The same applies to other elapsed time zones.
  • step S30 If it is determined in step S30 that the elapsed time Time is in the elapsed time zone of [0 to h] and the temperature difference is in the temperature difference zone [0 to k], the cooling coefficient Tz is set to I in step S31.
  • step S32 if it is determined that the elapsed time Time is in the elapsed time zone [h to i] and the temperature difference is in the temperature difference zone [k to l], the cooling coefficient Tz is set to J in step S33.
  • step S34 if it is determined that the elapsed time Time is in the elapsed time zone [i to j] and the temperature difference is in the temperature difference zone [1 to m], the cooling coefficient Tz is set in step S35. If it is determined that the elapsed time Time is in the elapsed time zone [j ⁇ ] and the temperature difference is in the temperature difference zone [m ⁇ ] in step S36, the cooling coefficient Tz is set to L in step S37. Set to.
  • the cooling coefficient Tz has a relationship of I> J> K> L. If the elapsed time is the same, the cooling coefficient Tz is set to a value closer to “1.00” as the temperature difference is smaller. Therefore, the smaller the temperature difference is, the closer the estimated exhaust pipe temperature Tp * at the time of restart becomes closer to the estimated exhaust pipe temperature Tend at the time of stop.
  • the control step for obtaining the cooling coefficient Tz ends, the process proceeds to step S38.
  • Tp * Tpend ⁇ Tx ⁇ Ty ⁇ Tz is calculated in order to reflect the exhaust pipe temperature decrease coefficient Tx, the warm-up heat dissipation coefficient Ty, and the cooling coefficient Tz in the estimated exhaust pipe temperature Tpend at the time of stop. Is executed to estimate the restart estimated exhaust pipe temperature Tp * when the internal combustion engine is restarted.
  • the first correction information based on the change in the exhaust pipe temperature and the elapsed time at the stop the second correction information based on the change in the internal combustion engine temperature at the stop of the internal combustion engine, and the restart from the stop.
  • the third correction information based on the change in the degree of cooling due to the outside air during the stop leading to the start is obtained, and when the internal combustion engine is restarted, the estimated exhaust pipe temperature at the time of stop is corrected using at least one correction information.
  • the estimated exhaust pipe temperature at restart is estimated, and the estimated exhaust pipe temperature at restart is used as an initial value to obtain the estimated exhaust pipe temperature during the subsequent operation of the internal combustion engine.
  • the heating operation of the sensor heater is started.
  • the exhaust sensor can be heated appropriately and the exhaust sensor can be activated at an early stage while suppressing damage to the sensor element of the exhaust sensor.
  • the sensor element of the exhaust sensor is prevented from being damaged, and the amount of exhaust gas harmful components is reduced.
  • the above-described estimation of the exhaust pipe temperature can be applied to catalyst temperature estimation control for determining the activity of the exhaust gas purification catalyst.
  • the activation timing of the exhaust gas purification catalyst is accurately determined, and immediately after the catalyst is activated It is required to return to the ignition timing and the intake air amount.
  • catalyst temperature estimation and catalyst activity determination are performed by various methods.
  • the exhaust pipe and the residual heat of the catalyst remain, and the catalyst can be activated in a shorter time than the cold start.
  • the residual heat cannot be accurately estimated, and after restarting after the internal combustion engine has been stopped for a short time, the ignition timing is retarded or the intake air amount is increased more than necessary, and the exhaust gas exhaust gas emission amount is increased. Has increased.
  • the exhaust pipe temperature while the internal combustion engine is stopped can be accurately estimated, so that a decrease in the catalyst temperature can be predicted based on this. Therefore, it is possible to accurately grasp the catalyst activation timing after the restart, and to suppress the ignition timing retardation and the intake air amount increase to the minimum, thereby suppressing the exhaust amount of the exhaust gas harmful component.
  • the first correction information based on the change in the exhaust pipe temperature and the elapsed time at the time of stop the second correction information based on the change in the internal combustion engine temperature at the time of stop of the internal combustion engine, and the restart from the stop.
  • the third correction information based on the change in the degree of cooling due to the outside air during the stop leading to the start is obtained, and when the internal combustion engine is restarted, the estimated exhaust pipe temperature at the time of stop is corrected using at least one correction information.
  • the estimated exhaust pipe temperature at restart is estimated, and the estimated exhaust pipe temperature at restart is used as an initial value to obtain the estimated exhaust pipe temperature during the subsequent operation of the internal combustion engine.
  • the sensor heater is configured to start the heating operation when a predetermined value or more is reached.
  • the exhaust sensor can be appropriately heated and early activation of the exhaust sensor can be achieved while suppressing damage to the sensor element of the exhaust sensor. .
  • the start of air-fuel ratio feedback can be accelerated, and reduction of exhaust gas harmful components can be promoted.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

内燃機関の環境状態の変化等に対応して、内燃機関が停止されて再始動される時の推定排気管温度を正確に推定し、この推定された推定排気管温度に基づいてセンサヒータの動作を制御する新規な排気管温度推定装置及びこれを使用した排気センサのセンサヒータ制御装置を提供することにある。そのため、少なくとも停止時の排気管温度と経過時間の変化に基づく第1補正情報Tzと、内燃機関の停止時の内燃機関温度の変化に基づく第2補正情報Tyと、停止から再始動に至る停止中の外気による冷却度の変化に基づく第3補正情報Tzを求め、内燃機関の再始動時に、少なくとも1つ以上の補正情報を用いて停止時の推定排気管温度を補正して再始動時の推定排気管温度を推定し、この推定排気管温度を初期値としてその後の内燃機関の運転中の推定排気管温度を求め、更に推定排気管温度が所定値以上になるとセンサヒータの加熱動作を開始する。

