WO2018021428A1 - 研磨パッドおよびそれを用いた研磨方法 - Google Patents

研磨パッドおよびそれを用いた研磨方法 Download PDF

Info

Publication number
WO2018021428A1
WO2018021428A1 PCT/JP2017/027095 JP2017027095W WO2018021428A1 WO 2018021428 A1 WO2018021428 A1 WO 2018021428A1 JP 2017027095 W JP2017027095 W JP 2017027095W WO 2018021428 A1 WO2018021428 A1 WO 2018021428A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
polishing pad
tertiary amine
polyurethane
thermoplastic polyurethane
Prior art date
Application number
PCT/JP2017/027095
Other languages
English (en)
French (fr)
Inventor
穣 竹越
加藤 充
知大 岡本
晋哉 加藤
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to KR1020197000891A priority Critical patent/KR102170859B1/ko
Priority to EP17834430.5A priority patent/EP3493244B1/en
Priority to US16/311,518 priority patent/US11154960B2/en
Priority to JP2018530366A priority patent/JP6619100B2/ja
Priority to CN201780043880.2A priority patent/CN109478507B/zh
Publication of WO2018021428A1 publication Critical patent/WO2018021428A1/ja
Priority to IL263480A priority patent/IL263480B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]

Definitions

  • the present invention relates to a polishing pad and a polishing method using the same. Specifically, the present invention relates to a polishing pad preferably used for chemical mechanical polishing (CMP) and a polishing method using the same.
  • CMP chemical mechanical polishing
  • CMP As a polishing method used in a step of mirror-finishing a semiconductor wafer or a step of planarizing the surface of an object to be polished having an insulating film such as an oxide film or a conductor film when forming a circuit on a semiconductor substrate, CMP is used.
  • CMP is a method in which a polishing surface of an object to be polished is precisely polished with a polishing surface of a polishing pad while supplying a polishing slurry containing abrasive grains and a reaction liquid (hereinafter also simply referred to as a slurry) to the surface of the object to be polished. is there.
  • a polishing pad for CMP a polishing pad mainly composed of a polymer foam having a closed cell structure is known.
  • a polishing pad mainly composed of a polymer foam has a higher rigidity than a non-woven polishing pad, and therefore has excellent planarization performance.
  • a polishing pad mainly composed of a polymer foam a polishing pad made of a foamed polyurethane molded product obtained by casting and foaming a two-component curable polyurethane is widely used.
  • the foamed polyurethane molded body is preferably used as a material for the polishing pad because of its excellent wear resistance.
  • CMP is required to have higher planarization performance and improved productivity.
  • Patent Document 1 discloses a time required for a preparation process (break-in) in which a polishing pad surface is attached by a dressing process in an initial stage of use in which the polishing pad is attached to a polishing apparatus and the polishing apparatus is started up.
  • a polishing pad that shortens the length is disclosed.
  • a polishing pad having a polishing surface pressed against an object to be polished and having a waviness of the polishing surface having a period of 5 mm to 200 mm and a maximum amplitude of 40 ⁇ m or less is disclosed.
  • Patent Document 1 when the zeta potential of the polishing surface of the polishing pad is ⁇ 50 mV or more and less than 0 mv, the repulsion of the slurry against the negative polishing particles with respect to the polishing surface is suppressed, so that It is disclosed that the familiarity between the polished surface and the slurry becomes good and the break-in time is shortened.
  • Patent Document 2 listed below reduces the generation of scratches and defects on the surface of the object to be polished by suppressing the adhesion of polishing debris to the surface of the polishing pad, improves the product yield, and has a high leveling performance.
  • a polishing pad that provides a moderate polishing rate. Specifically, a polishing pad is disclosed in which the zeta potential of the polishing surface facing the object to be polished is less than ⁇ 55 mV and ⁇ 100 mv or more.
  • Patent Document 3 discloses a polishing pad used for polishing by being fixed to a surface plate and capable of polishing without causing a defect in an insulating layer at a low load in CMP.
  • at least a part of the surface of the polishing pad in contact with the object to be polished has a tensile elastic modulus at room temperature of 0.2 GPa or more and the pH of the abrasive supplied between the object to be polished and the polishing pad.
  • a polishing pad that has a positive zeta potential when performing CMP using an acidic abrasive having a pH of 3-5.
  • Polishing slurries used in CMP include acidic polishing slurries and alkaline polishing slurries. Either one is selected according to the purpose of polishing, or acidic polishing slurries and alkaline polishing slurries are used when performing a multi-step polishing process.
  • the slurry is used in combination. According to the polishing pad having a positive zeta potential when an acidic polishing slurry having a pH of 3 to 5 as disclosed in Patent Document 3 is used, the zeta potential is +0. It can be kept positive such that it is 1 mV or more, and the effect by it can be expressed.
  • An object of the present invention is to provide a polishing pad capable of maintaining a high polishing rate even when CMP is performed using an alkaline polishing slurry, and a polishing method using the same.
  • One aspect of the present invention is a polishing pad having a polishing surface whose zeta potential at pH 10.0 is +0.1 mV or more. According to such a polishing pad, a high polishing rate and excellent polishing uniformity can be realized even when CMP is performed using not only an acidic polishing slurry but also an alkaline polishing slurry.
  • the polishing pad contains a polyurethane having a tertiary amine from the viewpoint that the tertiary amine is cationized to make the zeta potential positive when an alkaline slurry is used.
  • the polyurethane having a tertiary amine include a polyurethane which is a reaction product of a reaction raw material containing at least a chain extender having a tertiary amine, a polymer polyol, and an organic polyisocyanate.
  • Such a polishing pad is preferable because the zeta potential at pH 10.0 tends to be +0.1 mV or more.
  • chain extenders having tertiary amines 2,2'-methyliminodiethanol, 2,2'-ethyliminodiethanol, 2,2'-n-butyliminodiethanol, 2,2'-t-butyliminodiethanol , 3- (dimethylamino) -1,2-propanediol, 3- (diethylamino) -1,2-propanediol, and the like.
  • the polyurethane reaction raw material contains 0.5 to 30% by mass of a chain extender having a tertiary amine because the zeta potential at pH 10.0 tends to be +0.1 mV or more.
  • the polyurethane reaction raw material further includes a chain extender having no tertiary amine, and the chain extender having a tertiary amine with respect to the total amount of the chain extender having a tertiary amine and the chain extender having no tertiary amine.
  • the content is preferably 5 to 95 mol%.
  • the polyurethane having a tertiary amine is a thermoplastic polyurethane which is a reaction product of a polyurethane reaction raw material containing at least a chain extender having a tertiary amine, a high molecular diol, and an organic diisocyanate. It is preferable that the diol contains polyethylene glycol in an amount of 30 to 100% by mass because the productivity is excellent and a high polishing rate and an excellent polishing uniformity can be easily achieved by obtaining a high hardness.
  • the number average molecular weight of the polymer diol is 450 to 3000, and even if the zeta potential at pH 10.0 is adjusted to be +0.1 mV or more, required characteristics such as hydrophilicity can be satisfied. It is preferable from the point.
  • the nitrogen content derived from the isocyanate group of the organic diisocyanate is preferably 4.5 to 7.6% by mass from the viewpoint of realizing a higher polishing rate and polishing uniformity.
  • the polishing uniformity and the polishing stability are improved. Also excellent.
  • the polishing pad is a non-foamed material because the polishing characteristics hardly change and stable polishing can be realized.
  • Another aspect of the present invention includes a step of fixing any of the above polishing pads on a surface plate of a polishing apparatus, and holding an object to be polished in a holder of the polishing apparatus so as to face the polishing surface of the polishing pad And a step of polishing the object to be polished by relatively sliding the polishing pad and the object to be polished while supplying an alkaline polishing slurry between the polishing surface and the object to be polished. Polishing method. According to such a method, a high polishing rate and polishing uniformity can be maintained even when CMP is performed using an alkaline polishing slurry.
  • polishing pad of the present invention a high polishing rate can be realized even when CMP is performed using an alkaline polishing slurry.
  • FIG. 1 is an explanatory diagram illustrating a polishing method using the polishing pad of the embodiment.
  • the polishing pad of this embodiment is a polishing pad having a polishing surface with a zeta potential of +0.1 mV or more at pH 10.0.
  • the zeta potential is a potential generated on the surface of the electric double layer (sliding surface) by the counter ion according to the surface charge of the material when the material is in contact with the liquid.
  • the zeta potential of the polishing surface of the polishing pad is, for example, 10 mM NaCl adjusted to pH 10.0 with an aqueous NaOH solution using an electrophoretic light scattering device (ELS-Z, manufactured by Otsuka Electronics Co., Ltd.). It can be measured using monitor latex (manufactured by Otsuka Electronics Co., Ltd.) dispersed in an aqueous solution.
  • the zeta potential at pH 10.0 is +0.1 mV or more, preferably +0.1 to +30 mV, more preferably +1.0 to +27 mV, and particularly preferably +3.0 to It has a polished surface of +24 mV, most preferably +5.0 to +21 mV.
  • the zeta potential at pH 10.0 of the polishing surface of the polishing pad is less than +0.1 mV, the polishing slurry and the polishing surface are electrically repelled, and the polishing rate is low.
  • the zeta potential at pH 10.0 of the polishing surface is too high, the amount of polishing slurry held on the polishing surface becomes too large and scratches tend to occur on the surface to be polished of the object to be polished.
  • the polishing pad of this embodiment has a zeta potential at a pH of 4.0 of +0.1 mV or more, further +0.1 to +40 mV, particularly +6.0 to +30 mV, and more specifically +10.0 to +30 mV. It is preferable to have a surface because a polishing pad having a polishing surface with a zeta potential of +0.1 mV or more at pH 10.0 as described above can be easily obtained.
  • the material used for manufacturing the polishing pad of this embodiment is not particularly limited as long as a polishing pad having a polishing surface with a zeta potential of +0.1 mV or more at pH 10.0 is obtained.
  • Specific examples thereof include, for example, polyurethanes, polyolefins such as polyethylene and polypropylene, polyesters, polyamides, polyureas, polytetrafluoroethylenes, melamine resins, neoprene (registered trademark), polymer materials such as silicone rubber and fluororubber. And having a surface with a zeta potential of +0.1 mV or higher at pH 10.0.
  • thermoplastic polyurethane As for the types of polymer materials, polyurethanes such as thermoplastic polyurethane and thermosetting polyurethane are excellent in abrasion resistance. Especially, thermoplastic polyurethane achieves a high polishing rate and excellent polishing uniformity due to its high hardness. It is preferable from the point of being easy.
  • the polymer material preferably has a storage elastic modulus at 50 ° C. of 50 to 1200 MPa, further 100 to 1100 MPa, particularly 200 to 1000 MPa after saturated swelling with water at 50 ° C.
  • a storage elastic modulus at 50 ° C. after saturation swelling of the polymer material with water at 50 ° C. is too low, the polishing pad becomes too soft and the polishing rate decreases, and when it is too high, the polishing object is covered. There is a tendency that scratches are likely to occur on the polished surface.
  • the polymer material preferably has a contact angle with water of 80 degrees or less, more preferably 78 degrees or less, particularly 76 degrees or less, particularly 74 degrees or less. If the contact angle of the polymer material with water is too large, the hydrophilicity of the polishing surface of the polishing pad tends to decrease, and scratches tend to occur.
  • the polymer material may be a foam or a non-foam, but a non-foam is particularly preferred from the standpoint that the polishing characteristics do not vary and stable polishing can be realized.
  • polishing characteristics such as flatness and planarization efficiency are likely to fluctuate due to variations in the foam structure.
  • polishing characteristics such as flatness and planarization efficiency are likely to fluctuate due to variations in the foam structure.
  • a polyurethane having a tertiary amine is obtained as a polymer material that can obtain a polishing pad having a polishing surface with a zeta potential of +0.1 mV or more at pH 10.0 and that can achieve the above-mentioned preferable characteristics. This will be described in detail as a representative example.
  • the polyurethane having a tertiary amine used for manufacturing the polishing pad of the present embodiment is, for example, a reaction product of a polyurethane reaction raw material containing at least a chain extender having a tertiary amine, a polymer polyol, and an organic polyisocyanate. is there.
  • the thermoplastic polyurethane having a tertiary amine is a reaction product obtained by polymerizing a polyurethane reaction raw material containing at least a chain extender having a tertiary amine, a high molecular diol, and an organic diisocyanate.
  • the polyurethane reaction raw material may contain a chain extender which does not have a tertiary amine, if necessary.
  • a thermoplastic polyurethane having a tertiary amine can form a surface having a zeta potential of +0.1 mV or more at a pH of 10.0, and storage modulus at 50 ° C. after saturated swelling with water at 50 ° C. as described above. It is particularly preferable from the viewpoint of easily giving a contact angle to water.
  • chain extender having a tertiary amine examples include, for example, 2,2′-methyliminodiethanol, 2,2′-ethyliminodiethanol, 2,2′-n-butyliminodiethanol, 2,2′- Examples thereof include t-butyliminodiethanol, 3- (dimethylamino) -1,2-propanediol, 3- (diethylamino) -1,2-propanediol. These may be used alone or in combination of two or more. Among these, 2,2'-ethyliminodiethanol is preferable because a polishing pad having a polishing surface with a zeta potential of +0.1 mV or more at pH 10.0 can be produced with good economic efficiency.
  • the content of the chain extender having a tertiary amine in the polyurethane reaction raw material is preferably 0.1 to 30% by mass, more preferably 0.5 to 28% by mass, and particularly preferably 1 to 26% by mass.
  • the zeta potential at pH 10.0 on the polished surface tends to be less than +0.1 mV and the polishing rate tends to decrease.
  • the polyurethane reaction raw material further includes a chain extender having no tertiary amine
  • the proportion (mol%) of the agent is preferably 5 to 95 mol%, more preferably 10 to 90 mol%.
  • chain extender having no tertiary amine a molecular weight of 300 or less having two or more active hydrogen atoms in the molecule which does not have a tertiary amine and is capable of reacting with an isocyanate group, which is conventionally used in the production of polyurethane. These are low molecular compounds.
  • ethylene glycol diethylene glycol, 1,2-propanediol, 1,3-propanediol, 2,2-diethyl-1,3-propanediol, 1,2-butanediol, 1,3 -Butanediol, 2,3-butanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,4 -Bis ( ⁇ -hydroxyethoxy) benzene, 1,4-cyclohexanediol, cyclohexanedimethanol (1,4-cyclohexanedimethanol, etc.), bis ( ⁇ -hydroxyethyl) terephthalate, 1,9-nonanediol, m-xyl Diols such as lenglycol,
  • n-bis (4-aminophenoxy) alkane (n is 3 to 10), 1,2-bis [2- (4-aminophenoxy) ethoxy] ethane, 9,9-bis (4-aminophenyl) fluorene, 4 Diamines such as 4,4'-diaminobenzanilide and the like. These may be used alone or in combination of two or more. Of these, 1,4-butanediol is preferred.
  • polymer polyol examples include polyether polyol, polyester polyol, polycarbonate polyol, and the like.
