WO2018024156A1 - 一种车辆制动稳定控制方法和系统以及车辆 - Google Patents

一种车辆制动稳定控制方法和系统以及车辆 Download PDF

Info

Publication number
WO2018024156A1
WO2018024156A1 PCT/CN2017/094739 CN2017094739W WO2018024156A1 WO 2018024156 A1 WO2018024156 A1 WO 2018024156A1 CN 2017094739 W CN2017094739 W CN 2017094739W WO 2018024156 A1 WO2018024156 A1 WO 2018024156A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
wheel
braking
brake
instability
Prior art date
Application number
PCT/CN2017/094739
Other languages
English (en)
French (fr)
Inventor
姚伟
王世友
何智广
毕臣亮
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2018024156A1 publication Critical patent/WO2018024156A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/24Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to vehicle inclination or change of direction, e.g. negotiating bends
    • B60T8/241Lateral vehicle inclination

Definitions

  • the present invention relates to vehicle technology, and more particularly to a vehicle brake stability control method and system and a vehicle to which the method and system are applied.
  • ABS antilock brake system
  • ESP electronic stability program
  • a first object of the present invention is to provide a vehicle brake stability control method for avoiding activation of an anti-lock system of a vehicle by excessively increasing braking force when the vehicle is unstable during steering braking. Brake failure, improve the stability of the body.
  • a second object of the present invention is to provide a vehicle brake stability control system.
  • a vehicle brake stability control method includes the steps of: acquiring an actual yaw rate of a vehicle; calculating a target yaw rate of the vehicle; and calculating the target traverse a difference between the swing angular velocity and the actual yaw angular velocity and an absolute value of the difference; determining a braking state of the vehicle based on the absolute value, the braking state of the vehicle including braking stability and braking instability;
  • the type of brake instability of the vehicle is determined according to the difference, the type of brake instability includes oversteering and understeering; and calculating the slip ratio of the wheel; according to the braking of the vehicle
  • the type of instability and the slip ratio of the wheel control the increase in the braking force of one side wheel or the reduction of the braking force of the other side wheel.
  • the brake when the vehicle is unstable during the steering braking process, the brake can be prevented from being activated by excessively increasing the braking force to activate the anti-lock braking system of the vehicle, thereby greatly improving the vehicle body. stability.
  • an embodiment of the second aspect of the present invention provides a vehicle brake stability control system including: an actual yaw rate acquisition module, wherein the actual yaw rate acquisition module is configured to acquire an actual yaw of the vehicle An angular yaw rate calculation module, the target yaw rate calculation module is configured to calculate a target yaw rate of the vehicle; a calculation module, the calculation module is configured to calculate the target yaw rate and the actual yaw rate a difference value and an absolute value of the difference; a brake state determination module, wherein the brake state determination module is configured to determine a braking state of the vehicle according to the absolute value, and the braking state of the vehicle includes braking stability and system a dynamic instability; a brake instability type determination module, wherein the brake instability type determination module is configured to determine a brake instability type of the vehicle according to the difference when the braking state of the vehicle is brake instability
  • the brake instability type includes oversteer and understeer; a wheel information state acquisition module for calculating a
  • the brake when the vehicle is unstable during the steering braking process, the brake can be prevented from being activated by excessively increasing the braking force to activate the anti-lock braking system of the vehicle, thereby greatly improving the vehicle body. stability.
  • a third object of the present invention is to provide a non-transitory computer readable storage medium.
  • a non-transitory computer readable storage medium in accordance with an embodiment of the three aspects of the present invention, in which an executable program is stored, and when the program is executed, an embodiment according to the first aspect of the present invention is executed Vehicle braking stability control method.
  • a fourth object of the present invention is to provide a vehicle capable of achieving stable braking.
  • a vehicle according to an embodiment of the present invention provides a vehicle including a vehicle brake stability control system according to an embodiment of the second aspect of the present invention.
  • the brake when the instability occurs during the steering braking, the brake can be prevented from being activated by excessively increasing the braking force to activate the anti-lock braking system of the vehicle, thereby greatly improving the stability of the vehicle body.
  • FIG. 1 is a flow chart of a vehicle brake stability control method according to an embodiment of the present invention.
  • FIG. 2 is a flow chart showing a specific implementation process of a vehicle brake stability control method according to an embodiment of the present invention
  • FIG. 3 is a block diagram showing a vehicle brake stability control system of an embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a vehicle according to an embodiment of the present invention.
