WO2018020635A1 - 交流直流変換装置、モジュール、電力変換装置および空気調和装置 - Google Patents

交流直流変換装置、モジュール、電力変換装置および空気調和装置 Download PDF

Info

Publication number
WO2018020635A1
WO2018020635A1 PCT/JP2016/072134 JP2016072134W WO2018020635A1 WO 2018020635 A1 WO2018020635 A1 WO 2018020635A1 JP 2016072134 W JP2016072134 W JP 2016072134W WO 2018020635 A1 WO2018020635 A1 WO 2018020635A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
diode
module
diodes
converter
Prior art date
Application number
PCT/JP2016/072134
Other languages
English (en)
French (fr)
Inventor
圭一朗 志津
篠本 洋介
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/072134 priority Critical patent/WO2018020635A1/ja
Priority to JP2018530281A priority patent/JP6584673B2/ja
Priority to CN201680087567.4A priority patent/CN109478853A/zh
Priority to US16/095,795 priority patent/US20190140553A1/en
Publication of WO2018020635A1 publication Critical patent/WO2018020635A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an AC / DC converter, a module, a power converter, and an air conditioner that convert an AC voltage into a DC voltage.
  • the AC / DC converter disclosed in Patent Document 1 includes a first rectifier and a second rectifier connected to an AC power source via a reactor as a circuit for converting a single-phase AC voltage into a DC voltage, and a first Two capacitors connected in series between the output terminals of the rectifier and two switches connected in series between the output terminals of the second rectifier. The connection point between the two capacitors is connected to the connection point between the two switches.
  • Each of the first rectifier and the second rectifier is an independent module, and the AC / DC converter disclosed in Patent Document 1 includes two switches connected in series separately from these modules.
  • the AC / DC converter disclosed in Patent Document 1 considers two capacitors connected in series as a virtual AC power supply, and controls the two switches so as to suppress the harmonic current and make the phase difference zero. .
  • the alternating current supplied from the alternating current power source to the alternating current to direct current converter becomes a sine wave input current with suppressed harmonics, and the power factor is improved.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain an AC / DC converter capable of reducing the mounting space for circuit components.
  • an AC / DC converter includes first and second rectifiers connected to an AC power supply via a reactor, and an output of the first rectifier.
  • a switch arm composed of two switches connected in series on the side, and two capacitors connected in series on the output side of the second rectifier, and the connection point between the two capacitors is It is connected to a connection point between two switches.
  • the AC / DC converter according to the present invention has the effect of reducing the mounting space for circuit components.
  • the figure which shows the internal circuit composition of the reference circuit module used with the bridge type inverter The figure which shows the modification of the alternating current direct current converter which concerns on Embodiment 1 of this invention
  • the block diagram of the power converter device comprised by connecting an inverter to the alternating current direct current converter concerning Embodiment 2 of this invention The figure which shows the modification of the alternating current direct current converter which concerns on Embodiment 2 of this invention
  • the figure which shows the 1st modification of the module with which the AC / DC converter which concerns on Embodiment 2 of this invention is provided.
  • FIG. 1 is a diagram illustrating a configuration example of an AC / DC converter according to Embodiment 1 of the present invention.
  • AC-DC converter 100-1 according to Embodiment 1 includes reactor 2 having one end connected to one end of AC power supply 1, and AC power supplied from AC power supply 1 connected to AC power supply 1 via reactor 2. Is converted to DC power, and a second rectifier 4 is connected to the AC power source 1 via the reactor 2 and converts AC power supplied from the AC power source 1 into DC power.
  • an AC power source 1 is a power source that outputs a single-phase AC voltage.
  • the AC / DC converter 100-1 includes a switch arm 5 that is a series circuit including a switch 55 and a switch 56 connected in series between the output terminal 3a and the output terminal 3b of the first rectifier 3.
  • condenser pair comprised by the capacitor
  • an IGBT Insulated Gate Bipolar Transistor
  • MOSFET Metal Oxide Semiconductor Transistor Transistor
  • both switch 55 and switch 56 are formed of N-channel MOSFETs.
  • a drive circuit (not shown) for driving the switch 55 and the switch 56 is connected to the gates of the MOSFETs constituting both the switch 55 and the switch 56.
  • the module 6 in which the second rectifier 4 and the switch arm 5 are integrated includes an output terminal P1, an output terminal N1, and an output terminal C1, and an input terminal P2, an input terminal N2, an input terminal AC1, and an input terminal AC2.
  • the drain of the MOSFET that is the switch 55 and the output terminal 3a of the first rectifier 3 are connected to the input terminal P2 of the module 6.
  • the source of the MOSFET which is the switch 56 and the output terminal 3 b of the first rectifier 3 are connected to the input terminal N ⁇ b> 2 of the module 6.
  • Connected to the output terminal C1 of the module 6 is a connection point 5a between the switch 55 and the switch 56 constituting the switch arm 5.
  • the first rectifier 3 includes an output terminal 3a and an output terminal 3b, an input terminal 3c and an input terminal 3d, a relay terminal 3e and a relay terminal 3f, a diode 31, a diode 32, a diode 33, and a diode 34.
  • the relay terminal 3e of the first rectifier 3 is connected to the input terminal AC1 of the module 6.
  • the relay terminal 3 f of the first rectifier 3 is connected to the input terminal AC ⁇ b> 2 of the module 6.
  • connection point 3g between the anode of the diode 31 and the cathode of the diode 32 is connected to the input terminal 3c and the relay terminal 3e.
  • the input terminal 3c is connected to the other end of the reactor 2 and the connection point 3g.
  • a connection point 3h between the anode of the diode 33 and the cathode of the diode 34 is connected to the input terminal 3d and the relay terminal 3f.
  • the input terminal 3d is connected to the other end of the AC power source 1 and the connection point 3h.
  • the cathodes of the diode 31 and the diode 33 are connected to the output terminal 3a, and the anodes of the diode 32 and the diode 34 are connected to the output terminal 3b.
  • the second rectifier 4 includes an output terminal 4a and an output terminal 4b, an input terminal 4c and an input terminal 4d, a diode 41, a diode 42, a diode 43 and a diode 44.
  • the diode 41, the diode 42, the diode 43, and the diode 44 may be simply referred to as diodes 41, 42, 43, and 44.
  • connection point 4g between the anode of the diode 41 and the cathode of the diode 42 is connected to the input terminal 4c.
  • the input terminal 4c is connected to the input terminal AC1 of the module 6.
  • a connection point 4h between the anode of the diode 43 and the cathode of the diode 44 is connected to the input terminal 4d.
  • the input terminal 4d is connected to the input terminal AC2 of the module 6.
  • the cathodes of the diode 41 and the diode 43 are connected to the output terminal 4a, and the anodes of the diode 42 and the diode 44 are connected to the output terminal 4b.
  • the output terminal 4 a of the second rectifier 4 is connected to the output terminal P 1 of the module 6, and the output terminal 4 b of the second rectifier 4 is connected to the output terminal N 1 of the module 6.
  • One end of the capacitor 11 is connected to the output terminal P1 of the module 6.
  • a connection point 13 between the other end of the capacitor 11 and one end of the capacitor 12 is connected to the output terminal C 1 of the module 6.
  • the other end of the capacitor 12 is connected to the output terminal N1 of the module 6.
  • the first rectifier 3 and the second rectifier 4 are connected to the AC power source 1 through the reactor 2, and the connection point 5a between the switch 55 and the switch 56 and the capacitor 11 are connected.
  • the connection point 13 between the capacitors 12 is connected via the output terminal C 1 of the module 6.
  • the first rectifier 3 is a single module different from the module 6 and operates as a full-wave rectifier.
  • the module 6 is a single module in which the second rectifier 4 and the switch arm 5 are integrated.
  • two rectifier arms are configured by the diodes 41, 42, 43, and 44, and the second rectifier 4 operates as a full-wave rectifier.
  • the module 6 includes three arms including the switch arm 5. That is, the module 6 includes a first diode arm 4-1 including a diode 41 and a diode 42, a second diode arm 4-2 including a diode 43 and a diode 44, and a switch 55 and a switch 56. And a switch arm 5 as a third switch arm.
  • the module 6 includes seven external connection terminals, that is, an input terminal P2, an input terminal AC1, an input terminal AC2, an input terminal N2, an output terminal P1, an output terminal N1, and an output terminal C1.
  • the on / off operation of the switch 55 and the switch 56 is controlled in the same manner as the conventional AC / DC converter represented by the above-mentioned Patent Document 1.
  • the alternating current supplied from the alternating current power source 1 to the alternating current to direct current converter 100-1 becomes a sinusoidal current with harmonics suppressed, and the alternating current applied from the alternating current power source 1 to the alternating current direct current converter 100-1
  • the phase difference from the voltage is reduced, and the power factor is improved.
  • the switch 55 and the switch 56 is turned on and the other of the switch 55 and the switch 56 is turned off, so that the connection point 13 between the capacitor 11 and the capacitor 12 becomes an AC power source. 1 is connected to one end or the other end of 1 and so-called voltage doubler rectification is performed.
  • the amplitude of the voltage applied across the series circuit composed of the capacitor 11 and the capacitor 12 that is, the amplitude of the output voltage of the AC / DC converter 100-1
  • the voltage applied to the input terminal P2 and the input terminal N2 of the module 6 or the voltage applied to the input terminal AC1 and the input terminal AC2 may be referred to as an input voltage.
  • the first rectifier 3 and the second rectifier 4 are constituted by two modules. Therefore, the AC / DC converter 100-1 is different from the case where the first rectifier 3, the second rectifier 4 and the switch arm 5 are individually modularized and mounted inside the AC / DC converter 100-1.
  • the mounting space for disposing each of the first rectifier 3, the second rectifier 4, and the switch arm 5 inside the AC / DC converter 100-1 can be reduced. Therefore, it is possible to reduce the size of the AC / DC converter 100-1, and to reduce the volume of materials of parts such as a casing that forms the outer shell of the AC / DC converter 100-1 and a substrate on which the module 6 is mounted. .
  • FIG. 2 is a diagram showing an internal circuit configuration of a reference circuit module used in a bridge type inverter.
  • a reference circuit module 60 shown in FIG. 2 is a module for configuring a conventional general three-phase inverter circuit.
  • the reference circuit module 60 includes an input terminal P, an input terminal N, an output terminal U, an output terminal V, and an output terminal W, which are five external connection terminals.
  • the reference circuit module 60 includes a switch 51, a switch 52, a switch 53, a switch 54, a switch 55, and a switch 56.
  • the reference circuit module 60 includes a diode 41, a diode 42, a diode 43, a diode 44, a diode 45, and a diode 46 connected in parallel to the switch 51, the switch 52, the switch 53, the switch 54, the switch 55, and the switch 56, respectively. Prepare.
  • the module 6 does not include the diode 45, the diode 46, the switch 51, the switch 52, the switch 53, and the switch 54 that constitute the reference circuit module 60.
  • the module 6 includes seven external connection terminals instead of the input terminal P, the input terminal N, the output terminal U, the output terminal V, and the output terminal W, which are the five external connection terminals constituting the reference circuit module 60.
  • An input terminal P2, an input terminal AC1, an input terminal AC2, an input terminal N2, an output terminal P1, an output terminal N1, and an output terminal C1 are provided.
  • the input terminal AC1 of the module 6 corresponds to the output terminal U of the reference circuit module 60.
  • the input terminal AC2 of the module 6 corresponds to the output terminal V of the reference circuit module 60.