  • polymer diols such as polyether diol, polyester diol, polycarbonate diol, are used, for example. These may be used alone or in combination of two or more.
  • thermoplastic polyurethane the polymer diol in the production of thermoplastic polyurethane will be described in detail.
  • the number average molecular weight of the polymer diol is 450 to 3000, more preferably 500 to 2700, and particularly 500 to 2400, while maintaining the required properties such as rigidity, hardness, and hydrophilicity, This is preferable because a polishing pad having a polishing surface with a potential of +0.1 to +30 mV can be easily obtained.
  • the number average molecular weight of the polymer diol means the number average molecular weight calculated based on the hydroxyl value measured according to JISK1557.
  • polyether diol examples include, for example, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, poly (methyltetramethylene glycol), glycerin-based polyalkylene ether glycol and the like. These may be used alone or in combination of two or more. Among these, polyethylene glycol and polytetramethylene glycol, particularly polyethylene glycol are preferable.
  • the polyester diol can be obtained, for example, by directly esterifying or transesterifying a low molecular weight diol with an ester-forming derivative such as dicarboxylic acid or its ester or anhydride.
  • dicarboxylic acid for producing the polyester diol include, for example, oxalic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, 2-methylsuccinic acid, 2 to 12 carbon atoms such as 2-methyladipic acid, 3-methyladipic acid, 3-methylpentanedioic acid, 2-methyloctanedioic acid, 3,8-dimethyldecanedioic acid, 3,7-dimethyldecanedioic acid Aliphatic dicarboxylic acids of dicarboxylic acids; dimerized aliphatic dicarboxylic acids having 14 to 48 carbon atoms (dimer acids) obtained by dimerizing unsaturated fatty acids obtained by fractionation of triglycerides, and hydrogenated products thereof (hydrogenated dimer acids), etc.
  • Aliphatic dicarboxylic acids 1,4-cyclohexanedicarboxylic acid and other alicyclic dicarboxylic acids; terephthalic acid, isophthalic acid, orthophthalic acid and other aromatic dicarls Examples thereof include boric acid.
  • Specific examples of the dimer acid and hydrogenated dimer acid include trade names “Pripol 1004”, “Plipol 1006”, “Plipol 1009”, and “Plipol 1013” manufactured by Unikema Corporation. These may be used alone or in combination of two or more.
  • the low molecular weight diol for producing the polyester diol include, for example, ethylene glycol, 1,3-propanediol, 1,2-propanediol, 2-methyl-1,3-propanediol, 1, 4-butanediol, neopentyl glycol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 2- Examples thereof include aliphatic diols such as methyl-1,8-octanediol, 1,9-nonanediol, and 1,10-decanediol; alicyclic diols such as cyclohexanedimethanol and cyclohexanediol. These may be used alone or in combination of two or more. Among these, diols, di
  • Examples of the polycarbonate diol include those obtained by a reaction between a low molecular diol and a carbonate compound such as dialkyl carbonate, alkylene carbonate, and diaryl carbonate.
  • Examples of the low molecular diol for producing the polycarbonate diol include the low molecular diols exemplified above.
  • Examples of the dialkyl carbonate include dimethyl carbonate and diethyl carbonate.
  • ethylene carbonate etc. are mentioned as alkylene carbonate.
  • Examples of the diaryl carbonate include diphenyl carbonate.
  • the polymer diol preferably contains polyethylene glycol in a proportion of 30 to 100% by mass, more preferably 35 to 100% by mass, particularly 40 to 100% by mass, especially 50 to 100% by mass.
  • the degree of phase separation between the segment derived from the polymer diol in the thermoplastic polyurethane and the segment derived from the organic diisocyanate and the chain extender becomes appropriate, and is saturated and swollen with water at 50 ° C. Thereafter, a thermoplastic polyurethane having a storage elastic modulus at 50 ° C. of 50 to 1200 MPa is easily obtained.
  • organic polyisocyanate organic polyisocyanates conventionally used for producing polyurethane can be used without any particular limitation.
  • organic diisocyanate is used.
  • specific examples of the organic diisocyanate include, for example, ethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, dodecamethylene diisocyanate.
  • Isophorone diisocyanate isopropylidenebis (4-cyclohexylisocyanate), cyclohexylmethane diisocyanate, methylcyclohexane diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, lysine diisocyanate, 2,6-diisocyanatomethylcaproate, bis (2-isocyanate) Natoethyl) fumarate, bis (2-isocyanatoethyl) carbonate, 2-isocyanatoethyl-2,6-dii Aliphatic or cycloaliphatic diisocyanates such as cyanatohexanoate, cyclohexylene diisocyanate, methylcyclohexylene diisocyanate, bis (2-isocyanatoethyl) -4-cyclohexene; 2,4'-diphenylmethane diisocyanate,
  • thermoplastic polyurethane the content of nitrogen atoms derived from isocyanate groups is 4.5 to 7.6% by mass, more preferably 5.0 to 7.4% by mass, and particularly 5.2 to 7%. It is preferable that the content is 3% by mass because a thermoplastic polyurethane having a storage elastic modulus at 50 ° C. of 50 to 1200 MPa after saturated swelling with water at 50 ° C. is easily obtained.
  • thermoplastic polyurethane in the case of producing a thermoplastic polyurethane, it can be obtained by polymerizing by a urethanization reaction using a known prepolymer method or a one-shot method using the reaction raw materials as described above. Preferably, it is obtained by a method in which the above-mentioned components are blended at a predetermined ratio in a substantial absence of a solvent and continuously melt polymerized while being melt-mixed using a single-screw or multi-screw extruder.
  • Thermoplastic polyurethane obtained by continuous melt polymerization is pelletized and then molded into a sheet-like molded product by various molding methods such as extrusion molding, injection molding, blow molding, calendar molding, etc. Is done.
  • various molding methods such as extrusion molding, injection molding, blow molding, calendar molding, etc. Is done.
  • the blending ratio of each component is appropriately adjusted according to the target characteristics.
  • the isocyanate group contained in the organic polyisocyanate is 0.95 to 1 mol per 1 mole of active hydrogen atoms contained in the polymer polyol, the chain extender having a tertiary amine, and the chain extender not having a tertiary amine. It is preferable to blend in a proportion of 1.3 mol, further 0.96 to 1.10 mol, particularly 0.97 to 1.05 mol.
  • the proportion of isocyanate groups contained in the organic polyisocyanate is too low, the mechanical strength and wear resistance of the polyurethane are lowered, and the life of the polishing pad tends to be shortened.
  • the ratio of the isocyanate group contained in the organic polyisocyanate is too high, the productivity and storage stability of the polyurethane are lowered, and the production of the polishing pad tends to be difficult.
  • polyurethane is a cross-linking agent, a filler, a cross-linking accelerator, a cross-linking aid, a softening agent, a tackifier, an anti-aging agent, a foaming agent, a processing aid, an adhesion promoter, and an inorganic filler as required.
  • the content of the polyurethane additive is not particularly limited, but is preferably 50% by mass or less, more preferably 20% by mass or less, and particularly preferably 5% by mass or less.
  • the density of the molded article of thermoplastic polyurethane is preferably 1.0 g / cm 3 or more, more preferably 1.1 g / cm 3 or more, and particularly preferably 1.2 g / cm 3 or more.
  • the density of the molded body of thermoplastic polyurethane is too low, the polishing pad becomes soft and local flatness tends to decrease.
  • non-foamed thermoplastic polyurethane is particularly preferable from the viewpoint of excellent polishing stability due to high rigidity and material homogeneity.
  • the polishing pad of the present embodiment is finished into a polishing pad by adjusting the size, shape, thickness, etc. of the polyurethane sheet-like molded body as described above by cutting, slicing, punching or the like.
  • the thickness of the polishing pad is not particularly limited, but it is 0.3 to 5 mm, more preferably 1.7 to 2.8 mm, and particularly 2.0 to 2.5 mm. From the viewpoint of stability, it is preferable.
  • the hardness of the polishing pad is preferably 60 or more, more preferably 65 or more in JIS-D hardness.
  • JIS-D hardness is too low, the followability of the polishing pad to the surface to be polished becomes high and local flatness tends to be lowered.
  • recesses such as grooves and holes are formed in a predetermined pattern such as concentric circles by grinding or laser processing.
  • a concave portion supplies the polishing slurry uniformly and sufficiently to the polishing surface, and serves to prevent polishing scraps that cause scratches and prevent wafer breakage due to adsorption of the polishing pad.
  • the distance between the grooves is preferably about 1.0 to 50 mm, more preferably about 1.5 to 30 mm, and particularly preferably about 2.0 to 15 mm.
  • the groove width is preferably about 0.1 to 3.0 mm, more preferably about 0.2 to 2.0 mm.
  • the depth of the groove is preferably about 0.2 to 1.8 mm, more preferably about 0.4 to 1.5 mm.
  • a cross-sectional shape of the groove for example, a shape such as a rectangle, a trapezoid, a triangle, a semicircle, and the like is appropriately selected according to the purpose.
  • the polishing pad may be used as a single-layer pad consisting only of the polishing layer, or may be used as a laminated pad in which a cushion layer is laminated on the back surface of the polishing surface of the polishing pad which is the polishing layer.
  • the cushion layer it is preferable to use a material having a hardness lower than that of the polishing pad that is the polishing layer.
  • the hard polishing pad follows the local unevenness of the surface to be polished, and warps and undulates the entire substrate to be polished. Since the cushion layer follows, polishing with excellent balance between global flatness and local flatness becomes possible.
  • the material used as the cushion layer include a composite in which a nonwoven fabric is impregnated with polyurethane (for example, “Suba400” (manufactured by Nitta Haas Co., Ltd.)); natural rubber, nitrile rubber, polybutadiene rubber, silicone rubber, etc. Rubbers; polyester-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, thermoplastic elastomers such as fluorine-based thermoplastic elastomers; foamed plastics; polyurethanes and the like.
  • polyurethane having a foamed structure is particularly preferable from the viewpoint that flexibility preferable as a cushion layer can be easily obtained.
  • the thickness of the cushion layer is not particularly limited, but is preferably about 0.5 to 5 mm, for example. If the cushion layer is too thin, the following effect on the warpage and waviness of the entire surface to be polished tends to decrease and the global planarization performance tends to decrease. On the other hand, when the cushion layer is too thick, the entire polishing pad tends to be soft and stable polishing becomes difficult. When a cushion layer is laminated on the polishing layer, the thickness of the polishing pad that becomes the polishing layer is preferably about 0.3 to 5 mm.
  • a CMP apparatus 10 including a rotating surface plate 2, a slurry supply nozzle 3, a carrier 4, and a pad conditioner 6 that are circular when viewed from above is used as shown in FIG.
  • a polishing pad 1 having a polishing surface 1a is attached to the surface of the rotating surface plate 2 with a double-sided tape or the like. Further, the carrier 4 supports the workpiece 5.
  • the rotating surface plate 2 is rotated in a direction indicated by an arrow by a motor (not shown).
  • the carrier 4 is rotated in the direction indicated by the arrow, for example, by a motor (not shown) within the surface of the rotating surface plate 2.
  • the pad conditioner 6 is also rotated in the direction of the arrow, for example, by a motor (not shown) in the plane of the rotating surface plate 2.
  • the pad conditioner 6 for CMP in which diamond particles are fixed on the surface of the carrier by nickel electrodeposition or the like, is pressed. Then, the polishing surface 1a is conditioned. The polishing surface 1a is adjusted to a surface roughness suitable for polishing the surface to be polished by conditioning. Next, the polishing slurry 7 is supplied from the slurry supply nozzle 3 to the polishing surface 1 a of the rotating polishing pad 1. Further, when performing CMP, a lubricating oil, a coolant, or the like may be used in combination with the polishing slurry, if necessary.
  • polishing slurries include liquid media such as water and oil; abrasives such as silica, alumina, cerium oxide, zirconium oxide, and silicon carbide; bases, acids, surfactants, oxidizing agents, reducing agents, chelating agents, and the like. Any polishing slurry can be used as long as it is used for the contained CMP.
  • the polishing slurry includes an acidic slurry, an alkaline slurry, and a neutral slurry.
  • the polishing pad of this embodiment can be any liquid polishing slurry. Note that the polishing pad of this embodiment can maintain a high polishing rate when CMP is performed using an alkaline polishing slurry having a pH of 7.0 to 14.0, particularly pH 8.0 to 14.0. Demonstrate.
  • the surface to be polished of the object to be polished 5 which is fixed to the carrier 4 and rotates is pressed against the polishing surface 1a where the polishing slurry 7 has spread evenly. Then, the polishing process is continued until a predetermined flatness is obtained. By adjusting the pressing force applied during polishing and the speed of relative movement between the rotating surface plate 2 and the carrier 4, the finished quality is affected.
  • the polishing conditions are not particularly limited, but for efficient polishing, the rotation speed of each of the rotating platen and the carrier is preferably low rotation of 300 rpm or less, and the pressure applied to the object to be polished causes scratches after polishing. It is preferable to set it to 150 kPa or less so as not to occur. During polishing, it is preferable to continuously supply polishing slurry to the polishing surface with a pump or the like.
  • the supply amount of the polishing slurry is not particularly limited, but it is preferable to supply the polishing surface so that the polishing surface is always covered with the polishing slurry.
  • the object to be polished is thoroughly washed with running water, and then water droplets adhering to the object to be polished are removed by using a spin dryer or the like and dried.
  • Such CMP of this embodiment is preferably used for polishing in manufacturing processes of various semiconductor devices, MEMS (Micro Electro Mechanical Systems) and the like.
  • objects to be polished include an insulating film such as an oxide film formed on a semiconductor substrate, a metal film for wiring such as copper, aluminum, and tungsten; a barrier metal film such as tantalum, titanium, tantalum nitride, and titanium nitride; In particular, it is preferably used for polishing an insulating film such as an oxide film. It is also possible to polish a metal film on which a pattern such as a wiring pattern or a dummy pattern is formed. The pitch between lines in the pattern varies depending on the product, but is usually about 50 nm to 100 ⁇ m.
  • Example 1 Polyethylene glycol having a number average molecular weight of 600 [abbreviation: PEG600], 2,2′-methyliminodiethanol [abbreviation: MIDE], 1,4-butanediol [abbreviation: BD], and 4,4′-diphenylmethane diisocyanate [abbreviation: MDI] is blended at a ratio such that the mass ratio of PEG600: MIDE: BD: MDI is 26.6: 18.2: 1.5: 53.6 (molar ratio of MIDE to BD is 90/10).
  • Continuous melt polymerization of thermoplastic polyurethane was carried out by continuously supplying to a twin-screw extruder rotating coaxially by a pump.
  • thermoplastic polyurethane was continuously extruded into water in the form of a strand in a molten state and solidified, and then cut into pellets by a pelletizer.
  • the obtained pellets were dehumidified and dried at 70 ° C. for 20 hours to produce a thermoplastic polyurethane (hereinafter referred to as PU-1).
  • PU-1 thermoplastic polyurethane
  • the contact angle of PU-1 with water and the storage elastic modulus at 50 ° C. after saturation swelling with water at 50 ° C. were determined.
