WO2018020547A1 - 車線変更支援方法および車線変更支援装置 - Google Patents

車線変更支援方法および車線変更支援装置 Download PDF

Info

Publication number
WO2018020547A1
WO2018020547A1 PCT/JP2016/071712 JP2016071712W WO2018020547A1 WO 2018020547 A1 WO2018020547 A1 WO 2018020547A1 JP 2016071712 W JP2016071712 W JP 2016071712W WO 2018020547 A1 WO2018020547 A1 WO 2018020547A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
lane change
lane
host vehicle
adjacent
Prior art date
Application number
PCT/JP2016/071712
Other languages
English (en)
French (fr)
Inventor
陽平 三品
藤田 晋
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to BR112019001268-0A priority Critical patent/BR112019001268A2/pt
Priority to CA3032064A priority patent/CA3032064A1/en
Priority to CN201680087814.0A priority patent/CN109564733A/zh
Priority to US16/319,753 priority patent/US20200066160A1/en
Priority to EP16910451.0A priority patent/EP3489926A4/en
Priority to KR1020197003077A priority patent/KR20190025675A/ko
Priority to JP2018530212A priority patent/JP6597905B2/ja
Priority to PCT/JP2016/071712 priority patent/WO2018020547A1/ja
Priority to RU2019103142A priority patent/RU2721635C1/ru
Priority to MX2019000929A priority patent/MX2019000929A/es
Publication of WO2018020547A1 publication Critical patent/WO2018020547A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/10Path keeping
    • B60W30/12Lane keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/18Distance travelled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/60Traffic rules, e.g. speed limits or right of way
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18163Lane change; Overtaking manoeuvres

Definitions

  • the present invention relates to a lane change support method and a lane change support device.
  • lane change is recommended in traffic rules. In some cases, it may be determined that the lane change is possible even in the unintended area.
  • the problem to be solved by the present invention is to provide a lane change support method and a lane change support device capable of appropriately determining whether the lane change is possible.
  • the present invention identifies the non-recommended area where the lane change is not recommended based on the road information, and sets the area necessary for the lane change of the own vehicle as the judgment target area based on the position information of the own vehicle and the vehicle speed information.
  • the above problem is solved by determining that the lane change can not be performed when part or all of the non-recommended area is included in the determination target area.
  • the present invention it is possible to appropriately determine whether or not the lane change can be made by specifying the non-recommended area where the lane change is not recommended based on the road information and determining that the lane change can not be performed in the non-recommended area.
  • FIG. 1 is a diagram showing a configuration of a travel control device 100 according to the present embodiment.
  • the travel control device 100 includes a sensor group 110, a map database 120, a presentation device 130, a drive mechanism 140, and a control device 150. These devices are connected by a CAN (Controller Area Network) or another in-vehicle LAN to exchange information with each other.
  • CAN Controller Area Network
  • the sensor group 110 includes a GPS device that detects the position of the host vehicle, and a vehicle speed sensor that detects the vehicle speed of the host vehicle.
  • the GPS device detects radio waves transmitted from a plurality of satellite communications, periodically acquires the position information of the host vehicle, and also acquires the acquired position information of the host vehicle and the angle change information acquired from the gyro sensor. The current position of the host vehicle is detected based on the vehicle speed acquired from the vehicle speed sensor.
  • the sensor group 110 also includes a camera for imaging the surroundings of the host vehicle, and a distance measurement sensor for detecting an obstacle around the host vehicle.
  • a laser radar, an ultrasonic sensor, a sound wave sensor, an infrared sensor etc. can be used as a ranging sensor.
  • the map database 120 stores map information and road information.
  • the road information includes information such as boundaries (lane marks, curbs), intersections, stop lines, pedestrian crossings, road shapes, road curvatures, etc. of each road.
  • the presentation device 130 presents, for example, the driver with a determination result as to whether or not the host vehicle can change lanes.
  • a lamp installed on an instrument panel, a display of a navigation device, or a speaker may be mentioned.
  • the lamp of the presentation device 130 is turned on and a message indicating that the lane change can not be performed is displayed on the display of the navigation device.
  • the drive mechanism 140 includes an engine, a brake, a steering actuator, and the like for causing the host vehicle to travel.
  • the travel control device 100 performs lane change control that automatically changes lanes according to a driver's instruction
  • the travel control device 100 is included in the drive mechanism 140 when it is determined that the lane change can be performed by the control device 150 described later.
  • the control device 150 By controlling the operation of the engine, the brakes, and the steering actuator, it is possible to automatically change the lane of the host vehicle.
  • Control device 150 is a ROM (Read Only Memory) storing a program for controlling the traveling of the vehicle, a CPU (Central Processing Unit) executing a program stored in this ROM, and an accessible storage device. It consists of a functional RAM (Random Access Memory). Note that as an operation circuit, a micro processing unit (MPU), a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), etc., instead of or in addition to a central processing unit (CPU) Can be used.
  • MPU micro processing unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the control device 150 causes the CPU to execute a program stored in the ROM to obtain the vehicle information acquisition function of acquiring the information of the vehicle, the surrounding information acquisition function of acquiring information around the vehicle, and the vehicle.
  • a lane change determination function that determines whether or not the lane change can be performed and a travel control function that controls the travel of the host vehicle are realized.
  • each function of the control device 150 will be described.
  • the vehicle information acquisition function of the control device 150 acquires information including vehicle speed information and position information of the vehicle as the vehicle information.
  • the vehicle information acquisition function can acquire the position information of the vehicle from the GPS device included in the sensor group 110 and the vehicle speed information of the vehicle from the vehicle speed sensor as the vehicle information.
  • the host vehicle information acquisition function may be configured to acquire position information of the host vehicle based on an image captured by a camera included in the sensor group 110.
  • the surrounding information acquisition function of the control device 150 acquires information on roads and obstacles around the vehicle as the surrounding information.
  • the surrounding information acquisition function can acquire, as the surrounding information, road information of roads around the host vehicle stored in the map database 120.
  • the ambient information acquisition function acquires road information including road boundaries (lane marks, curbs), intersections, stop lines, pedestrian crossings, road shapes, and road curvatures around the host vehicle as ambient information.
  • the ambient information acquisition function can also acquire road information of roads around the host vehicle as ambient information from a camera or a distance measurement sensor included in the sensor group 110.
  • the ambient information acquisition function can also acquire information of an obstacle present around the host vehicle from the camera or the distance measurement sensor included in the sensor group 110 as ambient information.
  • the ambient information acquisition function the presence or absence of a surrounding vehicle traveling around the host vehicle from the camera or the distance measurement sensor included in the sensor group 110, the position of the surrounding vehicle when there is a surrounding vehicle, the traveling direction , Information such as the vehicle speed can be acquired as ambient information.
  • the lane change determination function of the control device 150 determines whether or not the lane change of the host vehicle is possible.
  • FIG. 2 is a view exemplifying one scene in which the host vehicle V1 is traveling in front of a pedestrian crossing.
  • the lane in which the host vehicle V1 travels will be described as the host lane, and the lane adjacent to the host lane will be described as the adjacent lane.
  • the lane change determination function first calculates a planned traveling locus when the host vehicle V1 changes lanes, as shown in FIG.
  • the lane change determination function smoothly runs according to the vehicle speed of the host vehicle V1 so that the occupant of the host vehicle V1 does not feel discomfort or anxiety when the host vehicle V1 turns sharply.
  • the trajectory For example, when the host vehicle V1 is traveling at a speed of 60 km per hour, the lane change determination function determines the time required for the lane change (the current position of the host vehicle V1 after the lane change) so that the planned traveling trajectory becomes smooth.
  • the planned traveling locus can be calculated such that the time required to move to the target position P1 is 3 seconds.
  • the lane change determination function takes a longer time than 3 seconds so that the host vehicle V1 can smoothly change lanes when the host vehicle V1 is traveling at a speed faster than 60 km / h.
  • a planned traveling trajectory can be calculated to make a change.
  • the lane change determination function sets a determination target area R1 for determining whether to change the lane on the host lane.
  • the lane change determination function first calculates a travel distance required to change the lane of the host vehicle V1. For example, when the host vehicle V1 is traveling at a speed of 60 km / h and the planned traveling locus is calculated such that the time required to change the lane is 3 seconds, the lane change determination function changes the lane of the host vehicle V1.
  • the required travel distance can be calculated as 50 m.
  • the lane change determination function sets a region from the position (front end) of the host vehicle V1 to the calculated travel distance in the region on the host lane as the determination target region R1. be able to. For example, when the travel distance required for the lane change of the host vehicle is 50 m, as shown in FIG. 3, the lane change determination function determines that the host vehicle V1 from the position of the host vehicle V1 in the area on the host lane. An area up to a travel distance of 50 m required for lane change can be set as the judgment target area R1.
  • the lane change determination function sets, as a non-recommended area R2, an area in which the lane change is not recommended, based on the road information of the road around the host vehicle. Specifically, based on the road information of the road ahead of the host vehicle acquired by the surrounding information acquisition function, the lane change determination function determines an area where the lane change is not recommended, such as an area where the lane change is prohibited by traffic rules. , And set as a non-recommended area R2. For example, when the lane change is prohibited in the area of 30 m troubles of pedestrian crossing by traffic rules, the lane change judging function is, as shown in FIG. Can be set as the non-recommended region R2.
  • the lane change determination function sets an adjacent lane target area R3 for determining whether to change the lane on the adjacent lane. Specifically, the lane change determination function first calculates the front inter-vehicle distance D1 and the rear inter-vehicle distance D2 after the lane change. For example, the lane change determination function calculates the forward inter-vehicle distance based on the inter-vehicle time (THW: Time-Headway) and the forward inter-vehicle distance based on the time to collision (TTC: Time To Collision).