  • the output terminal C1 of the module 6 corresponds to the output terminal W of the reference circuit module 60.
  • FIG. 3 is a diagram showing a modification of the AC / DC converter according to Embodiment 1 of the present invention. Differences between the AC / DC converter 100-1 shown in FIG. 1 and the AC / DC converter 100-1A shown in FIG. 3 are as follows. (1) The AC / DC converter 100-1A includes a switch arm 5A and a module 6A instead of the switch arm 5 and the module 6 shown in FIG. (2) In addition to the switch 55 and the switch 56, the switch arm 5 ⁇ / b> A conducts in a direction opposite to the conduction direction of the switch 55 and is connected in parallel to the switch 55, and in a direction opposite to the conduction direction of the switch 56. And a diode 46 which is conductive and connected in parallel to the switch 56.
  • the anode of the diode 45 is connected to the source of the switch 55, and the cathode of the diode 45 is connected to the drain of the switch 55.
  • the anode of the diode 46 is connected to the source of the switch 56, and the cathode of the diode 46 is connected to the drain of the switch 56.
  • the switch 55 and the switch 56 are IGBTs, when a reverse voltage higher than the reverse voltage applied to the collector terminals of the switch 55 and the switch 56 is applied to the emitter terminal, the switch 55 and the switch 56 generate a reverse current. Otherwise, a large current flows and the switch 55 and the switch 56 may overheat and fail.
  • the AC / DC converter 100-1A includes the diode 45 and the diode 46, so that even when such a reverse voltage is applied, a current flows through the diode 45 and the diode 46, and the reverse voltage is applied to the switch 55 and the switch 56. The failure of the switch 55 and the switch 56 can be prevented without being applied.
  • the AC / DC converter 100-1A Since the diode 45 and the diode 46 are components provided in the reference circuit module 60 shown in FIG. 2, the AC / DC converter 100-1A has the diode 45 and the diode 46 inside or outside the module 6A shown in FIG. The module 6A can be realized without providing a new space for mounting.
  • the switch 55 and the switch 56 are MOSFETs, diodes that conduct in the direction opposite to the conduction direction of the switch 55 and the switch 56 are generated in the manufacturing process. Therefore, the switch 55 and the diode 45 have the same configuration as one MOSFET. The same applies to the switch 56 and the diode 46. Therefore, in the AC / DC converter 100-1A, the module 6A can be realized without adding the diode 45 and the diode 46.
  • the switch 55 and the switch 56 are switched from on to off, a large reverse recovery current flows through the diode 45 and the diode 46, and this reverse recovery current causes overheating of the switch 55 and the switch 56.
  • the switch 55 and the switch 56 formed of a wide band gap semiconductor in the module 6 shown in FIG. 1 and the module 6A shown in FIG.
  • the wide band gap semiconductor include semiconductor materials such as silicon carbide (SiC), gallium nitride, and diamond.
  • the reverse recovery time of the wide band gap semiconductor is much shorter than that of the silicon semiconductor, and the reverse recovery current is also very small.
  • a SiC Schottky barrier diode with a rated reverse breakdown voltage of 600 V and a rated forward current of 6 A has a reverse recovery charge of 20 nc, which is significantly smaller than the reverse recovery charges of 150 nc to 1500 nc of a normal silicon PN junction diode.
  • the amount of heat generated in the switch 55 and the switch 56 transmitted to components other than the switch 55 and the switch 56 is reduced as compared with the case where a silicon semiconductor is used. Therefore, in the AC / DC converters 100-1 and 100-1A, even when the switch 55 and the switch 56 are provided inside the AC / DC converters 100-1 and 100-1A, they are generated in the switch 55 and the switch 56. The possibility that parts other than the switch 55 and the switch 56 will fail due to heat can be reduced.
  • FIG. FIG. 4 is a diagram illustrating a configuration example of an AC / DC converter according to Embodiment 2 of the present invention. Differences between AC / DC converter 100-1 according to Embodiment 1 and AC / DC converter 100-2 according to Embodiment 2 are as follows. (1) The AC / DC converter 100-2 includes a module 6B instead of the module 6 shown in FIG. 1 or the module 6A shown in FIG. (2) The module 6B includes a second rectifier 4A in place of the second rectifier 4. (3) The second rectifier 4A includes a second diode arm 4-2A instead of the second diode arm 4-2.
  • the second diode arm 4-2A includes a switch 53 and a switch 54 in addition to the diode 43 and the diode 44.
  • the drain of the switch 53 is connected to the cathode of the diode 41 and the output terminal 4a.
  • the source of the switch 54 is connected to the anode of the diode 42 and the output terminal 4b.
  • a connection point 4h between the source of the switch 53 and the drain of the switch 54 is connected to the input terminal 4d.
  • the anode of the diode 43 is connected to the source of the switch 53, and the cathode of the diode 43 is connected to the drain of the switch 53.
  • the anode of the diode 44 is connected to the source of the switch 54, and the cathode of the diode 44 is connected to the drain of the switch 54.
  • AC / DC converter 100-2 In AC / DC converter 100-2, one of switch 55 and switch 56 is turned on, and the other of switch 55 and switch 56 is turned off, so that double voltage rectification is possible as in the first embodiment. . In the AC / DC converter 100-2, the on / off operation of the switch 53 and the switch 54 is controlled.
  • the AC / DC converter 100-2 can boost the DC voltage by using the energy accumulated in the reactor 2, and also the AC / DC converter 100.
  • -2 is a sinusoidal current in which the harmonics of the alternating current supplied are suppressed, the phase difference from the alternating voltage is reduced, and the power factor is improved.
  • voltage doubler rectification by switch 53 and switch 54 is not performed, the DC voltage output from AC / DC converter 100-2 is higher than when voltage doubler rectification by switch 53 and switch 54 is performed. And controlled to be a low value.
  • FIG. 5 is a configuration diagram of a power conversion device configured by connecting an inverter to the AC / DC conversion device according to Embodiment 2 of the present invention.
  • a power conversion device 300 shown in FIG. 5 includes an AC / DC conversion device 100-2 and a load 200 shown in FIG.
  • the load 200 includes an inverter 20 connected to the AC / DC converter 100-2 and an electric motor 21 driven by an AC voltage output from the inverter 20.
  • the electric motor 21 an induction motor or a synchronous motor can be exemplified.
  • the inverter 20 is configured in the same manner as the reference circuit module 60 shown in FIG. 2, and converts the DC voltage applied across the series circuit including the capacitor 11 and the capacitor 12 into an AC voltage to convert the motor 21. To drive.
  • the waveform of the AC voltage applied to the electric motor 21 has a sine wave shape in order to suppress pulsation in the electric motor 21.
  • the inverter 20 adjusts the amplitude of the AC voltage according to the rotation speed of the motor 21. To be controlled.
  • the inverter 20 When the amplitude of the DC voltage applied across the series circuit composed of the capacitor 11 and the capacitor 12 is smaller than the amplitude of the AC voltage applied to the electric motor 21, the inverter 20 outputs a sinusoidal AC voltage.
  • the pseudo AC voltage including the harmonic component cannot be output.
  • the harmonic component is also superimposed on the current flowing through the electric motor 21, which not only causes pulsation of the electric motor 21 but also increases the amplitude of the electric current. Will also increase. Therefore, in the inverter 20, circuit components that can withstand the increase in the amount of heat generation are required, or the heat dissipation components are increased in size.
  • the AC / DC converter 100-2 performs voltage doubler rectification under the control of the switch 55 and the switch 56, whereby the voltage applied across the series circuit composed of the capacitor 11 and the capacitor 12 Can be made larger than the amplitude of the input voltage.
  • the inverter 20 can output a sine wave voltage even when the rotational speed of the electric motor 21 is further increased as compared with the case where the voltage doubler rectification by the switch 53 and the switch 54 is not performed. , And the heat generation of the inverter 20 can be suppressed.
  • the inverter 20 can output a sine wave voltage.
  • the heat generated by the reverse recovery current flowing in the diode included in the inverter 20 is proportional to the voltage applied to the switch included in the inverter 20 and the diode.
  • This voltage is equal to a DC voltage applied across the series circuit composed of the capacitor 11 and the capacitor 12.
  • the rectification operation by the control of the switch 53 and the switch 54 is not the double voltage rectification, and therefore the double voltage rectification is performed.
  • the DC voltage applied across the series circuit composed of the capacitor 11 and the capacitor 12 decreases. Therefore, in the power conversion device 300, the voltage applied to the switch and the diode included in the inverter 20 decreases, and the amount of heat generated by the reverse recovery current flowing in the diode included in the inverter 20 can be suppressed.
  • the on / off control of the switch 53 and the switch 54 is performed at a frequency that changes in synchronization with the voltage cycle of the AC power supply 1. Therefore, the heat generated by the switch 53 and the switch 54 is small. As a result, the heat generated in the entire power conversion device 300 can also be reduced.
  • the AC / DC converter 100-2 includes the first rectifier by a total of two modules as in the first embodiment. 3 and the second rectifier 4A can be configured. Therefore, the AC / DC converter 100-2 is different from the case where the first rectifier 3, the second rectifier 4A and the switch arm 5 are individually modularized and mounted inside the AC / DC converter 100-2. The mounting space for disposing each of the first rectifier 3, the second rectifier 4A, and the switch arm 5 inside the AC / DC converter 100-2 can be reduced.
  • the AC / DC converter 100-2 can suppress heat generated by the switch 53 and the switch 54, even when the switch 53 and the switch 54 are provided inside the AC / DC converter 100-2, the switch 53 and The possibility of failure of the switch 53 and parts other than the switch 54 due to the heat generated in the switch 54 can be reduced.
  • FIG. 6 is a diagram showing a modification of the AC / DC converter according to Embodiment 2 of the present invention. Differences between the AC / DC converter 100-2 shown in FIG. 4 and the AC / DC converter 100-2A shown in FIG. 6 are as follows. (1) The AC / DC converter 100-2A includes a module 6C instead of the module 6B. (2) The module 6C includes a second rectifier 4B instead of the second rectifier 4A. (3) The second rectifier 4B includes a first diode arm 4-1A instead of the first diode arm 4-1. (4) The first diode arm 4-1A includes a switch 51 and a switch 52 in addition to the diode 41 and the diode.
  • the drain of the switch 51 is connected to the cathode of the diode 41 and the output terminal 4a.
  • the source of the switch 52 is connected to the anode of the diode 42 and the output terminal 4b.
  • a connection point 4g between the source of the switch 51 and the drain of the switch 52 is connected to the input terminal 4c.
  • the anode of the diode 41 is connected to the source of the switch 51, and the cathode of the diode 41 is connected to the drain of the switch 51.
  • the anode of the diode 42 is connected to the source of the switch 52, and the cathode of the diode 42 is connected to the drain of the switch 52.
  • Embodiment 3 FIG.
  • the module 6B according to the second embodiment includes two switches 53 and 54, and the module 6C according to the second embodiment includes a switch 51, a switch 52, a switch 53, and a switch 54. Characteristics are not considered.
  • the switch 53 and the switch 54 are formed of MOSFETs.
  • the AC / DC converter according to the third embodiment is configured in the same manner as the AC / DC converter 100-2 shown in FIG. 4 except that the switch 53 and the switch 54 are formed of MOSFETs.
  • the configuration of the AC / DC converter according to Embodiment 3 will be described with reference to FIG.
  • the switch 53 and the diode 43 have a configuration equivalent to one MOSFET
  • the switch 54 and the diode 44 have a configuration equivalent to one MOSFET. Therefore, a parallel circuit of the switch 53 and the diode 43 can be realized without adding the diode 43 and the diode 44, and a parallel circuit of the switch 54 and the diode 44 can be realized.