  • a PU-1 film having a thickness of 300 ⁇ m was prepared by a hot press method. The obtained film was allowed to stand for 3 days under the conditions of 20 ° C. and 65% RH, and the contact angle with water was measured using a DropMaster 500 manufactured by Kyowa Interface Science Co., Ltd.
  • the pellets of PU-1 were supplied to a single-screw extruder and extruded using a T-die to obtain a sheet having a thickness of 2.0 mm. Then, after grinding the surface of the obtained sheet to obtain a uniform sheet having a thickness of 1.5 mm, grooves having a width of 1.0 mm and a depth of 1.0 mm are formed concentrically at intervals of 6.5 mm. Was cut into a circular shape of 380 mm to prepare a polishing pad.
  • polishing performance of the obtained polishing pad was evaluated by the following method.
  • polishing performance The obtained polishing pad was attached to a polishing apparatus “MAT-BC15” manufactured by MT Corporation. Then, using a diamond dresser (# 100-coverage 80%, diameter 19 cm, mass 1 kg) manufactured by Allied Material Co., Ltd., while flowing distilled water at a rate of 150 mL / min, the dresser rotational speed 140 rpm, the platen rotational speed 100 rpm The pad surface was conditioned for 1 hour. Next, a polishing slurry having a pH of 12 prepared by diluting the polishing slurry “SS-25” manufactured by Cabot Microelectronics by a factor of 2 was prepared.
  • a silicon oxide film having a film thickness of 1000 nm is provided on the surface while supplying the polishing slurry to the polishing surface of the polishing pad at a rate of 120 mL / min under the conditions of a platen rotation speed of 100 rpm, a head rotation speed of 99 rpm, and a polishing pressure of 27.6 kPa.
  • a silicon wafer having a diameter of 4 inches was polished for 60 seconds.
  • the polishing pad was conditioned for 30 seconds.
  • another silicon wafer was polished again and further conditioned for 30 seconds. In this way, 10 silicon wafers were polished.
  • the film thickness of the silicon oxide film before and after polishing the 10th wafer was measured at 49 points on the wafer surface to determine the polishing rate at each point.
  • the average value of the 49 polishing rates was taken as the polishing rate.
  • the polishing uniformity was evaluated based on the non-uniformity obtained by the following formula (1). The smaller the non-uniformity value, the more uniformly the copper film is polished in the wafer surface, and the better the polishing uniformity.
  • Nonuniformity (%) ( ⁇ / R) ⁇ 100 (1) (However, ⁇ : Standard deviation of polishing rate at 49 points, R: Average value of polishing rate at 49 points.)
  • the 10th polished wafer was observed with a Keyence laser microscope “VKX-200” at an objective lens magnification of 50 times to confirm the presence or absence of scratches.
  • Example 2 The thermoplastic polyurethane was evaluated in the same manner as in Example 1 except that the thermoplastic polyurethane (PU-2) produced as follows was used in place of PU-1, and a polishing pad was produced and the polishing performance was evaluated. Evaluated. The results are shown in Table 1.
  • PU-2 thermoplastic polyurethane
  • PEG600, MIDE, BD, and MDI have a mass ratio of PEG600: MIDE: BD: MDI of 29.0: 9.9: 7.5: 53.6 (MIDE to BD molar ratio 50/50). They were blended in proportions and continuously fed to a twin-screw extruder rotating coaxially by a metering pump to carry out continuous melt polymerization of thermoplastic polyurethane. The obtained thermoplastic polyurethane was continuously extruded into water in the form of a strand in a molten state, and then chopped into pellets by a pelletizer. The obtained pellets were dehumidified and dried at 70 ° C. for 20 hours to produce thermoplastic polyurethane (PU-2).
  • PU-2 thermoplastic polyurethane
  • Example 3 The thermoplastic polyurethane was evaluated in the same manner as in Example 1 except that the thermoplastic polyurethane (PU-3) produced as follows was used in place of PU-1, and a polishing pad was produced and the polishing performance was evaluated. Evaluated. The results are shown in Table 1.
  • PU-3 thermoplastic polyurethane
  • thermoplastic polyurethane has a mass ratio of PEG600: MIDE: BD: MDI of 31.3: 1.9: 13.1: 53.6 (molar ratio of MIDE to BD is 10/90).
  • the thermoplastic polyurethane was continuously melt-polymerized by blending at a ratio and continuously feeding to a twin-screw extruder rotating coaxially with a metering pump.
  • the obtained thermoplastic polyurethane was continuously extruded into water in the form of a strand in a molten state, and then chopped into pellets by a pelletizer.
  • the obtained pellets were dehumidified and dried at 70 ° C. for 20 hours to produce thermoplastic polyurethane (PU-3).
  • Example 4 The thermoplastic polyurethane was evaluated in the same manner as in Example 1 except that the thermoplastic polyurethane (PU-4) produced as follows was used in place of PU-1, and a polishing pad was produced and the polishing performance was evaluated. Evaluated. The results are shown in Table 1.
  • thermoplastic polyurethane having a number average molecular weight of 2000 [abbreviation: PEG2000], MIDE, BD, and MDI, and a mass ratio of PEG2000: MIDE: BD: MDI of 25.3: 12.0: 9.1: 53.6 (with MIDE)
  • PEG2000 number average molecular weight of 2000
  • MIDE number average molecular weight of 2000
  • BD mass ratio of PEG2000: MIDE: BD: MDI of 25.3: 12.0: 9.1: 53.6
  • the obtained thermoplastic polyurethane was continuously extruded into water in the form of a strand in a molten state and solidified, and then cut into pellets by a pelletizer.
  • the obtained pellets were dehumidified and dried at 70 ° C. for 20 hours to produce thermoplastic polyurethane (PU-4).
  • Example 5 The thermoplastic polyurethane was evaluated in the same manner as in Example 1 except that the thermoplastic polyurethane (PU-5) produced as follows was used in place of PU-1, and a polishing pad was produced and the polishing performance was evaluated. Evaluated. The results are shown in Table 1.
  • thermoplastic polyurethane has a mass ratio of PEG600: MIDE: BD: MDI of 52.0: 4.4: 3.3: 40.2 (molar ratio of MIDE and BD is 50/50).
  • the thermoplastic polyurethane was continuously melt-polymerized by blending at a ratio and continuously feeding to a twin-screw extruder rotating coaxially with a metering pump.
  • the obtained thermoplastic polyurethane was continuously extruded into water in the form of a strand in a molten state and solidified, and then cut into pellets by a pelletizer.
  • the obtained pellets were dehumidified and dried at 70 ° C. for 20 hours to produce thermoplastic polyurethane (PU-5).
  • thermoplastic polyurethane was evaluated in the same manner as in Example 1 except that the thermoplastic polyurethane (PU-6) produced as follows was used in place of PU-1, and a polishing pad was produced and the polishing performance was evaluated. Evaluated. The results are shown in Table 1.
  • thermoplastic polyurethane has a mass ratio of PEG600: MIDE: BD: MDI of 13.7: 13.5: 10.2: 62.6 (molar ratio of MIDE to BD is 50/50).
  • the thermoplastic polyurethane was continuously melt-polymerized by blending at a ratio and continuously feeding to a twin-screw extruder rotating coaxially with a metering pump.
  • the obtained thermoplastic polyurethane was continuously extruded into water in the form of a strand in a molten state and solidified, and then cut into pellets by a pelletizer.
  • the obtained pellets were dehumidified and dried at 70 ° C. for 20 hours to produce thermoplastic polyurethane (PU-6).
  • Example 7 The thermoplastic polyurethane was evaluated in the same manner as in Example 1 except that the thermoplastic polyurethane (PU-7) produced as follows was used in place of PU-1, and a polishing pad was produced and the polishing performance was evaluated. Evaluated. The results are shown in Table 1.
  • PU-7 thermoplastic polyurethane
  • PEG600 polytetramethylene glycol having a number average molecular weight of 850 [abbreviation: PTG850], MIDE, BD, and MDI, and a mass ratio of PEG600: PTG850: MIDE: BD: MDI of 17.6: 10.7: 10.3: 7.8: 53.6
  • Mole ratio of PEG600 to PTG850 is 70/30, MIDE to BD is 50/50
  • the thermoplastic polyurethane was continuously melt polymerized.
  • thermoplastic polyurethane was continuously extruded into water in the form of a strand in a molten state and solidified, and then cut into pellets by a pelletizer.
  • the obtained pellets were dehumidified and dried at 70 ° C. for 20 hours to produce thermoplastic polyurethane (PU-7).
  • Example 8 The thermoplastic polyurethane was evaluated in the same manner as in Example 1 except that the thermoplastic polyurethane (PU-8) produced as follows was used in place of PU-1, and a polishing pad was produced and the polishing performance was evaluated. Evaluated. The results are shown in Table 1.
  • PU-8 thermoplastic polyurethane
  • thermoplastic polyurethane PEG600, PTG850, MIDE, BD, and MDI were added at a PEG600: PTG850: MIDE: BD: MDI mass ratio of 8.9: 18.9: 10.6: 8.0: 53.6 (mole of PEG600 and PTG850).
  • the ratio is 40/60, the molar ratio of MIDE and BD is 50/50), and continuously fed to a twin-screw extruder that rotates coaxially by a metering pump to continuously melt polymerize thermoplastic polyurethane. Went.
  • the obtained thermoplastic polyurethane was continuously extruded into water in the form of a strand in a molten state and solidified, and then cut into pellets by a pelletizer.
  • the obtained pellets were dehumidified and dried at 70 ° C. for 20 hours to produce thermoplastic polyurethane (PU-8).
  • Example 9 The thermoplastic polyurethane was evaluated in the same manner as in Example 1 except that the thermoplastic polyurethane (PU-9) produced as follows was used in place of PU-1, and a polishing pad was produced and the polishing performance was evaluated. Evaluated. The results are shown in Table 1.
  • thermoplastic polyurethane 3- (dimethylamino) -1,2-propanediol [abbreviation: DMAPD], BD, and MDI have a mass ratio of PEG600: DMAPD: BD: MDI of 29.0: 9.9: 7.5: 53.6 (Molar ratio of DMAOD to BD is 50/50) and continuously fed to a twin-screw extruder rotating coaxially by a metering pump to perform continuous melt polymerization of thermoplastic polyurethane It was.
  • the obtained thermoplastic polyurethane was continuously extruded into water in the form of a strand in a molten state and solidified, and then cut into pellets by a pelletizer.
  • the obtained pellets were dehumidified and dried at 70 ° C. for 20 hours to produce thermoplastic polyurethane (PU-9).
  • Example 10 The thermoplastic polyurethane was evaluated in the same manner as in Example 1 except that the thermoplastic polyurethane (PU-10) produced as follows was used in place of PU-1, and a polishing pad was produced and the polishing performance was evaluated. Evaluated. The results are shown in Table 1.
  • PU-10 thermoplastic polyurethane
  • thermoplastic polyurethane has a mass ratio of PTG850: MIDE: BD: MDI of 27.3: 10.9: 8.2: 53.6 (molar ratio of MIDE to BD is 50/50).
  • the thermoplastic polyurethane was continuously melt-polymerized by blending at a ratio and continuously feeding to a twin-screw extruder rotating coaxially with a metering pump.
  • the obtained thermoplastic polyurethane was continuously extruded into water in the form of a strand in a molten state and solidified, and then cut into pellets by a pelletizer.
  • the obtained pellets were dehumidified and dried at 70 ° C. for 20 hours to produce thermoplastic polyurethane (PU-10).
  • thermoplastic polyurethane was evaluated in the same manner as in Example 1 except that the thermoplastic polyurethane (PU-11) produced as follows was used in place of PU-1, and a polishing pad was produced. Evaluated. The results are shown in Table 1.
  • thermoplastic polyurethane PEG600, BD, and MDI are blended in a ratio of PEG600: BD: MDI in a ratio of 31.9: 14.5: 53.6 and continuously fed to a twin-screw extruder that rotates coaxially with a metering pump.
  • the melt was continuously polymerized by thermoplastic polyurethane.
  • the obtained thermoplastic polyurethane was continuously extruded into water in the form of a strand in a molten state and solidified, and then cut into pellets by a pelletizer.
  • the obtained pellets were dehumidified and dried at 70 ° C. for 20 hours to produce thermoplastic polyurethane (PU-11).
  • thermoplastic polyurethane was evaluated in the same manner as in Example 1 except that the thermoplastic polyurethane (PU-12) produced as follows was used in place of PU-1, and a polishing pad was produced and the polishing performance was evaluated. Evaluated. The results are shown in Table 1.
  • Polyethylene glycol having a number average molecular weight of 4000 (abbreviation: PEG400), BD, and MDI are blended in such a ratio that the mass ratio of PEG4000: BD: MDI is 27.7: 18.7: 53.6, and coaxial by a metering pump.
  • PEG400 Polyethylene glycol having a number average molecular weight of 4000
  • BD Polyethylene glycol having a number average molecular weight of 4000
  • MDI Polyethylene glycol having a number average molecular weight of 4000
  • BD Polyethylene glycol having a number average molecular weight of 4000
  • MDI Polyethylene glycol having a number average molecular weight of 4000
  • BD Polyethylene glycol having a number average molecular weight of 4000
  • MDI Polyethylene glycol having a number average molecular weight of 4000
  • BD Polyethylene glycol having a number average molecular weight of 4000
  • MDI Polyethylene glycol having a number average molecular weight
  • thermoplastic polyurethane was evaluated in the same manner as in Example 1 except that the thermoplastic polyurethane (PU-13) produced as follows was used in place of PU-1, and a polishing pad was produced and the polishing performance was evaluated. Evaluated. The results are shown in Table 1.
  • PEG600, BD, and MDI are blended in a ratio of PEG600: BD: MDI mass ratio of 60.5: 3.8: 35.8, and continuously into a twin-screw extruder that rotates coaxially with a metering pump.
  • the melt was continuously polymerized by thermoplastic polyurethane.
  • the obtained thermoplastic polyurethane was continuously extruded into water in the form of a strand in a molten state and solidified, and then cut into pellets by a pelletizer.
  • the obtained pellets were dehumidified and dried at 70 ° C. for 20 hours to produce a thermoplastic polyurethane (referred to as PU-13).
  • thermoplastic polyurethane was evaluated in the same manner as in Example 1 except that the thermoplastic polyurethane (PU-14) produced as follows was used in place of PU-1, and a polishing pad was produced and the polishing performance was evaluated. Evaluated. The results are shown in Table 1.
  • thermoplastic polyurethane PEG600, BD, and MDI are blended in a ratio of PEG600: BD: MDI mass ratio of 3.3: 25.2: 71.5 and continuously fed to a twin-screw extruder that rotates coaxially with a metering pump.
  • the melt was continuously polymerized by thermoplastic polyurethane.
  • the obtained thermoplastic polyurethane was continuously extruded into water in the form of a strand in a molten state and solidified, and then cut into pellets by a pelletizer.
  • the obtained pellets were dehumidified and dried at 70 ° C. for 20 hours to produce thermoplastic polyurethane (PU-14).
  • thermoplastic polyurethane was evaluated in the same manner as in Example 1 except that the thermoplastic polyurethane (PU-15) produced as follows was used in place of PU-1, and a polishing pad was produced and the polishing performance was evaluated. Evaluated. The results are shown in Table 1.
  • Polybutylene adipate (abbreviation: PBA1000), BD, and MDI having a number average molecular weight of 2000 are blended at a ratio of PBA1000: BD: MDI of 23.1: 18.8: 58.1, and by a metering pump
  • PBA1000 Polybutylene adipate
  • BD Polybutylene adipate
  • MDI Polybutylene adipate
  • BD Polybutylene adipate
  • MDI having a number average molecular weight of 2000
  • a metering pump Continuous melt polymerization of thermoplastic polyurethane was performed by continuously feeding to a twin-screw extruder rotating coaxially.
  • the obtained thermoplastic polyurethane was continuously extruded into water in the form of a strand in a molten state and solidified, and then cut into pellets by a pelletizer.
  • the obtained pellets were dehumidified and dried at 70 ° C. for 20 hours to produce thermoplastic polyurethan
  • the polishing pad of the present invention can obtain a high polishing rate even when, for example, a silicon oxide film on a semiconductor substrate is polished by CMP using an alkaline polishing slurry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