  • TCW Time-Headway
  • TTC Time To Collision
  • a longer one of the forward inter-vehicle distance and the forward inter-vehicle distance based on the collision allowance time (TTC) can be acquired as the forward inter-vehicle distance D1 after the lane change.
  • the lane change determination function calculates the rear inter-vehicle distance based on inter-vehicle time (THW) and the rear inter-vehicle distance based on collision margin time (TTC), and the rear inter-vehicle distance and collision margin based on inter-vehicle time (THW)
  • TTC collision margin time
  • a longer one of the rear inter-vehicle distance based on the time (TTC) can be acquired as the rear inter-vehicle distance D2 after the lane change.
  • the lane change determination function can calculate a distance obtained by multiplying the desired inter-vehicle time (THW) after the lane change by the vehicle speed of the host vehicle V1 as the front inter-vehicle distance based on the inter-vehicle time (THW).
  • TW inter-vehicle time
  • a desirable inter-vehicle time (THW) after the lane change is not particularly limited, and can be appropriately set for each vehicle speed by, for example, an experiment. For example, in the example shown in FIG.
  • the lane change determination function determines the inter-vehicle time (THW)
  • the front inter-vehicle distance based on can be calculated as 33 m.
  • the lane change determination function when the host vehicle V1 is approaching the front adjacent vehicle V2, a desirable collision margin time (TTC) after the lane change, and the relative vehicle speed between the host vehicle V1 and the front adjacent vehicle V2
  • TTC collision margin time
  • TTC time to collision
  • the distance obtained by multiplying the above can be calculated as the front inter-vehicle distance based on the collision margin time (TTC).
  • TTC collision margin time
  • a desirable time to collision (TTC) after lane change can be appropriately set for each vehicle speed by an experiment or the like. For example, in the example shown in FIG. 5, when the relative velocity between the host vehicle V1 and the forward adjacent vehicle V2 is 10 km / h and the desirable time to collision (TTC) after the lane change is 5 seconds, the lane change determination is made.
  • the function can be calculated as 28 m ahead inter-vehicle distance based on the time to collision (TTC).
  • the lane change determination function acquires the longer one of the front inter-vehicle distance based on the inter-vehicle time (THW) and the front inter-vehicle distance based on the collision margin time (TTC) as the front inter-vehicle distance D1 after the lane change.
  • the lane change determination function is based on the inter-vehicle time (THW), since the front inter-vehicle distance 33 m is longer than the front inter-vehicle distance 28 m based on the collision margin time (TTC)
  • the inter-vehicle distance D1 can be acquired as 33 m.
  • the lane change determination function does not calculate the front inter-vehicle distance based on the collision margin time (TTC), but the front based on the inter-vehicle time (THW)
  • TTC collision margin time
  • TW inter-vehicle time
  • the inter-vehicle distance can be calculated as the front inter-vehicle distance D1 after the lane change.
  • the lane change determination function calculates a distance obtained by multiplying the desired inter-vehicle time (THW) after the lane change by the general vehicle speed of a vehicle traveling in the adjacent lane (details will be described later). It can be calculated as a rear inter-vehicle distance based on THW). For example, in the lane change determination function, if the general vehicle speed of the vehicle traveling in the adjacent lane is 70 km / h and the desired inter-vehicle time (THW) after the lane change is 2 seconds, the inter-vehicle time (THW) It is possible to calculate the rear inter-vehicle distance based on 39 m.
  • the lane change determination function can acquire the speed limit of the road on which the host vehicle V1 travels as a general vehicle speed of a vehicle traveling in the adjacent lane.
  • the lane change determination function can acquire statistical values of vehicle speeds when a plurality of vehicles traveled in the adjacent lane in the past as a general vehicle speed of a vehicle traveling in the adjacent lane.
  • the lane change judgment is made by calculating in advance statistical values such as an average value, a median value, and a mode value of vehicle speeds when a plurality of vehicles traveled in adjacent lanes in the past.
  • the function can acquire, from the external server, statistics of vehicle speeds when a plurality of vehicles traveled in the adjacent lane in the past as information on general vehicle speeds of vehicles traveling in the adjacent lane.
  • the lane change determination function determines the desirable collision margin time (TTC) after the lane change and the relative vehicle speed between the host vehicle V1 and the rear adjacent vehicle V3 when the rear adjacent vehicle V3 is approaching the host vehicle V1.
  • TTC desirable collision margin time
  • the function can calculate the rear inter-vehicle distance based on the collision margin time (TTC) as 28 m.
  • the lane change determination function acquires the longer one of the rear inter-vehicle distance based on the inter-vehicle time (THW) and the rear inter-vehicle distance based on the collision margin time (TTC) as the rear inter-vehicle distance D2 after the lane change.
  • TTC collision margin time
  • the rear inter-vehicle distance 39m based on the inter-vehicle time (THW) is longer than the rear inter-vehicle distance 28m based on the collision margin time (TTC). It can be acquired.
  • the lane change determination function does not calculate the rear inter-vehicle distance based on the collision margin time (TTC) when the rear adjacent vehicle V3 is not approaching the host vehicle V1, and the rear based on the inter-vehicle time (THW)
  • TTC collision margin time
  • TW inter-vehicle time
  • the inter-vehicle distance can be calculated as a rear inter-vehicle distance D2 after the lane change.
  • the lane change determination function sets the adjacent lane target area R3 on the adjacent lane based on the front inter-vehicle distance D1 after the lane change and the rear inter-vehicle distance D2 after the lane change.
  • the lane change determination function is, as shown in FIG. 5, in the area on the adjacent lane, from the position P2 of the front distance D1 forward from the front end of the vehicle to the rear from the rear end of the vehicle
  • An area to the position P3 of the inter-vehicle distance D2 can be set as the adjacent lane target area R3.
  • the lane change determination function is, for example, an area from the position of the front inter-vehicle distance D1 forward from the center position of the host vehicle to the position of the rear inter-vehicle distance D2 behind the center position of the host vehicle It can also be configured to set as. In this case, for example, when the front inter-vehicle distance D1 is 33 m and the rear inter-vehicle distance D2 is 39 m, the adjacent lane target area R3 is 72 m.
  • the lane change determination function determines whether or not the host vehicle can change lanes based on the determination target area R1, the non-recommended area R2, and the adjacent lane target area R3. Specifically, the lane change determination function first determines whether or not the determination target region R1 includes a part or all of the non-recommended region R2. Then, the lane change determination function determines that the host vehicle can not change lanes when the determination target region R1 includes a part or all of the non-recommended region R2. For example, in the example illustrated in FIG. 6, the lane change determination function includes a part of the non-recommended area R2 in the determination target area R1 (because the determination target area R1 and the non-recommended area R2 partially overlap) The host vehicle V1 determines that it can not change lanes.
  • the lane change judgment function determines whether the lane change of the own vehicle is possible based on the relation between the adjacent lane target area R3 and the adjacent vehicle. to decide. Specifically, the lane change determination function first determines whether there is an adjacent vehicle in the adjacent lane target area R3. If there is no adjacent vehicle in the adjacent lane target area R3, the lane change determination function determines that the host vehicle can change lanes.
  • the rear adjacent vehicle V3 own Whether or not to change the lane of the host vehicle V1 is determined based on the rear vehicle approach degree CV3 approaching the vehicle V1.
  • the inter-vehicle time (THW V3 ) of the host vehicle V1 for the rear adjacent vehicle V3 is 2 seconds
  • the time (TTC V3 ) is 5 seconds
  • the lane change determination function determines the rear vehicle proximity C V3 at which the rear adjacent vehicle V3 approaches the host vehicle V1 as 1.3 according to the equation (2). be able to.
  • the lane change determination function determines that the host vehicle V1 can not change lanes when the forward vehicle approach degree CV2 or the rear vehicle approach degree CV3 is equal to or greater than a predetermined threshold.
  • the threshold value of front vehicle approach degree CV2 and the threshold value of the back adjacent vehicle V3 are not specifically limited, It can set suitably. Further, the threshold value of the front vehicle approach degree CV2 and the threshold value of the rear adjacent vehicle V3 may be the same value or different values.
  • the travel control function of the control device 150 controls automatic travel of the host vehicle.
  • the travel control function performs lane keeping control to control the traveling position in the width direction of the own vehicle by controlling the operation of the drive mechanism 140 such as a steering actuator so that the own vehicle travels in the own lane. Can.
  • the traveling control function can perform constant-speed traveling control in which the host vehicle travels at a predetermined set vehicle speed set by the driver.
  • the traveling control function controls the operation of the drive mechanism 140 such as an engine or a brake to make the own vehicle follow the preceding vehicle at a predetermined inter-vehicle distance set by the driver.
  • the travel control function performs lane change control to automatically perform the lane change of the host vehicle by controlling the operation of the drive mechanism 140 such as the engine, the brake, and the steering actuator. it can.
  • the traveling control function determines whether to perform the lane change control based on the determination result of the lane change possibility by the lane change determination function.
  • FIG. 7 is a flowchart showing lane change support processing according to the first embodiment.
  • the lane change support processing described below is executed by the control device 150. Further, the lane change support processing described below is started when the ignition is turned on, and is repeatedly performed until the ignition is turned off.
  • step S101 acquisition of vehicle information is performed by the vehicle information acquisition function of the control device 150.