  • the voltage doubler rectification is performed as shown in the second embodiment.
  • the switch 55 and the switch 56 constituting the switch arm 5 are provided, a current flows through one of the switch 55 and the switch 56.
  • a silicon semiconductor particularly an insulated gate bipolar transistor, has a constant drop voltage Vce at a current value above a certain value, heat generated when a current flows in the conduction direction of the switch 55 and the switch 56 is proportional to the drop voltage. . This is because the heat generated in the MOSFET is smaller when the current flowing through the switch 55 and the switch 56 is larger than the heat generated in the MOSFET is proportional to the square of the current. is there.
  • the switch 53 and the switch as shown in the second embodiment are used. As described in the second and third embodiments, the heat generated by the switch 53 and the switch 54 is reduced when the rectifying operation by the control of 54 is performed.
  • the AC / DC converter according to Embodiment 3 is configured to perform voltage doubler rectification by controlling the switch 55 and the switch 56 in accordance with the amplitude of the AC voltage applied to the motor 21 by the inverter 20 according to the rotation speed of the motor 21.
  • the rectifying operation by the control of the switch 53 and the switch 54 is selected. Thereby, in any selection, a switch that generates less heat is selected, and heat generated in the switch 53, the switch 54, the switch 55, and the switch 56 can be reduced.
  • the AC / DC converter according to Embodiment 3 can also be applied to the power converter 300 shown in FIG. 5, and heat generated in the entire power converter 300 can be reduced as compared with the second embodiment.
  • the AC / DC converter according to the third embodiment includes a total of two modules as in the first embodiment.
  • One rectifier 3 and a second rectifier 4A can be configured. Therefore, the AC / DC converter according to Embodiment 3 is different from the case where the first rectifier 3, the second rectifier 4A, and the switch arm 5 are individually modularized and mounted inside the AC / DC converter. The mounting space for disposing each of the first rectifier 3, the second rectifier 4A, and the switch arm 5 inside the AC / DC converter can be reduced.
  • the heat generated by the switch 53, the switch 54, the switch 55, and the switch 56 can be reduced, so that the switch 53, the switch 54, the switch 55, and the switch 56 are included in the AC / DC converter. Even in the case of being provided inside, it is possible to reduce the possibility that parts other than the switch 53, the switch 54, the switch 55, and the switch 56 are damaged due to the heat generated in the switch 53, the switch 54, the switch 55, and the switch 56.
  • FIG. 7 is a diagram showing a first modification of the module provided in the AC / DC converter according to Embodiment 2 of the present invention. Differences between the module 6B shown in FIG. 4 and the module 6D shown in FIG. 7 are as follows. (1) The module 6D includes a second rectifier 4C instead of the second rectifier 4A. The module 6D includes a switch arm 5B instead of the switch arm 5. (2) The second rectifier 4C includes a second diode arm 4-2B instead of the second diode arm 4-2A.
  • the second diode arm 4-2B includes a drive circuit 63 that drives the switch 53 and a drive circuit 64 that drives the switch 54.
  • the switch arm 5B includes a drive circuit 65 that drives the switch 55 and a drive circuit 66 that drives the switch 56.
  • the module 6D includes a positive power supply terminal T11 and a negative power supply terminal T12 that connect a drive circuit power supply 71, which is a power supply for driving the drive circuit 63, to the module 6D.
  • the module 6D includes a positive power supply terminal T21 and a negative power supply terminal T22 that connect a drive circuit power supply 72, which is a power supply for driving the drive circuit 65, to the module 6D.
  • the module 6D includes a positive power supply terminal T31 and a negative power supply terminal T32 that connect a drive circuit power supply 73 that is a power supply for driving the drive circuit 64 to the module 6D.
  • the module 6D includes a positive power supply terminal T41 and a negative power supply terminal T42 that connect a drive circuit power supply 74, which is a power supply for driving the drive circuit 66, to the module 6D.
  • the power sources that drive the switch 53, the switch 54, the switch 55, and the switch 56 can be the same only when the drain terminals of these switches are connected to each other and have the same potential.
  • the same power source cannot be used, and the four drive circuit power sources 71 and 72 are supplied.
  • the drive circuit power source 73 and the drive circuit power source 74 are required.
  • FIG. 8 is a diagram showing a modification of the AC / DC converter according to Embodiment 2 of the present invention. Differences between the AC / DC converter 100-2 shown in FIG. 4 and the AC / DC converter 100-4 shown in FIG. 8 are as follows. (1) The AC / DC converter 100-4 includes a reactor 2A instead of the reactor 2, and includes a module 6E instead of the module 6B. (2) The module 6E includes a second rectifier 4D instead of the second rectifier 4A. (3) The second rectifier 4D includes a first diode arm 4-1B instead of the first diode arm 4-1, and a second diode arm 4 instead of the second diode arm 4-2A. -2C.
  • the first diode arm 4-1B includes a switch 52 in addition to the diode 41 and the diode.
  • the drain of the switch 52 is connected to the cathode of the diode 42.
  • the source of the switch 52 is connected to the anode of the diode 42.
  • a connection point 4g between the anode of the diode 41 and the drain of the switch 52 is connected to the input terminal 4c.
  • the switch 53 shown in FIG. 4 is omitted.
  • the anodes of the diode 42 and the diode 44 are connected to each other.
  • FIG. 9 is a diagram showing a second modification of the module provided in the AC / DC converter according to Embodiment 2 of the present invention. Differences between the module 6D shown in FIG. 7 and the module 6F shown in FIG. 9 are as follows. (1) The module 6F includes a second rectifier 4E instead of the second rectifier 4C. (2) The second rectifier 4E includes a first diode arm 4-1C in place of the first diode arm 4-1, and a second diode arm 4 in place of the second diode arm 4-2B. -2D. (3) The first diode arm 4-1C includes a drive circuit 62 that drives the switch 52 in addition to the diode 41 and the diode.
  • the switch 53 and the drive circuit 63 shown in FIG. 7 are omitted.
  • the positive power supply terminal T11 and the negative power supply terminal T12 shown in FIG. 7 are omitted, and the drive circuit 62 and the drive circuit 64 are connected to the positive power supply terminal T31 and the negative power supply terminal T32. .
  • the drain terminals of the switch 52 and the switch 54 are connected to the output terminal N1, which is the same external connection terminal, the power sources that drive the switch 52 and the switch 54 have the same potential. Become. Therefore, in the drive circuit 62 and the drive circuit 64, the switch 52 and the switch 54 can be driven by one drive circuit power supply 73, and the number of necessary drive circuit power supplies is three, which is smaller than the number of switches.
  • the power sources of the drive circuits of the switch 52 and the switch 54 can be made the same, and the number of necessary drive circuit power sources is reduced. Cost can be reduced.
  • voltage doubler rectification is performed by controlling the switch 55 and the switch 56, and harmonics of the alternating current supplied to the AC / DC converter 100-4 are suppressed by controlling the switch 52 and the switch 54.
  • the current is a sinusoidal current, the phase difference from the AC voltage is reduced, and the power factor is improved.
  • AC / DC converter 100-4 When the AC / DC converter 100-4 according to the fourth embodiment is applied to the power converter 300 shown in FIG. 5, the DC voltage applied across the series circuit composed of the capacitor 11 and the capacitor 12 is the inverter 20 Is converted to AC voltage. Then, AC / DC converter 100-4 selects voltage doubler rectification under the control of switch 55 and switch 56 when the rotational speed of motor 21 is high, according to the amplitude of the AC voltage applied by inverter 20 to motor 21. When the rotational speed of the switch 21 is low, the rectifying operation by the control of the switch 52 and the switch 54 is selected. Thereby, the inverter 20 with less heat generation according to the rotation speed of the electric motor 21 can be realized, and a heat radiation component (not shown) for radiating the heat generated in the inverter 20 can be reduced.
  • the switch 52 and the switch 54 are also components that constitute the reference circuit module 60 shown in FIG. 2, in the AC / DC converter 100-4 according to the fourth embodiment, the switches 52 and 54 are provided inside or outside the modules 6D, 6E, and 6F.
  • the modules 6D, 6E, and 6F can be configured without providing a mounting space for arranging the switch 52 and the switch 54.
  • FIG. FIG. 10 is a configuration diagram of an air-conditioning apparatus according to Embodiment 5 of the present invention.
  • An air conditioner 400 shown in FIG. 10 includes an outdoor unit 81, an indoor unit 82, and a refrigerant pipe 83, and the outdoor unit 81 and the indoor unit 82 are connected via the refrigerant pipe 83.
  • the outdoor unit 81 includes the power conversion device and the compressor 310 described in the first to fourth embodiments.
  • the compressor 310 includes a compression mechanism (not shown) and the electric motor 21 shown in FIG. 5 as a drive source for driving the compression mechanism.
  • the indoor unit 82 stores the target temperature set by the user, detects the temperature around the indoor unit 82, and stores it as a detected temperature.
  • the indoor unit 82 transmits the target temperature and the detected temperature to the outdoor unit 81.
  • the outdoor unit 81 circulates between the outdoor unit 81 and the indoor unit 82 so that the temperature around the indoor unit 82 approaches the target temperature.
  • Increase the amount of refrigerant The amount of refrigerant compressed by the compressor 310 is determined by the product of the refrigerant discharge amount per unit rotation number of the compressor 310 and the rotation number of the electric motor 21. Therefore, in order to increase the amount of refrigerant circulated between the outdoor unit 81 and the indoor unit 82, the outdoor unit 81 is controlled to increase the rotation speed of the electric motor 21.
  • the outdoor unit 81 controls the rotational speed of the electric motor 21 to be low.
  • the operation period in which the difference between the target temperature and the detected temperature is smaller than a certain value is longer than the operation period in which the difference between the target temperature and the detected temperature is larger than a certain value. become longer. Therefore, in the air conditioning apparatus 400, the ratio of the time for controlling the motor 21 to be low is high in order to reduce the amount of refrigerant circulated between the outdoor unit 81 and the indoor unit 82.
  • the power conversion device 300 selects the voltage doubler rectification and the normal rectification operation according to the rotation speed of the electric motor 21, thereby generating heat generated in any of the selections. Is controlled so as to reduce the rotation speed of the electric motor 21, and in particular, the normal rectifying operation is selected to reduce the heat generated in the power conversion device 300.
  • the aforementioned switch 51, switch 52, switch 53 and switch 54 are constituted by MOSFETs, wide bandgap semiconductors are used for the MOSFETs, and switches 55 and switches 56 are constituted by silicon semiconductors, particularly insulated gate bipolar transistors.
  • the air conditioner 400 is a control with a high operation time ratio and controls the rotation speed of the electric motor 21 to be low, the air conditioner 400 can reduce the heat generated in the power converter 300, and the entire operation of the air conditioner 400 can be performed. It is possible to improve the operation efficiency over the entire period including time and stop time.
  • the configuration example of the air conditioner 400 including the outdoor unit 81 and the indoor unit 82 has been described.
  • a heat exchanger (not shown) that gives heat of refrigerant to water is used. Any device that adjusts the temperature of a medium having a constant volume and volume by heat exchange, such as a hot water supply device provided by the refrigerant, can achieve the same effect.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Abstract