Description

排気管温度推定装置及びこれを使用した排気センサのセンサヒータ制御装置
 本発明は内燃機関の排気管の排気管温度推定装置及びこれを使用した排気センサのセンサヒータ制御装置に関するものである。
 内燃機関においては、排気管内に排気センサ(例えば、酸素濃度センサ)を臨ませて、排気ガスの成分(例え、ば酸素濃度)を検出することにより、燃料噴射弁から噴射される燃料量を制御する空燃比フィードバック制御を行っている。そして、排気センサに備わったセンサ素子は、一般に、所定温度以上に加熱された状態で活性化して酸素濃度の測定が可能となる。従って、排気ガスセンサにはセンサ素子加熱用のセンサヒータが配設され、センサの外側はセンサ素子の保護及び排気ガスの絞り込みのために複数の通気孔を有する金属製のプロテクタにより覆われている。
 このような排気センサにおいては、始動時やその直後のような冷間時に、排気管内に、前回の機関停止後に排気管内の排気ガスが凝縮して水が残っていたり、また始動後に内燃機関から排出される排気ガスが低温の排気管壁に触れることにより凝縮して凝縮水が発生する。このため、凝縮水がセンサヒータの加熱動作により高温になったセンサ素子にかかると、熱衝撃(サーマルショック)によりセンサ素子の素子割れによる破損を生じることがあるという課題があった。
 この素子割れの対策として、例えば、特開2004-316594号公報(特許文献1)においては、排気管路の外部に温度センサを配設し、この温度センサにより排気管路の温度を測定し、その温度に基づいて排気管路に凝縮水が存在し得る状況かどうかを判断し、凝縮水が存在し得る状況であれば排気管路を、燃焼バーナで熱せられた高温水によって加熱して凝縮水を蒸発させることを提案している。これによって、排気センサのセンサ素子が破損するのを回避するようにしている。
特開2004-316594号公報
 ところで、特許文献1においては、排気管を加熱する燃焼バーナや、排気管に高温水ジャケット等を設けるため、排気管の大幅な変更が必要となり、また新たに部品が必要となる課題があるため、できるだけ部品を追加しないで、センサ素子の素子割れによる破損を回避することが望まれている。
 そこで、内燃機関が停止している時の冷却水温度の変化量に基づいて、次回の内燃機関の再始動時の排気管温度を推定し、排気管温度が所定値より高いと凝縮水が蒸発したとしてセンサヒータの動作を開始することが提案されている。しかしながら、内燃機関に関係する環境状態の変化等に対応しておらず、推定精度が低いものであった。特に、最近ではアイドルストップ機能を備えた自動車が普及してきており、頻繁に内燃機関の停止、再始動が行われるので排気管の温度を正確に推定することが必要である。
 そして、内燃機関の再始動時に排気管温度を低く誤推定した場合においては、凝縮水が多く存在すると誤認識してヒータ制御機能部が排気センサを加熱しないので、排気センサの活性化が遅れて排気ガス有害成分の排出量が増加するという課題が生じる。逆に、排気管温度を高く誤推定した場合においては、凝縮水が少ないと誤認識してヒータ制御機能部が排気センサを加熱し、凝縮水が高温の排気センサに付着して素子割れを起こしてしまうという課題が生じる。
 本発明の目的は、内燃機関の環境状態の変化等に対応して、内燃機関が停止されて再始動される時の推定排気管温度を正確に推定し、この推定された推定排気管温度に基づいてセンサヒータの動作を制御する新規な排気管温度推定装置及びこれを使用した排気センサのセンサヒータ制御装置を提供することにある。
 ここで、環境状態の変化の代表的な例としては、内燃機関が停止された時の排気管温度による時間的な温度特性、排気管の周囲空間の温度特性、排気管付近を流れる外気の特性(風速や大気温度)等の変化である。
 本発明の特徴は、停止時の排気管温度と経過時間の変化に基づく第1補正情報と、内燃機関の停止時の内燃機関温度の変化に基づく第2補正情報と、停止から再始動に至る停止中の外気による冷却度の変化に基づく第3補正情報を求め、内燃機関の再始動時に、少なくとも1つ以上の補正情報を用いて停止時の停止時推定排気管温度を補正して再始動時の再始動時推定排気管温度を推定し、この再始動時推定排気管温度を初期値として、その後の内燃機関の運転中の推定排気管温度を求め、更に推定排気管温度が所定値以上になるとセンサヒータの加熱動作を開始する、ところにある。
 再始動時推定排気管温度が正確に推定できるので、排気センサのセンサ素子の破損を抑制しながら、適切に排気センサを加熱して排気センサの早期活性化を図ることができる。
この結果、空燃比フィードバックの開始を早めることができ、排気ガス有害成分の低減を促進することができるようになる。
本発明が適用される内燃機関システムの構成図である。 図1に示す御装置の構成を示す構成図である。 排気センサの概略の構成を示す構成図である。 排気センサのセンサ素子の部分断面図である。 排気センサと制御装置の接続状態を示す構成図である。 センサ素子の表面領域と内部領域の温度変化を示す特性図である。 内燃機関が運転されている時の排気管温度を推定する推定方法を説明する説明図である。 内燃機関を停止した時の排気管温度による温度変化の違いを説明する特性図である。 内燃機関を停止した時の暖機状態の違いによる排気管温度の変化を説明する特性図である。 内燃機関を停止した時の風速の違いによる排気管温度の変化を説明する特性図である。 本発明の実施形態になる再始動時の推定排気管温度を推定する推定方法を説明する説明図である。 本発明の実施形態になる機能ブロックを説明する構成図である。 図11に示す機能ブロックを実行する制御フローを示すフローチャートである。
 本発明の実施形態について図面を用いて詳細に説明するが、本発明は以下の実施形態に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例をもその範囲に含むものである。
 まず、本願発明の実施形態を説明する前に、本願発明が適用される内燃機関システムの構成を説明する。
 図1において、図示の内燃機関10は、温度状態検出部(水温センサ)11が配設された気筒12の頂部に燃焼室が形成され、この燃焼室に点火コイル13から点火電圧を印加される点火プラグ14が配設されている。また、クランク軸及び吸排気動弁機構のカム軸の回転位相を検出するクランク角センサ15及びカム角センサ16が設けられている。
 吸気系を構成する吸気管17には、燃料噴射弁18、スロットル弁19、スロットルポジションセンサ20、吸気管圧力センサ21、エアフローセンサ22、吸気温センサ23等が配設されている。燃料噴射弁18には、燃料タンク24から燃料ポンプ25及び燃圧制御弁26を介して一定圧に調圧された燃料が圧送されるようになっている。
 また、排気系を構成する排気管27には、図3に示される排気センサ28、排気温センサ29、排気ガス浄化触媒30等が配置されている。
 そして、本実施形態の適用対象となる制御装置(コントロールユニット)ECUは、排気センサ28内に設けられたセンサ素子を加熱するセンサヒータの制御を行なうセンサヒータ制御機能部、燃料噴射弁18による燃料噴射量や燃料噴射時期の制御を行なう燃料噴射制御機能部、点火プラグ14の点火時期の制御を行う点火制御機能部等が備えられている。
 制御装置ECUは、図2に示されるように、演算処理を行うCPU31、CPU31が実行するプログラム及び演算に使用されるデータを格納したROM32、データを一時的に記憶するRAM33が設けられている。
 また、各センサ類からのアナログ信号(センサ電圧、バッテリ電圧等)を取り込んでデジタル信号に変換するA/D変換器34、運転状態を示すスイッチ類からのスイッチ信号(電気負荷スイッチ、イグニッションスイッチ等)を取り込むデジタル入力回路35、パルス信号(リファレンス信号、カム角信号等)の時間間隔や所定時間内のパルス数を計数するパルス入力回路36等の入力部も備えられている、
 更に、CPU31の演算結果に基づき、燃料ポンリレー、ステッピングモータ等のアクチュエータのオン・オフ動作を行うデジタル出力回路37、インジェクタ、イグナイタ等のアクチュエータの動作を行うパルス出力回路38、自己診断ツールやデバッグモニタと通信する通信回路39を備えている。尚、通信回路39は、データを外部に出力し、さらに、外部からの通信コマンドによって内部状態を変更できるようになっている。
 図3A、図3Bは排気センサの概略の構成を示しており、図3Aにおいて、排気センサ28は排気管27に固定され、排気管27の内部にセンサ素子40が配置され、このセンサ素子40をプロテクタ41で覆っている。プロテクタ41には小孔42が形成され、排気ガスがプロテクタ41内に流入してセンサ素子40と接触するようになっている。また、排気管27の外部にはセンサ筒43が固定され内部にセンサヒータに電力を供給するヒータ線や、センサ素子40の基準電極と検知電極に接続される信号検出線が設けられている。
 センサ素子は図3Bに示しているように、積層された基板44の間に検知電極45と基準電極46が配置され、各電極を加熱するようにセンサヒータ47も配置されている。したがって、センサヒータ47に通電することによって基板44が加熱されて検知電極、基準電極を活性化することができ、この状態で空燃比フィードバックの開始が行えるものである。
 図4は、制御装置ECU、排気センサ28、センサヒータ47の接続関係を示しており、排気センサ28のセンサ素子40から得られる酸素濃度を表す信号はセンサ信号処理回路48を介して制御装置ECUに入力される。また、センサヒータ47は、トランジスタ49のON(導通)/OFF(非導通)に応じてバッテリ50から通電され、その通電量(時間)に応じて発熱し、センサ素子40を加熱する。
 そして、この加熱温度を制御すべく、制御装置ECUからトランジスタ49をON/OFFするための制御信号(デューティ信号)が供給される。尚、トランジスタ49の両端の電圧値(又は電流値)は、センサヒータ47の故障診断等に用いるため、制御装置ECUのモニタ入力端子に取り込まれるようになっている。尚、トランジスタ49を制御するのは、制御装置ECUに設けたセンサヒータ制御機能部である。
 次に、内燃機関の始動直後における排気センサのセンサ素子の温度上昇について、図5を用いて説明する。
 内燃機関の始動直後は燃焼反応によって水分が発生し、生じた水分は排気管27の温度が露点以上であれば水蒸気となって大気中に排出されるが、排気管27の温度が露点以下であれば、排気管27の壁面に水滴となって凝縮し、図3Bに示すセンサ素子40の表面領域40Sにも水分(凝縮水)が付着するようになる。