  • Figure 5 (a) is a schematic diagram of the understeer instability after the vehicle is turned to brake, F is the braking force, and f is the rolling resistance;
  • Figure 5 (b) is a schematic diagram of the force of excessive steering instability after the vehicle is turned to brake, F is the braking force, and f is the rolling resistance;
  • Figure 6 (a) is a schematic diagram of the force applied when the vehicle is understeer, increasing the braking force of the inner wheel, F is the braking force, F' is the increased braking force, and F" is the decreasing braking force;
  • Fig. 6(b) is a schematic diagram of the force applied when the vehicle is understeer, and the braking force of the outer wheel is reduced.
  • F is the braking Force
  • F' is the increased braking force
  • F" is the reduced braking force
  • Figure 7 (a) is a schematic diagram of the force applied when the vehicle is over-steered, increasing the braking force of the outer wheel, F' is the increased braking force, and F" is the reduced braking force;
  • Fig. 7(b) is a schematic diagram of the force applied when the vehicle's braking force is reduced after the vehicle oversteers, F' is the increased braking force, and F'' is the reduced braking force.
  • one side may be “outside” or “inside”
  • the other side refers to “inside” or “outside”.
  • the terms “outer wheel” and “inside wheel”, “outer wheel” refer to the right front and right rear wheels when turning left, the left front and left rear when turning right, and the “inside wheel”
  • the left steering refers to the left front wheel and the left rear wheel
  • in the right steering refers to the right front wheel and the right rear wheel.
  • the vehicle brake stability control method includes the steps of: acquiring an actual yaw rate of the vehicle; calculating a target yaw rate of the vehicle; calculating a difference between the target yaw rate and the actual yaw rate; The absolute value of the difference; determining the braking state of the vehicle according to the absolute value, the braking state of the vehicle includes braking stability and braking instability; when the braking state of the vehicle is braking instability, according to Determining the type of brake instability of the vehicle, the types of brake instability include oversteer and understeer; and calculating the slip rate of the wheel; controlling one side wheel according to the type of brake instability of the vehicle and the slip ratio of the wheel The increase in braking force or the reduction in braking force on the other side of the wheel.
  • the braking force is not excessively increased, and the brake can be prevented from being activated by excessively increasing the braking force to activate the anti-lock braking system of the vehicle, thereby greatly improving the vehicle body. Stability and safety.
  • the vehicle brake stability control method may include the following steps:
  • step S01 Obtain the actual yaw rate Y of the vehicle, and calculate the target yaw rate Y target of the vehicle, and then the absolute value of the difference between the target yaw rate Y target and the actual yaw rate Y and the given threshold K For comparison, determine whether the absolute value is greater than the threshold K. If the absolute value is not greater than the threshold K, determine that the vehicle is in a stable state. If the absolute value is greater than the threshold K, determine that the vehicle is in an unstable state, when the vehicle is in a stable state. In the state, step S04 is performed, and when the vehicle is in an unstable state, step S02 is performed.
  • the actual yaw rate Y is obtained by the yaw rate sensor of the vehicle.
  • step S02 It is judged whether the vehicle is in the braking state, and in the braking state, step S03 is performed, otherwise step S04 is performed.
  • steps S01 and S02 are to judge whether the vehicle is in braking and the brake is unstable, and the order of steps S01 and S02 can be exchanged without affecting the execution of the embodiment.
  • step S05 It is judged whether the brake stability control flag C is equal to 1, if yes, step S06 is performed, and if not, the next judgment is made.
  • S06 It is judged whether the brake instability of the vehicle is oversteer or understeer. Whether the vehicle is understeer or oversteer is determined by the difference between the target yaw rate Y target and the actual yaw rate Y. If the difference is less than zero, it is determined that the vehicle is oversteering; if the difference is greater than zero, it is determined that the vehicle is understeering. If the vehicle is oversteering, step S07 is performed, and the vehicle is understeer to perform step S11.
  • Figure 5 (a) is a schematic diagram of the under-steering instability
  • Figure 5 (b) is a schematic diagram of the steering over-stability.
  • step S07 It is determined whether the outer wheel slip ratio of the vehicle is lower than the optimal slip ratio Ku, and if yes, step S08 is performed. If not, the process proceeds to step S09.
  • the wheel speed Vwl is obtained by a wheel speed sensor.
  • Step S09 It is determined whether the vehicle inner wheel braking force is greater than 0. If yes, step S10 is performed, and if not, the control is ended and the next control is entered. Step S10: Lower the braking force of the inner wheel of the vehicle and enter the next control. After the vehicle oversteers, the force analysis of the wheel when the inner wheel braking force is lowered is shown in Fig. 7(b).
  • step S11 It is judged whether the vehicle inner wheel slip ratio is lower than the optimal slip ratio value Ku, and if so, the process proceeds to step S12. If not, the process proceeds to step S13.
  • step S12 Increasing the vehicle inner wheel braking force, and the process proceeds to step S13.