pH10.0におけるゼータ電位が+0.1mV以上である研磨面を有する研磨パッドが提供される。好ましくは、3級アミンを有するポリウレタンを含む研磨パッドが提供される。さらに好ましくは、3級アミンを有するポリウレタンは、3級アミンを有する鎖伸長剤を少なくとも含むポリウレタン反応原料の反応物である。また、それらの研磨パッドを用いたアルカリ性の研磨スラリーを供給しながら行う研磨方法が提供される。

Description

研磨パッドおよびそれを用いた研磨方法
 本発明は、研磨パッドおよびそれを用いた研磨方法に関する。詳しくは、本発明は、化学的機械的研磨(CMP)に好ましく用いられる研磨パッドおよびそれを用いた研磨方法に関する。
 半導体ウェハを鏡面加工する工程や、半導体基板上に回路を形成する際に酸化膜等の絶縁膜や導電体膜を有する被研磨物の表面を平坦化する工程で用いられる研磨方法として、CMPが知られている。CMPは被研磨物の表面に砥粒および反応液を含む研磨スラリー(以下、単にスラリーとも称する)を供給しながら研磨パッドの研磨面で被研磨物の被研磨面を高精度に研磨する方法である。
 CMP用の研磨パッドとしては独立気泡構造を有する高分子発泡体を主体とする研磨パッドが知られている。高分子発泡体を主体とする研磨パッドは、不織布タイプの研磨パッドに比べて高い剛性を有するために平坦化性能に優れる。高分子発泡体を主体とする研磨パッドとしては、2液硬化型ポリウレタンを注型発泡成形して得られる発泡ポリウレタン成形体からなる研磨パッドが広く用いられている。発泡ポリウレタン成形体は、耐摩耗性に優れる点から研磨パッドの材料として好ましく用いられている。
 ところで、近年、半導体基板上に形成される回路の高集積化および多層配線化の進展に伴い、CMPにはより高い平坦化性能や生産性の向上が求められている。
 例えば、下記特許文献1は、研磨パッドを研磨装置に取り付けて、研磨装置を立ち上げた使用の初期段階におけるドレッシング処理による、研磨パッドの表面の目立て処理をする準備工程(ブレークイン)に要する時間を短縮化する研磨パッドを開示する。具体的には、被研磨物に圧接される研磨面を有し、研磨面のうねりが、周期5mm~200mmであって、最大振幅40μm以下である研磨パッドを開示する。また、特許文献1には、研磨パッドの研磨面のゼータ電位が-50mv以上0mv未満である場合には、研磨面に対するスラリーのマイナスの研磨粒子との反発が抑制されることにより、研磨パッドの研磨面とスラリーとのなじみが良好となってブレークイン時間の短縮が図られることを開示している。
 また、下記特許文献2は、研磨パッド表面への研磨屑付着を抑制することにより被研磨物表面のスクラッチやディフェクトの発生を低減させて、製品の歩留まりを向上させ、かつ、高い平坦化性能と適度な研磨速度が得られる研磨パッドを開示する。具体的には、被研磨物と相対する研磨面のゼータ電位が-55mvより小さく-100mv以上であることを特徴とする研磨パッドを開示する。
 また、下記特許文献3は、CMPにおいて、低負荷で絶縁層に欠陥を生じさせずに研磨できる、定盤に固定して研磨に使用する研磨パッドを開示する。具体的には、研磨パッドの被研磨物に接する面の少なくとも一部に、室温における引張弾性率が0.2GPa以上で、かつ被研磨物と研磨パッドとの間に供給される研磨剤のpH領域におけるゼータ電位が正、具体的には+0.1~+30mVであるような材質を用いたことを特徴とする研磨パッドを開示する。また、pH3~5の酸性の研磨剤を使用してCMPを行う場合にゼータ電位が正になる研磨パッドを開示する。
WO2008/029725号パンフレット 特開2013-018056号公報 特開2005-294661号公報
 CMPに用いられる研磨スラリーとしては、酸性の研磨スラリーやアルカリ性の研磨スラリーがあり、研磨の目的に応じて何れかが選択されたり、多段の研磨プロセスを行う場合に酸性の研磨スラリーとアルカリ性の研磨スラリーとが併用されたりして用いられる。特許文献3に開示されたようなpH3~5の酸性の研磨スラリーを使用した場合にゼータ電位が正になるような研磨パッドによれば、酸性の研磨スラリーを用いる場合にはゼータ電位を+0.1mV以上であるような正に保つことができ、それによる効果も発現されると思われる。しかしながら、pH3~5の研磨スラリーを使用した場合にゼータ電位が正になるような研磨パッドであっても、アルカリ性の研磨スラリーを使用した場合にはゼータ電位が負になり、そのような場合には研磨速度が低下するおそれがあった。
 本発明は、アルカリ性の研磨スラリーを用いてCMPを行う場合であっても、高い研磨速度を維持できる研磨パッドおよびそれを用いた研磨方法を提供することを目的とする。
 本発明の一局面は、pH10.0におけるゼータ電位が+0.1mV以上である研磨面を有する研磨パッドである。このような研磨パッドによれば、酸性の研磨スラリーだけでなく、アルカリ性の研磨スラリーを用いてCMPを行う場合であっても、高い研磨速度と優れた研磨均一性を実現することができる。
 また、研磨パッドは、3級アミンを有するポリウレタンを含むことが、アルカリ性のスラリーを用いた場合に3級アミンが陽イオン化してゼータ電位を正にする点から好ましい。3級アミンを有するポリウレタンとしては、3級アミンを有する鎖伸長剤と、高分子ポリオールと、有機ポリイソシアネートと、を少なくとも含む反応原料の反応物であるポリウレタンが挙げられる。このような研磨パッドは、pH10.0におけるゼータ電位が+0.1mV以上になりやすい点から好ましい。
 3級アミンを有する鎖伸長剤としては、2,2’-メチルイミノジエタノール,2,2’-エチルイミノジエタノール,2,2’-n-ブチルイミノジエタノール,2,2’-t-ブチルイミノジエタノール、3-(ジメチルアミノ)-1,2-プロパンジオール,3-(ジエチルアミノ)-1,2-プロパンジオール等が挙げられる。
 また、ポリウレタン反応原料は、3級アミンを有する鎖伸長剤を0.5~30質量%含むことがpH10.0におけるゼータ電位が+0.1mV以上になりやすくなる点から好ましい。
 また、ポリウレタン反応原料は3級アミンを有しない鎖伸長剤をさらに含み、3級アミンを有する鎖伸長剤と3級アミンを有しない鎖伸長剤の合計量に対する3級アミンを有する鎖伸長剤の含有割合が5~95モル%であることが好ましい。
 また、3級アミンを有するポリウレタンは、3級アミンを有する鎖伸長剤と、高分子ジオールと、有機ジイソシアネートとを少なくとも含むポリウレタン反応原料の反応物である熱可塑性ポリウレタンであること、とくに、高分子ジオールが、ポリエチレングリコールを30~100質量%含むことが、生産性に優れるとともに、高い硬度が得られることにより高い研磨速度と優れた研磨均一性を実現しやすい好ましい。また、高分子ジオールの数平均分子量としては450~3000であることが、pH10.0におけるゼータ電位が+0.1mV以上になるように調整しても、親水性等の要求特性も満たすことができる点から好ましい。
 また、有機ジイソシアネートが有するイソシアネート基に由来する窒素含有量が4.5~7.6質量%であることが、より高い研磨速度や研磨均一性を実現できる点から好ましい。
 また、50℃の水で飽和膨潤させた後の50℃における貯蔵弾性率が50~1200MPaで、且つ、水との接触角が80度以下である場合には、研磨均一性及び研磨安定性にも優れる。
 また、研磨パッドは非発泡体であることが、研磨特性が変動しにくく安定した研磨が実現できる点から好ましい。
 また、本発明の他の一局面は、上記何れかの研磨パッドを研磨装置の定盤上に固定する工程と、研磨パッドの研磨面に対面するように被研磨物を研磨装置のホルダに保持させる工程と、研磨面と被研磨物との間にアルカリ性の研磨スラリーを供給しながら、研磨パッドと被研磨物とを相対的に摺動させることにより被研磨物を研磨する工程と、を備える研磨方法である。このような方法によれば、アルカリ性の研磨スラリーを用いてCMPを行う場合であっても、高い研磨速度と研磨均一性を維持することができる。
 本発明に係る研磨パッドによれば、アルカリ性の研磨スラリーを用いてCMPを行う場合であっても、高い研磨速度を実現することができる。
図1は、実施形態の研磨パッドを用いた研磨方法を説明する説明図である。
 本発明に係る研磨パッドの一実施形態を説明する。本実施形態の研磨パッドは、pH10.0におけるゼータ電位が+0.1mV以上である研磨面を有する研磨パッドである。
 ここでゼータ電位とは、物質が液体と接したときに、物質の表面電荷に応じて、対イオンによって電気二重層表面(滑り面)に生じる電位である。本実施形態においては、研磨パッドの研磨面のゼータ電位は、例えば、電気泳動光散乱装置(ELS-Z、大塚電子(株)製)を使用し、pH10.0にNaOH水溶液で調整した10mM NaCl水溶液中に分散したモニターラテックス(大塚電子(株)製)を用いて測定することができる。
 本実施形態の研磨パッドは、pH10.0におけるゼータ電位が+0.1mV以上であり、好ましくは+0.1~+30mVであり、さらに好ましくは+1.0~+27mVであり、とくに好ましくは+3.0~+24mVであり、最も好ましくは+5.0~+21mVである研磨面を有する。研磨パッドの研磨面のpH10.0におけるゼータ電位が+0.1mV未満の場合には、研磨スラリーと研磨面が電気的に反発するために研磨速度が低くなる。一方、研磨面のpH10.0におけるゼータ電位が高すぎる場合には研磨面に保持される研磨スラリー量が多くなりすぎて、被研磨物の被研磨面にスクラッチが発生しやすくなる傾向がある。
 また、本実施形態の研磨パッドは、pH4.0におけるゼータ電位が、+0.1mV以上、さらには+0.1~+40mV、とくには+6.0~+30mV、ことには+10.0~+30mVである研磨面を有することが、上述したようなpH10.0におけるゼータ電位が+0.1mV以上の研磨面を有する研磨パッドが得られやすい点から好ましい。
 以下、本実施形態の研磨パッドを実現するための材料及び研磨パッドの製造方法について詳しく説明する。
 本実施形態の研磨パッドの製造に用いられる材料はpH10.0におけるゼータ電位が+0.1mV以上の研磨面を有する研磨パッドが得られる限り特に限定されない。その具体例としては、例えば、ポリウレタン、ポリエチレンやポリプロピレン等のポリオレフィン、ポリエステル、ポリアミド、ポリウレア、ポリテトラフルオロエチレン、メラミン樹脂、ネオプレン(登録商標)、シリコーンゴムやフッ素ゴム等の高分子材料であって、pH10.0におけるゼータ電位が+0.1mV以上である表面を有するものが選ばれる。高分子材料の種類としては、熱可塑性ポリウレタンや熱硬化性ポリウレタン等のポリウレタンは耐摩耗性に優れ、とくに熱可塑性ポリウレタンは高い硬度が得られることにより高い研磨速度と優れた研磨均一性を実現しやすい点から好ましい。
 また、高分子材料としては、50℃の水で飽和膨潤させた後の50℃における貯蔵弾性率が50~1200MPa、さらには100~1100MPa、とくには200~1000MPaであることが好ましい。高分子材料の50℃の水で飽和膨潤させた後の50℃における貯蔵弾性率が低すぎる場合には研磨パッドが柔らかくなりすぎて研磨速度が低下し、高すぎる場合には被研磨物の被研磨面にスクラッチが発生しやすくなる傾向がある。
 また、高分子材料は水との接触角が80度以下、さらには78度以下、とくには76度以下、ことには74度以下であることが好ましい。高分子材料の水との接触角が大きすぎる場合には、研磨パッドの研磨面の親水性が低下することによりスクラッチが発生しやすくなる傾向がある。
 高分子材料としては発泡体でも非発泡体でもよいが、研磨特性が変動しにくく安定した研磨が実現できる点から非発泡体が特に好ましい。例えば、注型発泡硬化することによって製造される発泡ポリウレタンのような発泡体を用いた研磨パッドの場合には、発泡構造がばらつくことにより、平坦性や平坦化効率等の研磨特性が変動しやすくなる傾向があり、また、平坦化性能を向上させるための高硬度化が難しくなる傾向がある。
 本実施形態では、pH10.0におけるゼータ電位が+0.1mV以上の研磨面を有する研磨パッドが得られ、且つ、上述したような好ましい特性を実現できる高分子材料として、3級アミンを有するポリウレタンについて代表例として詳しく説明する。
 本実施形態の研磨パッドの製造に用いられる3級アミンを有するポリウレタンは、例えば、3級アミンを有する鎖伸長剤と、高分子ポリオールと、有機ポリイソシアネートとを少なくとも含むポリウレタン反応原料の反応物である。また、3級アミンを有する熱可塑性ポリウレタンは、3級アミンを有する鎖伸長剤と、高分子ジオールと、有機ジイソシアネートとを少なくとも含むポリウレタン反応原料を重合させた反応物である。また、ポリウレタン反応原料は、必要に応じて、3級アミンを有しない鎖伸長剤を含んでもよい。とくに3級アミンを有する熱可塑性ポリウレタンは、pH10.0におけるゼータ電位が+0.1mV以上である表面を形成でき、上述したような50℃の水で飽和膨潤させた後の50℃における貯蔵弾性率や水に対する接触角を与えやすい点から特に好ましい。
 3級アミンを有する鎖伸長剤の具体例としては、例えば、2,2’-メチルイミノジエタノール,2,2’-エチルイミノジエタノール,2,2’-n-ブチルイミノジエタノール,2,2’-t-ブチルイミノジエタノール,3-(ジメチルアミノ)-1,2-プロパンジオール,3-(ジエチルアミノ)-1,2-プロパンジオール等が挙げられる。これらは単独で用いても、2種以上を組合せて用いてもよい。これらの中では、2,2’-エチルイミノジエタノールがpH10.0におけるゼータ電位が+0.1mV以上の研磨面を有する研磨パッドを経済性良く製造できる点から好ましい。
 ポリウレタン反応原料中の3級アミンを有する鎖伸長剤の含有割合としては、0.1~30質量%、さらには0.5~28質量%、とくには1~26質量%であることが好ましい。3級アミンを有する鎖伸長剤の含有割合が低すぎる場合には、研磨面のpH10.0におけるゼータ電位が+0.1mV未満になって研磨速度が低下する傾向がある。
 また、ポリウレタン反応原料が3級アミンを有しない鎖伸長剤をさらに含む場合、3級アミンを有する鎖伸長剤と3級アミンを有しない鎖伸長剤との合計量に対する3級アミンを有する鎖伸長剤の割合(モル%)としては、5~95モル%、さらには10~90モル%であることが好ましい。
 3級アミンを有しない鎖伸長剤としては、ポリウレタンの製造に従来用いられている、3級アミンを有さず、イソシアネート基と反応し得る活性水素原子を分子中に2個以上有する分子量300以下の低分子化合物が挙げられる。その具体例としては、例えば、エチレングリコール,ジエチレングリコール,1,2-プロパンジオール,1,3-プロパンジオール,2,2-ジエチル-1,3-プロパンジオール,1,2-ブタンジオール,1,3-ブタンジオール,2,3-ブタンジオール,1,4-ブタンジオール,1,5-ペンタンジオール,ネオペンチルグリコール,1,6-ヘキサンジオール,3-メチル-1,5-ペンタンジオール,1,4-ビス(β-ヒドロキシエトキシ)ベンゼン,1,4-シクロヘキサンジオール,シクロヘキサンジメタノール(1,4-シクロヘキサンジメタノール等),ビス(β-ヒドロキシエチル)テレフタレート,1,9-ノナンジオール,m-キシリレングリコール,p-キシリレングリコール,ジエチレングリコール,トリエチレングリコール等のジオール類;エチレンジアミン,トリメチレンジアミン,テトラメチレンジアミン,ヘキサメチレンジアミン,ヘプタメチレンジアミン,オクタメチレンジアミン,ノナメチレンジアミン,デカメチレンジアミン,ウンデカメチレンジアミン,ドデカメチレンジアミン,2,2,4-トリメチルヘキサメチレンジアミン,2,4,4-トリメチルヘキサメチレンジアミン,3-メチルペンタメチレンジアミン,1,2-シクロヘキサンジアミン,1,3-シクロヘキサンジアミン,1,4-シクロヘキサンジアミン,1,2-ジアミノプロパン,ヒドラジン,キシリレンジアミン,イソホロンジアミン,ピペラジン,o-フェニレンジアミン,m-フェニレンジアミン,p-フェニレンジアミン,トリレンジアミン,キシレンジアミン,アジピン酸ジヒドラジド,イソフタル酸ジヒドラジド,4,4’-ジアミノジフェニルメタン,4,4’-ジアミノジフェニルエーテル,4,4’-ビス(4-アミノフェノキシ)ビフェニル,4,4’-ビス(3-アミノフェノキシ)ビフェニル,1,4-ビス(4-アミノフェノキシ)ベンゼン,1,3-ビス(4-アミノフェノキシ)ベンゼン,1,3-ビス(3-アミノフェノキシ)ベンゼン,3,4’-ジアミノジフェニルエーテル,4,4’-ジアミノジフェニルスルフォン,3,4-ジアミノジフェニルスルフォン,3,3’-ジアミノジフェニルスルフォン,4,4’-メチレン-ビス(2-クロロアニリン),3,3’-ジメチル-4,4’-ジアミノビフェニル,4,4’-ジアミノジフェニルスルフィド,2,6-ジアミノトルエン,2,4-ジアミノクロロベンゼン,1,2-ジアミノアントラキノン,1,4-ジアミノアントラキノン,3,3’-ジアミノベンゾフェノン,3,4-ジアミノベンゾフェノン,4,4’-ジアミノベンゾフェノン,4,4’-ジアミノビベンジル,2,2’-ジアミノ-1,1’-ビナフタレン,1,3-ビス(4-アミノフェノキシ)アルカン,1,4-ビス(4-アミノフェノキシ)アルカン,1,5-ビス(4-アミノフェノキシ)アルカン等の1,n-ビス(4-アミノフェノキシ)アルカン(nは3~10),1,2-ビス[2-(4-アミノフェノキシ)エトキシ]エタン,9,9-ビス(4-アミノフェニル)フルオレン,4,4’-ジアミノベンズアニリド等のジアミン類等が挙げられる。これらは単独で用いても、2種以上を組合せて用いてもよい。これらの中では、1,4-ブタンジオールが好ましい。