  • the vehicle information acquisition function can acquire the position information of the vehicle from the GPS device included in the sensor group 110 and the vehicle speed information of the vehicle from the vehicle speed sensor as vehicle information.
  • step S102 ambient information acquisition is performed by the ambient information acquisition function of the control device 150.
  • the ambient information acquisition function is based on the road information of the road around the vehicle from the map database 120 or the road information of the road around the vehicle and the vehicle around from the camera or the distance measurement sensor included in the sensor group 110 Information on existing obstacles can be acquired as ambient information.
  • step S103 the lane change determination function of the control device 150 calculates a planned traveling locus when the host vehicle changes lanes.
  • the lane change determination function smoothes the planned traveling trajectory according to the vehicle speed of the host vehicle V1 so that the occupant of the host vehicle V1 does not feel discomfort or anxiety due to the abrupt turn of the host vehicle V1. calculate.
  • step S104 the lane change determination function of the control device 150 sets the determination target region R1.
  • the lane change determination function travels necessary to change the lane of the host vehicle V1 based on the position information and the vehicle speed information of the host vehicle V1 acquired in step S101, and the planned travel locus calculated in step S103. Calculate the distance.
  • the lane change determination function is an area in front of the host vehicle from the position of the host vehicle V1 to the traveling distance required for changing the lane of the host vehicle V1 among the areas on the host lane. Can be set as the judgment target area R1.
  • step S105 the lane change determination function sets the non-recommended area R2. Specifically, as shown in FIG. 4 based on the road information acquired in step S102, the lane change determination function determines an area where lane change is not recommended, such as an area where lane change is prohibited by traffic rules or the like. , And can be set as a non-recommended area R2.
  • the adjacent lane target area R3 is set by the lane change determination function.
  • the lane change determination function calculates the front inter-vehicle distance D1 and the rear inter-vehicle distance D2 after the lane change, and from the position P2 of the front inter-vehicle distance D1 forward from the host vehicle, from the host vehicle A region to the rear P2 of the rear inter-vehicle distance D2 can be set as the adjacent lane target region R3.
  • step S107 the lane change determination function determines whether to change the lane on the basis of the determination target area R1 set in step S104 and the non-recommended area R2 set in step S105. Specifically, the lane change determination function determines whether or not a part or all of the non-recommended area R2 is included in the determination target area R1. If the judgment target area R1 includes a part or all of the non-recommended area R2, the process proceeds to step S108. In step S108, it is determined from the lane change determination function that the host vehicle V1 can not change lanes. On the other hand, if it is determined in step S107 that the judgment target area R1 does not include part or all of the non-recommended area R2, the process proceeds to step S109.
  • step S109 it is determined by the lane change determination function whether or not there is an adjacent vehicle in the adjacent lane target area R3. If it is determined that the adjacent vehicle does not exist in the adjacent lane target area R3, the process proceeds to step S110.
  • step S110 the lane change determination function determines that the host vehicle V1 can change lanes. On the other hand, when an adjacent vehicle exists in adjacent lane object area R3, it progresses to step S111.
  • step S111 the lane change determining function, forward and adjacent the vehicle V2 forward vehicle proximity C V2 indicating the degree approaching the own vehicle V1, rear vehicle approaching degree indicating a degree of backward adjacent vehicle V3 is approaching the host vehicle V1 Calculation with C V3 is performed.
  • the lane change determination function, the equation (1), (2) on the basis, can be calculated and the preceding vehicle proximity C V2, and a rear vehicle proximity C V3.
  • step S112 the lane change determining function, the forward vehicle proximity C V2 and rear vehicle closeness C V3 calculated in step S111 is determined whether it is less than a predetermined threshold value is performed. If the front vehicle approach degree CV2 or the rear vehicle approach degree CV3 is equal to or greater than a predetermined threshold value, the process proceeds to step S113. In step S113, it is determined that the host vehicle V1 can not change lanes by the lane change determination function. On the other hand, if the front vehicle approach degree CV2 and the rear vehicle approach degree CV3 are less than the predetermined threshold value, the process proceeds to step S114. In step S114, it is determined by the lane change determination function that the host vehicle V1 can change lanes.
  • step S115 the lane change determination function outputs the determination result of the lane change in steps S108, S110, S113, and S114.
  • the lane change determination function can cause notification device 130 to notify that lane change can not be performed by outputting the determination result that lane change can not be performed to presentation device 130.
  • the travel control device 100 can appropriately cause the travel control device 100 to change the lane of the host vehicle by outputting the determination result of the lane change possibility.
  • the non-recommended area R2 where the lane change is not recommended is specified based on the road information of the road around the host vehicle, and based on the position information of the host vehicle V1 and the vehicle speed information.
  • a determination target area R1 for determining whether the vehicle V1 changes lanes is set.
  • the host vehicle V1 determines that the lane change can not be performed. Thereby, in this embodiment, it is possible to determine that lane change can not be performed in a region where lane change is not recommended such as lane change prohibited by traffic rules, so lane change possible of the host vehicle V1 is appropriate It can be judged.
  • the travel distance required to change the lane of the own vehicle is estimated based on the vehicle speed of the own vehicle, and in the region on the own lane, the travel distance required to change the lane of the own vehicle is Is set as the judgment target area R1.
  • the area where the host vehicle changes lanes can be appropriately set as the determination target area R1, and as a result, whether or not the host vehicle can change lanes can be appropriately determined.
  • the adjacent lane target area R3 is set in the adjacent lane. Then, it is determined whether an adjacent vehicle exists in the adjacent lane target area R3. If there is no adjacent vehicle in the adjacent lane target area R3, it is determined that the host vehicle can change lanes. On the other hand, when the adjacent vehicle exists in the adjacent lane target area R3, the front adjacent vehicle approach degree CV2 in which the front adjacent vehicle V2 approaches the host vehicle V1 and the rear vehicle approach in which the rear adjacent vehicle V3 approaches the host vehicle V1 The degree CV3 is calculated.
  • the forward vehicle approach degree CV2 or the rear vehicle approach degree CV3 is equal to or higher than a predetermined threshold value, it is determined that the host vehicle can not change lanes, while the forward vehicle approach degree CV2 and the rear vehicle approach If the degree CV3 is less than the predetermined threshold value, it is determined that the host vehicle can change lanes.
  • the preceding vehicle proximity C V2 the forward adjacent vehicle V2 is approaching the host vehicle V1 can be used as an indicator of the degree to which the driver of the vehicle V1 feel.
  • the rear vehicle proximity C V3, when the rear adjacent vehicle V3 is approaching the host vehicle V1 can be used as an indicator of the degree to which the driver of the vehicle V1 feel.
  • the front vehicle approach degree CV2 or the rear vehicle approach degree CV3 is equal to or more than the predetermined threshold value, it is determined that the host vehicle can not change lanes, and the adjacent vehicle ahead in the lane change of the host vehicle V1.
  • approaching V2 or the rear adjacent vehicle V3 it is possible to effectively suppress giving the driver of the host vehicle V1 anxiety.
  • the travel control device 100 according to the second embodiment has the same configuration as the travel control device 100 of the first embodiment, and is the same as the first embodiment except that it operates as described below.
  • the lane change determination function of the control device 150 estimates the vehicle speed of the host vehicle when the host vehicle travels the road ahead based on the road shape ahead of the host vehicle, and estimates the host vehicle
  • the determination target area R1 is set based on the vehicle speed of
  • FIG. 8 is a diagram for explaining a setting method of the judgment target area R1 according to the second embodiment.
  • the example shown in FIG. 8 exemplifies a scene in which the host vehicle enters a curve after the host vehicle travels at a speed of 60 km per hour on a straight road.
  • the judgment target area R1 is to be set based on the speed 60 km / h, which is the vehicle speed before the host vehicle enters the curve (when going straight on) before the host vehicle enters the curve, Assuming that the required time is 3 seconds, the lane change determination function sets an area from the host vehicle V1 to a distance of 50 m as the determination target area R1, as shown in FIG. 8A.
  • the lane change determination function estimates the vehicle speed of the host vehicle V1 at the time of curve traveling before the host vehicle V1 enters the curve, and is based on the estimated vehicle speed of the host vehicle V1. Then, the judgment target area R1 is set. For example, if it is predicted that the host vehicle V1 decelerates the vehicle speed of the host vehicle V1 to 50 km / h in order to enter a curve, the lane change determination function when the time required for lane change is 3 seconds Can set the area
  • the estimation method of the vehicle speed of the own vehicle in the road ahead of the own vehicle is not particularly limited, and a known method can be used.
  • the lane change determination function determines whether or not to change the lane of the host vehicle based on the adjacent lane target area R3 and the adjacent vehicle
  • the front adjacent vehicle V2 approaches the host vehicle V1.
  • preceding vehicle closeness C V2 to, and, in addition to the following vehicle approaching degree C V3 of the rear adjacent vehicle V3 is approaching the own vehicle V1 calculates the own vehicle closeness C V1 to the vehicle V1 approaches the rearward adjacent vehicle V3 Do.
  • the lane change determination function first calculates the inter-vehicle time (THW V1 ) and the collision margin time (TTC V1 ) of the rear adjacent vehicle V3 with respect to the host vehicle V1.
  • the inter-vehicle time (THW V1 ) of the rear adjacent vehicle V3 with respect to the host vehicle V1 can be obtained by dividing the relative distance between the host vehicle V1 and the rear adjacent vehicle V3 by the vehicle speed of the rear adjacent vehicle V3.