  • the force analysis of the wheel when the inner wheel braking force is increased is shown in Fig. 6(a).
  • step S13 determining whether the braking force of the outer wheel of the vehicle is greater than 0, if yes, proceeding to step S14, and if not, ending the control, Go to the next control.
  • the vehicle brake stability control method of the present invention does not blindly apply a braking force to one side wheel in order to ensure that the actual yaw rate is close to the target yaw rate, because the anti-lock braking system is activated, resulting in brake failure.
  • the braking force of the inner wheel when the vehicle is understeer, if the slip ratio of the inner wheel does not exceed the optimal slip ratio, the braking force of the inner wheel is increased, and if the slip ratio of the inner wheel exceeds the optimal slip ratio, The braking force of the outer wheel is reduced; when the vehicle is over-steered, if the slip ratio of the outer wheel does not exceed the optimal slip ratio, the braking force of the outer wheel is increased, and if the slip ratio of the outer wheel exceeds the optimal slip ratio, Then reduce the braking force of the inner wheel.
  • the embodiment of the present invention also proposes a non-transitory computer readable storage medium in which an executable program is stored, and when the program is executed, the vehicle brake stability control method according to the above embodiment is executed.
  • the present invention also proposes a vehicle brake stability control system.
  • the vehicle brake stability control system includes: a control module 10, a brake instability type determination module 20, a brake state determination module 30, a calculation module 40, and an actual yaw rate acquisition module. 50.
  • the actual yaw rate acquisition module 50 is configured to acquire the actual yaw rate of the vehicle;
  • the target yaw rate calculation module 60 is configured to calculate the target yaw rate of the vehicle; and the calculation module 40 is configured to calculate the target yaw rate and the actual yaw
  • the braking state determining module 30 is configured to determine whether the vehicle is in a braking stable state or a braking instability state according to the absolute value of the difference value calculated by the calculating module 40;
  • the determining module 20 is configured to determine, according to the difference calculated by the calculating module 40, whether the vehicle is understeer or oversteer;
  • the wheel information state acquiring module 70 is configured to calculate a slip ratio of the wheel;
  • the control module 10 is configured to use the braking instability type of the vehicle.
  • the slip ratio of the wheel controls the increase in the braking force of one side wheel or the reduction of the braking force of the
  • the braking state determining module 30 determines the braking state of the vehicle according to the absolute value, including: if the absolute value is less than the predetermined threshold, the braking state determining module 30 determines that the vehicle is in the braking stable state; The absolute value is greater than the predetermined threshold value, and the brake state determination module 30 determines that the vehicle is in a brake instability state.
  • the brake instability type determination module 20 determines the brake instability type of the vehicle according to the difference, including: if the difference is less than zero, the brake instability type determination module 20 determines that the vehicle is over-steered; if the difference is greater than zero Then, the brake instability type judging module 20 judges that the vehicle is understeering.
  • the control module 10 controls the increase of the braking force of one side wheel and the braking force of the wheel of the other side according to the type of brake instability of the vehicle and the slip ratio of the wheel, including: when the vehicle is understeer, if the inner wheel is The slip ratio does not exceed the optimal slip ratio, the control module 10 increases the braking force of the inner wheel, and if the slip ratio of the inner wheel exceeds the optimal slip ratio, the control module 10 reduces the braking force of the outer wheel; when the vehicle is oversteered If the slip ratio of the outer wheel does not exceed the optimal slip ratio, the control module 10 increases the braking force of the outer wheel, and if the slip ratio of the outer wheel exceeds the optimal slip ratio, the control module 10 lowers the braking force of the inner wheel.
  • the vehicle of the present invention is a wheel-side motor-driven vehicle, and each wheel 2 of the vehicle is correspondingly provided with a wheel-side motor 3.
  • the wheel motor 3 can individually control and drive each wheel 2, increasing the braking force or reducing the braking force in real time on the wheel 2.
  • the braking force can be controlled in a closed loop by PID control. PID closed-loop control can improve the braking force control accuracy of the vehicle.
  • the brake when the vehicle is unstable during the steering braking process, the brake can be prevented from being activated by excessively increasing the braking force to activate the anti-lock braking system of the vehicle, thereby greatly improving the vehicle body. stability.
  • the present invention also proposes a vehicle capable of achieving stable braking.
  • the vehicle includes the vehicle brake stability control system described in the above embodiments.
  • the brake when the instability occurs during the steering braking, the brake is disabled by activating the anti-lock braking system of the vehicle by excessively increasing the braking force, and the stability of the vehicle body is greatly improved.