 高分子ポリオールの具体例としては、例えば、ポリエーテルポリオール,ポリエステルポリオール,ポリカーボネートポリオール等が挙げられる。また、熱可塑性ポリウレタンを製造する場合には、例えば、ポリエーテルジオール,ポリエステルジオール,ポリカーボネートジオール等の高分子ジオールが用いられる。これらは単独で用いても、2種以上を組合せて用いてもよい。
 以下、熱可塑性ポリウレタンを製造する場合の高分子ジオールについて詳しく説明する。
 高分子ジオールの数平均分子量としては、450~3000、さらには500~2700、とくには500~2400であることが、剛性,硬度,親水性等の要求特性を維持しながら、pH10.0におけるゼータ電位が+0.1~+30mVである研磨面を有する研磨パッドが得られやすい点から好ましい。なお、高分子ジオールの数平均分子量は、JISK1557に準拠して測定した水酸基価に基づいて算出された数平均分子量を意味する。
 ポリエーテルジオールの具体例としては、例えば、ポリエチレングリコール,ポリプロピレングリコール,ポリテトラメチレングリコール,ポリ(メチルテトラメチレングリコール),グリセリンベースポリアルキレンエーテルグリコール等が挙げられる。これらは単独で用いても2種以上を組合せて用いてもよい。これらの中では、ポリエチレングリコール、ポリテトラメチレングリコール、とくにはポリエチレングリコールが好ましい。
 また、ポリエステルジオールは、例えば、ジカルボン酸またはそのエステルや無水物などのエステル形成性誘導体と、低分子ジオールとを直接エステル化反応またはエステル交換反応させることにより得られる。
 ポリエステルジオールを製造するためのジカルボン酸の具体例としては、例えば、シュウ酸,コハク酸,グルタル酸,アジピン酸,ピメリン酸,スベリン酸,アゼライン酸,セバシン酸,ドデカンジカルボン酸,2-メチルコハク酸,2-メチルアジピン酸,3-メチルアジピン酸,3-メチルペンタン二酸,2-メチルオクタン二酸,3,8-ジメチルデカン二酸,3,7-ジメチルデカン二酸等の炭素数2~12の脂肪族ジカルボン酸;トリグリセリドの分留により得られる不飽和脂肪酸を二量化した炭素数14~48の二量化脂肪族ジカルボン酸(ダイマー酸)およびこれらの水素添加物(水添ダイマー酸)等の脂肪族ジカルボン酸;1,4-シクロヘキサンジカルボン酸などの脂環式ジカルボン酸;テレフタル酸,イソフタル酸,オルトフタル酸等の芳香族ジカルボン酸などが挙げられる。また、ダイマー酸および水添ダイマー酸の具体例としては、例えば、ユニケマ社製商品名「プリポール1004」、「プリポール1006」、「プリポール1009」、「プリポール1013」等が挙げられる。これらは単独で用いても2種以上を組合せて用いてもよい。
 また、ポリエステルジオールを製造するための低分子ジオールの具体例としては、例えば、エチレングリコール,1,3-プロパンジオール,1,2-プロパンジオール,2-メチル-1,3-プロパンジオール,1,4-ブタンジオール,ネオペンチルグリコール,1,5-ペンタンジオール,3-メチル-1,5-ペンタンジオール,1,6-ヘキサンジオール,1,7-ヘプタンジオール,1,8-オクタンジオール,2-メチル-1,8-オクタンジオール,1,9-ノナンジオール,1,10-デカンジオール等の脂肪族ジオール;シクロヘキサンジメタノール,シクロヘキサンジオール等の脂環式ジオール等が挙げられる。これらは単独で用いても、2種以上を組合せて用いてもよい。これらの中では、炭素数6~12、さらには炭素数8~10、とくには炭素数9のジオールが好ましい。
 ポリカーボネートジオールとしては、低分子ジオールと、ジアルキルカーボネート,アルキレンカーボネート,ジアリールカーボネート等のカーボネート化合物との反応により得られるものが挙げられる。ポリカーボネートジオールを製造するための低分子ジオールとしては先に例示した低分子ジオールが挙げられる。また、ジアルキルカーボネートとしては、ジメチルカーボネート,ジエチルカーボネート等が挙げられる。また、アルキレンカーボネートとしてはエチレンカーボネート等が挙げられる。ジアリールカーボネートとしてはジフェニルカーボネート等が挙げられる。
 高分子ジオールとしては、30~100質量%、さらには35~100質量%、とくには40~100質量%、ことには50~100質量%の割合でポリエチレングリコールを含有することが好ましい。このような場合には、熱可塑性ポリウレタン中の高分子ジオールに由来するセグメントと有機ジイソシアネートおよび鎖伸長剤に由来するセグメントとの相分離の度合いが適切なものとなり、50℃の水で飽和膨潤させた後の50℃における貯蔵弾性率が50~1200MPaであるような熱可塑性ポリウレタンが得られやすくなる。また、親水性に富むポリエチレングリコールを含有することにより、水に対する接触角が80°以下のような親水性の高い熱可塑性ポリウレタンが得られやすくなる。高分子ジオール中のポリエチレングリコールの割合が低すぎる場合には水に対する接触角も高くなりすぎる傾向がある。
 また、有機ポリイソシアネートとしては、従来ポリウレタンの製造に用いられている有機ポリイソシアネートが特に限定なく用いられる。また、熱可塑性ポリウレタンを製造する場合には、有機ジイソシアネートが用いられる。有機ジイソシアネートの具体例としては、例えば、エチレンジイソシアネート,テトラメチレンジイソシアネート,ペンタメチレンジイソシアネート,ヘキサメチレンジイソシアネート,2,2,4-トリメチルヘキサメチレンジイソシアネート,2,4,4-トリメチルヘキサメチレンジイソシアネート,ドデカメチレンジイソシアネート,イソホロンジイソシアネート,イソプロピリデンビス(4-シクロヘキシルイソシアネート),シクロヘキシルメタンジイソシアネート,メチルシクロヘキサンジイソシアネート,4,4’-ジシクロヘキシルメタンジイソシアネート,リジンジイソシアネート,2,6-ジイソシアナトメチルカプロエート,ビス(2-イソシアナトエチル)フマレート,ビス(2-イソシアナトエチル)カーボネート,2-イソシアナトエチル-2,6-ジイソシアナトヘキサノエート,シクロヘキシレンジイソシアネート,メチルシクロヘキシレンジイソシアネート,ビス(2-イソシアナトエチル)-4-シクロへキセンなどの脂肪族又は脂環式ジイソシアネート;2,4’-ジフェニルメタンジイソシアネート,4,4’-ジフェニルメタンジイソシアネート,2,4-トリレンジイソシアネート,2,6-トリレンジイソシアネート,m-フェニレンジイソシアネート,p-フェニレンジイソシアネート,m-キシリレンジイソシアネート,p-キシリレンジイソシアネート,1,5-ナフチレンジイソシアネート,4,4’-ジイソシアナトビフェニル,3,3’-ジメチル-4,4’-ジイソシアナトビフェニル,3,3’-ジメチル-4,4’-ジイソシアナトジフェニルメタン,クロロフェニレン-2,4-ジイソシアネート,テトラメチルキシリレンジイソシアネートなどの芳香族ジイソシアネートを挙げることができる。これらは単独で用いても、2種以上を組合せて用いてもよい。これらの中では、得られる研磨パッドの耐摩耗性に優れる点から4,4’-ジフェニルメタンジイソシアネートがとくに好ましい。
 また、熱可塑性ポリウレタンの場合、イソシアネート基に由来する窒素原子の含有率としては、4.5~7.6質量%、さらには5.0~7.4質量%、とくには5.2~7.3質量%であることが50℃の水で飽和膨潤させた後の50℃における貯蔵弾性率が50~1200MPaである熱可塑性ポリウレタンが得られやすくなる点から好ましい。
 例えば熱可塑性ポリウレタンを製造する場合、上述したような反応原料を用い、公知のプレポリマー法またはワンショット法を用いたウレタン化反応により重合することにより得られる。好ましくは、実質的に溶剤の不存在下で、上述した各成分を所定の比率で配合して単軸又は多軸スクリュー型押出機を用いて溶融混合しながら連続溶融重合する方法によって得られる。
 連続溶融重合することにより得られる熱可塑性ポリウレタンは、例えば、ペレット化された後、押出成形法,射出成形法,ブロー成形法,カレンダー成形法などの各種の成形法によりシート状の成形体に成形される。とくには、Tダイを用いて押出成形することにより、厚さの均一なシート状の成形体が得られる点から好ましい。
 各成分の配合割合は目的とする特性に応じて適宜調整される。例えば、高分子ポリオールと3級アミンを有する鎖伸長剤と3級アミンを有しない鎖伸長剤とに含まれる活性水素原子1モルに対して、有機ポリイソシアネートに含まれるイソシアネート基が0.95~1.3モル、さらには0.96~1.10モル、とくには0.97~1.05モルとなる割合で配合することが好ましい。有機ポリイソシアネートに含まれるイソシアネート基の割合が低すぎる場合にはポリウレタンの機械的強度および耐摩耗性が低下して、研磨パッドの寿命が短くなる傾向がある。また、有機ポリイソシアネートに含まれるイソシアネート基の割合が高すぎる場合には、ポリウレタンの生産性、保存安定性が低下し、研磨パッドの製造が困難になる傾向がある。
 また、ポリウレタンは、必要に応じて、架橋剤,充填剤,架橋促進剤,架橋助剤,軟化剤,粘着付与剤,老化防止剤,発泡剤,加工助剤,密着性付与剤,無機充填剤,有機フィラー,結晶核剤,耐熱安定剤,耐候安定剤,帯電防止剤,着色剤,滑剤,難燃剤,難燃助剤(酸化アンチモンなど),ブルーミング防止剤,離型剤,増粘剤,酸化防止剤,導電剤等の添加剤を含有してもよい。ポリウレタンの添加剤の含有割合は特に限定されないが、50質量%以下、さらには20質量%以下、とくには5質量%以下であることが好ましい。
 熱可塑性ポリウレタンの成形体の密度としては、1.0g/cm以上、さらには1.1g/cm以上、とくには、1.2g/cm以上であることが好ましい。熱可塑性ポリウレタンの成形体の密度が低すぎる場合には、研磨パッドが柔らかくなってローカル平坦性が低下する傾向がある。また、熱可塑性ポリウレタンとしては非発泡の熱可塑性ポリウレタンが高い剛性と材料の均質さにより研磨安定性に優れる点から特に好ましい。
 本実施形態の研磨パッドは、上述したようなポリウレタンのシート状の成形体を切削,スライス,打ち抜き加工等により寸法、形状、厚さ等を調整することにより研磨パッドに仕上げられる。研磨パッドの厚さは特に限定されないが、0.3~5mm、さらには1.7~2.8mm、とくには2.0~2.5mmであることが生産や取り扱いのしやすさ、研磨性能の安定性から好ましい。
 研磨パッドの硬度としては、JIS-D硬度で60以上、さらには、65以上であることが好ましい。JIS-D硬度が低すぎる場合には、被研磨面への研磨パッドの追従性が高くなってローカル平坦性が低下する傾向がある。
 本実施形態の研磨パッドの研磨面には、研削加工やレーザー加工により、同心円状のような所定のパターンで溝や穴のような凹部が形成されることが好ましい。このような凹部は、研磨面に研磨スラリーを均一かつ充分に供給するとともに、スクラッチ発生の原因となる研磨屑の排出や、研磨パッドの吸着によるウェハ破損の防止に役立つ。例えば同心円状に溝を形成する場合、溝間の間隔としては、1.0~50mm、さらには1.5~30mm、とくには2.0~15mm程度であることが好ましい。また、溝の幅としては、0.1~3.0mm、さらには0.2~2.0mm程度であることが好ましい。また、溝の深さとしては、0.2~1.8mm、さらには0.4~1.5mm程度であることが好ましい。また、溝の断面形状としては、例えば、長方形,台形,三角形,半円形等の形状が目的に応じて適宜選択される。
 また、研磨パッドは研磨層のみからなる単層パッドとして用いても、研磨層である研磨パッドの研磨面の裏面にクッション層を積層した積層パッドとして用いてもよい。クッション層としては、研磨層である研磨パッドの硬度より低い硬度を有する素材を用いることが好ましい。クッション層の硬度が研磨層である研磨パッドの硬度よりも低い場合には、被研磨面の局所的な凹凸には硬質の研磨パッドが追従し、被研磨基材全体の反りやうねりに対してはクッション層が追従するためにグローバル平坦性とローカル平坦性とのバランスに優れた研磨が可能になる。
 クッション層として用いられる素材の具体例としては、不織布にポリウレタンを含浸させた複合体(例えば、「Suba400」(ニッタ・ハース(株)製));天然ゴム,ニトリルゴム,ポリブタジエンゴム,シリコーンゴム等のゴム;ポリエステル系熱可塑性エラストマー,ポリアミド系熱可塑性エラストマー,フッ素系熱可塑性エラストマー等の熱可塑性エラストマー;発泡プラスチック;ポリウレタン等が挙げられる。これらの中では、クッション層として好ましい柔軟性が得られやすい点から、発泡構造を有するポリウレタンがとくに好ましい。
 クッション層の厚さは特に限定されないが、例えば0.5~5mm程度であることが好ましい。クッション層が薄すぎる場合には、被研磨面の全体の反りやうねりに対する追従効果が低下してグローバル平坦化性能が低下する傾向がある。一方、クッション層が厚すぎる場合には、研磨パッド全体が柔らかくなって安定した研磨が難しくなる傾向がある。研磨層にクッション層を積層する場合には、研磨層になる研磨パッドの厚みが0.3~5mm程度であることが好ましい。
 次に、本実施形態の研磨パッドを用いたCMPの一実施形態について説明する。
 CMPにおいては、例えば、図1に示すような上面視したときに円形である回転定盤2と、スラリー供給ノズル3と、キャリア4と、パッドコンディショナー6とを備えたCMP装置10が用いられる。回転定盤2の表面に研磨面1aを有する研磨パッド1を両面テープ等により貼付ける。また、キャリア4は被研磨物5を支持する。
 CMP装置10においては、回転定盤2は図略のモータにより矢印に示す方向に回転する。また、キャリア4は、回転定盤2の面内において、図略のモータにより例えば矢印に示す方向に回転する。パッドコンディショナー6も回転定盤2の面内において、図略のモータにより例えば矢印に示す方向に回転する。
 はじめに、回転定盤2に固定されて回転する研磨パッド1の研磨面1aに蒸留水を流しながら、例えば、ダイアモンド粒子をニッケル電着等により担体表面に固定したCMP用のパッドコンディショナー6を押し当てて、研磨面1aのコンディショニングを行う。コンディショニングにより、研磨面1aを被研磨面の研磨に好適な表面粗さに調整する。次に、回転する研磨パッド1の研磨面1aにスラリー供給ノズル3から研磨スラリー7が供給される。またCMPを行うに際し、必要に応じ、研磨スラリーと共に、潤滑油、冷却剤などを併用してもよい。
 研磨スラリーとしては、例えば、水やオイル等の液状媒体;シリカ,アルミナ,酸化セリウム,酸化ジルコニウム,炭化ケイ素等の研磨剤;塩基,酸,界面活性剤,酸化剤,還元剤,キレート剤等を含有しているCMPに用いられる研磨スラリーであれば特に限定なく用いられる。なお、研磨スラリーには、酸性のスラリー、アルカリ性のスラリー、中性のスラリーがあるが、本実施形態の研磨パッドは何れの液性の研磨スラリーでも用いられる。なお、本実施形態の研磨パッドは、pH7.0~14.0、とくには、pH8.0~14.0のアルカリ性の研磨スラリーを用いてCMPを行うときにおいて、高い研磨速度を維持できるという効果を発揮する。
 そして、研磨スラリー7が満遍なく行き渡った研磨面1aに、キャリア4に固定されて回転する被研磨物5の被研磨面を押し当てる。そして、所定の平坦度が得られるまで、研磨処理が続けられる。研磨時に作用させる押し付け力や回転定盤2とキャリア4との相対運動の速度を調整することにより、仕上がり品質が影響を受ける。
 研磨条件は特に限定されないが、効率的に研磨を行うためには、回転定盤とキャリアのそれぞれの回転速度は300rpm以下の低回転が好ましく、被研磨物にかける圧力は、研磨後に傷が発生しないように150kPa以下とすることが好ましい。研磨している間、研磨面ドには、研磨スラリーをポンプ等で連続的に供給することが好ましい。研磨スラリーの供給量は特に限定されないが、研磨面が常に研磨スラリーで覆われるように供給することが好ましい。
 そして、研磨終了後の被研磨物を流水でよく洗浄した後、スピンドライヤ等を用いて被研磨物に付着した水滴を払い落として乾燥させることが好ましい。このように、被研磨面を研磨スラリーで研磨することによって、被研磨面全面にわたって平滑な面を得ることができる。
 このような本実施形態のCMPは、各種半導体装置、MEMS(Micro Electro Mechanical Systems)等の製造プロセスにおける研磨に好ましく用いられる。研磨対象の例としては、半導体基板上に形成された酸化膜等の絶縁膜の他、銅,アルミニウム,タングステン等の配線用金属膜;タンタル、チタン、窒化タンタル、窒化チタン等のバリアメタル膜、特には、酸化膜等の絶縁膜を研磨するのに好ましく用いられる。金属膜として配線パターンやダミーパターン等のパターンが形成されたものを研磨することも可能である。パターンにおけるライン間のピッチは、製品により異なるが、通常は50nm~100μm程度である。
 以下、本発明を実施例により具体的に説明する。なお、本発明の範囲はこれらの実施例によって何ら限定されるものではない。
[実施例1]