 この状態において、センサヒータ47でセンサ素子40を加熱すると、センサ素子40の表面領域40Sに付着した凝縮水が蒸発を始め、その気化熱によってセンサ素子40の表面領域40Sと、センサヒータ47が配置されているセンサ素子40の内部領域40INの間の温度差が大きくなり、熱衝撃でセンサ素子40を形成する基板44が破損することがある。
 また、排気管27の壁面に付着した凝縮水は、排気ガスの流動によって飛散するが、この時にセンサヒータ47でセンサ素子40を加熱していると、排気管27の壁面から飛散した凝縮水の一部が、加熱されたセンサ素子40の表面領域40Sに付着し、同様に熱衝撃によってセンサ素子40の基板44が破損することがある。
 したがって、排気管27の内部温度が上昇して凝縮水が蒸発するまでの時間を予め定めておき、この時間が経過するまでセンサヒータ47の起動動作を遅らせれば、排気センサのセンサ素子40の破損は防止できる。しかしながら、予め設定した所定時間が経過するまでは排気センサが加熱されないため、排気センサを早期に活性化することができず、空燃比フィードバックの開始が遅れて排気ガス有害成分の排出量が増加してしまうので好ましくないものである。
 このため、従来では内燃機関が停止している時の冷却水温度の変化量に基づいて、次回の内燃機関の再始動時の推定排気管温度を推定し、推定された推定排気管温度が所定値より高いと凝縮水が蒸発したとしてセンサヒータの動作を開始することが提案されているが、内燃機関に関係する環境状態の変化に対応しておらず、推定精度が低いものであった。
 そして、内燃機関の再始動時に排気管温度を低く誤推定した場合においては、凝縮水が多く存在すると誤認識してヒータ制御機能部が排気センサを加熱しないので、排気センサの活性化が遅れて排気ガス有害成分の排出量が増加するという課題が生じる。逆に、排気管温度を高く誤推定した場合においては、凝縮水が少ないと誤認識してヒータ制御機能部が排気センサを加熱し、凝縮水が高温の排気センサに付着して素子割れを起こしてしまうという課題が生じる。
 そこで、本発明の実施形態では、内燃機関の環境状態の変化等に対応して、内燃機関が停止されて再始動される時の推定排気管温度を正確に推定し、この推定された推定排気管温度を初期値として推定排気管温度を求め、これに基づいてセンサヒータの動作を制御する排気管温度推定装置及びこれを使用した排気センサのセンサヒータ制御装置を提案するものである。
 次に、本実施形態の詳細について図6~図12を用いて説明する。本実施形態においては、制御装置ECUが、内燃機関の再始動時におけるセンサ素子40の表面領域40Sの凝縮水付着状態を、再始動時の推定排気管温度を元にして判断し、表面領域40Sに凝縮水が付着している可能性があるときは、再始動直後においてセンサヒータ47の温度(加熱量)を従来のように急速に上げないで比較的低い温度に抑えて、センサ素子40のセンサヒータ47近傍の内部領域40INと表面領域40Sとの温度差が所定値を越えないように、センサヒータ47の温度を低く抑えるウォームアップ制御を実行する。
 ウォームアップ制御は、センサ素子40の表面領域40Sの凝縮水がほぼ蒸発したと見做されるまで継続される。この凝縮水が蒸発するまでの期間は、再始動時の再始動時推定気管温度を出発点(初期値)として、内燃機関の運転によって上昇する推定排気管温度によって決まるものである。つまり、推定排気管温度によって凝縮水付着量が推定されているので、凝縮水付着がないと見做される推定排気管温度に達すると、センサ素子40の表面領域40Sの凝縮水がほぼ蒸発したと判断している。したがって、出発点となる再始動時の再始動時推定排気管温度の初期値(Tp*)を正確に推定することが重要である。
 そして、推定排気管温度が所定値に達して凝縮水がほぼ蒸発したと推定された時点より以降は、センサヒータ47への電力を増加させてセンサ素子40の温度を活性化温度(約600°C以上)まで上昇させるセンサ活性促進制御を実行する。
 更に、センサ素子40が活性化温度に達した以降は、温度フィードバック制御により最適温度(例えば750~760°C程度)で動作するようにセンサ素子40の温度を維持する。尚、温度フィードバック制御には、センサ素子40の実際温度が必要であるが、センサ素子40の実際温度は、センサ素子40の温度が400°C~500°Cに達すると、センサ素子40から得られる電流信号に基づいて求めることができる。
 内燃機関の再始動時におけるセンサ素子40の表面領域40Sの凝縮水付着量の推定は、再始動時における排気管27の推定排気管温度に応じて異なるので、本実施形態においては、内燃機関の環境状態の変化等に対応して再始動時の再始動時推定排気管温度を正確に推定するようにしている。この推定方法は以下で詳細に説明する。ここで、環境状態の変化の代表的な例としては、内燃機関が停止された時の排気管温度による時間的な温度特性、排気管の周囲空間の温度特性、排気管付近を流れる外気の特性(風速や大気温度)等の変化である。
 次に、推定排気管温度に基づいて凝縮水付着量(凝縮水量)を求める方法を説明する。
制御装置ECUは、凝縮水量推定機能部によって排気管27内で生じる凝縮水量Mconを推定している。以下、排気管27内で生じる凝縮水量Mconの推定方法について説明する。尚、以下に説明する吸入空気量、回転数、冷却水温度等々は内燃機関の動作状態量として良く知られてり、これ以外の情報も内燃機関の動作状態量として取り扱うことができる。
 今、内燃機関に供給される単位時間当りの吸入空気量Mair[g/s]と、単位時間当りの燃料噴射量Mfuel[g/s]とに基づいて、燃料と吸入空気の燃焼反応により発生する単位時間当りの水蒸気量Mwgs[g/s]を算出する。また、吸入空気量、内燃機関の回転速度等に基づいて推定排気ガス温度Tg(例えば、排気ポート近傍における排気ガス温度)を推定する。尚、排気ガス温度Tgを温度センサで検出するようにしても良い。更に、後述する方法で推定排気管温度Tp(例えば、排気センサ近傍における排気管温度)を推定する。
 そして、推定排気ガス温度Tgと推定排気管温度Tpとをパラメータとする、予め求めた凝縮割合Cの二次元マップを参照して、現在の推定排気ガス温度Tgと推定排気管温度Tpとに対応した凝縮割合Cを算出する。この凝縮割合Cは、燃料と吸入空気の燃焼反応により発生する水蒸気(排気ガス中の水蒸気)のうち、排気管27内で凝縮するであろう割合である。
 凝縮割合Cの二次元マップは、予め、実験データや設計データ等に基づいて求めた、推定排気ガス温度Tgと推定排気管温度Tpと凝縮割合Cとの関係を用いて作成され、制御装置ECUのROMに記憶されている。
 この後、以下の(1)式にある通り、水蒸気量Mwgsに凝縮割合Cと演算周期Δtとを乗算して、演算周期Δt当りの凝縮水増加量ΔMcon[g]を算出する。
ΔMcon=Mwgs×C×Δt ……(1)この後、以下の(2)式にある通り、前回の演算で求めた凝縮水量推定値Mconに今回の凝縮水増加量ΔMconを加算して、今回の凝縮水量推定値Mcon[g]を求める。
Mcon=Mcon+ΔMcon ……(2)このように、凝縮水量推定値Mconを正確に求めるには、排気管27の再始動時の推定排気管温度Tpの初期値を正確に求めることが必要である。
 この凝縮水量推定値Mconは、制御装置ECUのバックアップRAM(記憶手段)に記憶され、演算周期Δt毎に順次更新されていくものである。制御装置ECUのバックアップRAMの記憶データは、図示しないイグニッションスイッチがオフされた内燃機関が停止中も保持される。
 内燃機関の再始動時に凝縮水量Mconを推定する際には、前回の内燃機関の停止直前に記憶した凝縮水量推定値Mcon(つまり、内燃機関の停止中に排気管27内に残留する凝縮水量の推定値)を初期値とする。
 ところで、内燃機関が運転されている過程で、アクセル踏み込み等により吸入空気量が増加して、排気管27内を流れる排気ガス量が増加すると、排気管27内に蓄積された凝縮水が排気ガスの流動エネルギによって吹き飛ばされて排気管27の外へ排出される。
 そこで、本実施例では、吸入空気量Mairが所定値Mthを越えたときに、凝縮水量推定値Mconを「0」にリセットする。或は、吸入空気量Mairに応じて凝縮水量推定値Mconを減少させるようにしても良い。これにより、吸入空気量Mairが増加して排気管27内を流れる排気ガス量が増加したときに、排気管27内に蓄積された凝縮水が排気ガスによって吹き飛ばされて排気管27の外へ排出されるのに対応して、凝縮水量推定値Mconを「0」にリセット又は減少させることができる。
 次に、上述した凝縮水量推定値Mconを求めるための推定排気管温度Tpの推定方法について説明する。
 制御装置ECUは、内燃機関の運転中(内燃機関の始動からイグニッションスイッチのオフまでの期間)は、図6に示す「排気温度推定機能部」に基づいて推定排気管温度Tpを推定している。
 図6に示すように、内燃機関の運転中に推定排気管温度Tpを推定する場合には、まず、排気ガスから排気管27へ伝達される受熱量を求めるための受熱側熱伝達係数Kinと、排気管27から外気へ放熱される放熱量を求めるための放熱側熱伝達係数Koutを算出する。
 受熱側熱伝達係数Kinを算出する際には、受熱側熱伝達係数算出部51で内燃機関の回転速度(排気流速の代用情報)と負荷(排気圧の代用情報)とをパラメータとする補正係数αのマップを参照して、現在の内燃機関の回転速度と負荷とに応じた補正係数αを算出する。この補正係数αは、受熱側熱伝達係数基本値Kin0を補正するための係数である。
 補正係数αのマップは、予め、実験データや設計データ等に基づいて求めた回転速度と負荷と排気管27の受熱量との関係を用いて作成され、制御装置ECUのROMに記憶されている。一般に、回転速度が高くなって排気流速が速くなるほど排気管27の受熱量が少なくなり、負荷が大きくなって排気圧が高くなるほど排気管27の受熱量が多くなる。
このため、補正係数αのマップは、回転速度が高くなるほど補正係数αが小さくなって受熱側熱伝達係数Kinが小さくなり、負荷が大きくなるほど補正係数αが大きくなって受熱側熱伝達係数Kinが大きくなるように設定されている。
 そして、補正係数αが求まると、次の(3)式で受熱側熱伝達係数基本値Kin0に補正係数αを乗算して受熱側熱伝達係数Kinを求める。
Kin=Kin0×α ……(3)これにより、内燃機関の回転速度(排気流速の代用情報)や負荷(排気圧の代用情報)に応じて受熱側熱伝達係数基本値Kin0を補正して受熱側熱伝達係数Kinを求めることができる。