Abstract

一种车辆制动稳定控制方法及系统,所述方法包括以下步骤:获取车辆的实际横摆角速度(Y);计算车辆的目标横摆角速度(Y 目标);计算所述目标横摆角速度(Y 目标)和所述实际横摆角速度(Y)的差值(ΔY)以及所述差值(ΔY)的绝对值;根据所述绝对值判断车辆的制动状态,车辆的制动状态包括制动稳定和制动失稳;当车辆的制动状态为制动失稳时,根据所述差值判断车辆的制动失稳类型,制动失稳类型包括转向过度和转向不足;以及计算车轮的滑移率(S);根据车辆的制动失稳类型和车轮的滑移率控制一侧车轮的制动力的增加或另一侧车轮制动力的减少。所述方法使车辆在转向制动过程中发生失稳时,可避免因过度增加制动力激活车辆的防抱死系统而使制动失效,大大提高了车身的稳定性。

Description

一种车辆制动稳定控制方法和系统以及车辆 技术领域
本发明涉及车辆技术,特别是涉及一种车辆制动稳定控制方法和系统以及应用该方法和系统的车辆。
背景技术
目前市场较为普及的车辆大多采用ABS(antilock brake system,制动防抱死系统)和ESP(electronic stability program,电子稳定程序)进行稳定控制。ABS的主要作用是车辆直行制动时,防止制动时车轮抱死,以及防止制动时产生的侧滑和甩尾等危险现象,缩短制动距离。ESP主要通过施加制动力控制横摆力矩的策略,使车辆不但在直线行驶时可保证稳定性,在转向过程中也可保持车身稳定性。
但是这种技术也有一定局限性,车辆转向过程中施加制动时,如果有车身失稳的情况,此时ESP功能虽被激活,由于其仅仅通过制动力控制横摆力矩,同时传统车辆制动力控制精度不高,当需要施加制动的一侧轮胎处于制动,并且处于最优滑移率时,此时ESP施加制动力则会与ABS功能相冲突。由于制动力的增加要考虑到ABS功能的限制,使得ESP通过增加制动力保持车身稳定的措施有时无法达到稳定控制的目的。
发明内容
本发明旨在至少在一定程度上解决现有技术中的上述技术问题之一。为此,本发明的第一个目的在于提出一种车辆制动稳定控制方法,以期在车辆在转向制动过程中发生失稳时,避免因过度增加制动力激活车辆的防抱死系统而使制动失效,提高车身的稳定性。
本发明的第二个目的在于提出一种车辆制动稳定控制系统。
为达到上述目的,根据本发明第一方面的实施例提出了一种车辆制动稳定控制方法,包括以下步骤:获取车辆的实际横摆角速度;计算车辆的目标横摆角速度;计算所述目标横摆角速度和所述实际横摆角速度的差值以及所述差值的绝对值;根据所述绝对值判断车辆的制动状态,车辆的制动状态包括制动稳定和制动失稳;当车辆的制动状态为制动失稳时,根据所述差值判断车辆的制动失稳类型,制动失稳类型包括转向过度和转向不足;以及计算车轮的滑移率;根据车辆的制动失稳类型和车轮的滑移率控制一侧车轮的制动力的增加或另一侧车轮制动力的减少。
根据本发明实施例的车辆制动稳定控制方法,车辆在转向制动过程中发生失稳时,可避免因过度增加制动力激活车辆的防抱死系统而使制动失效,大大提高了车身的稳定性。
为达到上述目的,本发明第二方面的实施例提出了一种车辆制动稳定控制系统,包括:实际横摆角速度获取模块,所述实际横摆角速度获取模块用于获取车辆的实际横摆 角速度;目标横摆角速度计算模块,所述目标横摆角速度计算模块用于计算车辆的目标横摆角速度;计算模块,所述计算模块用于计算所述目标横摆角速度和所述实际横摆角速度的差值以及所述差值的绝对值;制动状态判断模块,所述制动状态判断模块用于根据所述绝对值判断车辆的制动状态,车辆的制动状态包括制动稳定和制动失稳;制动失稳类型判断模块,所述制动失稳类型判断模块用于当车辆的制动状态为制动失稳时根据所述差值判断车辆的制动失稳类型,所述制动失稳类型包括转向过度和转向不足;车轮信息状态获取模块,所述车轮信息状态获取模块用于计算车轮的滑移率;以及控制模块,所述控制模块用于根据车辆的制动失稳类型和车轮的滑移率控制一侧车轮的制动力的增加或另一侧车轮制动力的减少。
根据本发明实施例的车辆制动稳定控制系统,车辆在转向制动过程中发生失稳时,可避免因过度增加制动力激活车辆的防抱死系统而使制动失效,大大提高了车身的稳定性。
本发明的第三个目的在于,提供一种非临时性计算机可读存储介质。
为达到上述目的,根据本发明三方面的实施例提出了一种非临时性计算机可读存储介质,其中存储有可执行程序,当所述程序被运行时,执行根据本发明第一方面实施例的车辆制动稳定控制方法。
本发明的第四个目的在于提供一种能够实现稳定制动的车辆。
为达到上述目的,根据本发明四方面的实施例提出了一种车辆,该车辆包括根据本发明第二方面实施例所述的车辆制动稳定控制系统。