交流直流変換装置100-1は、リアクタ2を介して交流電源1に接続される第1および第2の整流器3,4と、第1の整流器3の出力側に直列に接続された2つのスイッチ55,56で構成されるスイッチアーム5と、第2の整流器4の出力側に直列に接続された2つのコンデンサ11,12とを備え、2つのコンデンサ11,12同士の接続点13は、2つのスイッチ55,56同士の接続点5aに接続され、回路部品の実装スペースを小さくすることができることを特徴とする。

Description

交流直流変換装置、モジュール、電力変換装置および空気調和装置
 本発明は、交流電圧を直流電圧に変換する交流直流変換装置、モジュール、電力変換装置および空気調和装置に関する。
 特許文献1に開示される交流直流変換装置は、単相交流電圧を直流電圧に変換する回路として、リアクタを介して交流電源に接続される第1の整流器および第2の整流器と、第1の整流器の出力端子間に直列に接続された2つのコンデンサと、第2の整流器の出力端子間に直列に接続された2つのスイッチとを備える。2つのコンデンサ間の接続点は、2つのスイッチ間の接続点に接続される。第1の整流器および第2の整流器はそれぞれが独立したモジュールであり、特許文献1に開示される交流直流変換装置は、これらのモジュールとは別に直列に接続された2つのスイッチを備える。特許文献1に開示される交流直流変換装置は、直列に接続された2つのコンデンサを仮想交流電源とみなして、高調波電流を抑制しかつ位相差をゼロにするように2つのスイッチを制御する。これにより交流電源から交流直流変換装置に供給された交流電流は高調波が抑制された正弦波状の入力電流となり、力率が向上する。
特開2011-250694号公報
 しかしながら特許文献1に開示される交流直流変換装置は、2つの整流器および2つのスイッチをそれぞれ個別にモジュールとして備えるため、交流直流変換装置においてこれらの部品を配置するためのスペースが大きくなるという課題があった。
 本発明は、上記に鑑みてなされたものであって、回路部品の実装スペースを小さくすることができる交流直流変換装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る交流直流変換装置は、リアクタを介して交流電源に接続される第1および第2の整流器と、前記第1の整流器の出力側に直列に接続された2つのスイッチで構成されるスイッチアームと、前記第2の整流器の出力側に直列に接続された2つのコンデンサとを備え、前記2つのコンデンサ同士の接続点は、前記2つのスイッチ同士の接続点に接続されていることを特徴とする。
 本発明に係る交流直流変換装置は、回路部品の実装スペースを小さくすることができるという効果を奏する。
本発明の実施の形態1に係る交流直流変換装置の構成例を示す図 ブリッジ型のインバータで使用される基準回路モジュールの内部回路構成を示す図 本発明の実施の形態1に係る交流直流変換装置の変形例を示す図 本発明の実施の形態2に係る交流直流変換装置の構成例を示す図 本発明の実施の形態2に係る交流直流変換装置にインバータを接続して構成される電力変換装置の構成図 本発明の実施の形態2に係る交流直流変換装置の変形例を示す図 本発明の実施の形態2に係る交流直流変換装置が備えるモジュールの第1の変形例を示す図 本発明の実施の形態2に係る交流直流変換装置の変形例を示す図 本発明の実施の形態2に係る交流直流変換装置が備えるモジュールの第2の変形例を示す図 本発明の実施の形態5に係る空気調和装置の構成図
 以下に、本発明の実施の形態に係る交流直流変換装置、モジュール、電力変換装置および空気調和装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は本発明の実施の形態1に係る交流直流変換装置の構成例を示す図である。実施の形態1に係る交流直流変換装置100-1は、一端が交流電源1の一端に接続されるリアクタ2と、リアクタ2を介して交流電源1に接続され交流電源1から供給される交流電力を直流電力に変換する第1の整流器3と、リアクタ2を介して交流電源1に接続され交流電源1から供給される交流電力を直流電力に変換する第2の整流器4とを備える。図1では交流電源1は単相交流電圧を出力する電源である。
 また交流直流変換装置100-1は、第1の整流器3が備える出力端子3aおよび出力端子3bの間に直列に接続されたスイッチ55およびスイッチ56で構成される直列回路であるスイッチアーム5と、第2の整流器4が備える出力端子4aおよび出力端子4bの間に直列に接続されたコンデンサ11およびコンデンサ12で構成されるコンデンサ対とを備える。
 スイッチ55としては、IGBT(Insulated Gate Bipolar Transistor)、電界効果トランジスタの一例であるMOSFET(Metal Oxide Semiconductor Field Effect Transistor)、IGCT(Insulated Gate Controlled Thyristor)、またはFET(Field Effect Transistor)といった半導体スイッチを例示できる。スイッチ56も同様である。実施の形態1では、スイッチ55およびスイッチ56の双方がNチャネルMOSFETで構成される。スイッチ55およびスイッチ56の双方を構成するMOSFETのゲートには、スイッチ55およびスイッチ56を駆動するための不図示の駆動回路が接続される。
 第2の整流器4およびスイッチアーム5を一体化したモジュール6は、出力端子P1、出力端子N1および出力端子C1と、入力端子P2、入力端子N2、入力端子AC1および入力端子AC2とを備える。
 モジュール6の入力端子P2には、スイッチ55であるMOSFETのドレインと、第1の整流器3の出力端子3aとが接続される。モジュール6の入力端子N2には、スイッチ56であるMOSFETのソースと、第1の整流器3の出力端子3bとが接続される。モジュール6の出力端子C1には、スイッチアーム5を構成するスイッチ55およびスイッチ56同士の接続点5aが接続される。
 第1の整流器3は、出力端子3aおよび出力端子3bと、入力端子3cおよび入力端子3dと、中継端子3eおよび中継端子3fと、ダイオード31、ダイオード32、ダイオード33およびダイオード34とを備える。第1の整流器3の中継端子3eは、モジュール6の入力端子AC1に接続される。第1の整流器3の中継端子3fは、モジュール6の入力端子AC2に接続される。
 ダイオード31のアノードとダイオード32のカソードとの接続点3gは、入力端子3cおよび中継端子3eに接続される。入力端子3cは、リアクタ2の他端と接続点3gとに接続される。ダイオード33のアノードとダイオード34のカソードとの接続点3hは、入力端子3dおよび中継端子3fに接続される。入力端子3dは、交流電源1の他端と接続点3hとに接続される。
 ダイオード31およびダイオード33のそれぞれのカソードは出力端子3aに接続され、ダイオード32およびダイオード34のそれぞれのアノードは出力端子3bに接続される。
 第2の整流器4は、出力端子4aおよび出力端子4bと、入力端子4cおよび入力端子4dと、ダイオード41、ダイオード42、ダイオード43およびダイオード44とを備える。以下ではダイオード41、ダイオード42、ダイオード43およびダイオード44を単にダイオード41,42,43,44と称する場合がある。
 ダイオード41のアノードとダイオード42のカソードとの接続点4gは、入力端子4cに接続される。入力端子4cは、モジュール6の入力端子AC1に接続される。ダイオード43のアノードとダイオード44のカソードとの接続点4hは、入力端子4dに接続される。入力端子4dは、モジュール6の入力端子AC2に接続される。
 ダイオード41およびダイオード43のそれぞれのカソードは出力端子4aに接続され、ダイオード42およびダイオード44のそれぞれのアノードは出力端子4bに接続される。第2の整流器4の出力端子4aは、モジュール6の出力端子P1に接続され、第2の整流器4の出力端子4bは、モジュール6の出力端子N1に接続される。
 コンデンサ11の一端はモジュール6の出力端子P1に接続される。コンデンサ11の他端とコンデンサ12の一端との接続点13は、モジュール6の出力端子C1に接続される。コンデンサ12の他端はモジュール6の出力端子N1に接続される。
 このように交流直流変換装置100-1では、第1の整流器3および第2の整流器4がリアクタ2を介して交流電源1に接続され、スイッチ55およびスイッチ56同士の接続点5aと、コンデンサ11およびコンデンサ12同士の接続点13とが、モジュール6の出力端子C1を介して接続される。
 第1の整流器3は、モジュール6とは異なる単一のモジュールであり、全波整流器として動作する。またモジュール6は、第2の整流器4およびスイッチアーム5を一体化した単一のモジュールである。第2の整流器4では、ダイオード41,42,43,44により2つの整流アームが構成され、第2の整流器4は全波整流器として動作する。
 モジュール6は、スイッチアーム5と合わせて3つのアームを備える。すなわちモジュール6は、ダイオード41およびダイオード42により構成される第1のダイオードアーム4-1と、ダイオード43およびダイオード44により構成される第2のダイオードアーム4-2と、スイッチ55およびスイッチ56により構成される第3のスイッチアームであるスイッチアーム5とを備える。またモジュール6は、7つの外部接続端子である入力端子P2、入力端子AC1、入力端子AC2、入力端子N2、出力端子P1、出力端子N1および出力端子C1を備える。
 交流直流変換装置100-1では、上記の特許文献1に代表される従来の交流直流変換装置と同様に、スイッチ55およびスイッチ56のオンオフ動作が制御される。これにより、交流電源1から交流直流変換装置100-1に供給された交流電流は、高調波が抑制された正弦波状の電流となり、交流電源1から交流直流変換装置100-1に印加される交流電圧との位相差が小さくなり、力率が向上する。
 また交流直流変換装置100-1では、スイッチ55およびスイッチ56の一方がオンされると共に、スイッチ55およびスイッチ56の他方がオフされることによって、コンデンサ11およびコンデンサ12同士の接続点13が交流電源1の一端または他端に接続され、いわゆる倍電圧整流が行われる。これにより、コンデンサ11およびコンデンサ12で構成される直列回路の両端間に印加される電圧の振幅、すなわち交流直流変換装置100-1の出力電圧の振幅は、モジュール6の入力端子P2および入力端子N2に印加される電圧の振幅、または入力端子AC1および入力端子AC2に印加される電圧の振幅よりも大きくなる。以下では、モジュール6の入力端子P2および入力端子N2に印加される電圧、または入力端子AC1および入力端子AC2に印加される電圧を、入力電圧と称する場合がある。
 また交流直流変換装置100-1では、2つのモジュールにより、第1の整流器3および第2の整流器4が構成される。従って、交流直流変換装置100-1は、第1の整流器3、第2の整流器4およびスイッチアーム5のそれぞれを個別にモジュール化して交流直流変換装置100-1の内部に実装する場合に比べて、第1の整流器3、第2の整流器4およびスイッチアーム5のそれぞれを交流直流変換装置100-1の内部に配置するための実装スペースを小さくできる。そのため交流直流変換装置100-1の小型化が可能であると共に、交流直流変換装置100-1の外郭を構成する筐体およびモジュール6を実装する基板といった部品の材料の減容化が可能である。