 このようにして、受熱側熱伝達係数Kinを算出した後、受熱側温度差算出部53によって推定排気ガス温度Tgと推定排気管温度Tpとの差(Tg-Tp)を求め、受熱量算出部54で受熱側熱伝達係数Kinを乗算して排気管27の受熱量{Kin×(Tg-Tp)}を求める。ここで、排気ガス温度Tgと排気管温度Tpは所定の演算周期で推定して求められており、前回に推定された推定排気ガス温度Tgと推定排気管温度Tpを使用している。
 一方、放熱側熱伝達係数Koutを算出する際には、放熱側熱伝達係数算出部52でラジエターファン回転速度と車速とをパラメータとする補正係数βのマップを参照して、現在のラジエターファン回転速度と車速とに応じた補正係数βを算出する。この補正係数βは、放熱側熱伝達係数基本値Kout0を補正するための係数である。
 補正係数βのマップは、予め、実験データや設計データ等に基づいて求めたラジエターファン回転速度と車速と排気管27の放熱量との関係を用いて作成され、制御装置ECUのROMに記憶されている。一般に、ラジエターファン回転速度や車速が速くなるほど排気管27の放熱量が多くなるため、補正係数βのマップは、ラジエターファン回転速度や車速が速くなるほど補正係数βが大きくなって放熱側熱伝達係数Koutが大きくなるように設定されている。
 尚、大気圧(排気管27の外側の圧力)が高くなるほど排気管27の放熱量が多くなるため、大気圧が高くなるほど補正係数βが大きくなって放熱側熱伝達係数Koutが大きくなるようにしても良い。
 この後、補正係数βが求まると、次の(4)式で放熱側熱伝達係数基本値Kout0に補正係数βを乗算して放熱側熱伝達係数Koutを求める。
Kout=Kout0×β ……(4)これにより、ラジエターファン回転速度や車速に応じて放熱側熱伝達係数基本値Kout0を補正して放熱側熱伝達係数Koutを求めることができる。
 このようにして、放熱側熱伝達係数Koutを算出した後、放熱側温度差算出部55によって推定排気管温度Tpと外気温Taとの差(Tp-Ta)を求め、放熱量算出部56で放熱側熱伝達係数Koutを乗算して排気管27の放熱量{Kout×(Tp-Ta)}を求める。ここでも、推定排気管温度Tpは所定の演算周期で推定して求められており、前回に推定された排気管温度Tpを使用している。
 次に、「熱量差算出部」57で、排気管27の受熱量{Kin×(Tg-Tp)}と、排気管27の放熱量{Kout×(Tp-Ta)}との熱量差を求め、また、「熱容量算出部」58で排気管27の熱容量Cpを求め、「排気管温度変化量算出部」59で、演算周期Δtを用いて次の(5)式により演算周期Δt当りの排気管温度変化量ΔTpを算出する。
ΔTp={Kin×(Tg-Tp)-Kout×(Tp-Ta)}/Cp×Δt……(5)
 この後、次の(6)式により前回の推定排気管温度推定値Tpに今回の排気管温度変化量ΔTpを加算して今回の推定排気管温度推定値Tpを求める。
Tp=Tp+ΔTp ……(6)この推定排気管温度推定値Tpは、制御装置ECUのバックアップRAMに記憶され、次の再始動時に用いられる。
 しかしながら、内燃機関の停止中においては、制御装置ECUが停止してしまうことから、上述したような熱収支の演算ができないものである。このため、内燃機関が停止された時から再始動される時までに実際の排気管温度は変化しており、内燃機関が再始動される時の初期値である再始動時推定排気管温度Tp*は不正確なものとなる。
 このため、従来では、内燃機関が停止している時の冷却水温度の変化量に基づいて、内燃機関が停止された時の推定排気温度を補正して次回の再始動時の推定排気管温度を推定し、推定排気管温度が所定値より高いと凝縮水が蒸発したとしてセンサヒータの動作を開始している。
 しかしながら、この方法は、停止中の内燃機関に関係する環境状態の変化等に対応しておらず、推定精度が低いものであった。そこで、本実施形態では、内燃機関が停止した後から再始動させるときに排気管27の内部温度を正確に推定する方法を提案するものである。
 本実施形態では、停止時の排気管温度と経過時間の変化に基づく第1補正情報と、内燃機関の停止時の内燃機関温度の変化に基づく第2補正情報と、停止から再始動に至る停止中の外気による冷却度の変化に基づく第3補正情報を求め、これらの補正情報の少なくとも1つ以上の補正情報を用いて、停止時の停止時推定排気管温度を補正して再始動時の再始動時推定排気管温度(初期値)Tp*を求めるようにしている。以下、第1補正情報~第3補正情報について説明する。
 ≪第1補正情報≫先ず、停止時の排気管温度と経過時間の変化に基づく第1補正情報について説明する。尚、本実施形態では、第1補正情報として補正係数を設定するようにしている。
 図7に示すように、内燃機関の停止時(ほぼ停止直後)の排気管温度によって経過時間に対する温度低下量が異なることが判明した。同じ時間間隔内の排気管温度200℃の場合の温度変化量に比べて、排気管温度400℃の場合の温度変化量は大きく、同様に排気管温度500℃の場合の温度変化量は更に大きく変化するようになる。したがって、内燃機関の停止から再始動までの時間を同じとすると、停止時の停止時推定排気管温度Tpendが高いほど温度の低下量が大きくなる。
 したがって、予め定めた停止時の推定排気管温度毎に第1補正情報を設定し、この停止時の停止時推定排気管温度Tpendに対応した第1補正情報から、再始動時の再始動時推定排気管温度Tp*を補正して求めてやることが必要である。
 このため、内燃機関の停止時の予め定めた推定排気管温度毎に停止後からの経過時間に対応して排気管温度低下係数Tx(「1.00」~「0.00」)を設定し、内燃機関の停止時の停止時推定排気管温度Tpendに排気管温度低下係数Txを反映させることで、再始動時の再始動時推定排気管温度Tp*を補正することができる。排気管温度低下係数Txは、予め、実験データや設計データ等に基づいて求めた排気管温度と経過時間との関係を用いて作成された「排気管温度推定基準マップ」として、制御装置ECUのROMに記憶されている。
 ここで、排気管温度低下係数Txは、停止時から再始動時までの経過時間が長いほど内燃機関を再始動させたときに排気センサ28のセンサヒータ47の加熱動作を開始するための条件成立が比較的遅くなるように設定されている。つまり、経過時間が長いほど排気管温度低下係数Txは小さくなるものであり、再始動時の再始動時推定排気管温度Tp*が低くなるように設定されている。ここで、この排気管温度低下係数Txの有効桁数は任意である。
 尚、本実施形態では再始動時の基本推定排気管温度Tpbaseとして、停止時の停止時推定排気管温度Tpendに排気管温度低下係数Txを乗算することによって求められている。この基本推定排気管温度Tpbaseに以下に示す第2補正情報、第3補正情報が反映される。
 ≪第2補正情報≫次に、内燃機関の停止時(ほぼ停止直後)の内燃機関温度の変化に基づく第2補正情報について説明する。尚、本実施形態では、第2補正情報として補正係数を設定するようにしている。
 内燃機関自身の温度変化として暖機が完了しているか、或いは暖機がまだ完了していないかによって、排気管温度の変化の推移が影響を受けることが判明した。例えば、内燃機関の停止時の冷却水温度が80度以上である状態を完全暖機状態とすれば、内燃機関の停止時の冷却水温度が80度以下である状態は不完全暖機状態となる。図8の破線丸印Sに示すように、内燃機関の停止直後に不完全暖機状態であった場合には、完全暖機状態である場合に比べて、内燃機関の停止時の排気管温度Tpendが同じであっても、停止直後の所定時間内の排気管温度の低下量が著しく大きいことが判明した。
 そこで、本実施形態は、この内燃機関の停止後における内燃機関自身の温度状態を考慮したうえで、その後の内燃機関の再始動時の排気管温度Tp*を補正して推定するようにしたものである。尚、本実施形態では内燃機関の温度状態を表す指標として冷却水温度を利用している。
 このように、内燃機関自身の温度状態を考慮するのは、内燃機関の停止中の排気管温度の推移は、排気管27の周辺空間の温度に大きく影響されるからである。つまり、排気管27の周辺空間の温度は、自動車のエンジンルーム内の温度に代表され、そして、そのエンジンルーム内の温度に大きく影響する熱源は、内燃機関自身の温度である。
 したがって、内燃機関を停止した時(停止直後)においては、不完全暖機状態の場合は内燃機関自身の温度が低いので、排気管27の周辺空間の温度も低くなり、内燃機関の停止中の放熱量が多くなって排気管温度の低下が比較的早くなる。一方、完全暖機状態の場合は内燃機関自身の温度が高いので、排気管27の周辺空間の温度も高くなり、内燃機関の停止中の放熱量が少ないので排気管温度の低下が比較的遅くなる。
 このため、内燃機関の停止時の冷却水温度から完全暖機状態と不完全暖機状態を判断し、更に冷却水温度毎に対応して暖機放熱係数Ty(「1.00」~「0.00」)を設定し、内燃機関の停止時の停止時推定排気管温度Tpendに暖機放熱係数Tyを反映させることで、再始動時の再始動時推定排気管温度Tp*を補正することができる。暖機放熱係数Tyは、予め、実験データや設計データ等に基づいて求めた冷却水温度との関係を用いて作成された「暖機放熱補正テーブル」として、制御装置ECUのROMに記憶されている。
 ここで、本実施形態では上述した、再始動時の基本推定排気管温度Tpbaseに暖機放熱係数Tyを乗算することによって基本推定排気管温度Tpbaseが補正されている。尚、暖機放熱係数Tyを経過時間に対応して変更するようにしても良いものである。この場合は、暖機放熱係数Tyは、予め、実験データや設計データ等に基づいて求めた冷却水温度と経過時間との関係を用いて作成されたマップとして、制御装置ECUのROMに記憶されれば良いものである。
 ここで、暖機放熱係数Tyは、冷却水温度が低いほど内燃機関を再始動させたときに排気センサ28のセンサヒータ47の加熱動作を開始するための条件成立が比較的遅くなるように設定されている。つまり、冷却水温度が低いほど暖機放熱係数Tyは小さくなるものであり、再始動時の再始動時推定排気管温度Tp*が低くなるようになっている。この暖機放熱係数Tyの有効桁数は任意である。
 尚、本実施例ではエンジンルーム内温度を内燃機関の冷却水温度で代用した例を示しているが、潤滑オイルのオイル温度を用いることもでき、更にはエンジンルーム内温度センサを備えている場合は、エンジンルーム内温度センサを使用して暖機放熱係数Tyを求めることができる。