  • the collision margin time (TTC V1 ) of the rear adjacent vehicle V3 with respect to the host vehicle V1 is obtained by dividing the relative distance between the host vehicle V1 and the rear adjacent vehicle V3 by the vehicle speed of the host vehicle V1 and the rear adjacent vehicle V3. Desired.
  • the lane change determination function indicates that the own vehicle V1 is the rear adjacent vehicle V3 based on the inter-vehicle time (THW V1 ) and the collision margin time (TTC V1 ) of the rear adjacent vehicle V3.
  • the approaching vehicle proximity Cv1 is calculated.
  • Vehicle proximity C V1 1 / THW V1 + 4 / TTC V1 (3)
  • the lane change determination function determines that the own vehicle V1 approaches the rear adjacent vehicle V3 when the front vehicle approach degree CV2 and the rear vehicle approach degree CV3 are respectively less than the predetermined threshold values. It is determined whether the degree of approach of the host vehicle CV1 is less than a predetermined threshold. The lane change determination function determines that the host vehicle V1 can not change lanes when the host vehicle approach degree CV1 is equal to or higher than the predetermined threshold, and the host vehicle approach degree CV1 is less than the predetermined threshold. It is determined that the vehicle V1 can change lanes.
  • the threshold value of the host vehicle approach degree CV1 is not particularly limited, and can be set as appropriate. Further, the threshold value of the own vehicle approach degree CV1 may be different from or the same as the threshold value of the forward vehicle approach degree CV2 or the rear vehicle approach degree CV3 .
  • FIG. 9 is a flowchart showing lane change support processing according to the second embodiment.
  • the lane change support processing according to the second embodiment is also started when the ignition is turned on and is repeatedly performed until the ignition is turned off, as in the first embodiment.
  • steps S101 to S103 as in the first embodiment, acquisition of host vehicle information and surrounding information is performed (steps S101 and S102), and a travel planned locus when the host vehicle changes lanes is calculated (step S101). S103). Then, in the subsequent step S201, the vehicle speed when the host vehicle travels the road ahead based on the road shape of the road ahead of the host vehicle among the surrounding information acquired in step S102 by the lane change determination function of the control device 150. An estimate of In step S202, the lane change determination function sets the determination target region R1 based on the vehicle speed of the host vehicle on the road ahead of the host vehicle estimated in step S201.
  • the determination target area R1 is determined based on the vehicle speed when the host vehicle V1 is traveling a curve. It can be calculated.
  • steps S105 to S112 processing is performed as in the first embodiment. That is, after the non-recommended area R2 and the adjacent lane target area R3 are set (steps S105 and S106), it is determined whether the non-recommended area R2 includes part or all of the determination target area R1 set in step S202. A decision is made (step S107). Then, when the judgment target area R1 includes a part or all of the non-recommended area R2, it is determined that the lane change can not be performed (step S108), while the judgment target area R1 is a part of the non-recommended area R2. When the adjacent lane target area R3 does not include all the adjacent lanes, it is determined whether the adjacent lane exists in the adjacent lane target area R3 (step S109).
  • step S110 If there is no adjacent lane in the adjacent lane target area R3, it is determined that the lane can be changed (step S110). On the other hand, when the adjacent lane exists in the adjacent lane target area R3, the front vehicle approach degree CV2 and the rear vehicle approach degree CV3 are calculated (step S111), and the front vehicle approach degree CV2 and the rear vehicle approach degree C It is determined whether V3 is less than a predetermined threshold (step S112). If the front vehicle approach degree CV2 or the rear vehicle approach degree CV3 is equal to or greater than a predetermined threshold value, it is determined that the lane change can not be performed (step S113). On the other hand, if the front vehicle approach degree CV2 and the rear vehicle approach degree CV3 are less than the predetermined threshold value, the process proceeds to step S203.
  • step S203 the degree of approach of the host vehicle V1 to the rear adjacent vehicle V3 is calculated as the host vehicle approach degree CV1 by the lane change determination function.
  • the lane change determination function determines the inter-vehicle time (THW V1 ) of the rear adjacent vehicle V3 with respect to the host vehicle V1 and the collision margin time (TTC V1 ) of the rear adjacent vehicle V3 with respect to the host vehicle V1.
  • TTC V1 collision margin time
  • step S204 the lane change determining function, the vehicle proximity C V1 calculated in step S203 is determined whether it is less than a predetermined threshold value is performed. If the own vehicle approach degree CV1 is less than the predetermined threshold value, the process proceeds to step S114, and it is determined that the own vehicle V1 can change lanes by the lane change determination function. If the own vehicle approach degree CV1 is equal to or more than the predetermined threshold value, the process proceeds to step S113, and it is determined that the own vehicle V1 can not change the lane by the lane change determination function.
  • the vehicle speed when the host vehicle travels the road ahead is estimated according to the road shape of the road ahead of the host vehicle, and the determination target area R1 is determined based on the estimated vehicle speed.
  • the second embodiment in addition to the preceding vehicle proximity C V2 and rear vehicle closeness C V3, it calculates the vehicle closeness C V1 to the vehicle V1 approaches the rearward adjacent vehicle V3. Then, in addition to the determination as to whether the front vehicle approach degree CV2 and the rear vehicle approach degree CV3 are less than a predetermined threshold, it is determined whether the own vehicle approach degree CV1 is less than a predetermined threshold. If the own vehicle approach degree CV1 is less than the predetermined threshold, it is determined that the own vehicle V1 can change lanes, and if the own vehicle approach degree CV1 is equal to or greater than the predetermined threshold, the own vehicle V1 is Judge that lane change can not be made.
  • the vehicle proximity C V1 when the vehicle V1 is approaching rearward adjacent vehicle V3, can be used as an indicator of the degree to which the driver of the rear adjacent vehicle V3 feel. Therefore, when the host vehicle approach degree CV1 is high, if the host vehicle V1 approaches the rear adjacent vehicle V3, the driver of the rear adjacent vehicle V3 feels, and the driver of the rear adjacent vehicle V3 applies a brake. And the like may disturb the traffic flow in the adjacent lane. Therefore, in the second embodiment, when the host vehicle approach degree CV1 is equal to or higher than the predetermined threshold value, the driver of the rear adjacent vehicle V3 applies a brake by determining that the host vehicle V1 can not change lanes. Therefore, the disturbance of the traffic flow in the adjacent lane can be effectively suppressed.
  • the present invention is not limited to this configuration.
  • probe information is collected from a plurality of vehicles
  • the accident information of a plurality of vehicles is accumulated in advance in a database, and the information is analyzed, and the area where lane change is not recommended is stored in advance in the database as a non-recommended area R2,
  • the device 150 can obtain the non-recommended area R2 around the host vehicle from the above database.
  • the vehicle V1 determines that the lane change can not be performed.
  • the present invention is limited to this configuration. Instead, for example, a frame surrounding the judgment target area R1 is set as the judgment target frame, a frame surrounding the non-recommended area R2 is set as the non-recommended frame, and the own vehicle It may be determined that V1 can not change lanes. Further, in this case, when the judgment object frame and the non-recommended frame do not interfere with each other, the frame surrounding the adjacent lane target area R3 is set as the adjacent lane object frame, and the adjacent vehicle is determined based on the adjacent vehicles present in the adjacent lane judgment frame. Alternatively, it may be configured to determine whether the lane change of the host vehicle V1 is possible.
  • the configuration is shown in which the front inter-vehicle distance D1 and the rear inter-vehicle distance D2 are calculated based on the inter-vehicle time (THW) and the collision margin time (TTC), and the adjacent lane target area R3 is set.
  • the lane change determination function determines the front inter-vehicle distance D1 and the rear inter-vehicle distance D2 in advance for each vehicle speed, and the front inter-vehicle distance D1 and the rear inter-vehicle distance according to the vehicle speed of the host vehicle.
  • the adjacent lane target area R3 can be set based on D2.
  • the lane change determination function can also be configured to determine the front inter-vehicle distance D1 and the rear inter-vehicle distance D2 based on the front adjacent vehicle V2 and the rear adjacent vehicle V3 traveling the closest distance from the host vehicle V1.
  • the lane change determination function may be configured to increase the front inter-vehicle distance D1 or the rear inter-vehicle distance D2 as the front adjacent vehicle V2 or the rear adjacent vehicle V3 increases.
  • the lane change determination function is configured such that the closer the front adjacent vehicle V2 or the rear adjacent vehicle V3 is to the host vehicle, the slower the vehicle speed of the front adjacent vehicle V2 is, or the faster the vehicle speed of the rear adjacent vehicle V3 is.
  • D1 or the rear inter-vehicle distance D2 may be increased.
  • the length of the adjacent lane target area R3 can be set based on the road shape of the road ahead of the host vehicle V1.
  • the configuration is shown in which the rear inter-vehicle distance is calculated based on the inter-vehicle time (THW) by acquiring the vehicle speed of a general vehicle in the adjacent lane as the vehicle speed of the rear adjacent vehicle V3.
  • the absolute vehicle speed of the rear adjacent vehicle V3 can be calculated, and the rear inter-vehicle distance based on the inter-vehicle time (THW) can be calculated based on the absolute vehicle speed of the rear adjacent vehicle V3.
  • control apparatus 150 which concerns on embodiment mentioned above each corresponds to the controller of this invention.