 またスイッチ55がオンされたとき、スイッチ55に電流が流れて、ダイオード41およびダイオード43には電流が流れない。同様に、スイッチ56がオンされたとき、ダイオード42およびダイオード44には電流が流れない。このようにモジュール6では、モジュール6を構成するスイッチおよびダイオードにおいて、同時に電流が流れる素子は2つであるため、モジュール6の発熱を抑えることができ、モジュール6で発生した熱を放熱するための不図示のヒートシンクおよびファンといった放熱用部品を小さくできる。
 図2はブリッジ型のインバータで使用される基準回路モジュールの内部回路構成を示す図である。図2に示される基準回路モジュール60は、従来の一般的な三相インバータ回路を構成するためのモジュールである。基準回路モジュール60は、5つの外部接続端子である入力端子P、入力端子N、出力端子U、出力端子Vおよび出力端子Wを備える。また基準回路モジュール60は、スイッチ51、スイッチ52、スイッチ53、スイッチ54、スイッチ55およびスイッチ56を備える。また基準回路モジュール60は、スイッチ51、スイッチ52、スイッチ53、スイッチ54、スイッチ55およびスイッチ56のそれぞれに並列に接続されるダイオード41、ダイオード42、ダイオード43、ダイオード44、ダイオード45およびダイオード46を備える。
 基準回路モジュール60と図1に示すモジュール6との相違点は以下の通りである。
 (1)モジュール6は、基準回路モジュール60を構成するダイオード45、ダイオード46、スイッチ51、スイッチ52、スイッチ53およびスイッチ54を備えていない。
 (2)モジュール6は、基準回路モジュール60を構成する5つの外部接続端子である入力端子P、入力端子N、出力端子U、出力端子Vおよび出力端子Wに代えて、7つの外部接続端子である入力端子P2、入力端子AC1、入力端子AC2、入力端子N2、出力端子P1、出力端子N1および出力端子C1を備える。なおモジュール6の入力端子AC1は、基準回路モジュール60の出力端子Uに相当する。モジュール6の入力端子AC2は、基準回路モジュール60の出力端子Vに相当する。モジュール6の出力端子C1は、基準回路モジュール60の出力端子Wに相当する。基準回路モジュール60に、図1に示す入力端子P2および入力端子N2を追加することにより、モジュール6を実現できる。
 図3は本発明の実施の形態1に係る交流直流変換装置の変形例を示す図である。図1に示す交流直流変換装置100-1と図3に示す交流直流変換装置100-1Aとの相違点は以下の通りである。
 (1)交流直流変換装置100-1Aは、図1に示すスイッチアーム5およびモジュール6に代えてスイッチアーム5Aおよびモジュール6Aを備える。
 (2)スイッチアーム5Aは、スイッチ55およびスイッチ56に加えて、スイッチ55の導通方向とは逆方向に導通しスイッチ55に並列接続されるダイオード45と、スイッチ56の導通方向とは逆方向に導通しスイッチ56に並列接続されるダイオード46とを備える。
 ダイオード45のアノードはスイッチ55のソースに接続され、ダイオード45のカソードはスイッチ55のドレインに接続される。ダイオード46のアノードはスイッチ56のソースに接続され、ダイオード46のカソードはスイッチ56のドレインに接続される。
 スイッチ55およびスイッチ56がIGBTである場合、スイッチ55およびスイッチ56のそれぞれのコレクタ端子に印加される逆電圧よりも高い逆電圧がエミッタ端子に印加されると、スイッチ55およびスイッチ56では逆電流を阻止できずに、大きな電流が流れ、スイッチ55およびスイッチ56が過熱して故障する可能性がある。
 交流直流変換装置100-1Aは、ダイオード45およびダイオード46を備えることによって、このような逆電圧が印加された場合でも、ダイオード45およびダイオード46に電流が流れてスイッチ55およびスイッチ56に逆電圧が印加されず、スイッチ55およびスイッチ56の故障を防止できる。
 またダイオード45およびダイオード46は、図2に示す基準回路モジュール60に設けられた部品であるため、交流直流変換装置100-1Aでは、図3に示すモジュール6Aの内部または外部にダイオード45およびダイオード46を実装するためのスペースを新たに設けることなく、モジュール6Aを実現できる。
 またスイッチ55およびスイッチ56がMOSFETである場合、その製造過程でスイッチ55およびスイッチ56のそれぞれの導通方向とは逆方向に導通するダイオードが生成される。そのためスイッチ55およびダイオード45が1つのMOSFETと同等の構成となる。スイッチ56およびダイオード46も同様である。このため交流直流変換装置100-1Aでは、ダイオード45およびダイオード46を追加することなくモジュール6Aを実現できる。
 さらにスイッチ55およびスイッチ56がオンからオフに切り替わるとき、ダイオード45およびダイオード46には大きな逆回復電流が流れて、この逆回復電流がスイッチ55およびスイッチ56の過熱の要因となる。このような対策として図1に示すモジュール6および図3に示すモジュール6Aには、ワイドバンドギャップ半導体で形成されたスイッチ55およびスイッチ56を用いることが望ましい。ワイドバンドギャップ半導体としては、炭化ケイ素(SiC:Silicon Carbide)、窒化ガリウムまたはダイヤモンドといった半導体材料を例示できる。ワイドバンドギャップ半導体の逆回復時間はシリコン半導体に比べて非常に短く、逆回復電流も非常に小さい。
 定格逆耐圧600Vおよび定格順電流6AのSiCショットキーバリアダイオードでは逆回復電荷が20ncであり、通常のシリコンPN接合ダイオードの逆回復電荷150ncから1500ncに比べて著しく小さい。ワイドバンドギャップ半導体を用いることにより、図2に示す基準回路モジュール60を利用した交流直流変換装置であっても、スイッチ55およびスイッチ56における逆回復電流による発熱が大幅に抑制され、放熱部品を小さくできる。
 またワイドバンドギャップ半導体を用いることにより、シリコン半導体を用いた場合に比べて、スイッチ55およびスイッチ56で発生した熱がスイッチ55およびスイッチ56以外の部品に伝わる量が低減される。そのため、交流直流変換装置100-1,100-1Aでは、スイッチ55およびスイッチ56が交流直流変換装置100-1,100-1Aの内部に設けられている場合でも、スイッチ55およびスイッチ56で発生した熱により、スイッチ55およびスイッチ56以外の部品が故障する可能性を低減できる。また交流直流変換装置100-1,100-1Aでは、モジュール6およびモジュール6Aを小さくした場合でも、スイッチ55およびスイッチ56で発生した熱により、スイッチ55およびスイッチ56以外の部品が故障する可能性を低減できる。
実施の形態2.
 図4は本発明の実施の形態2に係る交流直流変換装置の構成例を示す図である。実施の形態1に係る交流直流変換装置100-1と実施の形態2に係る交流直流変換装置100-2との相違点は以下の通りである。
 (1)交流直流変換装置100-2は、図1に示すモジュール6または図3に示すモジュール6Aに代えて、モジュール6Bを備える。
 (2)モジュール6Bは、第2の整流器4に代えて第2の整流器4Aを備える。
 (3)第2の整流器4Aは、第2のダイオードアーム4-2に代えて第2のダイオードアーム4-2Aを備える。
 第2のダイオードアーム4-2Aは、ダイオード43およびダイオード44に加えて、スイッチ53およびスイッチ54を備える。スイッチ53のドレインは、ダイオード41のカソードおよび出力端子4aに接続される。スイッチ54のソースは、ダイオード42のアノードおよび出力端子4bに接続される。スイッチ53のソースとスイッチ54のドレインとの接続点4hは入力端子4dに接続される。ダイオード43のアノードはスイッチ53のソースに接続され、ダイオード43のカソードはスイッチ53のドレインに接続される。ダイオード44のアノードはスイッチ54のソースに接続され、ダイオード44のカソードはスイッチ54のドレインに接続される。
 次に交流直流変換装置100-2の動作を説明する。交流直流変換装置100-2では、スイッチ55およびスイッチ56の一方がオンされると共に、スイッチ55およびスイッチ56の他方がオフされることによって、実施の形態1と同様に倍電圧整流が可能である。また交流直流変換装置100-2では、スイッチ53およびスイッチ54のオンオフ動作が制御される。
 スイッチ53、スイッチ54、スイッチ55およびスイッチ56の制御により、交流直流変換装置100-2では、リアクタ2に蓄積されたエネルギーを利用して直流電圧を昇圧させることができると共に、交流直流変換装置100-2に供給された交流電流の高調波が抑制された正弦波状の電流となり、交流電圧との位相差が小さくなり、力率が向上する。なお、スイッチ53およびスイッチ54による倍電圧整流が行われていないとき、交流直流変換装置100-2から出力される直流電圧は、スイッチ53およびスイッチ54による倍電圧整流が行われている場合に比べて、低い値となるように制御される。
 図5は本発明の実施の形態2に係る交流直流変換装置にインバータを接続して構成される電力変換装置の構成図である。図5に示す電力変換装置300は、図4に示す交流直流変換装置100-2と負荷200とを備える。負荷200は、交流直流変換装置100-2に接続されるインバータ20と、インバータ20から出力される交流電圧で駆動する電動機21とを備える。電動機21としては、誘導電動機または同期電動機を例示できる。
 インバータ20は、図2に示す基準回路モジュール60と同様に構成されており、コンデンサ11およびコンデンサ12で構成される直列回路の両端間に印加された直流電圧を交流電圧に変換して電動機21を駆動する。電動機21に印加される交流電圧の波形は、電動機21における脈動を抑制するため正弦波状である。
 電動機21は、その回転数が上昇すると、交流電圧が印加される不図示の端子に発生する逆起電力も上昇するため、インバータ20は、電動機21の回転数に応じて交流電圧の振幅を調整するように制御される。
 コンデンサ11およびコンデンサ12で構成される直列回路の両端間に印加された直流電圧の振幅が、電動機21に印加される交流電圧の振幅よりも小さいとき、インバータ20は、正弦波状の交流電圧を出力できず、高調波成分を含む疑似的な交流電圧を出力する。その結果、電動機21を流れる電流にも高調波成分が重畳され、電動機21の脈動の原因となるだけでなく、電流の振幅が増大するため、インバータ20が備えるスイッチおよびダイオードのオン抵抗による発熱量も増大する。従って、インバータ20では、発熱量の増大に耐えうる回路部品が必要になり、または放熱部品が大型化する。