 ≪第3補正情報≫次に、停止から再始動に至る停止中の外気による冷却度の変化に基づく第3補正情報について説明する。尚、本実施形態では、第3補正情報として補正係数を設定するようにしている。
 内燃機関の停止中の排気管温度の推移は上述した変化因子の他に、外気の状態に影響されることも判明した。内燃機関の停止中に風が吹いている場合、風速が小さい場合に比べて風速が大きい場合は、排気管27から持ち去られる熱量が多くなり、図9に示すように排気管温度が早く低下する。したがって、風速の大きさによって再始動時の排気管温度も変動することになる。このため、風速の大きさに対応して再始動時の再始動時推定排気温度Tp*も補正してやることが必要である。
 しかしながら、風速を測定することは困難であるので、停止時の冷却水温度と再始動時の冷却水温度の温度差が所定の設定時間内に、どれだけ変動したかを判断することによってどの程度の風速かを推定することができる。本実施形態では、内燃機関の停止時の冷却水温度と再始動時の冷却水温度を比較し、その温度差が設定時間内で発生した場合は、風による冷却効果が影響していると判断している。
 このため、内燃機関の温度変化量と停止時間によって設定される冷却係数Tzを設定し、内燃機関の停止時の停止時推定排気管温度Tpendに冷却係数Tz(「1.00」~「0.00」)を反映させることで、再始動時の再始動時推定排気管温度Tp*を補正することができる。冷却係数Tzは、予め、実験データや設計データ等に基づいて求めた冷却水温度の変化量と経過時間の関係を用いて作成された「風による冷却補正マップ」として、制御装置ECUのROMに記憶されている。尚、外気の温度を反映させることも可能である。この場合は外気温度が低いほど冷却係数Tzの値を小さくすれば良いものである。
 ここで、冷却係数Tzは、所定の経過時間においての温度変化量が大きいほど内燃機関を再始動させたときに排気センサ28のセンサヒータ47の加熱動作を開始するための条件成立が比較的遅くなるように設定されている。つまり、ある経過時間において温度変化量が大きいほど冷却係数Tzは小さくなるものであり、再始動時の再始動時推定排気管温度Tp*が低くなるようになっている。本実施形態では、時間帯毎に複数の温度変化量を設定し、これに冷却係数Tzを割り付けている。時間帯は複数設定されており、経過時間に対応して時間帯が選択されるものである。この冷却係数Tzの有効桁数は任意である。
 そして、本実施形態では基本推定排気管温度Tpbaseに冷却係数Tzを乗算することによって再始動時の再始動時推定排気管温度Tp*が補正されている。
 以上のようにして求めた各補正情報は、図10に示すようなロジックによって組み合されて再始動時の再始動時推定排気管温度Tp*が求められている。図10において、内燃機関の停止状態から再始動する時に再始動時推定排気管温度Tp*を推定する場合には、上述した補正情報である、排気管温度低下係数Tx、暖機放熱係数Ty、及び冷却係数Tzを求める。
 排気管温度低下係数Txは、図6によって求められた停止時の停止時推定排気管温度Tpendと停止後の経過時間によって、排気管温度推定基準マップ60から読み出され、次の(7)式のように停止時の停止時推定排気管温度Tpendに排気管温度低下係数Txが乗算されて、再始動時の基本推定排気管温度Tpbaseが求められている。
Tpbase=Tpend×Tx ……(7)
 次に、暖機放熱係数Tyは、停止時(望ましくは停止直後)の冷却水温度によって、暖機放熱補正テーブル61から読み出される。同様に冷却係数Tzは、停止時の冷却水温度と再始動時の冷却水温度の温度差と経過時間によって、冷却補正マップ62から読み出される。
 そして、再始動時推定排気管温度算出部63で、次の(8)式のように再始動時の基本推定排気管温度Tpbaseに、暖機放熱係数Tyと冷却係数Tzが乗算されて、再始動時の再始動時推定排気管温度Tp*が求められる。
Tp*=Tpbase×Ty×Tz ……(8)
 以上の演算によって、内燃機関の再始動時の再始動時推定排気管温度Tp*を正確に推定できるようになる。この再始動時の再始動時推定排気管温度Tp*は、これより以降の内燃機関の運転状態の進行に合わせて、図6に示す推定方法により運転中の推定排気管温度Tpが演算されていくことになる。このように、再始動時の再始動時推定排気管温度Tp*が正確に推定されるので、凝縮水量の誤推定を回避して排気センサの加熱動作の開始時期が最適化されるようになる。
 次に、上述した再始動時の再始動時推定排気管温度Tp*を求める基本的な構成要件について説明する。図11は基本的な機能ブロックを示している。
 図11において、参照番号70は、排気管内を流れる排気ガス温度を推定する排気ガス温度検出手段であり、これは上述したように、吸入空気量と回転速度等に基づいて排気ガス温度を求めるものである。尚、温度センサを用いて排気ガス温度を求めることも可能である。
 また参照番号71は、内燃機関が停止してからの経過時間を検出する時間検出手段であり、制御装置ECUが内蔵しているタイマー機能を用いて検出することができる。また参照番号72は、内燃機関自身の温度状態を検出する温度状態検出手段であり、冷却水の温度を検出する水温センサを利用することができる。
 参照番号73は、排気管温度推定/補正手段であり、排気ガス温度検出手段によって検出された排気ガス温度から排気管への熱伝達を計算して排気管温度を推定する機能を備えている。排気管温度推定/補正手段73には、時間検出手段71からの経過時間が入力され、排気管温度低下係数Txが求められる。尚、図10では排気管温度推定/補正手段73によって再始動時の基本推定排気管温度Tpbaseが求められているが、図11では以下に説明する再始動時排気管温度推定手段77で求めるようにしている。
 参照番号74は、暖機補正手段であり、内燃機関の停止時(望ましくは停止直後)に内燃機関の温度状態検出手段72によって検出された冷却水温度から内燃機関の暖機状態を判断して暖機放熱係数Tyをもとめる機能を備えている。
 また参照番号75、は温度差検出手段であり、温度状態検出手段72によって検出された、内燃機関の停止時の冷却水温度と再始動時の冷却水温度の温度差を検出するものである。これは風速の違いによる冷却係数Tzを求める1つのパラメータとなる。
 更に参照番号76は、冷却度検出手段であり、時間検出手段によって検出された経過時間と温度差算出手段によって検出された温度差から風による冷却効果を求めるもので、冷却係数Tzを求める機能を備えている。
 参照番号77は、再始動時排気管温度推定手段であり、この再始動時排気管温度推定手段77の上述した排気管温度低下係数Tx、暖機放熱係数Ty、及び冷却係数Tzが入力されている。再始動時排気管温度推定手段77は、Tp*=Tpend×Tx×Ty×Tzの演算を実行して、内燃機関の再始動時の再始動時推定排気管温度Tp*を推定するものである。
 参照番号78は排気管温度推定手段であり、再始動時の再始動時推定排気管温度Tp*が入力され、排気管温度再始動時推定排気管温度Tp*を初期値として図6に示す排気温度推定制御機能部によって、現時点の推定排気管温度Tpを推定する。したがって、排気管温度推定手段78は、排気管温度推定/補正手段73の一部と同じ機能を有しているので、排気管温度推定手段78と排気管温度推定/補正手段73を共用することも可能である。
 参照番号79は、加熱制御手段であり、現時点の推定排気管温度Tpが加熱制御手段78に入力されている。この加熱制御手段79は、推定排気管温度Tp、または排気ガス温度Tgと推定排気管温度Tpの差に基づいて推定される凝縮水量が、所定値以下と判断された場合にセンサヒータの加熱動作を許可するように制御している。
 尚、本実施形態では加熱制御手段79で凝縮水推定を実施しているが、凝縮水推定を行わず、推定排気管温度Tpのみでセンサヒータの開始動作を制御することも可能である。
 このように、本実施形態では、内燃機関の停止時の排気管温度と経過時間の変化に基づく第1補正情報(Tx)と、停止時の内燃機関温度の変化に基づく第2補正情報(Ty)と、停止から再始動に至る停止中の外気による冷却度の変化に基づく第3補正情報(Tz)を求め、内燃機関の再始動時に、少なくとも1つ以上の補正情報を用いて停止時の停止時推定排気管温度を補正して再始動時の再始動時推定排気管温度Tp*を推定し、この再始動時推定排気管温度Tp*を初期値としてその後の内燃機関の運転中の推定排気管温度Tpを求め、更に推定排気管温度Tpが所定値以上になるとセンサヒータの加熱動作を開始するものである。これによって、排気センサのセンサ素子の破損を抑制しながら、適切に排気センサを加熱して排気センサの早期活性化を図ることができる。
 ここで、図11に示す機能ブロックは、実際には制御装置ECUのマイクロコンピュータの制御プログラムで実行されているものであり、以下その制御フローについて図12を用いて説明する。
 尚、図12の制御フローは再始動時の再始動時推定排気管温度Tp*を求めるまでのフローを示しており、これ以降のセンサヒータの加熱開始動作は種々の方法を実施できるので省略している。例えば、加熱開始動作は、凝縮水推定や推定排気管温度Tpでセンサヒータの開始動作を制御することができる。
 図12の制御フローは所定時間毎に起動されるものであり、例えば、本実施形態では10ms毎に起動されている。この起動タイミングは内部タイマーによるコンペアマッチ割り込みを利用することができる。
 ステップS10においては、内燃機関が停止されたかどうかを判断している。停止されていなければ再びステップS10を繰り返すものである。一方、ステップS10で内燃機関が停止されたと判断すると、ステップS11に移行して停止時の情報を記憶する。この場合、少なくとも、停止時の停止時推定排気管温度Tpendと冷却水温度Twendが記憶される。これらの情報は制御装置ECUのRAM領域に記憶されるものである。また、この停止判断に同期して内部タイマーが停止からの経過時間の計測を開始している。この制御ステップが終了すると次のステップS12に移行する。
 ステップS12では内燃機関が再始動されたかどうかを判断している。再始動されていなければ再びステップS12を繰り返すものである。一方、ステップS12で内燃機関が再始動されたと判断すると、ステップS13に移行して再始動時の情報を記憶する。この場合、少なくとも、停止時から内部タイマーで計測している経過時間Timeと再始動時の冷却水温度Twstが記憶される。尚、この停止中の推定排気管温度Tpは内燃機関が停止されているため推定できず、更新、記憶されていないものである。この制御ステップが終了すると次のステップS14に移行する。