根据本发明实施例的车辆,在转向制动过程中发生失稳时,可避免因过度增加制动力激活车辆的防抱死系统而使制动失效,大大提高了车身的稳定性。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是本发明的实施例的车辆制动稳定控制方法的流程图;
图2是本发明的实施例的车辆制动稳定控制方法的具体实现过程的流程图;
图3是本发明的实施例的车辆制动稳定控制系统的方框示意图;
图4是本发明的一个实施例的车辆的结构示意图;
图5(a)为车辆转向制动后,转向不足失稳受力示意图,F是制动力,f是滚动阻力;
图5(b)为车辆转向制动后,转向过度失稳受力示意图,F是制动力,f是滚动阻力;
图6(a)为车辆发生转向不足后,增加内侧车轮制动力时的受力示意图,F是制动力,F′是增加的制动力,F″是减少的制动力;
图6(b)为车辆发生转向不足后,降低外侧车轮制动力时的受力示意图,F是制动 力,F′是增加的制动力,F″是减少的制动力;
图7(a)为车辆发生转向过度后,增加外侧车轮制动力时的受力示意图,F′是增加的制动力,F″是减少的制动力;
图7(b)为车辆发生转向过度后,降低内侧车轮制动力时的受力示意图,F′是增加的制动力,F″是减少的制动力。
附图标记说明
1:轮速传感器
2:车轮
3:轮边电机
4:方向盘转角传感器
5:横摆角速率传感器
6:电子控制器
7:电机控制器
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明中,术语“一侧”可以是“外侧”或“内侧”,而“另一侧”对应地指“内侧”或“外侧”。术语“外侧车轮”和“内侧车轮”,“外侧车轮”在左转向时指的是右前轮和右后轮,在右转向时指的是左前轮和左后轮,“内侧车轮”在左转向时指的是左前轮和左后轮,在右转向时指的是右前轮和右后轮。
图1是本发明的实施例的车辆制动稳定控制方法的流程图。如图1所示,车辆制动稳定控制方法包括以下步骤:获取车辆的实际横摆角速度;计算车辆的目标横摆角速度;计算所述目标横摆角速度和所述实际横摆角速度的差值以及所述差值的绝对值;根据所述绝对值判断车辆的制动状态,车辆的制动状态包括制动稳定和制动失稳;当车辆的制动状态为制动失稳时,根据所述差值判断车辆的制动失稳类型,制动失稳类型包括转向过度和转向不足;以及计算车轮的滑移率;根据车辆的制动失稳类型和车轮的滑移率控制一侧车轮的制动力的增加或另一侧车轮制动力的减少。
应用本发明的控制方法,车辆在转向制动过程中发生失稳时,无须过度增加制动力,可避免因过度增加制动力激活车辆的防抱死系统而使制动失效,大大提高了车身的稳定性和安全性。
在本发明的一个具体实施例中,如图2所示,车辆制动稳定控制方法可以包括以下步骤:
S01:获得车辆的实际横摆角速度Y,并计算车辆的目标横摆角速度Y目标,然后将目标横摆角速度Y目标与实际横摆角速度Y的差值的绝对值与给定的门限值K作比较, 判断绝对值是否大于门限值K,若绝对值不大于门限值K,则判断车辆处于稳定状态,若绝对值大于门限值K,判断车辆处于失稳状态,当车辆处于稳定状态时,执行步骤S04,当车辆处于失稳状态时执行步骤S02。
目标横摆角速度Y目标根据以下公式确定:Y目标=W*V/L*(1+M*V*V),其中Y目标为目标横摆角速度,W为方向盘转角,V为车速,L为前后轴距,M为标定值,M可为根据车速以及实车试验进行标定的方向盘转角,W通过方向盘转角传感器获得。实际横摆角速度Y通过车辆的横摆角速率传感器获得。目标横摆角速度Y目标与实际横摆角速度Y的差值ΔY=Y目标-Y。
S02:判断车辆是否处于制动状态,处于制动状态则执行步骤S03,否则执行步骤S04。
显然,步骤S01和S02的目的是为了判断车辆是否处于制动且制动失稳,步骤S01和S02的顺序可以交换,而不会影响本实施例的施行。
S03:将制动稳定性控制标志C置1,C=1意味着车辆正在进行制动,且处于制动失稳状态,需要进行制动稳定性控制。
S04:将制动稳定性控制标志C置0,C=0意味着车辆并未处于制动失稳状态,不需要进行制动稳定性控制。
S05:判断制动稳定性控制标志C是否等于1,若是,执行步骤S06,若否,进入下一次判断。
S06:判断车辆的制动失稳是转向过度还是转向不足。通过目标横摆角速度Y目标与实际横摆角速度Y的差值判断车辆转向不足还是转向过度,如果差值小于零,则判断出车辆转向过度;如果差值大于零,则判断出车辆转向不足。车辆转向过度则执行步骤S07,车辆转向不足执行步骤S11。图5(a)为转向不足失稳受力示意图,图5(b)为转向过度失稳受力示意图。
S07:判断车辆外侧车轮滑移率是否低于最优滑移率值Ku,若是,执行步骤S08。若否,进入步骤S09。车轮滑移率S根据以下公式确定:S=(V-Vwl)/V*100%,S为车轮滑移率,V为车速,Vwl为轮速。轮速Vwl通过轮速传感器获得。