 数平均分子量600のポリエチレングリコール[略号:PEG600]、2,2’-メチルイミノジエタノール[略号:MIDE]、1,4-ブタンジオール[略号:BD]、および4,4'-ジフェニルメタンジイソシアネート[略号:MDI]を、PEG600:MIDE:BD:MDIの質量比が26.6:18.2:1.5:53.6(MIDEとBDのモル比が90/10)となる割合で配合し、定量ポンプにより同軸で回転する2軸押出機に連続的に供給して、熱可塑性ポリウレタンの連続溶融重合を行った。得られた熱可塑性ポリウレタンは、溶融状態でストランド状に水中に連続的に押出されて固化された後、ペレタイザーで細断されてペレットにされた。得られたペレットを70℃で20時間除湿乾燥することにより、熱可塑性ポリウレタン(以下、これをPU-1という)を製造した。そして、下記方法により、PU-1の、水に対する接触角および50℃の水で飽和膨潤させた後の50℃における貯蔵弾性率を求めた。
[水に対する接触角]
 熱プレス法により厚さ300μmのPU-1のフィルムを作製した。そして得られたフィルムを20℃、65%RHの条件下に3日間放置した後、協和界面科学(株)製DropMaster500を用いて水に対する接触角を測定した。
[50℃の水で飽和膨潤させた後の50℃における貯蔵弾性率]
 幅5mm、長さ30mm、厚さ2mmのPU-1の射出成形シートを作製した。そして、射出成形シートを50℃の水に3日間浸漬した。そして水から取り出した射出成形シートの表面の水を拭いた後、動的粘弾性測定装置(「DVEレオスペクトラー」、(株)レオロジー製)を使用して、50℃における動的粘弾性率を周波数11Hzで測定することにより、貯蔵弾性率を求めた。
 そして、PU-1を用いて次のようにして研磨パッドを作成し、評価した。
 PU-1のペレットを単軸押出成形機に供給し、T-ダイを用いて押出成形することにより、厚さ2.0mmのシートを得た。そして、得られたシートの表面を研削して厚さ1.5mmの均一なシートとした後、幅1.0mm、深さ1.0mmの溝を6.5mm間隔で同心円状に形成し、直径が380mmの円形状に切り抜いて研磨パッドを作製した。
[ゼータ電位の測定]
 30mm×60mmに切り抜いた研磨パッドの表面を洗浄した。そして、電気泳動光散乱装置(ELS-Z、大塚電子(株)製)を使用し、平板測定用セルにサンプルを取り付け、pH10.0にNaOH水溶液で調整した10mM NaCl水溶液中に分散したモニターラテックス(大塚電子(株)製)を用いて測定した。同様に、pH4.0にHCl水溶液で調整した10mM NaCl水溶液中に分散したモニターラテックスを用いても測定を行った。
 そして、得られた研磨パッドの研磨性能を下記方法により評価した。
[研磨性能]
 得られた研磨パッドを(株)エム・エー・ティ製の研磨装置「MAT-BC15」に装着した。そして、(株)アライドマテリアル製のダイヤモンドドレッサー(#100-被覆率80%、直径19cm、質量1kg)を用い、蒸留水を150mL/分の速度で流しながら、ドレッサー回転数140rpm、プラテン回転数100rpm、1時間の条件でパッド表面のコンディショニングを行った。次に、CabotMicroelectronics社製の研磨スラリー「SS-25」を2倍に希釈して調整したpH12の研磨スラリーを準備した。そして、プラテン回転数100rpm、ヘッド回転数99rpm、研磨圧力27.6kPaの条件において、120mL/分の速度で研磨スラリーを研磨パッドの研磨面に供給しながら膜厚1000nmの酸化ケイ素膜を表面に有する直径4インチのシリコンウェハを60秒間研磨した。そして、60秒間の研磨後、研磨パッドのコンディショニングを30秒間行った。そして、別のシリコンウェハを再度研磨し、さらに、30秒間コンディショニングを行った。このようにして10枚のシリコンウェハを研磨した。
 そして、10枚目に研磨したシリコンウェハの研磨前および研磨後の酸化ケイ素膜の膜厚をウェハ面内で各49点測定し、各点における研磨速度を求めた。そして、49点の研磨速度の平均値を研磨速度とした。また、研磨均一性は下式(1)により求めた不均一性により評価した。不均一性の値が小さいほど、ウェハ面内で銅膜が均一に研磨されており研磨均一性が優れている。
不均一性(%)=(σ/R)×100 (1)
(ただし、σ:49点の研磨速度の標準偏差、R:49点の研磨速度の平均値を表す。)
 また、10枚目に研磨したウェハについて(株)キーエンス製レーザー顕微鏡「VKX-200」を用いて対物レンズ倍率50倍で観察してスクラッチの有無を確認した。
 以上の結果を下記表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
[実施例2]
 次のように製造された熱可塑性ポリウレタン(PU-2)をPU-1の代わりに用いた以外は、実施例1と同様に熱可塑性ポリウレタンを評価し、また、研磨パッドを製造し、研磨性能を評価した。結果を表1に示す。
 PEG600、MIDE、BD、およびMDIを、PEG600:MIDE:BD:MDIの質量比が29.0:9.9:7.5:53.6(MIDEとBDのモル比が50/50)となる割合で配合して、定量ポンプにより同軸で回転する2軸押出機に連続的に供給して、熱可塑性ポリウレタンの連続溶融重合を行った。得られたた熱可塑性ポリウレタンは、溶融状態でストランド状に水中に連続的に押出された後、ペレタイザーで細断されてペレットにされた。得られたペレットを70℃で20時間除湿乾燥することにより、熱可塑性ポリウレタン(PU-2)を製造した。
[実施例3]
 次のように製造された熱可塑性ポリウレタン(PU-3)をPU-1の代わりに用いた以外は、実施例1と同様に熱可塑性ポリウレタンを評価し、また、研磨パッドを製造し、研磨性能を評価した。結果を表1に示す。
 PEG600、MIDE、BD、およびMDIを、PEG600:MIDE:BD:MDIの質量比が31.3:1.9:13.1:53.6(MIDEとBDのモル比が10/90)となる割合で配合し、定量ポンプにより同軸で回転する2軸押出機に連続的に供給して、熱可塑性ポリウレタンの連続溶融重合を行った。得られた熱可塑性ポリウレタンは、溶融状態でストランド状に水中に連続的に押出された後、ペレタイザーで細断されてペレットにされた。得られたペレットを70℃で20時間除湿乾燥することにより、熱可塑性ポリウレタン(PU-3)を製造した。
[実施例4]
 次のように製造された熱可塑性ポリウレタン(PU-4)をPU-1の代わりに用いた以外は、実施例1と同様に熱可塑性ポリウレタンを評価し、また、研磨パッドを製造し、研磨性能を評価した。結果を表1に示す。
 数平均分子量2000のポリエチレングリコール[略号:PEG2000]、MIDE、BD、およびMDIを、PEG2000:MIDE:BD:MDIの質量比が25.3:12.0:9.1:53.6(MIDEとBDのモル比が50/50)となる割合で配合し、定量ポンプにより同軸で回転する2軸押出機に連続的に供給して、熱可塑性ポリウレタンの連続溶融重合を行った。得られた熱可塑性ポリウレタンは、溶融状態でストランド状に水中に連続的に押出されて固化された後、ペレタイザーで細断されてペレットにされた。得られたペレットを70℃で20時間除湿乾燥することにより、熱可塑性ポリウレタン(PU-4)を製造した。
[実施例5]
 次のように製造された熱可塑性ポリウレタン(PU-5)をPU-1の代わりに用いた以外は、実施例1と同様に熱可塑性ポリウレタンを評価し、また、研磨パッドを製造し、研磨性能を評価した。結果を表1に示す。
 PEG600、MIDE、BD、およびMDIを、PEG600:MIDE:BD:MDIの質量比が52.0:4.4:3.3:40.2(MIDEとBDのモル比が50/50)となる割合で配合し、定量ポンプにより同軸で回転する2軸押出機に連続的に供給して、熱可塑性ポリウレタンの連続溶融重合を行った。得られた熱可塑性ポリウレタンは、溶融状態でストランド状に水中に連続的に押出されて固化された後、ペレタイザーで細断されてペレットにされた。得られたペレットを70℃で20時間除湿乾燥することにより、熱可塑性ポリウレタン(PU-5)を製造した。
[実施例6]
 次のように製造された熱可塑性ポリウレタン(PU-6)をPU-1の代わりに用いた以外は、実施例1と同様に熱可塑性ポリウレタンを評価し、また、研磨パッドを製造し、研磨性能を評価した。結果を表1に示す。
 PEG600、MIDE、BD、およびMDIを、PEG600:MIDE:BD:MDIの質量比が13.7:13.5:10.2:62.6(MIDEとBDのモル比が50/50)となる割合で配合し、定量ポンプにより同軸で回転する2軸押出機に連続的に供給して、熱可塑性ポリウレタンの連続溶融重合を行った。得られた熱可塑性ポリウレタンは、溶融状態でストランド状に水中に連続的に押出されて固化された後、ペレタイザーで細断されてペレットにされた。得られたペレットを70℃で20時間除湿乾燥することにより、熱可塑性ポリウレタン(PU-6)を製造した。
[実施例7]
 次のように製造された熱可塑性ポリウレタン(PU-7)をPU-1の代わりに用いた以外は、実施例1と同様に熱可塑性ポリウレタンを評価し、また、研磨パッドを製造し、研磨性能を評価した。結果を表1に示す。
 PEG600、数平均分子量850のポリテトラメチレングリコール[略号:PTG850]、MIDE、BD、およびMDIを、PEG600:PTG850:MIDE:BD:MDIの質量比が17.6:10.7:10.3:7.8:53.6(PEG600とPTG850のモル比が70/30、MIDEとBDのモル比が50/50)となる割合で配合し、定量ポンプにより同軸で回転する2軸押出機に連続的に供給して、熱可塑性ポリウレタンの連続溶融重合を行った。得られた熱可塑性ポリウレタンは、溶融状態でストランド状に水中に連続的に押出されて固化された後、ペレタイザーで細断されてペレットにされた。得られたペレットを70℃で20時間除湿乾燥することにより、熱可塑性ポリウレタン(PU-7)を製造した。
[実施例8]
 次のように製造された熱可塑性ポリウレタン(PU-8)をPU-1の代わりに用いた以外は、実施例1と同様に熱可塑性ポリウレタンを評価し、また、研磨パッドを製造し、研磨性能を評価した。結果を表1に示す。
 PEG600、PTG850、MIDE、BD、およびMDIを、PEG600:PTG850:MIDE:BD:MDIの質量比が8.9:18.9:10.6:8.0:53.6(PEG600とPTG850のモル比が40/60、MIDEとBDのモル比が50/50)となる割合で配合し、定量ポンプにより同軸で回転する2軸押出機に連続的に供給して、熱可塑性ポリウレタンの連続溶融重合を行った。得られた熱可塑性ポリウレタンは、溶融状態でストランド状に水中に連続的に押出されて固化された後、ペレタイザーで細断されてペレットにされた。得られたペレットを70℃で20時間除湿乾燥することにより、熱可塑性ポリウレタン(PU-8)を製造した。
[実施例9]
 次のように製造された熱可塑性ポリウレタン(PU-9)をPU-1の代わりに用いた以外は、実施例1と同様に熱可塑性ポリウレタンを評価し、また、研磨パッドを製造し、研磨性能を評価した。結果を表1に示す。
 PEG600、3-(ジメチルアミノ)―1,2-プロパンジオール[略号:DMAPD]、BD、およびMDIを、PEG600:DMAPD:BD:MDIの質量比が29.0:9.9:7.5:53.6(DMAODとBDのモル比が50/50)となる割合で配合し、定量ポンプにより同軸で回転する2軸押出機に連続的に供給して、熱可塑性ポリウレタンの連続溶融重合を行った。得られた熱可塑性ポリウレタンは、溶融状態でストランド状に水中に連続的に押出されて固化された後、ペレタイザーで細断されてペレットにされた。得られたペレットを70℃で20時間除湿乾燥することにより、熱可塑性ポリウレタン(PU-9)を製造した。
[実施例10]
 次のように製造された熱可塑性ポリウレタン(PU-10)をPU-1の代わりに用いた以外は、実施例1と同様に熱可塑性ポリウレタンを評価し、また、研磨パッドを製造し、研磨性能を評価した。結果を表1に示す。
 PTG850、MIDE、BD、およびMDIを、PTG850:MIDE:BD:MDIの質量比が27.3:10.9:8.2:53.6(MIDEとBDのモル比が50/50)となる割合で配合し、定量ポンプにより同軸で回転する2軸押出機に連続的に供給して、熱可塑性ポリウレタンの連続溶融重合を行った。得られた熱可塑性ポリウレタンは、溶融状態でストランド状に水中に連続的に押出されて固化された後、ペレタイザーで細断されてペレットにされた。得られたペレットを70℃で20時間除湿乾燥することにより、熱可塑性ポリウレタン(PU-10)を製造した。
[比較例1]
 次のように製造された熱可塑性ポリウレタン(PU-11)をPU-1の代わりに用いた以外は、実施例1と同様に熱可塑性ポリウレタンを評価し、また、研磨パッドを製造し、研磨性能を評価した。結果を表1に示す。
 PEG600、BD、およびMDIを、PEG600:BD:MDIの質量比が31.9:14.5:53.6となる割合で配合し、定量ポンプにより同軸で回転する2軸押出機に連続的に供給して、熱可塑性ポリウレタンの連続溶融重合を行った。得られた熱可塑性ポリウレタンは、溶融状態でストランド状に水中に連続的に押出されて固化された後、ペレタイザーで細断されてペレットにされた。得られたペレットを70℃で20時間除湿乾燥することにより、熱可塑性ポリウレタン(PU-11)を製造した。
[比較例2]
 次のように製造された熱可塑性ポリウレタン(PU-12)をPU-1の代わりに用いた以外は、実施例1と同様に熱可塑性ポリウレタンを評価し、また、研磨パッドを製造し、研磨性能を評価した。結果を表1に示す。
 数平均分子量4000のポリエチレングリコール[略号:PEG400]、BD、およびMDIを、PEG4000:BD:MDIの質量比が27.7:18.7:53.6となる割合で配合し、定量ポンプにより同軸で回転する2軸押出機に連続的に供給して、熱可塑性ポリウレタンの連続溶融重合を行った。得られた熱可塑性ポリウレタンは、溶融状態でストランド状に水中に連続的に押出されて固化された後、ペレタイザーで細断されてペレットにされた。得られたペレットを70℃で20時間除湿乾燥することにより、熱可塑性ポリウレタン(PU-12)を製造した。
[比較例3]
 次のように製造された熱可塑性ポリウレタン(PU-13)をPU-1の代わりに用いた以外は、実施例1と同様に熱可塑性ポリウレタンを評価し、また、研磨パッドを製造し、研磨性能を評価した。結果を表1に示す。
 PEG600、BD、およびMDIを、PEG600:BD:MDIの質量比が60.5:3.8:35.8となる割合で配合し、定量ポンプにより同軸で回転する2軸押出機に連続的に供給して、熱可塑性ポリウレタンの連続溶融重合を行った。得られた熱可塑性ポリウレタンは、溶融状態でストランド状に水中に連続的に押出されて固化された後、ペレタイザーで細断されてペレットにされた。得られたペレットを70℃で20時間除湿乾燥することにより、熱可塑性ポリウレタン(PU-13という)を製造した。
[比較例4]
 次のように製造された熱可塑性ポリウレタン(PU-14)をPU-1の代わりに用いた以外は、実施例1と同様に熱可塑性ポリウレタンを評価し、また、研磨パッドを製造し、研磨性能を評価した。結果を表1に示す。
 PEG600、BD、およびMDIを、PEG600:BD:MDIの質量比が3.3:25.2:71.5となる割合で配合し、定量ポンプにより同軸で回転する2軸押出機に連続的に供給して、熱可塑性ポリウレタンの連続溶融重合を行った。得られた熱可塑性ポリウレタンは、溶融状態でストランド状に水中に連続的に押出されて固化された後、ペレタイザーで細断されてペレットにされた。得られたペレットを70℃で20時間除湿乾燥することにより、熱可塑性ポリウレタン(PU-14)を製造した。
[比較例5]
 次のように製造された熱可塑性ポリウレタン(PU-15)をPU-1の代わりに用いた以外は、実施例1と同様に熱可塑性ポリウレタンを評価し、また、研磨パッドを製造し、研磨性能を評価した。結果を表1に示す。
 数平均分子量2000のポリブチレンアジペート[略号:PBA1000]、BD、およびMDIを、PBA1000:BD:MDIの質量比が23.1:18.8:58.1となる割合で配合し、定量ポンプにより同軸で回転する2軸押出機に連続的に供給して、熱可塑性ポリウレタンの連続溶融重合を行った。得られた熱可塑性ポリウレタンは、溶融状態でストランド状に水中に連続的に押出されて固化された後、ペレタイザーで細断されてペレットにされた。得られたペレットを70℃で20時間除湿乾燥することにより、熱可塑性ポリウレタン(PU-15)を製造した。
 表1から、pH10.0におけるゼータ電位が+0.1mV以上である実施例1~10で得られた研磨パッドによれば、pH12のアルカリ性の研磨スラリーを用いても高い研磨速度が得られたことがわかる。また、それらは研磨均一性にも優れ、スクラッチも発生しなかった。一方、pH10.0におけるゼータ電位が+0.1mV未満である比較例1~5で得られた研磨パッドは、高い研磨速度が得られなかった。
 本発明の研磨パッドは、例えば、半導体基板上の酸化ケイ素膜等を、アルカリ性の研磨スラリーを用いてCMPにより研磨する場合であっても、高い研磨速度が得られる。
1  研磨パッド
2  回転定盤
3  スラリー供給ノズル
4  キャリア
5  被研磨物
6  パッドコンディショナー
10 CMP装置
 