 ステップS14からステップS21までは、上述した第1補正情報である排気管温度低下係数Txを求める制御ステップである。ステップS14、S16、S18、S20は予め定めた所定の停止時間帯に対して経過時間Timeがどの停止時間帯にあるかどうかを判断している。
 ステップS14では経過時間Timeが[0~a]の時間帯にあるか判断し、ステップS16では経過時間Timeが[a~b]の時間帯にあるか判断し、ステップS18では経過時間Timeが[b~c]の時間帯にあるか判断し、ステップS20では経過時間Timeが[c~]の時間帯にあるか判断している。ここで、停止時間帯は、[0~a]<[a~b]<[b~c]<[c~]の関係を有している。
 そして、経過時間Timeが[0~a]の時間帯にあればステップS15で排気管温度低下係数TxをAに設定し、経過時間Timeが[a~b]の時間帯にあればステップS17で排気管温度低下係数TxをBに設定し、経過時間Timeが[b~c]の時間帯にあればステップS19で排気管温度低下係数TxをCに設定し、経過時間Timeが[c~]の時間帯にあればステップS21で排気管温度低下係数TxをDに設定する。
 ここで、排気管温度低下係数Txは、A>B>C>Dの関係を有しており、停止時間が短いほど「1.00」に近い値に設定されている。したがって、停止時間が短いほど再始動時の再始動時推定排気管温度Tp*は停止時の停止時推定排気管温度Tpendに近い値となる。排気管温度低下係数Txを求める制御ステップが終了するとステップS22に移行する。
 ステップS22からステップS28までは、上述した第2補正情報である暖機放熱係数Tyを求める制御ステップである。ステップS22、S24、S26、S28は停止直後の冷却水温度Twendによってどの程度の暖機状態かを判断している。つまり、予め定めた所定の温度帯に対して、停止時の冷却水温度Twendがどの温度帯にあるかどうかを判断している。
 ステップS22では冷却水温度Twendが[d~]の温度帯にあるか判断し、ステップS24では冷却水温度Twendが[e~d]の温度帯にあるか判断し、ステップS26では冷却水温度Twendが[f~e]の温度帯にあるか判断し、ステップS28では冷却水温度Twendが[g~f]の温度帯にあるか判断している。ここで、温度帯は、[d~]>[e~d]>[f~e]>[g~f]の関係を有している。
 そして、冷却水温度Twendが[d~]の温度帯にあればステップS23で暖機放熱係数TyをEに設定し、冷却水温度Twendが[e~d]の温度帯にあればステップS25で暖機放熱係数TyをFに設定し、冷却水温度Twendが[f~e]の温度帯にあればステップS27で暖機放熱係数TyをGに設定し、冷却水温度Twendが[g~f]の温度帯にあればステップS29で暖機放熱係数TyをHに設定する。
 ここで、暖機放熱係数Tyは、E>F>G>Hの関係を有しており、冷却水温度が高いほど「1.00」に近い値に設定されている。したがって、冷却水温度が高いほど再始動時の再始動時推定排気管温度Tp*は停止時の停止時推定排気管温度Tpendに近い値となる。暖機放熱係数Tyを求める制御ステップが終了するとステップS30に移行する。
 ステップS30からステップS36までは、上述した第3補正情報である冷却係数Tzを求める制御ステップである。ステップS30、S32、S34、S36は経過時間Timeが予め定めた所定の経過時間帯にあり、しかもこの経過時間帯に対して停止時の冷却水温度と再始動時の冷却水温度の温度差がどの温度差帯にあるかどうかを判断している。
つまり、経過時間帯と温度差帯の交点を判断しているものである。
 ステップS30では経過時間Timeが[0~h]の経過時間帯にあり、しかも温度差が温度差帯[0~k]にあると判断し、ステップS32では経過時間Timeが[h~i]の経過時間帯にあり、しかも温度差が温度差帯[k~l]にあると判断し、ステップS34では経過時間Timeが[i~j]の経過時間帯にあり、しかも温度差が温度差帯[l~m]にあると判断し、ステップS36では経過時間Timeが[j~]の経過時間帯にあり、しかも温度差が温度差帯[m~]にあると判断している。
 このように、ステップS30、S32、S34、S36は、経過時間Timeが存在する経過時間帯に変化した冷却水温度の温度差が、複数の温度差帯のどの温度帯にあるかどうかを判断している。ここで、経過時間帯は、[0~h]<[h~i]<[i~j]<[j~]の関係を有している。また、温度差帯は[0~k]<[k~l]<[l~m]<[m~]の関係を有している。したがって、例えば、経過時間帯[0~h]に対して、温度差帯は[0~k]、[k~l]、[l~m]、[m~]だけ準備されており、これらの複数の温度帯から1つの温度帯が選択される。尚、他の経過時間帯も同様である。
 そして、ステップS30では経過時間Timeが[0~h]の経過時間帯にあり、しかも温度差が温度差帯[0~k]にあると判断されると、ステップS31で冷却係数TzをIに設定し、ステップS32では経過時間Timeが[h~i]の経過時間帯にあり、しかも温度差が温度差帯[k~l]にあると判断されると、ステップS33で冷却係数TzをJに設定し、ステップS34では経過時間Timeが[i~j]の経過時間帯にあり、しかも温度差が温度差帯[l~m]にあるかと判断されると、ステップS35で冷却係数TzをKに設定し、ステップS36では経過時間Timeが[j~]の経過時間帯にあり、しかも温度差が温度差帯[m~]にあると判断されると、ステップS37で冷却係数TzをLに設定する。
 ここで、冷却係数Tzは、I>J>K>Lの関係を有しており、経過時間が同じであれば、温度差が小さいほど「1.00」に近い値に設定されている。したがって、温度差が小さいほど再始動時の再始動時推定排気管温度Tp*は停止時の停止時推定排気管温度Tpendに近い値となる。冷却係数Tzを求める制御ステップが終了するとステップS38に移行する。
 ステップS38では、停止時に求めた停止時推定排気管温度Tpendに排気管温度低下係数Tx、暖機放熱係数Ty、及び冷却係数Tzを反映させるべく、Tp*=Tpend×Tx×Ty×Tzの演算を実行して、内燃機関の再始動時の再始動時推定排気管温度Tp*を推定するものである。
 このように、本実施形態では、停止時の排気管温度と経過時間の変化に基づく第1補正情報と、内燃機関の停止時の内燃機関温度の変化に基づく第2補正情報と、停止から再始動に至る停止中の外気による冷却度の変化に基づく第3補正情報を求め、内燃機関の再始動時に、少なくとも1つ以上の補正情報を用いて停止時の停止時推定排気管温度を補正して再始動時の再始動時推定排気管温度を推定し、この再始動時推定排気管温度を初期値として、その後の内燃機関の運転中の推定排気管温度を求め、更に推定排気管温度が所定値以上になるとセンサヒータの加熱動作を開始するものである。これによって、排気センサのセンサ素子の破損を抑制しながら、適切に排気センサを加熱して排気センサの早期活性化を図ることができる。
 上述した説明は、排気センサのセンサ素子破損防止及び、排気ガス有害成分の排出量を低減するものとして説明した。ところで、上述の排気管温度の推定は、排気ガス浄化触媒の活性判断のための触媒温度推定制御にも適用できるものである。
 排気ガス浄化触媒の活性前は排気ガスの浄化ができず排気ガス有害成分の排出量が増加する。このため、内燃機関の始動直後は点火時期を遅角させ吸入空気量を増加させることでサーマルリアクタ効果が発生し、排気ガス浄化触媒を早期活性させることは良く知られた技術である。
 しかしながら、点火時期の遅角や吸入空気量の増加は、内燃機関の燃焼悪化やガス有害成分の排出量が増加するため、排気ガス浄化触媒の活性タイミングを正確に見極め、触媒活性後は直ちに通常の点火時期及び吸入空気量に戻すことが要請されている。
 そこで、様々な方法で触媒温度推定や触媒活性判定を行っている。アイドルストップ制御のように内燃機関を短時間だけ停止し、その後再始動する場合は、排気管や触媒の余熱が残り、冷態始動よりも短い時間で触媒を活性化することができる。しかしながら、この場合、余熱を正確に推定できず、内燃機関を短時間だけ停止した後の再始動後は、必要以上に点火時期遅角や吸入空気量増加を行い、排気ガスガス有害成分の排出量が増加している。
 そこで、上述した本発明の実施形態によれば、内燃機関の停止中の排気管温度を精度よく推定することができるので、これを基に触媒温度の低下を予測することができる。したがって、再始動後の触媒活性タイミングを正確に把握し、点火時期遅角及び吸入空気量増加を最小限に抑えて排気ガス有害成分の排出量を抑えることができるようになる。
 以上の通り本発明によれば、停止時の排気管温度と経過時間の変化に基づく第1補正情報と、内燃機関の停止時の内燃機関温度の変化に基づく第2補正情報と、停止から再始動に至る停止中の外気による冷却度の変化に基づく第3補正情報を求め、内燃機関の再始動時に、少なくとも1つ以上の補正情報を用いて停止時の停止時推定排気管温度を補正して再始動時の再始動時推定排気管温度を推定し、この再始動時推定排気管温度を初期値として、その後の内燃機関の運転中の推定排気管温度を求め、更に推定排気管温度が所定値以上になるとセンサヒータの加熱動作を開始する構成とした。
 これによれば、再始動時推定排気管温度が正確に推定できるので、排気センサのセンサ素子の破損を抑制しながら、適切に排気センサを加熱して排気センサの早期活性化を図ることができる。この結果、空燃比フィードバックの開始を早めることができ、排気ガス有害成分の低減を促進することができるようになる。
 尚、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 10…内燃機関、11…水温センサ、12…気筒、13…点火コイル、14…点火プラグ、15…クランク角センサ、16…カム角センサ、17…吸気管、18…燃料噴射弁、19…スロットル弁、20…スロットルポジションセンサ、21…吸気管圧力センサ、22…エアフローセンサ、23…吸気温センサ、24…燃料タンク、25…燃料ポンプ、26…燃圧制御弁、27…排気管、28…排気センサ、29…排気温センサ、30…排気ガス触媒、31…CPU、32…ROM、33…RAM、34…A/D変換器、35…デジタル入力回路、36…パルス入力回路、37…デジタル出力回路、38…パルス出力回路、39…通信回路、40…センサ素子、 40s…表面領域、40IN…内部領域、48…センサ信号処理回路、47…センサヒータ、49…トランジスタ、50…バッテリ、ECU…制御装置。