S08:增加车辆外侧车轮制动力,并进入下一次控制。车辆发生转向过度后,增加外侧车轮制动力时的车轮的受力分析如图7(a)所示。
S09:判断车辆内侧车轮制动力是否大于0,若是,执行步骤S10,若否,结束控制,进入下一次控制。步骤S10:降低车辆内侧车轮制动力,并进入下一次控制。车辆发生转向过度后,降低内侧车轮制动力时的车轮的受力分析如图7(b)所示。
S11:判断车辆内侧车轮滑移率是否低于最优滑移率值Ku,若是,进入步骤S12。若否,进入步骤S13。
S12:增加车辆内侧车轮制动力,进入步骤S13。车辆发生转向不足后,增加内侧车轮制动力时的车轮的受力分析如图6(a)所示。
S13:判断车辆外侧车轮制动力是否大于0,若是,进入步骤S14,若否,结束控制, 进入下一次控制。
S14:降低车辆外侧车轮制动力,并进入下一次控制。车辆发生转向不足后,降低外侧车轮制动力时的车轮的受力分析如图6(b)所示。
本发明的车辆制动稳定控制方法没有为了保证实际横摆角速度与目标横摆角速度接近,而盲目地对一侧车轮施加制动力,因为那样会激活防抱死系统,导致制动失效。根据本发明的方法,当车辆转向不足时,内侧车轮的滑移率若未超过最优滑移率,则增加内侧车轮的制动力,内侧车轮的滑移率若超过最优滑移率,则降低外侧车轮的制动力;当车辆转向过度时,外侧车轮的滑移率若未超过最优滑移率,则增加外侧车轮的制动力,外侧车轮的滑移率若超过最优滑移率,则降低内侧车轮的制动力。
本发明的实施例还提出了一种非临时性计算机可读存储介质,其中存储有可执行程序,当所述程序被运行时,执行根据上述实施例的车辆制动稳定控制方法。
为实现上述实施例的车辆制动稳定控制方法,本发明还提出一种车辆制动稳定控制系统。
如图3所示,本发明实施例的车辆制动稳定控制系统,包括:控制模块10、制动失稳类型判断模块20、制动状态判断模块30、计算模块40、实际横摆角速度获取模块50、目标横摆角速度计算模块60以及车轮状态信息获取模块70。
其中,实际横摆角速度获取模块50用于获取车辆的实际横摆角速度;目标横摆角速度计算模块60用于计算车辆的目标横摆角速度;计算模块40用于计算目标横摆角速度和实际横摆角速度的差值以及差值的绝对值;制动状态判断模块30用于根据计算模块40计算的差值的绝对值判断车辆是处于制动稳定状态还是制动失稳状态;制动失稳类型判断模块20用于根据计算模块40计算的差值判断车辆是转向不足还是转向过度;车轮信息状态获取模块70用于计算车轮的滑移率;控制模块10用于根据车辆的制动失稳类型和车轮的滑移率控制一侧车轮的制动力的增加或另一侧车轮制动力的减少。
具体地,制动状态判断模块30根据绝对值判断车辆的制动状态,包括:如果所述绝对值小于预定的门限值,制动状态判断模块30则判断车辆处于制动稳定状态;如果所述绝对值大于所述预定的门限值,制动状态判断模块30则判断车辆处于制动失稳状态。
具体地,制动失稳类型判断模块20根据差值判断车辆的制动失稳类型,包括:如果差值小于零,则制动失稳类型判断模块20判断车辆转向过度;如果差值大于零,则制动失稳类型判断模块20判断车辆转向不足。
具体地,控制模块10根据车辆的制动失稳类型和车轮的滑移率控制一侧车轮制动力的增加和另一侧车轮制动力的减少,包括:当车辆转向不足时,若内侧车轮的滑移率未超过最优滑移率,控制模块10增加内侧车轮的制动力,若内侧车轮的滑移率超过最优滑移率,控制模块10降低外侧车轮的制动力;当车辆转向过度时,若外侧车轮的滑移率未超过最优滑移率,控制模块10增加外侧车轮的制动力,若外侧车轮的滑移率超过最优滑移率,控制模块10降低内侧车轮的制动力。
优选地,如图4所示,本发明车辆为轮边电机驱动的车辆,车辆的每个车轮2对应设置一个轮边电机3。轮边电机3能对每个车轮2进行单独的控制和驱动,对车轮2实时增加制动力或减少制动力。另外,制动力的大小可通过PID控制方式闭环控制。PID闭环控制可提高车辆制动力控制精度。
根据本发明实施例的车辆制动稳定控制系统,车辆在转向制动过程中发生失稳时,能避免因过度增加制动力激活车辆的防抱死系统而使制动失效,大大提高了车身的稳定性。
本发明还提出了一种能够实现稳定制动的车辆。该车辆包括上述实施例所述的车辆制动稳定控制系统。
根据本发明实施例的车辆,在转向制动过程中发生失稳时,避免了因过度增加制动力激活车辆的防抱死系统而使制动失效,大大提高了车身的稳定性。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型,在不相互矛盾的情况下将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。