 実施の形態2に係る交流直流変換装置100-2は、スイッチ55およびスイッチ56の制御で倍電圧整流を行うことにより、コンデンサ11およびコンデンサ12で構成される直列回路の両端間に印加された電圧の振幅を、入力電圧の振幅よりも大きくできる。これにより、スイッチ53およびスイッチ54による倍電圧整流が行われていないときに比べて、電動機21の回転数をより一層上昇させても、インバータ20は正弦波電圧を出力することができ、電動機21の脈動を抑制でき、またインバータ20の発熱を抑制できる。
 一方、前述した逆起電力の電圧が入力電圧の振幅よりも小さい場合、スイッチ55およびスイッチ56の制御による倍電圧整流が行われ、またはスイッチ53およびスイッチ54の制御による整流動作が行われた場合でも、インバータ20は正弦波電圧を出力できる。
 インバータ20が備えるスイッチがオンからオフに切り替わるときにインバータ20が備えるダイオードに流れる逆回復電流による熱は、インバータ20が備えるスイッチおよびダイオードに印加される電圧に比例する。この電圧は、コンデンサ11およびコンデンサ12で構成される直列回路の両端間に印加された直流電圧に等しい。また、前述したように、逆起電力の電圧が入力電圧の振幅よりも小さい場合には、スイッチ53およびスイッチ54の制御による整流動作は倍電圧整流ではないため、倍電圧整流が行われる場合に比べて、コンデンサ11およびコンデンサ12で構成される直列回路の両端間に印加された直流電圧が低下する。従って、電力変換装置300では、インバータ20が備えるスイッチおよびダイオードに印加される電圧が低下し、インバータ20が備えるダイオードに流れる逆回復電流による発熱量を抑制できる。
 また交流直流変換装置100-2では、交流電源1の電圧周期に同期して変化する周波数により、スイッチ53およびスイッチ54のオンオフ制御が行われる。そのためスイッチ53およびスイッチ54で発生する熱が小さい。この結果、電力変換装置300全体で発生する熱も小さくできる。
 またスイッチ53およびスイッチ54は、図2に示す基準回路モジュール60を構成する部品でもあるため、交流直流変換装置100-2は、実施の形態1と同様に、合計2つのモジュールにより第1の整流器3および第2の整流器4Aを構成できる。従って、交流直流変換装置100-2は、第1の整流器3、第2の整流器4Aおよびスイッチアーム5のそれぞれを個別にモジュール化して交流直流変換装置100-2の内部に実装する場合に比べて、第1の整流器3、第2の整流器4Aおよびスイッチアーム5のそれぞれを交流直流変換装置100-2の内部に配置するための実装スペースを小さくできる。
 また交流直流変換装置100-2では、スイッチ53およびスイッチ54で発生する熱を抑制できるため、スイッチ53およびスイッチ54が交流直流変換装置100-2の内部に設けられている場合でも、スイッチ53およびスイッチ54で発生した熱により、スイッチ53およびスイッチ54以外の部品が故障する可能性を低減できる。
 また交流直流変換装置100-2では、スイッチ53およびスイッチ54を備えるモジュール6Bを小さくした場合でも、スイッチ53およびスイッチ54で発生した熱により、スイッチ53およびスイッチ54以外の部品が故障する可能性を低減できる。
 図6は本発明の実施の形態2に係る交流直流変換装置の変形例を示す図である。図4に示す交流直流変換装置100-2と図6に示す交流直流変換装置100-2Aとの相違点は以下の通りである。
 (1)交流直流変換装置100-2Aは、モジュール6Bに代えてモジュール6Cを備える。
 (2)モジュール6Cは、第2の整流器4Aに代えて第2の整流器4Bを備える。
 (3)第2の整流器4Bは、第1のダイオードアーム4-1に代えて第1のダイオードアーム4-1Aを備える。
 (4)第1のダイオードアーム4-1Aは、ダイオード41およびダイオード42に加えて、スイッチ51およびスイッチ52を備える。
 スイッチ51のドレインは、ダイオード41のカソードおよび出力端子4aに接続される。スイッチ52のソースは、ダイオード42のアノードおよび出力端子4bに接続される。スイッチ51のソースとスイッチ52のドレインとの接続点4gは入力端子4cに接続される。ダイオード41のアノードはスイッチ51のソースに接続され、ダイオード41のカソードはスイッチ51のドレインに接続される。ダイオード42のアノードはスイッチ52のソースに接続され、ダイオード42のカソードはスイッチ52のドレインに接続される。
 図6に示すようにスイッチ51、スイッチ52、スイッチ53およびスイッチ54を備えた第2の整流器4Bを用いた場合でも、図6に示す交流直流変換装置100-2Aでは、スイッチ53およびスイッチ54を備えた図4に示す交流直流変換装置100-2と同様の効果を奏する。
 また図6に示す交流直流変換装置100-2Aでは、この効果に加えて、リアクタ2を介して交流電源1を短絡する整流動作において、その短絡電流を、スイッチ51およびスイッチ53側と、スイッチ52およびスイッチ54側とで分担するように制御できるので、スイッチ51、スイッチ52、スイッチ53およびスイッチ54の各々で発生する熱が分散され、発熱量を抑制できる。そのためスイッチ51、スイッチ52、スイッチ53およびスイッチ54で発生する熱を放熱するための不図示の放熱部品を小さくできる。
実施の形態3.
 実施の形態2のモジュール6Bは2つスイッチ53およびスイッチ54を備え、実施の形態2のモジュール6Cはスイッチ51、スイッチ52、スイッチ53およびスイッチ54を備えるが、実施の形態2ではこれらのスイッチの特性が考慮されていない。実施の形態3に係る交流直流変換装置では、スイッチ53およびスイッチ54がMOSFETで構成される。実施の形態3に係る交流直流変換装置は、スイッチ53およびスイッチ54がMOSFETで構成される以外は図4に示す交流直流変換装置100-2と同様に構成されているため、実施の形態3では、図4を用いて実施の形態3に係る交流直流変換装置の構成を説明する。
 前述したように、MOSFETの製造過程では、MOSFETの導通方向とは逆方向に導通するダイオードが生成される。そのため、スイッチ53およびダイオード43が1つのMOSFETと同等の構成となり、スイッチ54およびダイオード44が1つのMOSFETと同等の構成となる。このため、ダイオード43およびダイオード44を追加することなく、スイッチ53およびダイオード43の並列回路を実現できると共に、スイッチ54およびダイオード44の並列回路を実現できる。
 またMOSFETでは、MOSFETを構成するスイッチの導通方向とは逆方向に導通するダイオードに電流が流れるとき、電流の値に比例した電圧がスイッチの両端に発生する。そのため、MOSFETで発生する熱は、電流と電流に比例する電圧との積で導かれ、電流の2乗に比例して増加する。図4に示す第2のダイオードアーム4-2Aが、スイッチ53およびスイッチ54を備えていない場合、小さい電流値であっても一定の降下電圧VFがダイオード43およびダイオード44のそれぞれの両端に発生するため、ダイオード43およびダイオード44ではその降下電圧に比例する熱が発生する。従って、スイッチ53およびスイッチ54に流れる電流が小さいときは、ダイオード43およびダイオード44を使用した構成と比較して、スイッチ53およびスイッチ54で発生する熱をより小さくできる。
 ここで、スイッチ53およびスイッチ54にワイドバンドギャップ半導体が用いられ、スイッチアーム5を構成するスイッチ55およびスイッチ56にシリコン半導体、特に絶縁ゲート型バイポーラトランジスタが用いられる構成を考える。
 電動機21の回転数を上昇させるため、インバータ20が電動機21に印加する交流電圧の振幅を大きくすると共に、インバータ20の出力電力も大きくするときに、実施の形態2に示すように倍電圧整流を行った場合、スイッチアーム5を構成するスイッチ55およびスイッチ56が設けられているため、スイッチ55およびスイッチ56の一方に電流が流れる。シリコン半導体、特に絶縁ゲート型バイポーラトランジスタは一定以上の電流値で降下電圧Vceが一定となるため、スイッチ55およびスイッチ56の導通方向に電流が流れるときに発生する熱は、その降下電圧に比例する。これは、MOSFETで発生する熱は電流の2乗に比例するのに比べて、スイッチ55およびスイッチ56に流れる電流が大きいときにスイッチ55およびスイッチ56で発生する熱が小さくなる特性があるためである。
 電動機21の回転数を低下させるため、インバータ20が電動機21に印加する交流電圧の振幅を小さくすると共に、インバータ20の出力電力も小さくするときに、実施の形態2に示すようにスイッチ53およびスイッチ54の制御による整流動作を行う場合、スイッチ53およびスイッチ54で発生する熱が小さくなることは、実施の形態2および実施の形態3で説明した通りである。
 実施の形態3に係る交流直流変換装置では、スイッチ53およびスイッチ54にワイドバンドギャップ半導体が用いられ、スイッチ55およびスイッチ56に絶縁ゲート型バイポーラトランジスタが用いられる。そして実施の形態3に係る交流直流変換装置は、電動機21の回転数に応じてインバータ20が電動機21に印加する交流電圧の振幅に合わせて、スイッチ55およびスイッチ56の制御による倍電圧整流と、スイッチ53およびスイッチ54の制御による整流動作とを選択する。これにより、いずれの選択においても、発生する熱がより小さくなるスイッチが選択され、スイッチ53、スイッチ54、スイッチ55およびスイッチ56で発生する熱を小さくできる。
 また実施の形態3に係る交流直流変換装置は、図5に示す電力変換装置300にも適用でき、実施の形態2に比べて電力変換装置300全体で発生する熱を小さくできる。
 またスイッチ53およびスイッチ54は、図2に示す基準回路モジュール60を構成する部品でもあるため、実施の形態3に係る交流直流変換装置は、実施の形態1と同様に、合計2つのモジュールにより第1の整流器3および第2の整流器4Aを構成できる。従って、実施の形態3に係る交流直流変換装置は、第1の整流器3、第2の整流器4Aおよびスイッチアーム5のそれぞれを個別にモジュール化して交流直流変換装置の内部に実装する場合に比べて、第1の整流器3、第2の整流器4Aおよびスイッチアーム5のそれぞれを交流直流変換装置の内部に配置するための実装スペースを小さくできる。
 また実施の形態3に係る交流直流変換装置では、スイッチ53、スイッチ54、スイッチ55およびスイッチ56で発生する熱を小さくできるため、スイッチ53、スイッチ54、スイッチ55およびスイッチ56が交流直流変換装置の内部に設けられている場合でも、スイッチ53、スイッチ54、スイッチ55およびスイッチ56で発生した熱により、スイッチ53、スイッチ54、スイッチ55およびスイッチ56以外の部品が故障する可能性を低減できる。
 また実施の形態3に係る交流直流変換装置では、スイッチ53、スイッチ54、スイッチ55およびスイッチ56を備えるモジュール6,6Bを小さくした場合も同様に、スイッチ53、スイッチ54、スイッチ55およびスイッチ56以外の部品が故障する可能性を低減できる。
実施の形態4.
 実施の形態4では実施の形態2の変形例を説明する。図7は本発明の実施の形態2に係る交流直流変換装置が備えるモジュールの第1の変形例を示す図である。図4に示すモジュール6Bと図7に示すモジュール6Dとの相違点は以下の通りである。