Claims (10)

  1.  内燃機関の動作状態量を検出し、この動作状態量に基づいて排気管温度を推定する排気管温度推定手段を備えた排気管温度推定装置であって、
     前記排気管温度推定手段は、
     前記内燃機関の停止時の排気管温度と経過時間の変化に基づく第1補正情報と、前記内燃機関の停止時の内燃機関温度の変化に基づく第2補正情報と、前記内燃機関の停止から再始動に至る停止中の外気による冷却度の変化に基づく第3補正情報を求め、前記内燃機関の再始動時に、前記内燃機関が停止した時に記憶した停止時推定排気管温度(Tpend)を少なくとも1つ以上の前記補正情報を用いて補正して再始動時の再始動時推定排気管温度(Tp*)を推定し、この再始動時推定排気管温度(Tp*)を初期値として、その後の前記内燃機関の運転中の推定排気管温度(Tp)を求めることを特徴とする排気管温度推定装置。
  2.  請求項1に記載の排気管温度推定装置であって、
     前記第1補正情報は、前記内燃機関の停止時の停止時推定排気管温度(Tpend)毎に停止後からの経過時間に対応して小さくなる排気管温度低下係数Txであり、前記排気管温度低下係数Txは前記排気管温度推定手段の記憶領域に記憶されていることを特徴とする排気管温度推定装置。
  3.  請求項1に記載の排気管温度推定装置であって、
     前記第2補正情報は、前記内燃機関の停止時の前記内燃機関温度に対応して小さくなる暖機放熱係数Tyであり、前記暖機放熱係数Tyは前記排気管温度推定手段の記憶領域に記憶されていることを特徴とする排気管温度推定装置。
  4.  請求項1に記載の排気管温度推定装置であって、
     前記第3補正情報は、前記内燃機関の停止時と再始動時までの温度変化量と停止後からの経過時間によって設定され、前記経過時間が同じであれば前記温度変化量が大きいほど小さくなる冷却係数Tzであり、前記冷却係数Tzは前記排気管温度推定手段の記憶領域に記憶されていることを特徴とする排気管温度推定装置。
  5.  請求項1に記載の排気管温度推定装置であって、
     前記排気管温度推定手段は、
     前記停止時推定排気管温度(Tpend)に、前記第1補正情報、前記第2補正情報、前記第3補正情報を乗算して前記再始動時推定排気管温度(Tp*)を求めることを特徴とする排気管温度推定装置。
  6.  内燃機関の動作状態量を検出し、この動作状態量に基づいて排気管温度を推定する排気管温度推定手段と、前記排気管温度推定手段で推定された推定排気管温度に基づいて排気管に設けた排気センサのセンサヒータの加熱動作を制御する加熱制御手段を備えた排気センサのセンサヒータ制御装置であって、
     前記排気管温度推定手段は、
     前記内燃機関の停止時の排気管温度と経過時間の変化に基づく第1補正情報と、前記内燃機関の停止時の内燃機関温度の変化に基づく第2補正情報と、前記内燃機関の停止から再始動に至る停止中の外気による冷却度の変化に基づく第3補正情報を求め、前記内燃機関の再始動時に、前記内燃機関が停止した時に記憶した停止時推定排気管温度(Tpend)を少なくとも1つ以上の前記補正情報を用いて補正して再始動時の再始動時推定排気管温度(Tp*)を推定し、この再始動時推定排気管温度(Tp*)を初期値としてその後の前記内燃機関の運転中の推定排気管温度(Tp)を求め、
     前記加熱制御手段は、運転中の前記推定排気管温度(Tp)が所定値以上になると前記センサヒータの加熱動作を開始することを特徴とする排気センサのセンサヒータ制御装置。
  7.  請求項6に記載の排気センサのセンサヒータ制御装置であって、
     前記第1補正情報は、前記内燃機関の停止時の停止時推定排気管温度毎に停止後からの経過時間に対応して小さくなる排気管温度低下係数Txであり、前記排気管温度低下係数Txは前記排気管温度推定手段の記憶領域に記憶されていることを特徴とする排気センサのセンサヒータ制御装置。
  8.  請求項6に記載の排気センサのセンサヒータ制御装置であって、
     前記第2補正情報は、前記内燃機関の停止時の前記内燃機関温度に対応して小さくなる暖機放熱係数Tyであり、前記暖機放熱係数Tyは前記排気管温度推定手段の記憶領域に記憶されていることを特徴とする排気センサのセンサヒータ制御装置。
  9.  請求項6に記載の排気センサのセンサヒータ制御装置であって、
     前記第5補正情報は、前記内燃機関の停止時と再始動時の間の温度変化量と停止後から経過時間によって設定され、前記経過時間が同じであれば前記温度変化量が大きいほど小さくなる冷却係数Tzであり、前記冷却係数Tzは前記排気管温度推定手段の記憶領域に記憶されていることを特徴とする排気センサのセンサヒータ制御装置。
  10.  内燃機関の運転中に排気管の温度を推定して推定排気管温度を求める排気管温度推定手段と、
     前記内燃機関自身の温度状態を検出する温度状態検出手段と、
     前記内燃機関が停止している時間を検出する経過時間検出手段と、
     前記内燃機関の停止時の排気管温度と経過時間の変化に基づいて第1補正係数(Tz)を求める第1情報演算手段と、
     前記内燃機関の停止時の前記内燃機関自身の温度の変化に基づいて第2補正係数(Ty)を求める第1情報演算手段と、
     前記内燃機関の停止から再始動に至る停止中の外気による冷却度の変化に基づいて第3補正係数(Tz)を求める第3情報演算手段と、
     前記内燃機関の再始動時に、前記内燃機関が停止した時に記憶した停止時推定排気管温度(Tpend)を基に前記内燃機関の再始動時の再始動時推定排気管温度(Tp*)を、Tp*=Tpend×Tx×Ty×Tzの演算を実行して求める再始動時排気管温度推定手段を備え、
     前記排気管温度推定手段は、前記再始動時推定排気管温度(Tp*)を初期値として、この後の前記内燃機関の運転中の推定排気管温度(Tp)を求め、
     更に、前記排気管温度推定手段によって推定された前記内燃機関の運転中の前記推定排気管温度(Tp)が所定値以上になると前記センサヒータの加熱動作を開始する加熱制御手段と、を備えたことを特徴とする排気センサのセンサヒータ制御装置。
PCT/JP2017/024905 2016-08-05 2017-07-07 排気管温度推定装置及びこれを使用した排気センサのセンサヒータ制御装置 WO2018025578A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/322,081 US10975792B2 (en) 2016-08-05 2017-07-07 Exhaust pipe temperature estimation device and sensor heater control apparatus for exhaust gas sensor using exhaust pipe temperature estimation device
DE112017002955.4T DE112017002955B4 (de) 2016-08-05 2017-07-07 Auslassrohrtemperaturabschätzvorrichtung und Sensorheizvorrichtungssteuereinrichtung für einen Abgassensor, die die Auslassrohrtemperaturabschätzvorrichtung verwendet
JP2018531796A JP6591680B2 (ja) 2016-08-05 2017-07-07 排気管温度推定装置及びこれを使用した排気センサのセンサヒータ制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-154184 2016-08-05
JP2016154184 2016-08-05