Claims (15)

  1. 一种车辆制动稳定控制方法,其特征在于,包括以下步骤:
    获取车辆的实际横摆角速度;
    计算车辆的目标横摆角速度;
    计算所述目标横摆角速度和所述实际横摆角速度的差值以及所述差值的绝对值;
    根据所述绝对值判断车辆的制动状态,车辆的制动状态包括制动稳定和制动失稳;
    当车辆的制动状态为制动失稳时,根据所述差值判断车辆的制动失稳类型,制动失稳类型包括转向过度和转向不足;以及
    计算车轮的滑移率;
    根据车辆的制动失稳类型和车轮的滑移率控制一侧车轮的制动力的增加或另一侧车轮制动力的减少。
  2. 如权利要求1所述的车辆制动稳定控制方法,其特征在于,根据所述绝对值判断车辆的制动状态,具体包括:如果所述绝对值小于预定的门限值,则判断车辆处于制动稳定状态;如果所述绝对值大于所述预定的门限值,则判断车辆处于制动失稳状态。
  3. 如权利要求1或2所述的车辆制动稳定控制方法,其特征在于,根据所述差值判断车辆的制动失稳类型,具体包括:如果所述差值小于零,则判断车辆转向过度;如果所述差值大于零,则判断车辆转向不足。
  4. 如权利要求1-3中任意一项所述的车辆制动稳定控制方法,其特征在于,根据车辆的制动失稳类型和车轮的滑移率控制一侧车轮的制动力的增加或另一侧车轮制动力的减少,具体包括:当车辆转向不足时,若内侧车轮的滑移率未超过最优滑移率,则增加内侧车轮的制动力;若内侧车轮的滑移率超过最优滑移率,则降低外侧车轮的制动力。
  5. 如权利要求1-3中任意一项所述的车辆制动稳定控制方法,其特征在于,根据车辆的制动失稳类型和车轮的滑移率控制一侧车轮的制动力的增加或另一侧车轮制动力的减少,具体包括:当车辆转向过度时,若外侧车轮的滑移率未超过最优滑移率,则优先增加外侧车轮的制动力;若外侧车轮的滑移率超过最优滑移率,则降低内侧车轮的制动力。
  6. 如权利要求1-5中任意一项所述的车辆制动稳定控制方法,其特征在于,目标横摆角速度根据以下公式确定:Y目标=W*V/L*(1+M*V*V),其中Y目标为目标横摆角速度,W为方向盘转角,V为车速,L为前后轴距,M为标定值。
  7. 如权利要求1-6中任意一项所述的车辆制动稳定控制方法,其特征在于,车轮的滑移率S根据以下公式确定:S=(V-Vwl)/V*100%,其中,S为车轮的滑移率,V为车速,Vwl为轮速。
  8. 一种车辆制动稳定控制系统,其特征在于,包括:
    实际横摆角速度获取模块,所述实际横摆角速度获取模块用于获取车辆的实际横摆角速度;
    目标横摆角速度计算模块,所述目标横摆角速度计算模块用于计算车辆的目标横摆角速度;
    计算模块,所述计算模块用于计算所述目标横摆角速度和所述实际横摆角速度的差值以及所述差值的绝对值;
    制动状态判断模块,所述制动状态判断模块用于根据所述绝对值判断车辆的制动状态,车辆的制动状态包括制动稳定和制动失稳;
    制动失稳类型判断模块,所述制动失稳类型判断模块用于当车辆的制动状态为制动失稳时根据所述差值判断车辆的制动失稳类型,所述制动失稳类型包括转向过度和转向不足;
    车轮信息状态获取模块,所述车轮信息状态获取模块用于计算车轮的滑移率;以及
    控制模块,所述控制模块用于根据车辆的制动失稳类型和车轮的滑移率控制一侧车轮的制动力的增加或另一侧车轮制动力的减少。
  9. 如权利要求8所述的车辆制动稳定控制系统,其特征在于,所述制动状态判断模块还用于:如果所述绝对值小于预定的门限值,判断车辆处于制动稳定状态;如果所述绝对值大于所述预定的门限值,判断车辆处于制动失稳状态。
  10. 如权利要求8或9所述的车辆制动稳定控制系统,其特征在于,所述制动失稳类型判断模块还用于:如果所述差值小于零,判断车辆转向过度;如果所述差值大于零,判断车辆转向不足。
  11. 如权利要求8-10中任意一项所述的车辆制动稳定控制系统,其特征在于,所述控制模块还用于:当车辆转向不足时,若内侧车轮的滑移率未超过最优滑移率,所述控制模块增加内侧车轮的制动力;若内侧车轮的滑移率超过最优滑移率,所述控制模块降低外侧车轮的制动力。
  12. 如权利要求8-10中任意一项所述的车辆制动稳定控制系统,其特征在于,所述控制模块还用于:当车辆转向过度时,若外侧车轮的滑移率未超过最优滑移率,所述 控制模块增加外侧车轮的制动力;若外侧车轮的滑移率超过最优滑移率,所述控制模块降低内侧车轮的制动力。
  13. 如权利要求8-12中任意一项所述的车辆制动稳定控制系统,其特征在于,所述车辆为轮边电机驱动的车辆,所述车辆的每个车轮对应设置一个轮边电机。
  14. 一种非临时性计算机可读存储介质,其中存储有可执行程序,其特征在于,当所述程序被运行时,执行权利要求1-7中任意一项所述的方法。
  15. 一种车辆,其特征在于,包括权利要求8-13中任意一项所述的车辆稳定控制系统。
PCT/CN2017/094739 2016-07-30 2017-07-27 一种车辆制动稳定控制方法和系统以及车辆 WO2018024156A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610611508.4A CN107662595B (zh) 2016-07-30 2016-07-30 一种车辆制动稳定控制方法及系统
CN201610611508.4 2016-07-30

Publications (1)

Publication Number Publication Date
WO2018024156A1 true WO2018024156A1 (zh) 2018-02-08

Family

ID=61072600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/094739 WO2018024156A1 (zh) 2016-07-30 2017-07-27 一种车辆制动稳定控制方法和系统以及车辆

Country Status (2)

Country Link
CN (1) CN107662595B (zh)
WO (1) WO2018024156A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113561789A (zh) * 2020-04-28 2021-10-29 北京新能源汽车股份有限公司 一种分布式驱动型电动汽车的控制方法、装置及电动汽车

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109080607B (zh) * 2018-06-05 2020-12-25 东南大学 一种干燥路面无人驾驶车辆紧急制动时的制动力控制方法
CN110040124B (zh) * 2019-04-24 2020-04-17 中通客车控股股份有限公司 一种车辆紧急制动控制方法及系统
CN110254420B (zh) * 2019-06-27 2020-09-18 清华大学苏州汽车研究院(吴江) 一种四轮驱动电动汽车转向稳定控制方法
CN111645665B (zh) * 2019-09-20 2021-10-01 摩登汽车有限公司 用于车辆的驱动扭矩控制方法、系统及汽车
CN111169461B (zh) * 2020-01-10 2022-01-18 宁波吉利汽车研究开发有限公司 一种防滑控制方法及系统
CN113561950B (zh) * 2020-04-28 2024-04-19 北京新能源汽车股份有限公司 分布式驱动电动汽车的稳定性控制方法、装置及电动汽车
CN111645653B (zh) * 2020-05-12 2021-08-31 摩登汽车(盐城)有限公司 车辆侧风偏离的矫正方法和系统
CN113704132A (zh) * 2021-09-08 2021-11-26 中汽创智科技有限公司 一种车辆功能系统的测试方法、装置、设备及介质
CN113911204B (zh) * 2021-10-22 2023-04-21 岚图汽车科技有限公司 一种转向系统失效备份的方法及系统
CN114771643A (zh) * 2022-04-11 2022-07-22 中国第一汽车股份有限公司 在车辆转向助力不足时利用电控制动系统进行转向的方法
CN115891977B (zh) * 2023-02-22 2023-05-23 北京易控智驾科技有限公司 无人驾驶矿用车辆转向不足的控制方法、装置、电子设备及存储介质
CN116653897A (zh) * 2023-07-26 2023-08-29 小米汽车科技有限公司 线控制动系统、制动控制方法、装置和车辆