Abstract

自車両が走行する道路の道路情報に基づいて、車線変更が推奨されない非推奨領域を特定し、自車両の位置情報および車速情報に基づいて、自車両の車線変更に必要とする領域を、判断対象領域として設定し、判断対象領域内に非推奨領域の一部または全部が含まれる場合には、自車両は車線変更を行えないと判断し、当該判断結果を出力する車線変更支援方法。

Description

車線変更支援方法および車線変更支援装置
 本発明は、車線変更支援方法および車線変更支援装置に関する。
 従来、自車の車線変更先の車線の前方の物体に対する自車の第1の距離と第1の相対速度、及び自車の車線変更先の後方の物体に対する自車の第2の距離と第2の相対速度を検出し、第1及び第2の距離と第1及び第2の相対速度に基づいて、自車が車線変更可能か否かを判断する技術が知られている(たとえば特許文献1)。
特開2000-020898号公報
 しかしながら、従来技術では、自車の車線変更先の車線の前方および後方の物体と、自車両との関係のみに基づいて車線変更可能か否かを判断するため、交通規則上、車線変更が推奨されない領域においても、車線変更可能と判断されてしまう場合があった。
 本発明が解決しようとする課題は、車線変更の可否を適切に判断することができる車線変更支援方法および車線変更支援装置を提供することである。
 本発明は、道路情報に基づいて車線変更が推奨されない非推奨領域を特定し、自車両の位置情報および車速情報に基づいて、自車両の車線変更に必要な領域を判断対象領域として設定し、判断対象領域内に非推奨領域の一部または全部が含まれる場合に、車線変更を行えないと判断することで、上記課題を解決する。
 本発明によれば、道路情報に基づいて車線変更が推奨されない非推奨領域を特定し、非推奨領域において車線変更を行えないと判断することで、車線変更可否を適切に判断することができる。
本実施形態に係る走行制御装置の構成を示す構成図である。 自車両が横断歩道付近を走行する一場面を例示する図である。 図2に示す場面例における判断対象領域の一例を示す図である。 図2に示す場面例における非推奨領域の一例を示す図である。 図2に示す場面例における隣接車線対象領域の一例を示す図である。 図2に示す場面例において車線変更を行えるか否かを判断する方法を説明するための図である。 第1実施形態に係る車線変更支援処理を示すフローチャートである。 第2実施形態に係る判断対象領域の設定方法を説明するための図である。 第2実施形態に係る車線変更支援処理を示すフローチャートである。
 以下、本発明の実施形態を図面に基づいて説明する。なお、本実施形態では、車両に搭載される走行制御装置を例示して説明する。
 《第1実施形態》
 図1は、本実施形態に係る走行制御装置100の構成を示す図である。図1に示すように、本実施形態に係る走行制御装置100は、センサー群110と、地図データベース120と、提示装置130と、駆動機構140と、制御装置150とを有している。これら装置は、相互に情報の授受を行うためにCAN(Controller Area Network)その他の車載LANによって接続されている。
 センサー群110は、自車両の位置を検出するGPS装置、および自車両の車速を検出する車速センサーを含む。GPS装置は、複数の衛星通信から送信される電波を検出して、自車両の位置情報を、周期的に取得するとともに、取得した自車両の位置情報と、ジャイロセンサーから取得した角度変化情報と、車速センサーから取得した車速とに基づいて、自車両の現在位置を検出する。また、センサー群110には、自車両の周囲を撮像するカメラ、および自車両の周囲の障害物を検出する測距センサーも含む。測距センサーとしては、レーザーレーダー、超音波センサー、音波センサー、赤外線センサーなどを用いることができる。
 地図データベース120は、地図情報および道路情報を記憶している。道路情報には、各道路の境界線(レーンマーク、縁石)、交差点、停止線、横断歩道、道路形状、道路曲率などの情報が含まれる。
 提示装置130は、たとえば、自車両が車線変更を行えるか否かの判断結果を、ドライバーに提示する。このような提示装置130としては、インストルメントパネルに設置されたランプ、ナビゲーション装置のディスプレイ、あるいは、スピーカーなどが挙げられる。たとえば、制御装置150により車線変更を行えないと判断された場合には、提示装置130のランプを点灯し、ナビゲーション装置のディスプレイに車線変更を行えない旨のメッセージを表示し、あるいは、スピーカーから車線変更を行えない旨の音または音声を出力することで、車線変更が行えないことをドライバーに把握させることができる。
 駆動機構140は、自車両を走行させるためのエンジン、ブレーキ、およびステアリングアクチュエーターなどを含む。たとえば、走行制御装置100は、ドライバーの指示により自動で車線変更を行う車線変更制御を行う場合において、後述する制御装置150により車線変更が行えると判断された場合には、駆動機構140に含まれるエンジン、ブレーキ、およびステアリングアクチュエーターの動作を制御することで、自車両の車線変更を自動で行うことができる。
 制御装置150は、自車両の走行を制御するためのプログラムを格納したROM(Read Only Memory)と、このROMに格納されたプログラムを実行するCPU(Central Processing Unit)と、アクセス可能な記憶装置として機能するRAM(Random Access Memory)とから構成される。なお、動作回路としては、CPU(Central Processing Unit)に代えて又はこれとともに、MPU(Micro Processing Unit)、DSP(Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)などを用いることができる。
 制御装置150は、ROMに格納されたプログラムをCPUにより実行することにより、自車両の情報を取得する自車情報取得機能と、自車両の周囲の情報を取得する周囲情報取得機能と、自車両の車線変更を行えるか否かを判断する車線変更判断機能と、自車両の走行を制御する走行制御機能と、を実現する。以下において、制御装置150が備える各機能について説明する。
 制御装置150の自車情報取得機能は、自車両の車速情報および位置情報を含む情報を、自車情報として取得する。たとえば、自車情報取得機能は、センサー群110に含まれるGPS装置から自車両の位置情報を、車速センサーから自車両の車速情報を自車情報として取得することができる。なお、自車情報取得機能は、センサー群110に含まれるカメラで撮像した撮像画像に基づいて、自車両の位置情報を取得する構成とすることもできる。
 制御装置150の周囲情報取得機能は、自車両の周囲の道路および障害物の情報を、周囲情報として取得する。たとえば、周囲情報取得機能は、地図データベース120に格納されている自車両周囲の道路の道路情報を周囲情報として取得することができる。これにより、周囲情報取得機能は、自車両周囲の道路の境界線(レーンマーク、縁石)、交差点、停止線、横断歩道、道路形状、および道路曲率を含む道路情報を、周囲情報として取得することができる。また、周囲情報取得機能は、センサー群110に含まれるカメラや測距センサーから、自車両周囲の道路の道路情報を、周囲情報として取得することもできる。
 さらに、周囲情報取得機能は、センサー群110に含まれるカメラや測距センサーから、自車両周囲に存在する障害物の情報を、周囲情報として取得することもできる。たとえば、周囲情報取得機能は、センサー群110に含まれるカメラや測距センサーから、自車両の周囲を走行する周囲車両の有無、周囲車両が存在している場合には周囲車両の位置、進行方向、車速などの情報を周囲情報として取得することができる。
 制御装置150の車線変更判断機能は、自車両の車線変更の可否を判断する。以下に、図2に示す場面を参照して、車線変更判断機能による車線変更可否の判断方法について説明する。なお、図2は、自車両V1が横断歩道の手前を走行している一場面を例示する図である。なお、以下においては、自車両V1が走行する車線を自車線、自車線に隣接する車線を隣接車線として説明する。
 車線変更判断機能は、まず、図2に示すように、自車両V1が車線変更を行う場合の走行予定軌跡を算出する。特に、本実施形態において、車線変更判断機能は、自車両V1が急峻に転回することで自車両V1の乗員が不快さや不安を感じないように、自車両V1の車速に応じた滑らかな走行予定軌跡を算出する。たとえば、車線変更判断機能は、自車両V1が時速60kmで走行している場合には、走行予定軌跡が滑らかになるように、車線変更に要する時間(自車両V1の現在位置から車線変更後の目標位置P1に移動するまでに要する時間)が3秒となるように、走行予定軌跡を算出することができる。また、車線変更判断機能は、自車両V1が時速60kmよりも速い速度で走行している場合には、自車両V1が滑らかに車線変更を行えるように、3秒よりも長い時間をかけて車線変更を行うように走行予定軌跡を算出することができる。
 そして、車線変更判断機能は、自車情報取得機能により取得された自車両の車速情報および位置情報に基づいて、自車線上に、車線変更可否を判断するための判断対象領域R1を設定する。車線変更判断機能は、まず、自車両V1の車線変更で必要とする走行距離を算出する。たとえば、自車両V1が時速60kmで走行しており、車線変更に要する時間が3秒となるように走行予定軌跡を算出している場合に、車線変更判断機能は、自車両V1の車線変更に必要とする走行距離を50mとして算出することができる。そして、車線変更判断機能は、図3に示すように、自車線上の領域のうち、自車両V1の位置(前端部)から、算出した走行距離までの領域を、判断対象領域R1として設定することができる。たとえば、自車両の車線変更で必要とする走行距離が50mである場合、車線変更判断機能は、図3に示すように、自車線上の領域のうち、自車両V1の位置から、自車両V1の車線変更に必要とする走行距離50mまでの領域を、判断対象領域R1として設定することができる。