Publications (1)

Publication Number Publication Date
WO2018025578A1 true WO2018025578A1 (ja) 2018-02-08

Family

ID=61072825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024905 WO2018025578A1 (ja) 2016-08-05 2017-07-07 排気管温度推定装置及びこれを使用した排気センサのセンサヒータ制御装置

Country Status (4)

Country Link
US (1) US10975792B2 (ja)
JP (1) JP6591680B2 (ja)
DE (1) DE112017002955B4 (ja)
WO (1) WO2018025578A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021008863A (ja) * 2019-07-02 2021-01-28 いすゞ自動車株式会社 内燃機関の排気浄化装置
JP2021021383A (ja) * 2019-07-30 2021-02-18 いすゞ自動車株式会社 推定装置、推定方法、及び車両

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7006564B2 (ja) * 2018-10-23 2022-01-24 株式会社デンソー ヒータの通電制御装置
JP7347264B2 (ja) * 2020-02-28 2023-09-20 いすゞ自動車株式会社 診断装置及び診断方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048749A (ja) * 2000-08-03 2002-02-15 Toyota Motor Corp センサ昇温用電力制御装置
JP2007009878A (ja) * 2005-07-04 2007-01-18 Denso Corp 内燃機関の排気管温度推定装置
JP2013024093A (ja) * 2011-07-19 2013-02-04 Hitachi Automotive Systems Ltd 内燃機関の制御装置
JP2013163978A (ja) * 2012-02-09 2013-08-22 Hitachi Automotive Systems Ltd エンジンの制御装置
JP2013234574A (ja) * 2012-05-07 2013-11-21 Hitachi Automotive Systems Ltd 内燃機関の制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6286366B1 (en) * 1998-11-11 2001-09-11 Chrysler Corporation Method of determining the engine charge temperature for fuel and spark control of an internal combustion engine
JP2004316594A (ja) 2003-04-18 2004-11-11 Toyota Motor Corp 内燃機関の排気系制御システム
DE102004052772A1 (de) 2004-10-30 2006-05-04 Volkswagen Ag Verfahren zur Steuerung eines Betriebs eines beheizbaren Abgassensors eines Kraftfahrzeugs
JP5717049B2 (ja) 2011-02-22 2015-05-13 スズキ株式会社 内燃機関の制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048749A (ja) * 2000-08-03 2002-02-15 Toyota Motor Corp センサ昇温用電力制御装置
JP2007009878A (ja) * 2005-07-04 2007-01-18 Denso Corp 内燃機関の排気管温度推定装置
JP2013024093A (ja) * 2011-07-19 2013-02-04 Hitachi Automotive Systems Ltd 内燃機関の制御装置
JP2013163978A (ja) * 2012-02-09 2013-08-22 Hitachi Automotive Systems Ltd エンジンの制御装置
JP2013234574A (ja) * 2012-05-07 2013-11-21 Hitachi Automotive Systems Ltd 内燃機関の制御装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021008863A (ja) * 2019-07-02 2021-01-28 いすゞ自動車株式会社 内燃機関の排気浄化装置
JP7167869B2 (ja) 2019-07-02 2022-11-09 いすゞ自動車株式会社 内燃機関の排気浄化装置
JP2021021383A (ja) * 2019-07-30 2021-02-18 いすゞ自動車株式会社 推定装置、推定方法、及び車両
JP7159994B2 (ja) 2019-07-30 2022-10-25 いすゞ自動車株式会社 推定装置、推定方法、及び車両

Also Published As

Publication number Publication date
JP6591680B2 (ja) 2019-10-16
DE112017002955B4 (de) 2022-08-11
US20190186399A1 (en) 2019-06-20
DE112017002955T5 (de) 2019-02-28
JPWO2018025578A1 (ja) 2019-02-07
US10975792B2 (en) 2021-04-13

Similar Documents

Publication Publication Date Title
JP6591680B2 (ja) 排気管温度推定装置及びこれを使用した排気センサのセンサヒータ制御装置
JP5798059B2 (ja) エンジンの制御装置
KR101501915B1 (ko) 산소 농도 센서의 히터 제어 장치
JP3811044B2 (ja) 内燃機関のラジエータ故障検知装置
JP6550689B2 (ja) 排出ガスセンサのヒータ制御装置
US20090184105A1 (en) Heater controller of exhaust gas sensor
JP4093919B2 (ja) ヒータ付き排気ガスセンサを備えた内燃機関の制御装置
JP2020067345A (ja) ヒータの通電制御装置
JP4802577B2 (ja) 排気センサのヒータ制御装置
JP4706928B2 (ja) 排出ガスセンサのヒータ制御装置
JP2012172535A (ja) エンジンの制御装置
JP5851333B2 (ja) 内燃機関の制御装置
JP4621984B2 (ja) 排出ガスセンサのヒータ制御装置
JP2002256949A (ja) 空燃比センサのヒータ通電制御装置
JP4135380B2 (ja) 排気ガスセンサのヒータ制御装置
JP2019157657A (ja) 内燃機関用制御装置
JP2013234573A (ja) 内燃機関の制御装置
JP2003227400A (ja) 空燃比センサの温度制御装置
KR101361351B1 (ko) 산소센서의 히터 구동방법
JP5041341B2 (ja) 排出ガスセンサのヒータ制御装置
WO2014080846A1 (ja) ガス濃度センサとその昇温方法
JP2003172177A (ja) 空燃比センサのヒータ制御装置
JP2010014036A (ja) 内燃機関の停止時間推定装置
JP4573047B2 (ja) 内燃機関の制御装置
JP5387553B2 (ja) 車両用制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018531796

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836685

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17836685

Country of ref document: EP

Kind code of ref document: A1