 (1)モジュール6Dは、第2の整流器4Aに代えて第2の整流器4Cを備える。またモジュール6Dは、スイッチアーム5に代えてスイッチアーム5Bを備える。
 (2)第2の整流器4Cは、第2のダイオードアーム4-2Aに代えて第2のダイオードアーム4-2Bを備える。第2のダイオードアーム4-2Bは、ダイオード43、ダイオード44、スイッチ53およびスイッチ54に加えて、スイッチ53を駆動する駆動回路63およびスイッチ54を駆動する駆動回路64を備える。
 (3)スイッチアーム5Bは、ダイオード45、ダイオード46、スイッチ55およびスイッチ56に加えて、スイッチ55を駆動する駆動回路65およびスイッチ56を駆動する駆動回路66を備える。
 (4)モジュール6Dは、駆動回路63を駆動するための電源である駆動回路電源71をモジュール6Dに接続する正側電源端子T11および負側電源端子T12を備える。モジュール6Dは、駆動回路65を駆動するための電源である駆動回路電源72をモジュール6Dに接続する正側電源端子T21および負側電源端子T22を備える。モジュール6Dは、駆動回路64を駆動するための電源である駆動回路電源73をモジュール6Dに接続する正側電源端子T31および負側電源端子T32を備える。モジュール6Dは、駆動回路66を駆動するための電源である駆動回路電源74をモジュール6Dに接続する正側電源端子T41および負側電源端子T42を備える。
 スイッチ53、スイッチ54、スイッチ55およびスイッチ56を駆動する電源は、これらのスイッチのそれぞれのドレイン端子が相互に接続されて同一の電位である場合に限り、同一とすることができる。しかしながら図7に示すモジュール6Dでは、これらのスイッチのそれぞれのドレイン端子が接続される外部接続端子が全て異なるため、同一の電源を用いることができず、4つの駆動回路電源71、駆動回路電源72、駆動回路電源73および駆動回路電源74が必要となる。
 図8は本発明の実施の形態2に係る交流直流変換装置の変形例を示す図である。図4に示す交流直流変換装置100-2と図8に示す交流直流変換装置100-4との相違点は以下の通りである。
 (1)交流直流変換装置100-4は、リアクタ2に代えてリアクタ2Aを備えると共に、モジュール6Bに代えてモジュール6Eを備える。
 (2)モジュール6Eは、第2の整流器4Aに代えて第2の整流器4Dを備える。
 (3)第2の整流器4Dは、第1のダイオードアーム4-1に代えて第1のダイオードアーム4-1Bを備えると共に、第2のダイオードアーム4-2Aに代えて第2のダイオードアーム4-2Cを備える。
 第1のダイオードアーム4-1Bは、ダイオード41およびダイオード42に加えてスイッチ52を備える。スイッチ52のドレインは、ダイオード42のカソードに接続される。スイッチ52のソースは、ダイオード42のアノードに接続される。ダイオード41のアノードとスイッチ52のドレインとの接続点4gは、入力端子4cに接続される。第2のダイオードアーム4-2Cでは、図4に示すスイッチ53が省かれている。ダイオード42およびダイオード44は、それぞれのアノード同士が接続される。
 図9は本発明の実施の形態2に係る交流直流変換装置が備えるモジュールの第2の変形例を示す図である。図7に示すモジュール6Dと図9に示すモジュール6Fとの相違点は以下の通りである。
 (1)モジュール6Fは、第2の整流器4Cに代えて第2の整流器4Eを備える。
 (2)第2の整流器4Eは、第1のダイオードアーム4-1に代えて第1のダイオードアーム4-1Cを備えると共に、第2のダイオードアーム4-2Bに代えて第2のダイオードアーム4-2Dを備える。
 (3)第1のダイオードアーム4-1Cは、ダイオード41およびダイオード42に加えて、スイッチ52を駆動する駆動回路62を備える。
 (4)第2のダイオードアーム4-2Dでは、図7に示すスイッチ53および駆動回路63が省かれている。
 (5)モジュール6Fでは、図7に示す正側電源端子T11および負側電源端子T12が省かれ、正側電源端子T31および負側電源端子T32に駆動回路62および駆動回路64が接続されている。
 図9に示すモジュール6Fでは、スイッチ52およびスイッチ54のそれぞれのドレイン端子が、同一の外部接続端子である出力端子N1に接続されるため、スイッチ52およびスイッチ54を駆動する電源は同一の電位となる。従って、駆動回路62および駆動回路64では、1つの駆動回路電源73でスイッチ52およびスイッチ54を駆動でき、必要な駆動回路電源の個数は、スイッチの個数よりも少ない3つである。
 以上のように、実施の形態4に係る交流直流変換装置100-4では、スイッチ52およびスイッチ54の駆動回路の電源を同一とすることができ、必要な駆動回路電源の個数を削減して製造コストを低減できる。
 なお実施の形態4において、スイッチ55およびスイッチ56の制御による倍電圧整流を行うと共に、スイッチ52およびスイッチ54の制御によって、交流直流変換装置100-4に供給された交流電流の高調波が抑制された正弦波状の電流となり、交流電圧との位相差が小さくなり、力率が向上することは、実施の形態2と同様である。
 実施の形態4に係る交流直流変換装置100-4を図5に示す電力変換装置300に適用した場合、コンデンサ11およびコンデンサ12で構成される直列回路の両端間に印加された直流電圧がインバータ20で交流電圧に変換される。そして交流直流変換装置100-4は、インバータ20が電動機21に印加する交流電圧の振幅に応じて、電動機21の回転数が高いときにはスイッチ55およびスイッチ56の制御による倍電圧整流を選択し、電動機21の回転数が低いときにはスイッチ52およびスイッチ54の制御による整流動作を選択する。これにより、電動機21の回転数に応じたより発熱の小さいインバータ20を実現でき、インバータ20で発生する熱を放熱するための不図示の放熱部品を小さくできる。
 またスイッチ52およびスイッチ54は、図2に示す基準回路モジュール60を構成する部品でもあるため、実施の形態4に係る交流直流変換装置100-4では、モジュール6D,6E,6Fの内部または外部にスイッチ52およびスイッチ54を配置するための実装スペースを設けることなく、モジュール6D,6E,6Fを構成できる。
 また交流直流変換装置100-4では、スイッチ52およびスイッチ54が交流直流変換装置100-4の内部に設けられている場合でも、スイッチ52およびスイッチ54で発生した熱により、スイッチ52およびスイッチ54以外の部品が故障する可能性を低減できる。
実施の形態5.
 図10は本発明の実施の形態5に係る空気調和装置の構成図である。図10に示す空気調和装置400は、室外機81、室内機82および冷媒配管83を備え、室外機81および室内機82は冷媒配管83を介して接続されている。室外機81は、実施の形態1から4に示す電力変換装置と圧縮機310とを備える。圧縮機310は、不図示の圧縮機構を備えると共に、当該圧縮機構を駆動する駆動源として図5に示す電動機21を備える。
 次に空気調和装置400の動作を説明する。室内機82は、使用者により設定された目標温度を記憶すると共に、室内機82周辺の温度を検出し検出温度として記憶する。室内機82は、目標温度および検出温度を室外機81に送信する。室外機81は、室内機82が持つ目標温度情報と検出温度情報との差が大きい場合、室内機82周辺の温度を目標温度に近づけるように、室外機81と室内機82との間に循環させる冷媒の量を多くする。
圧縮機310が圧縮する冷媒の量は、圧縮機310の単位回転数あたりの冷媒排出量と電動機21の回転数との積で求められる。そのため、室外機81と室内機82との間に循環させる冷媒の量を多くするために、室外機81は、電動機21の回転数を高くするように制御する。
 一方、室内機82に記憶される目標温度と検出温度との差が一定値より小さくなったとき、室内機82周辺の検出温度が目標温度を挟んで逆方向に遠ざかることのないように、室外機81と室内機82との間に循環させる冷媒の量を少なくする。そのため、室外機81は、電動機21の回転数を低くするように制御する。
 空気調和装置400を連続して運転する場合、目標温度と検出温度との差が一定値より小さい状態の運転期間は、目標温度と検出温度との差が一定値より大きい状態の運転期間よりも長くなる。そのため空気調和装置400では、室外機81と室内機82との間に循環させる冷媒の量を少なくするために電動機21の回転数を低くするように制御する時間の比率が高い。
 一方、電力変換装置300は、実施の形態2から4に示すように、電動機21の回転数に応じて倍電圧整流と通常の整流動作とを選択することにより、何れの選択においても発生する熱が小さくなるように制御しており、特に電動機21の回転数を低くするように制御する場合には通常の整流動作を選択して電力変換装置300で発生する熱を小さくする。
 前述したスイッチ51、スイッチ52、スイッチ53およびスイッチ54がMOSFETで構成され、このMOSFETにワイドバンドギャップ半導体が用いられ、さらにスイッチ55およびスイッチ56がシリコン半導体、特に絶縁ゲート型バイポーラトランジスタで構成されている場合、空気調和装置400では、より顕著な効果が得られるのは、実施の形態3で示したとおりである。従って空気調和装置400は、運転時間の比率が高い制御であって電動機21の回転数を低く制御する場合、電力変換装置300で発生する熱を小さくすることができ、空気調和装置400の全運転時間および停止時間を含めた全期間における運転効率を向上させることができる。
 なお以上の説明では、室内機82に記憶される温度情報を室外機81に送信して室外機81が圧縮機310の回転数を制御する構成例を説明したが、室内機82が圧縮機310の回転数を直接制御する構成でも同様の効果を奏する。
 また実施の形態5は、室外機81と室内機82を備える空気調和装置400の構成例を説明したが、室内機82の代わりに水に対して冷媒の熱を与える不図示の熱交換器を備えた給湯装置のように、冷媒の圧縮膨張作用によって一定の体積および容積の媒体の温度を熱交換により調整する装置であれば、どのようなものであっても同様の効果を奏する。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 交流電源、2,2A リアクタ、3 第1の整流器、3a,3b,4a,4b 出力端子、3c,3d,4c,4d 入力端子、3e,3f 中継端子、3g,3h,4g,4h,5a,13 接続点、4,4A,4B,4C,4D,4E 第2の整流器、4-1,4-1A,4-1B,4-1C 第1のダイオードアーム、4-2,4-2A,4-2B,4-2C,4-2D 第2のダイオードアーム、5,5A,5B スイッチアーム、6,6A,6B,6C,6D,6E,6F モジュール、11,12 コンデンサ、20 インバータ、21 電動機、31,32,33,34,41,42,43,44,45,46 ダイオード、51,52,53,54,55,56 スイッチ、60 基準回路モジュール、62,63,64,65,66 駆動回路、71,72,73,74 駆動回路電源、81 室外機、82 室内機、83 冷媒配管、100-1,100-1A,100-2,100-2A,100-4 交流直流変換装置、200 負荷、300 電力変換装置、310 圧縮機、400 空気調和装置。