Claims (13)

  1.  pH10.0におけるゼータ電位が+0.1mV以上である研磨面を有することを特徴とする研磨パッド。
  2.  3級アミンを有するポリウレタンを含む請求項1に記載の研磨パッド。
  3.  前記3級アミンを有するポリウレタンは、3級アミンを有する鎖伸長剤を少なくとも含むポリウレタン反応原料の反応物である請求項2に記載の研磨パッド。
  4.  前記3級アミンを有する鎖伸長剤が、2,2’-メチルイミノジエタノール,2,2’-エチルイミノジエタノール,2,2’-n-ブチルイミノジエタノール,2,2’-t-ブチルイミノジエタノール、3-(ジメチルアミノ)-1,2-プロパンジオール,3-(ジエチルアミノ)-1,2-プロパンジオールからなる群から選ばれる少なくとも1種を含む請求項3に記載の研磨パッド。
  5.  前記ポリウレタン反応原料は、前記3級アミンを有する鎖伸長剤を0.5~30質量%含む請求項3又は4に記載の研磨パッド。
  6.  前記ポリウレタン反応原料は3級アミンを有しない鎖伸長剤をさらに含み、
     前記3級アミンを有する鎖伸長剤と前記3級アミンを有しない鎖伸長剤の合計量に対する前記3級アミンを有する鎖伸長剤の含有割合が5~95モル%である請求項3~5の何れか1項に記載の研磨パッド。
  7.  前記3級アミンを有するポリウレタンは、前記3級アミンを有する鎖伸長剤と、高分子ジオールと、有機ジイソシアネートとを少なくとも含む前記ポリウレタン反応原料の反応物である熱可塑性ポリウレタンである請求項2~6の何れか1項に記載の研磨パッド。
  8.  前記高分子ジオールが、ポリエチレングリコールを30~100質量%含む請求項7に記載の研磨パッド。
  9.  前記高分子ジオールの数平均分子量が450~3000である請求項7または8に記載の研磨パッド。
  10.  前記有機ジイソシアネートが有するイソシアネート基に由来する窒素含有量が4.5~7.6質量%である請求項7~9の何れか1項に記載の研磨パッド。
  11.  50℃の水で飽和膨潤させた後の50℃における貯蔵弾性率が50~1200MPaで、且つ、水との接触角が80度以下である請求項1~10の何れか1項に記載の研磨パッド。
  12.  非発泡体である請求項1~11の何れか1項に記載の研磨パッド。
  13.  請求項1~12の何れか1項に記載の研磨パッドを研磨装置の定盤上に固定する工程と、
     前記研磨パッドの前記研磨面に対面するように被研磨物を研磨装置のホルダに保持させる工程と、
     前記研磨面と前記被研磨物との間にアルカリ性の研磨スラリーを供給しながら、前記研磨パッドと前記被研磨物とを相対的に摺動させることにより前記被研磨物を研磨する工程と、を備えることを特徴とする研磨方法。
PCT/JP2017/027095 2016-07-29 2017-07-26 研磨パッドおよびそれを用いた研磨方法 WO2018021428A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020197000891A KR102170859B1 (ko) 2016-07-29 2017-07-26 연마 패드 및 그것을 사용한 연마 방법
EP17834430.5A EP3493244B1 (en) 2016-07-29 2017-07-26 Polishing pad and polishing method using same
US16/311,518 US11154960B2 (en) 2016-07-29 2017-07-26 Polishing pad and polishing method using same
JP2018530366A JP6619100B2 (ja) 2016-07-29 2017-07-26 研磨パッドおよびそれを用いた研磨方法
CN201780043880.2A CN109478507B (zh) 2016-07-29 2017-07-26 抛光垫及使用了该抛光垫的抛光方法
IL263480A IL263480B (en) 2016-07-29 2018-12-04 The polishing pad and the polishing method using it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016150389 2016-07-29
JP2016-150389 2016-07-29