 次いで、車線変更判断機能は、自車両周囲の道路の道路情報に基づいて、車線変更が推奨されない領域を、非推奨領域R2として設定する。具体的には、車線変更判断機能は、周囲情報取得機能により取得した自車両前方の道路の道路情報に基づいて、交通規則により車線変更が禁止されている領域など、車線変更が推奨されない領域を、非推奨領域R2として設定する。たとえば、交通規則により横断歩道の手間30mの領域において車線変更が禁止されている場合には、車線変更判断機能は、図4に示すように、自車線上の領域のうち、横断歩道の手前30mの領域を、非推奨領域R2として設定することができる。
 続いて、車線変更判断機能は、隣接車線上において、車線変更可否を判断するための隣接車線対象領域R3を設定する。具体的には、車線変更判断機能は、まず、車線変更後における前方車間距離D1および後方車間距離D2を算出する。たとえば、車線変更判断機能は、車間時間(THW:Time-Headway)に基づく前方車間距離と、衝突余裕時間(TTC:Time To Collision)に基づく前方車間距離とを算出し、車間時間(THW)に基づく前方車間距離と衝突余裕時間(TTC)に基づく前方車間距離のうち長い方の距離を、車線変更後における前方車間距離D1として取得することができる。同様に、車線変更判断機能は、車間時間(THW)に基づく後方車間距離と、衝突余裕時間(TTC)に基づく後方車間距離とを算出し、車間時間(THW)に基づく後方車間距離と衝突余裕時間(TTC)に基づく後方車間距離とのうち長い方の距離を、車線変更後における後方車間距離D2として取得することができる。以下に、前方車間距離D1および後方車間距離D2の算出方法について詳しく説明する。
 たとえば、車線変更判断機能は、車線変更後において望ましい車間時間(THW)と、自車両V1の車速とを乗じた距離を、車間時間(THW)に基づく前方車間距離として算出することができる。なお、車線変更後において望ましい車間時間(THW)は、特に限定されず、たとえば、実験などにより車速ごとに適宜設定することができる。たとえば、図5に示す例において、自車両V1の車速が時速60kmであり、車線変更後において望ましい車間時間(THW)が2秒である場合には、車線変更判断機能は、車間時間(THW)に基づく前方車間距離を33mとして算出することができる。
 また、車線変更判断機能は、自車両V1が前方隣接車両V2に接近している場合には、車線変更後において望ましい衝突余裕時間(TTC)と、自車両V1と前方隣接車両V2との相対車速とを乗じて求めた距離を、衝突余裕時間(TTC)に基づく前方車間距離として算出することができる。なお、車線変更後において望ましい衝突余裕時間(TTC)は、実験などにより車速ごとに適宜設定することができる。たとえば、図5に示す例において、自車両V1と前方隣接車両V2との相対速度が時速10kmであり、車線変更後において望ましい衝突余裕時間(TTC)が5秒である場合には、車線変更判断機能は、衝突余裕時間(TTC)に基づく前方車間距離を28mとして算出することができる。
 そして、車線変更判断機能は、車間時間(THW)に基づく前方車間距離と衝突余裕時間(TTC)に基づく前方車間距離とのうち長い方の距離を、車線変更後における前方車間距離D1として取得する。たとえば、図5に示す例において、車線変更判断機能は、車間時間(THW)に基づく前方車間距離33mが、衝突余裕時間(TTC)に基づく前方車間距離28mよりも長いため、車線変更後における前方車間距離D1を33mとして取得することができる。なお、車線変更判断機能は、自車両V1が前方隣接車両V2に接近していない場合には、衝突余裕時間(TTC)に基づく前方車間距離を算出せずに、車間時間(THW)に基づく前方車間距離を、車線変更後における前方車間距離D1として算出することができる。
 また、車線変更判断機能は、車線変更後において望ましい車間時間(THW)と、隣接車線を走行する車両の一般的な車速(詳細は後述する。)とを乗じて求めた距離を、車間時間(THW)に基づく後方車間距離として算出することができる。たとえば、車線変更判断機能は、隣接車線を走行する車両の一般的な車速が時速70kmであり、車線変更後において望ましい車間時間(THW)が2秒である場合には、車間時間(THW)に基づく後方車間距離を39mとして算出することができる。なお、車線変更判断機能は、自車両V1が走行する道路の制限速度を、隣接車線を走行する車両の一般的な車速として取得することができる。また、車線変更判断機能は、複数の車両が過去に隣接車線を走行した場合の車速の統計値を、隣接車線を走行する車両の一般的な車速として取得することができる。この場合、たとえば図示しない外部サーバーにおいて、複数の車両が過去に隣接車線を走行した場合の車速の平均値、中央値、最頻値などの統計値を予め算出しておくことで、車線変更判断機能は、外部サーバーから複数の車両が過去に隣接車線を走行した場合の車速の統計値を、隣接車線を走行する車両の一般的な車速の情報として取得することができる。
 さらに、車線変更判断機能は、後方隣接車両V3が自車両V1に接近している場合には、車線変更後において望ましい衝突余裕時間(TTC)と、自車両V1と後方隣接車両V3との相対車速とを乗じて求めた距離を、衝突余裕時間(TTC)に基づく後方車間距離として算出することができる。たとえば、図5に示す例において、後方隣接車両V3と自車両V1との相対速度が時速10kmであり、車線変更後において望ましい衝突余裕時間(TTC)が5秒である場合には、車線変更判断機能は、衝突余裕時間(TTC)に基づく後方車間距離を28mとして算出することができる。
 そして、車線変更判断機能は、車間時間(THW)に基づく後方車間距離と衝突余裕時間(TTC)に基づく後方車間距離のうち長い方の距離を、車線変更後における後方車間距離D2として取得する。たとえば、図5に示す例において、車間時間(THW)に基づく後方車間距離39mが、衝突余裕時間(TTC)に基づく後方車間距離28mよりも長いため、車線変更後における後方車間距離D2を39mとして取得することができる。なお、車線変更判断機能は、後方隣接車両V3が自車両V1に接近していない場合には、衝突余裕時間(TTC)に基づく後方車間距離を算出せずに、車間時間(THW)に基づく後方車間距離を、車線変更後における後方車間距離D2として算出することができる。
 さらに、車線変更判断機能は、車線変更後における前方車間距離D1と、車線変更後における後方車間距離D2とに基づいて、隣接車線上に、隣接車線対象領域R3を設定する。たとえば、車線変更判断機能は、図5に示すように、隣接車線上の領域のうち、自車両の前端部から前方に前方車間距離D1の位置P2から、自車両の後端部から後方に後方車間距離D2の位置P3までの領域を、隣接車線対象領域R3として設定することができる。また、車線変更判断機能は、たとえば、自車両の中心位置から前方に前方車間距離D1の位置から、自車両の中心位置から後方に後方車間距離D2の位置までの領域を、隣接車線対象領域R3として設定する構成とすることもできる。この場合、たとえば、前方車間距離D1が33mであり、後方車間距離D2が39mである場合には、隣接車線対象領域R3は72mとなる。
 そして、車線変更判断機能は、判断対象領域R1、非推奨領域R2、および隣接車線対象領域R3に基づいて、自車両は車線変更を行えるか否かを判断する。具体的には、車線変更判断機能は、まず、判断対象領域R1に非推奨領域R2の一部または全部が含まれるか否かを判断する。そして、車線変更判断機能は、判断対象領域R1に非推奨領域R2の一部または全部が含まれる場合には、自車両は車線変更を行えないと判断する。たとえば、図6に示す例において、車線変更判断機能は、判断対象領域R1に非推奨領域R2の一部が含まれるため(判断対象領域R1と非推奨領域R2とが一部において重複するため)、自車両V1は車線変更を行えないと判断する。
 さらに、車線変更判断機能は、判断対象領域R1に非推奨領域R2の一部が含まれない場合には、隣接車線対象領域R3と隣接車両との関係に基づいて、自車両の車線変更可否を判断する。具体的には、車線変更判断機能は、まず、隣接車線対象領域R3に隣接車両が存在するか否かを判断する。隣接車線対象領域R3に隣接車両が存在しない場合には、車線変更判断機能は、自車両は車線変更を行えると判断する。一方、隣接車線対象領域R3に隣接車両が存在する場合には、車線変更判断機能は、さらに、前方隣接車両V2が自車両V1に接近する前方車両接近度CV2と、後方隣接車両V3が自車両V1に接近する後方車両接近度CV3とに基づいて、自車両V1の車線変更可否を判断する。
 たとえば、車線変更判断機能は、前方隣接車両V2に対する自車両V1の車間時間(THWV2)と、前方隣接車両V2に対する自車両V1の衝突余裕時間(TTCV2)とを算出する。そして、車線変更判断機能は、たとえば下記の式(1)に示すように、前方隣接車両V2に対する自車両V1の車間時間(THWV2)と、前方隣接車両V2に対する自車両V1の衝突余裕時間(TTCV2)とに基づいて、前方隣接車両V2が自車両V1に接近する前方車両接近度CV2を算出することができる。
 前方車両接近度CV2 = 1/THWV2 + 4/TTCV2 ・・・(1)
 同様に、車線変更判断機能は、後方隣接車両V3に対する自車両V1の車間時間(THWV3)と、後方隣接車両V3に対する自車両V1の衝突余裕時間(TTCV3)とを算出する。そして、車線変更判断機能は、たとえば下記の式(2)に示すように、後方隣接車両V3に対する自車両V1の車間時間(THWV3)と、後方隣接車両V3に対する自車両V1の衝突余裕時間(TTCV3)とに基づいて、後方隣接車両V3が自車両V1に接近する後方車両接近度CV3を算出することができる。
 後方車両接近度CV3 = 1/THWV3 + 4/TTCV3 ・・・(2)