Claims (19)

  1.  リアクタを介して交流電源に接続される第1および第2の整流器と、
     前記第1の整流器の出力側に直列に接続された2つのスイッチで構成されるスイッチアームと、
     前記第2の整流器の出力側に直列に接続された2つのコンデンサと
     を備え、
     前記2つのコンデンサ同士の接続点は、前記2つのスイッチ同士の接続点に接続されていることを特徴とする交流直流変換装置。
  2.  前記2つのスイッチのそれぞれには、前記2つのスイッチのそれぞれの導通方向とは逆方向に導通するダイオードが並列に接続されていることを特徴とする請求項1に記載の交流直流変換装置。
  3.  前記第2の整流器は、直列に接続された2つのダイオードで構成される2組のダイオードアームを備え、
     前記2組のダイオードアームの内、一方のダイオードアームを構成する前記2つのダイオードのそれぞれには、前記2つのダイオードのそれぞれの導通方向とは逆方向の導通を制御するスイッチが並列に接続されることを特徴とする請求項1に記載の交流直流変換装置。
  4.  前記第2の整流器は、直列に接続された2つのダイオードで構成される2組のダイオードアームを備え、
     前記2つのダイオードのそれぞれには、前記2つのダイオードのそれぞれの導通方向とは逆方向の導通を制御するスイッチが並列に接続されることを特徴とする請求項1に記載の交流直流変換装置。
  5.  前記2つのダイオードのそれぞれの導通方向とは逆方向の導通を制御するスイッチは、電界効果トランジスタで構成されることを特徴とする請求項3または請求項4に記載の交流直流変換装置。
  6.  前記2つのダイオードのそれぞれの導通方向とは逆方向の導通を制御するスイッチにはワイドバンドギャップ半導体が用いられ、
     前記スイッチアームを構成する前記2つのスイッチにはシリコン半導体が用いられることを特徴とする請求項3または請求項4に記載の交流直流変換装置。
  7.  前記2組のダイオードアームのそれぞれを構成する2つのダイオードの内、一方のダイオードはアノード同士が接続され、
     アノード同士が接続されたダイオードには、当該ダイオードの導通方向とは逆方向の導通を制御するスイッチが並列に接続されることを特徴とする請求項3または請求項4に記載の交流直流変換装置。
  8.  請求項1に記載の前記第2の整流器および前記スイッチアームを備え、
     前記第2の整流器は、
     直列に接続された2つのダイオードで構成される2組のダイオードアームと、
     単相交流の入力端子と、
     前記2組のダイオードアームで整流された電圧が印加される出力端子と
     を備えることを特徴とするモジュール。
  9.  前記スイッチアームの両端のそれぞれが接続される端子を2つ備えることを特徴とする請求項8に記載のモジュール。
  10.  前記スイッチアームを構成する2つのスイッチのそれぞれには、前記2つのスイッチのそれぞれの導通方向とは逆方向に導通するダイオードが並列に接続されていることを特徴とする請求項8または請求項9に記載のモジュール。
  11.  前記2つのダイオードのそれぞれには、前記2つのダイオードのそれぞれの導通方向とは逆方向の導通を制御するスイッチが並列に接続され、
     当該スイッチは、電界効果トランジスタで構成されることを特徴とする請求項8に記載のモジュール。
  12.  前記スイッチアームを構成する2つのスイッチにはワイドバンドギャップ半導体が用いられることを特徴とする請求項10に記載のモジュール。
  13.  前記スイッチアームを構成する2つのスイッチを前記モジュールの内部に備えたことを特徴とする請求項8に記載のモジュール。
  14.  前記2つのダイオードのそれぞれには、前記2つのダイオードのそれぞれの導通方向とは逆方向の導通を制御するスイッチが並列に接続され、
     前記2つのダイオードのそれぞれの導通方向とは逆方向の導通を制御するスイッチにはワイドバンドギャップ半導体が用いられ、
     前記スイッチアームを構成する2つのスイッチにはシリコン半導体が用いられることを特徴とする請求項8に記載のモジュール。
  15.  前記スイッチアームを構成する2つのスイッチを駆動する駆動回路の電源が同一であることを特徴とする請求項8に記載のモジュール。
  16.  前記2組のダイオードアームのそれぞれを構成する2つのダイオードの内、一方のダイオードはアノード同士が接続され、
     アノード同士が接続されたダイオードには、当該ダイオードの導通方向とは逆方向の導通を制御するスイッチが並列に接続され、
     当該スイッチを前記モジュールの内部に備えたことを特徴とする請求項8に記載のモジュール。
  17.  請求項3から請求項7の何れか一項に記載の交流直流変換装置の出力端に接続されるインバータと、前記インバータの出力で駆動する電動機とを備え、
     前記電動機の回転数に応じて、前記スイッチアームを構成する2つのスイッチの制御を行い、または前記2組のダイオードアームを構成する前記2つのダイオードのそれぞれに接続されたスイッチの制御を行うかを選択することを特徴とする電力変換装置。
  18.  請求項17に記載の電力変換装置と、前記電動機を有する圧縮機とを備え、
     前記圧縮機で圧縮されて冷媒配管を介して循環される冷媒の量を調整するために圧縮機の回転数を調整することを特徴とする空気調和装置。
  19.  請求項17に記載の電力変換装置と、
     前記電動機を圧縮機として備える室外機と、
     設定された目標温度と検出温度とを記憶する室内機と、
     前記室外機と前記室内機との間で冷媒を循環させるための冷媒配管と
     を備え、
     前記室内機に記憶された温度情報に基づいて前記圧縮機の回転数を調整することを特徴とする空気調和装置。
PCT/JP2016/072134 2016-07-28 2016-07-28 交流直流変換装置、モジュール、電力変換装置および空気調和装置 WO2018020635A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2016/072134 WO2018020635A1 (ja) 2016-07-28 2016-07-28 交流直流変換装置、モジュール、電力変換装置および空気調和装置
JP2018530281A JP6584673B2 (ja) 2016-07-28 2016-07-28 交流直流変換装置、電力変換装置および空気調和装置
CN201680087567.4A CN109478853A (zh) 2016-07-28 2016-07-28 交流直流转换装置、模块、电力转换装置以及空调装置
US16/095,795 US20190140553A1 (en) 2016-07-28 2016-07-28 Ac/dc converter, module, power conversion device, and air conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/072134 WO2018020635A1 (ja) 2016-07-28 2016-07-28 交流直流変換装置、モジュール、電力変換装置および空気調和装置

Publications (1)

Publication Number Publication Date
WO2018020635A1 true WO2018020635A1 (ja) 2018-02-01

Family

ID=61015766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072134 WO2018020635A1 (ja) 2016-07-28 2016-07-28 交流直流変換装置、モジュール、電力変換装置および空気調和装置

Country Status (4)

Country Link
US (1) US20190140553A1 (ja)
JP (1) JP6584673B2 (ja)
CN (1) CN109478853A (ja)
WO (1) WO2018020635A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11575330B1 (en) * 2021-07-29 2023-02-07 Rivian Ip Holdings, Llc Dual inverter with common control

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005110491A (ja) * 2003-09-09 2005-04-21 Matsushita Electric Ind Co Ltd コンバータ回路及びモータ駆動装置
JP2013172469A (ja) * 2012-02-17 2013-09-02 Mitsubishi Electric Corp パワーモジュール及び空調装置
JP2013225998A (ja) * 2012-04-23 2013-10-31 Hitachi Appliances Inc 整流回路及び、それを用いたモータ駆動装置
JP2014090570A (ja) * 2012-10-30 2014-05-15 Mitsubishi Electric Corp 直流電源装置、冷凍サイクル装置、空気調和機および冷蔵庫

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005110491A (ja) * 2003-09-09 2005-04-21 Matsushita Electric Ind Co Ltd コンバータ回路及びモータ駆動装置
JP2013172469A (ja) * 2012-02-17 2013-09-02 Mitsubishi Electric Corp パワーモジュール及び空調装置
JP2013225998A (ja) * 2012-04-23 2013-10-31 Hitachi Appliances Inc 整流回路及び、それを用いたモータ駆動装置
JP2014090570A (ja) * 2012-10-30 2014-05-15 Mitsubishi Electric Corp 直流電源装置、冷凍サイクル装置、空気調和機および冷蔵庫

Also Published As

Publication number Publication date
JP6584673B2 (ja) 2019-10-02
US20190140553A1 (en) 2019-05-09
JPWO2018020635A1 (ja) 2018-10-25
CN109478853A (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
JP5627701B2 (ja) 3相交流直流変換装置及び3相交流直流変換装置を用いた空気調和機
US9225258B2 (en) Backflow preventing means, power converting device, and refrigerating and air-conditioning apparatus
WO2010073635A1 (ja) 電力変換装置
WO2018073875A1 (ja) 電力変換装置、モータ駆動装置および空気調和機
JP5740837B2 (ja) 基準回路モジュール、三相インバータ回路、整流回路、pam回路、一石型pam回路、ハーフブリッジ/インターリーブ回路、および空気調和装置
JP4989698B2 (ja) 電力変換装置、それを備えたモーター駆動制御装置、それを搭載した圧縮機及び送風機、並びに、その圧縮機又は送風機を搭載した空気調和機、冷蔵庫及び冷凍庫
JP2008061404A (ja) 電力変換装置
JPWO2019003270A1 (ja) 電力変換装置、モータ駆動制御装置、送風機、圧縮機及び空気調和機
JP2011239547A5 (ja)
JP6522228B2 (ja) 直流電源装置および冷凍サイクル適用機器
WO2020017008A1 (ja) 電力変換装置、モータ駆動装置及び空気調和機
JP6584673B2 (ja) 交流直流変換装置、電力変換装置および空気調和装置
JP2013247788A (ja) 電源装置
JP2016001991A (ja) 電動機駆動装置、及び冷凍空調装置
WO2022071401A1 (ja) 電力変換装置及びそれを備えたヒートポンプシステム
JP2022118033A (ja) 空気調和機
WO2019008770A1 (ja) 交流直流変換装置、モータ駆動制御装置、送風機、圧縮機及び空気調和機
JP2012010507A (ja) 直流電源装置
EP4024693A1 (en) Power conversion device, motor drive device, and air conditioner
Freiche et al. A 70 kw next generation three-phase solar inverter with multiple mppts using advanced cooling concept and stacked-pcb architecture
JP6116100B2 (ja) 直流電源装置及びこれを用いた空気調和機
WO2016125255A1 (ja) 電力変換装置及び空気調和装置
WO2021166111A1 (ja) 直流電源装置および冷凍サイクル適用機器
WO2021171562A1 (ja) 電動機駆動装置及び空気調和機
JP2013062937A (ja) 電動機の駆動装置、および冷凍サイクル装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018530281

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910538

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16910538

Country of ref document: EP

Kind code of ref document: A1