Publications (1)

Publication Number Publication Date
WO2018021428A1 true WO2018021428A1 (ja) 2018-02-01

Family

ID=61016160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027095 WO2018021428A1 (ja) 2016-07-29 2017-07-26 研磨パッドおよびそれを用いた研磨方法

Country Status (8)

Country Link
US (1) US11154960B2 (ja)
EP (1) EP3493244B1 (ja)
JP (1) JP6619100B2 (ja)
KR (1) KR102170859B1 (ja)
CN (1) CN109478507B (ja)
IL (1) IL263480B (ja)
TW (1) TWI704977B (ja)
WO (1) WO2018021428A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10464188B1 (en) 2018-11-06 2019-11-05 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing pad and polishing method
WO2019216279A1 (ja) * 2018-05-11 2019-11-14 株式会社クラレ ポリウレタンの改質方法,ポリウレタン,研磨パッド及び研磨パッドの改質方法
WO2020036038A1 (ja) * 2018-08-11 2020-02-20 株式会社クラレ 研磨層用ポリウレタン、研磨層及び研磨パッド
US10569384B1 (en) 2018-11-06 2020-02-25 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing pad and polishing method
WO2020095832A1 (ja) * 2018-11-09 2020-05-14 株式会社クラレ 研磨層用ポリウレタン、研磨層、研磨パッド及び研磨層の改質方法
TWI714336B (zh) * 2018-12-03 2020-12-21 日商可樂麗股份有限公司 研磨層用聚胺基甲酸酯、研磨層及研磨墊
JP2022185571A (ja) * 2021-06-02 2022-12-14 エスケーシー ソルミックス カンパニー,リミテッド 研磨パッドおよびこれを用いた半導体素子の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI824280B (zh) * 2020-08-24 2023-12-01 南韓商Sk恩普士股份有限公司 研磨墊及使用該研磨墊之用於製備半導體裝置的方法
TW202225233A (zh) * 2020-11-02 2022-07-01 美商3M新設資產公司 聚胺甲酸酯、拋光物品及由其製造之拋光系統及其使用方法
US11772230B2 (en) * 2021-01-21 2023-10-03 Rohm And Haas Electronic Materials Cmp Holdings Inc. Formulations for high porosity chemical mechanical polishing pads with high hardness and CMP pads made therewith
WO2022249135A1 (en) * 2021-05-28 2022-12-01 3M Innovative Properties Company Polyurethanes, polishing articles and polishing systems therefrom and method of use thereof
WO2024023618A1 (en) * 2022-07-29 2024-02-01 3M Innovative Properties Company Polyurethanes, polishing articles and polishing systems therefrom and method of use thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004297061A (ja) * 2003-03-11 2004-10-21 Toyobo Co Ltd 研磨パッドおよび半導体デバイスの製造方法
JP2005294661A (ja) 2004-04-02 2005-10-20 Hitachi Chem Co Ltd 研磨パッド及びそれを用いる研磨方法
WO2008029725A1 (fr) 2006-09-06 2008-03-13 Nitta Haas Incorporated Tampon de polissage
JP2013018056A (ja) 2011-07-07 2013-01-31 Toray Ind Inc 研磨パッド
US20150183081A1 (en) * 2013-12-30 2015-07-02 Semiconductor Manufacturing International (Beijing) Corporation Chemical mechanical planarization apparatus and methods

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8845852B2 (en) 2002-11-27 2014-09-30 Toyo Tire & Rubber Co., Ltd. Polishing pad and method of producing semiconductor device
JP3910921B2 (ja) * 2003-02-06 2007-04-25 株式会社東芝 研磨布および半導体装置の製造方法
TW200613485A (en) * 2004-03-22 2006-05-01 Kao Corp Polishing composition
TWI341230B (en) * 2004-04-21 2011-05-01 Toray Industries Polishing cloth and production method for the nanofiber construction
KR100909605B1 (ko) 2005-03-08 2009-07-27 도요 고무 고교 가부시키가이샤 연마 패드 및 그 제조 방법
JP5506008B2 (ja) * 2005-11-08 2014-05-28 東洋ゴム工業株式会社 研磨パッド
WO2007054125A1 (en) * 2005-11-08 2007-05-18 Freescale Semiconductor, Inc. A system and method for removing particles from a polishing pad
CN101681825B (zh) * 2007-03-20 2011-11-09 可乐丽股份有限公司 金属膜抛光用垫和使用该金属膜抛光用垫的金属膜的抛光方法
JP5538007B2 (ja) * 2009-08-20 2014-07-02 アイオン株式会社 洗浄用スポンジ体及び洗浄方法
WO2012042769A1 (ja) * 2010-09-30 2012-04-05 コニカミノルタオプト株式会社 ハードディスク用ガラス基板の製造方法
KR101243331B1 (ko) * 2010-12-17 2013-03-13 솔브레인 주식회사 화학 기계적 연마 슬러리 조성물 및 이를 이용하는 반도체 소자의 제조 방법
JP5789523B2 (ja) * 2012-01-10 2015-10-07 株式会社クラレ 研磨パッド、及び研磨パッドを用いた化学的機械的研磨方法
US9437446B2 (en) * 2012-05-30 2016-09-06 Kuraray Co., Ltd. Slurry for chemical mechanical polishing and chemical mechanical polishing method
JP6184856B2 (ja) * 2013-12-16 2017-08-23 株式会社クラレ 研磨パッドの製造方法および該研磨パッドを用いる研磨方法
CN108290267B (zh) * 2015-10-30 2021-04-20 应用材料公司 形成具有期望ζ电位的抛光制品的设备与方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004297061A (ja) * 2003-03-11 2004-10-21 Toyobo Co Ltd 研磨パッドおよび半導体デバイスの製造方法
JP2005294661A (ja) 2004-04-02 2005-10-20 Hitachi Chem Co Ltd 研磨パッド及びそれを用いる研磨方法
WO2008029725A1 (fr) 2006-09-06 2008-03-13 Nitta Haas Incorporated Tampon de polissage
JP2013018056A (ja) 2011-07-07 2013-01-31 Toray Ind Inc 研磨パッド
US20150183081A1 (en) * 2013-12-30 2015-07-02 Semiconductor Manufacturing International (Beijing) Corporation Chemical mechanical planarization apparatus and methods

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200136982A (ko) * 2018-05-11 2020-12-08 주식회사 쿠라레 폴리우레탄의 개질 방법, 폴리우레탄, 연마 패드 및 연마 패드의 개질 방법
WO2019216279A1 (ja) * 2018-05-11 2019-11-14 株式会社クラレ ポリウレタンの改質方法,ポリウレタン,研磨パッド及び研磨パッドの改質方法
KR102489189B1 (ko) * 2018-05-11 2023-01-17 주식회사 쿠라레 폴리우레탄의 개질 방법, 폴리우레탄, 연마 패드 및 연마 패드의 개질 방법
JPWO2019216279A1 (ja) * 2018-05-11 2021-06-17 株式会社クラレ ポリウレタンの改質方法,ポリウレタン,研磨パッド及び研磨パッドの改質方法
JP7068445B2 (ja) 2018-05-11 2022-05-16 株式会社クラレ 研磨パッド及び研磨パッドの改質方法
IL278376B1 (en) * 2018-05-11 2024-04-01 Kuraray Co A method for changing polyurethane, the polishing pad, and a method for changing the polishing pad
CN112423933B (zh) * 2018-08-11 2023-02-17 株式会社可乐丽 抛光层用聚氨酯、抛光层及抛光垫
JPWO2020036038A1 (ja) * 2018-08-11 2021-08-10 株式会社クラレ 研磨層用ポリウレタン、研磨層及び研磨パッド
EP3834987A4 (en) * 2018-08-11 2022-05-04 Kuraray Co., Ltd. POLYURETHANE FOR POLISHING, POLISHING AND POLISHING PADS
JP6993513B2 (ja) 2018-08-11 2022-01-13 株式会社クラレ 研磨層用ポリウレタン、研磨層及び研磨パッド
US20210309794A1 (en) * 2018-08-11 2021-10-07 Kuraray Co., Ltd. Polyurethane for polishing layer, polishing layer, and polishing pad
WO2020036038A1 (ja) * 2018-08-11 2020-02-20 株式会社クラレ 研磨層用ポリウレタン、研磨層及び研磨パッド
KR20210021056A (ko) * 2018-08-11 2021-02-24 주식회사 쿠라레 연마층용 폴리우레탄, 연마층 및 연마 패드
CN112423933A (zh) * 2018-08-11 2021-02-26 株式会社可乐丽 抛光层用聚氨酯、抛光层及抛光垫
KR102524174B1 (ko) 2018-08-11 2023-04-20 주식회사 쿠라레 연마층용 폴리우레탄, 연마층 및 연마 패드
FR3088021A1 (fr) 2018-11-06 2020-05-08 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Tampon de polissage mécano-chimique et procédé de polissage
US10569384B1 (en) 2018-11-06 2020-02-25 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing pad and polishing method
DE102019007230A1 (de) 2018-11-06 2020-05-07 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemisch-mechanisches polierkissen und polierverfahren
DE102019007227A1 (de) 2018-11-06 2020-05-07 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemisch-mechanisches polierkissen und polierverfahren
CN111136577A (zh) * 2018-11-06 2020-05-12 罗门哈斯电子材料Cmp控股股份有限公司 化学机械抛光垫和抛光方法
CN111203798A (zh) * 2018-11-06 2020-05-29 罗门哈斯电子材料Cmp控股股份有限公司 化学机械抛光垫和抛光方法
US10464188B1 (en) 2018-11-06 2019-11-05 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing pad and polishing method
WO2020095832A1 (ja) * 2018-11-09 2020-05-14 株式会社クラレ 研磨層用ポリウレタン、研磨層、研磨パッド及び研磨層の改質方法
JP7104174B2 (ja) 2018-11-09 2022-07-20 株式会社クラレ 研磨層用ポリウレタン、研磨層、研磨パッド及び研磨層の改質方法
JPWO2020095832A1 (ja) * 2018-11-09 2021-10-07 株式会社クラレ 研磨層用ポリウレタン、研磨層、研磨パッド及び研磨層の改質方法
CN112839985A (zh) * 2018-11-09 2021-05-25 株式会社可乐丽 抛光层用聚氨酯、抛光层、抛光垫及抛光层的改性方法
KR20210057136A (ko) * 2018-11-09 2021-05-20 주식회사 쿠라레 연마층용 폴리우레탄, 연마층, 연마 패드 및 연마층의 개질 방법
CN112839985B (zh) * 2018-11-09 2023-10-20 株式会社可乐丽 抛光层用聚氨酯、抛光层、抛光垫及抛光层的改性方法
KR102603370B1 (ko) * 2018-11-09 2023-11-16 주식회사 쿠라레 연마층용 폴리우레탄, 연마층, 연마 패드 및 연마층의 개질 방법
EP3892418A4 (en) * 2018-12-03 2022-08-17 Kuraray Co., Ltd. POLYURETHANE FOR POLISHING LAYERS, POLISHING LAYER AND POLISHING PAD
TWI714336B (zh) * 2018-12-03 2020-12-21 日商可樂麗股份有限公司 研磨層用聚胺基甲酸酯、研磨層及研磨墊
JP2022185571A (ja) * 2021-06-02 2022-12-14 エスケーシー ソルミックス カンパニー,リミテッド 研磨パッドおよびこれを用いた半導体素子の製造方法
JP7291986B2 (ja) 2021-06-02 2023-06-16 エスケー エンパルス カンパニー リミテッド 研磨パッドおよびこれを用いた半導体素子の製造方法

Also Published As

Publication number Publication date
CN109478507A (zh) 2019-03-15
EP3493244A1 (en) 2019-06-05
US11154960B2 (en) 2021-10-26
US20190232460A1 (en) 2019-08-01
KR20190017034A (ko) 2019-02-19
JP6619100B2 (ja) 2019-12-11
EP3493244B1 (en) 2023-11-01
KR102170859B1 (ko) 2020-10-28
IL263480A (en) 2019-01-31
TWI704977B (zh) 2020-09-21
EP3493244A4 (en) 2020-04-01
CN109478507B (zh) 2023-01-10
IL263480B (en) 2022-03-01
JPWO2018021428A1 (ja) 2019-03-28
TW201808530A (zh) 2018-03-16

Similar Documents

Publication Publication Date Title
JP6619100B2 (ja) 研磨パッドおよびそれを用いた研磨方法
JP7181860B2 (ja) ポリウレタンを含む研磨層とその研磨層の改質方法,研磨パッド及び研磨方法
JP5389448B2 (ja) 金属膜研磨用パッドおよびそれを用いる金属膜の研磨方法
JPWO2007034980A1 (ja) 高分子材料、それから得られる発泡体及びこれらを用いた研磨パッド
JP2008184597A (ja) 研磨パッドの製造方法
KR102489189B1 (ko) 폴리우레탄의 개질 방법, 폴리우레탄, 연마 패드 및 연마 패드의 개질 방법
JP2008235508A (ja) 研磨パッド、それを用いた研磨方法および半導体デバイスの製造方法
JP7104174B2 (ja) 研磨層用ポリウレタン、研磨層、研磨パッド及び研磨層の改質方法
WO2021117834A1 (ja) ポリウレタン、研磨層、研磨パッド及び研磨方法
CN118019616A (zh) 抛光垫
WO2023149434A1 (ja) 研磨層、研磨パッド、研磨パッドの製造方法及び研磨方法
WO2023054331A1 (ja) 研磨層用熱可塑性ポリウレタン、研磨層、及び研磨パッド
WO2023048265A1 (ja) 研磨パッド

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018530366

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834430

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197000891

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017834430

Country of ref document: EP

Effective date: 20190228