 たとえば、後方隣接車両V3が後方から自車両V1に接近している場合において、後方隣接車両V3に対する自車両V1の車間時間(THWV3)が2秒、後方隣接車両V3に対する自車両V1の衝突余裕時間(TTCV3)が5秒である場合には、車線変更判断機能は、上記式(2)により、後方隣接車両V3が自車両V1に接近する後方車両接近度CV3を1.3として求めることができる。
 そして、車線変更判断機能は、前方隣接車両V2が自車両V1に接近する前方車両接近度CV2と、後方隣接車両V3が自車両V1に接近する前方車両接近度CV3とがそれぞれ所定の閾値未満である場合には、自車両V1は車線変更を行えると判断する。一方、車線変更判断機能は、前方車両接近度CV2または後方車両接近度CV3が所定の閾値以上である場合には、自車両V1は車線変更を行えないと判断する。なお、前方車両接近度CV2の閾値および後方隣接車両V3の閾値は、特に限定されず、適宜設定することができる。また、前方車両接近度CV2の閾値と後方隣接車両V3の閾値とは同じ値としてもよいし、異なる値としてもよい。
 制御装置150の走行制御機能は、自車両の自動走行を制御する。たとえば、走行制御機能は、自車両が自車線内を走行するようにステアリングアクチュエーターなどの駆動機構140の動作を制御することで、自車両の幅員方向における走行位置を制御するレーンキープ制御を行うことができる。また、走行制御機能は、エンジンやブレーキなどの駆動機構140の動作を制御することで、ドライバーが設定した所定の設定車速で自車両を走行させる定速走行制御を行うことができる。さらに、走行制御機能は、先行車両が存在する場合には、エンジンやブレーキなどの駆動機構140の動作を制御することで、ドライバーが設定した所定の車間距離で、自車両を先行車両に追従させる追従走行制御を行うことができる。加えて、本実施形態において、走行制御機能は、エンジン、ブレーキ、およびステアリングアクチュエーターなどの駆動機構140の動作を制御することで、自車両の車線変更を自動で行わせる車線変更制御を行うことができる。なお、本実施形態において、走行制御機能は、車線変更判断機能による車線変更可否の判断結果に基づいて、車線変更制御を行うか否かを決定する。
 続いて、図7を参照して、第1実施形態に係る車線変更支援処理について説明する。図7は、第1実施形態に係る車線変更支援処理を示すフローチャートである。なお、以下に説明する車線変更支援処理は、制御装置150により実行される。また、以下に説明する車線変更支援処理は、イグニッションがオンになった場合に開始し、イグニッションがオフとなるまで繰り返し行われる。
 まず、ステップS101では、制御装置150の自車情報取得機能により、自車情報の取得が行われる。たとえば、自車情報取得機能は、センサー群110に含まれるGPS装置から自車両の位置情報を、車速センサーから自車両の車速情報を、それぞれ、自車情報として取得することができる。
 ステップS102では、制御装置150の周囲情報取得機能により、周囲情報の取得が行われる。たとえば、周囲情報取得機能は、地図データベース120から自車両周囲の道路の道路情報を、あるいは、センサー群110に含まれるカメラや測距センサーから、自車両周囲の道路の道路情報および自車両周囲に存在する障害物の情報を、周囲情報として取得することができる。
 ステップS103では、制御装置150の車線変更判断機能により、図2に示すように、自車両が車線変更を行う場合の走行予定軌跡の算出が行われる。特に、本実施形態において、車線変更判断機能は、自車両V1の乗員が自車両V1の急峻な転回により不快さや不安を感じないように、自車両V1の車速に応じた滑らかな走行予定軌跡を算出する。
 ステップS104では、制御装置150の車線変更判断機能により、判断対象領域R1の設定が行われる。本実施形態において、車線変更判断機能は、ステップS101で取得した自車両V1の位置情報および車速情報や、ステップS103で算出した走行予定軌跡に基づいて、自車両V1の車線変更に必要とする走行距離を算出する。そして、車線変更判断機能は、図3に示すように、自車線上の領域のうち、自車両V1の位置から、自車両V1の車線変更に必要とする走行距離までの、自車両前方の領域を、判断対象領域R1として設定することができる。
 ステップS105では、車線変更判断機能により、非推奨領域R2の設定が行われる。具体的には、車線変更判断機能は、ステップS102で取得された道路情報に基づいて、図4に示すように、交通規則などにより車線変更が禁止される領域などの車線変更が推奨されない領域を、非推奨領域R2として設定することができる。
 ステップS106では、車線変更判断機能により、隣接車線対象領域R3の設定が行われる。たとえば、車線変更判断機能は、車線変更後における前方車間距離D1および後方車間距離D2を算出し、隣接車線上の領域のうち、自車両から前方に前方車間距離D1の位置P2から、自車両から後方に後方車間距離D2の位置P3までの領域を、隣接車線対象領域R3として設定することができる。
 ステップS107では、車線変更判断機能により、ステップS104で設定された判断対象領域R1と、ステップS105で設定された非推奨領域R2とに基づいて、車線変更可否の判断が行われる。具体的には、車線変更判断機能は、判断対象領域R1に非推奨領域R2の一部または全部が含まれるか否かを判断する。そして、判断対象領域R1に非推奨領域R2の一部または全部が含まれる場合には、ステップS108に進む。ステップS108では、車線変更判断機能より、自車両V1は車線変更を行えないと判断される。一方、ステップS107において、判断対象領域R1に非推奨領域R2の一部および全部が含まれないと判断された場合には、ステップS109に進む。
 ステップS109では、車線変更判断機能により、隣接車線対象領域R3内に隣接車両が存在するか否かの判断が行われる。隣接車線対象領域R3内に隣接車両が存在しないと判断された場合には、ステップS110に進む。ステップS110では、車線変更判断機能により、自車両V1は車線変更を行えると判断される。一方、隣接車線対象領域R3内に隣接車両が存在する場合には、ステップS111に進む。
 ステップS111では、車線変更判断機能により、前方隣接車両V2が自車両V1に接近する度合を示す前方車両接近度CV2と、後方隣接車両V3が自車両V1に接近する度合を示す後方車両接近度CV3との算出が行われる。たとえば、車線変更判断機能は、上記式(1),(2)に基づいて、前方車両接近度CV2と、後方車両接近度CV3とを算出することができる。
 そして、ステップS112では、車線変更判断機能により、ステップS111で算出した前方車両接近度CV2および後方車両接近度CV3が所定の閾値未満であるか否かの判断が行われる。前方車両接近度CV2または後方車両接近度CV3が所定の閾値以上である場合には、ステップS113に進む。ステップS113では、車線変更判断機能により、自車両V1は車線変更を行えないと判断される。一方、前方車両接近度CV2および後方車両接近度CV3が所定の閾値未満である場合には、ステップS114に進む。ステップS114では、車線変更判断機能により、自車両V1は車線変更を行えると判断される。
 ステップS115では、車線変更判断機能により、ステップS108,S110,S113,S114における車線変更の判断結果が出力される。たとえば、車線変更判断機能は、車線変更を行えないとの判断結果を提示装置130に出力することで、提示装置130に車線変更を行えない旨の報知を行わせることができる。また、走行制御装置100が車線変更制御を行う場合には、車線変更可否の判断結果を出力することで、走行制御装置100に、自車両の車線変更を適切に行わせることができる。
 以上のように、本実施形態では、自車両周囲の道路の道路情報に基づいて、車線変更が推奨されない非推奨領域R2を特定するとともに、自車両V1の位置情報および車速情報に基づいて、自車両V1の車線変更可否を判断するための判断対象領域R1を設定する。そして、判断対象領域R1に非推奨領域R2の一部または全部が含まれる場合には、自車両V1は車線変更を行えないと判断する。これにより、本実施形態では、交通規則により車線変更が禁止されているなどの車線変更が推奨されない領域において、車線変更を行えないと判断することができるため、自車両V1の車線変更可能を適切に判断することができる。
 また、本実施形態では、自車両の車速に基づいて自車両の車線変更に必要とする走行距離を推定し、自車線上の領域のうち、自車両の車線変更に必要とする走行距離に応じた領域を、判断対象領域R1として設定する。これにより、本実施形態では、自車両が車線変更を行う領域を判断対象領域R1として適切に設定することができ、その結果、自車両の車線変更可否を適切に判断することができる。
 さらに、本実施形態では、判断対象領域R1に非推奨領域R2の一部および全部が含まれない場合に、隣接車線に隣接車線対象領域R3を設定する。そして、隣接車線対象領域R3に隣接車両が存在するか否かを判断する。隣接車線対象領域R3に隣接車両が存在しない場合には、自車両は車線変更を行えると判断する。一方、隣接車線対象領域R3に隣接車両が存在する場合には、前方隣接車両V2が自車両V1に接近する前方車両接近度CV2と、後方隣接車両V3が自車両V1に接近する後方車両接近度CV3とを算出する。そして、前方車両接近度CV2または後方車両接近度CV3が所定の閾値以上である場合には、自車両は車線変更を行えないと判断し、一方、前方車両接近度CV2および後方車両接近度CV3が所定の閾値未満である場合には、自車両は車線変更を行えると判断する。ここで、前方車両接近度CV2は、前方隣接車両V2が自車両V1に接近していると、自車両V1のドライバーが感じる度合の指標として用いることができる。また、後方車両接近度CV3は、後方隣接車両V3が自車両V1に接近していると、自車両V1のドライバーが感じる度合の指標として用いることができる。そのため、前方車両接近度CV2または後方車両接近度CV3が所定の閾値以上である場合には、自車両は車線変更を行えないと判断することで、自車両V1の車線変更において前方隣接車両V2または後方隣接車両V3と接近することにより、自車両V1のドライバーに不安を与えてしまうことを有効に抑制することができる。