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040098186A1 (en) * 2002-11-12 2004-05-20 Advics Co., Ltd. Vehicle lateral movement stabilizing device
JP2009184504A (ja) * 2008-02-06 2009-08-20 Mitsubishi Electric Corp 車両制御装置
CN104395158A (zh) * 2012-06-21 2015-03-04 伊顿公司 预测性车辆稳定性控制方法
CN104773170A (zh) * 2015-04-28 2015-07-15 吉林大学 一种车辆稳定性集成控制方法
CN105045102A (zh) * 2015-06-30 2015-11-11 吉林大学 一种车辆侧向稳定非线性集成控制方法
CN105416276A (zh) * 2015-12-14 2016-03-23 长春工业大学 基于高阶滑模的电动汽车稳定性直接横摆力矩控制方法
CN105752059A (zh) * 2016-03-24 2016-07-13 江苏彤明高科汽车电器有限公司 一种车辆稳定性控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3413996B2 (ja) * 1994-10-31 2003-06-09 日産自動車株式会社 ヨーイング運動量制御装置を備えた車両のアンチスキッド制御装置
CN101323300A (zh) * 2008-06-25 2008-12-17 吉林大学 提高车辆转弯制动侧向稳定性的增强型汽车abs系统
DE102012020908A1 (de) * 2012-10-24 2014-05-08 Audi Ag Verfahren und System zum Betreiben eines Antriebsstrangs eines Kraftwagens

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040098186A1 (en) * 2002-11-12 2004-05-20 Advics Co., Ltd. Vehicle lateral movement stabilizing device
JP2009184504A (ja) * 2008-02-06 2009-08-20 Mitsubishi Electric Corp 車両制御装置
CN104395158A (zh) * 2012-06-21 2015-03-04 伊顿公司 预测性车辆稳定性控制方法
CN104773170A (zh) * 2015-04-28 2015-07-15 吉林大学 一种车辆稳定性集成控制方法
CN105045102A (zh) * 2015-06-30 2015-11-11 吉林大学 一种车辆侧向稳定非线性集成控制方法
CN105416276A (zh) * 2015-12-14 2016-03-23 长春工业大学 基于高阶滑模的电动汽车稳定性直接横摆力矩控制方法
CN105752059A (zh) * 2016-03-24 2016-07-13 江苏彤明高科汽车电器有限公司 一种车辆稳定性控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113561789A (zh) * 2020-04-28 2021-10-29 北京新能源汽车股份有限公司 一种分布式驱动型电动汽车的控制方法、装置及电动汽车

Also Published As

Publication number Publication date
CN107662595A (zh) 2018-02-06
CN107662595B (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
WO2018024156A1 (zh) 一种车辆制动稳定控制方法和系统以及车辆
JP4942296B2 (ja) 車両の安定性を高める方法
KR102429180B1 (ko) 차량 자세 제어 장치 및 방법
JP3577372B2 (ja) 制動力制御装置
US10889274B2 (en) Method and device for electronic control of a vehicle deceleration of a brake slip-controlled vehicle
JP2005271822A (ja) 車両の自動減速制御装置
US10471939B2 (en) Braking control apparatus for vehicle
US8825334B2 (en) Vehicle behavior control apparatus and vehicle behavior control method
JP2002087310A (ja) 横方向力の測定に基づいた車両軌道へのアクション
JP6705778B2 (ja) 車両用挙動制御装置
CN104973053B (zh) 用于车辆的电子稳定控制装置及其方法
JP6270096B2 (ja) ブレーキ制御装置
US8442736B2 (en) System for enhancing cornering performance of a vehicle controlled by a safety system
JP3705077B2 (ja) 車輌の運動制御装置
KR20190069431A (ko) 회생 및 마찰 제동 혼합을 위한 측방향 동적 제어
JP5447447B2 (ja) 車両用制動力制御装置
JP5588242B2 (ja) 車両の制動力制御装置
US11225233B2 (en) Braking control apparatus for a combination vehicle
US11208144B2 (en) Vehicle behavior stabilization system
JP2004155303A (ja) 車輌用制動力制御装置
JP2015150953A (ja) 車両運動制御装置
JP2005193847A (ja) 車輌の挙動制御装置
KR101555343B1 (ko) 도로의 곡률반경 산출방법
JP5333802B2 (ja) 操舵力制御装置
JPH08244588A (ja) 車両の安定制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17836338

Country of ref document: EP

Kind code of ref document: A1