 《第2実施形態》
 続いて、第2実施形態に係る走行制御装置について説明する。第2実施形態に係る走行制御装置100は、第1実施形態の走行制御装置100と同様の構成を有し、以下に説明するように動作すること以外は、第1実施形態と同様である。
 第2実施形態において、制御装置150の車線変更判断機能は、自車両の前方の道路形状に基づいて、自車両が前方の道路を走行する際の自車両の車速を推定し、推定した自車両の車速に基づいて、判断対象領域R1を設定する。
 ここで、図8は、第2実施形態に係る判断対象領域R1の設定方法を説明するための図である。図8に示す例では、自車両が直線道路を時速60kmで走行した後に、自車両がカーブに進入する場面を例示している。たとえば、自車両がカーブに進入する前に、自車両がカーブに進入する前(直進しているとき)の車速である時速60kmに基づいて判断対象領域R1を設定する場合には、車線変更に必要とする時間を3秒とした場合、車線変更判断機能は、図8(A)に示すように、自車両V1から50mの距離までの領域を、判断対象領域R1として設定することとなる。
 これに対して、第2実施形態において、車線変更判断機能は、自車両V1がカーブに進入する前に、カーブ走行時の自車両V1の車速を推定し、推定した自車両V1の車速に基づいて、判断対象領域R1を設定する。たとえば、自車両V1はカーブに進入するために自車両V1の車速を時速50kmに減速することが予測される場合には、車線変更に必要とする時間を3秒とした場合、車線変更判断機能は、自車両V1から42mの距離までの領域を、判断対象領域R1として設定することができる。なお、自車両前方の道路における自車両の車速の推定方法は特に限定されず、周知の方法を用いることができる。
 また、第2実施形態において、車線変更判断機能は、隣接車線対象領域R3と隣接車両とに基づいて、自車両の車線変更可否を判断する場合には、前方隣接車両V2が自車両V1に接近する前方車両接近度CV2、および、後方隣接車両V3が自車両V1に接近する後方車両接近度CV3に加えて、自車両V1が後方隣接車両V3に接近する自車両接近度CV1を算出する。
 具体的には、車線変更判断機能は、まず、自車両V1に対する後方隣接車両V3の車間時間(THWV1)および衝突余裕時間(TTCV1)を算出する。自車両V1に対する後方隣接車両V3の車間時間(THWV1)は、自車両V1と後方隣接車両V3の相対距離を、後方隣接車両V3の車速で除算することで求められる。また、自車両V1に対する後方隣接車両V3の衝突余裕時間(TTCV1)は、自車両V1と後方隣接車両V3との相対距離を、自車両V1と後方隣接車両V3との車速で除算することで求められる。そして、車線変更判断機能は、下記式(3)に示すように、後方隣接車両V3の車間時間(THWV1)および衝突余裕時間(TTCV1)に基づいて、自車両V1が後方隣接車両V3に接近する自車両接近度CV1を算出する。
 自車両接近度CV1 = 1/THWV1 + 4/TTCV1 ・・・(3)
 そして、第2実施形態において、車線変更判断機能は、前方車両接近度CV2および後方車両接近度CV3がそれぞれ所定の閾値未満である場合には、自車両V1が後方隣接車両V3に接近する自車両接近度CV1が所定の閾値未満であるか否かを判断する。車線変更判断機能は、自車両接近度CV1が所定の閾値以上である場合には、自車両V1は車線変更を行えないと判断し、自車両接近度CV1が所定の閾値未満である場合には、自車両V1は車線変更を行えると判断する。なお、自車両接近度CV1の閾値は、特に限定されず、適宜設定することができる。また、自車両接近度CV1の閾値は、前方車両接近度CV2または後方車両接近度CV3の閾値と異なる値であってもよいし、同じ値であってもよい。
 続いて、図9を参照して、第2実施形態に係る車線変更支援処理について説明する。図9は、第2実施形態に係る車線変更支援処理を示すフローチャートである。なお、第2実施形態に係る車線変更支援処理も、第1実施形態と同様に、イグニッションがオンになった場合に開始し、イグニッションがオフとなるまで繰り返し行われる。
 ステップS101~S103では、第1実施形態と同様に、自車情報および周囲情報の取得が行われ(ステップS101,S102)、自車両が車線変更を行う場合の走行予定軌跡が算出される(ステップS103)。そして、続くステップS201では、制御装置150の車線変更判断機能により、ステップS102で取得した周囲情報のうち自車両前方の道路の道路形状に基づいて、自車両が前方の道路を走行する際の車速の推定が行われる。そして、ステップS202では、車線変更判断機能により、ステップS201で推定された自車両前方の道路における自車両の車速に基づいて、判断対象領域R1の設定が行われる。これにより、たとえば、図8(B)に示すように、自車両V1の前方がカーブである場合には、自車両V1がカーブを走行している際の車速に基づいて、判断対象領域R1を算出することができる。
 ステップS105~S112では、第1実施形態と同様に処理が行われる。すなわち、非推奨領域R2と隣接車線対象領域R3とが設定された後(ステップS105,S106)、ステップS202で設定された判断対象領域R1に非推奨領域R2の一部または全部が含まれるか否かが判断される(ステップS107)。そして、判断対象領域R1に非推奨領域R2の一部または全部が含まれる場合には、車線変更が行えないと判断され(ステップS108)、一方、判断対象領域R1に非推奨領域R2の一部および全部が含まれない場合には、隣接車線対象領域R3に隣接車線が存在するか判断される(ステップS109)。隣接車線対象領域R3に隣接車線が存在しない場合には、車線変更を行えると判断される(ステップS110)。一方、隣接車線対象領域R3に隣接車線が存在する場合には、前方車両接近度CV2および後方車両接近度CV3が算出され(ステップS111)、前方車両接近度CV2および後方車両接近度CV3が所定の閾値未満か判断される(ステップS112)。前方車両接近度CV2または後方車両接近度CV3が所定の閾値以上である場合には、車線変更を行えないと判断される(ステップS113)。一方、前方車両接近度CV2および後方車両接近度CV3が所定の閾値未満である場合には、ステップS203に進む。
 ステップS203では、車線変更判断機能により、自車両V1が後方隣接車両V3に接近する度合が自車両接近度CV1として算出される。たとえば、車線変更判断機能は、上記式(3)に示すように、自車両V1に対する後方隣接車両V3の車間時間(THWV1)と自車両V1に対する後方隣接車両V3の衝突余裕時間(TTCV1)とに基づいて、自車両V1が後方隣接車両V3に接近する自車両接近度CV1を算出することができる。
 そして、ステップS204では、車線変更判断機能により、ステップS203で算出した自車両接近度CV1が所定の閾値未満であるか否かの判断が行われる。自車両接近度CV1が所定の閾値未満である場合には、ステップS114に進み、車線変更判断機能により、自車両V1は車線変更を行えると判断される。自車両接近度CV1が所定の閾値以上である場合には、ステップS113に進み、車線変更判断機能により、自車両V1は車線変更を行えないと判断される。
 以上のように、第2実施形態では、自車両前方の道路の道路形状に応じて、自車両が前方の道路を走行する場合の車速を推定し、推定した車速に基づいて、判断対象領域R1を設定する。これにより、第2実施形態では、自車両V1が車線変更を行う際の道路の道路形状に応じて、自車両の車線変更可否の判断を適切に行うことができる。
 また、第2実施形態では、前方車両接近度CV2および後方車両接近度CV3に加えて、自車両V1が後方隣接車両V3に接近する自車両接近度CV1を算出する。そして、前方車両接近度CV2および後方車両接近度CV3が所定の閾値未満であるかの判断に加えて、自車両接近度CV1が所定の閾値未満であるか否かの判断を行う。自車両接近度CV1が所定の閾値未満である場合には、自車両V1は車線変更を行えると判断し、自車両接近度CV1が所定の閾値以上である場合には、自車両V1は車線変更を行えないと判断する。ここで、自車両接近度CV1は、自車両V1が後方隣接車両V3に接近していると、後方隣接車両V3のドライバーが感じる度合の指標として用いることができる。そのため、自車両接近度CV1が高い場合には、自車両V1が後方隣接車両V3に接近していると後方隣接車両V3のドライバーが感じてしまい、後方隣接車両V3のドライバーがブレーキをかけることなどにより、隣接車線の交通流を乱してしまうおそれがある。そこで、第2実施形態では、自車両接近度CV1が所定の閾値以上の場合には、自車両V1は車線変更を行えないと判断することで、後方隣接車両V3のドライバーがブレーキをかけることなどにより、隣接車線の交通流が乱れてしまうことを有効に抑制することができる。
 なお、以上に説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
 たとえば、上述した実施形態では、地図データベース120に格納された道路情報に基づいて非推奨領域R2を設定する構成を例示したが、この構成に限定されず、たとえば、複数の車両からプローブ情報を収集し、あるいは、複数の車両の事故情報を予めデータベースに蓄積しておき、これらの情報を解析して、車線変更が推奨されない領域を非推奨領域R2として予めデータベースに記憶しておくことで、制御装置150は、上記データベースから自車両の周囲の非推奨領域R2を取得することができる。
 また、上述した実施形態では、判断対象領域R1が非推奨領域R2の一部または全部を含む場合に、自車両V1は車線変更を行えないと判断する構成を例示したが、この構成に限定されず、たとえば、判断対象領域R1を囲う枠を判断対象枠として設定し、非推奨領域R2を囲う枠を非推奨枠として設定し、判断対象枠と非推奨枠とが干渉する場合に、自車両V1は車線変更を行えないと判断する構成としてもよい。また、この場合に、判断対象枠と非推奨枠とが干渉しない場合には、隣接車線対象領域R3を囲う枠を隣接車線対象枠として設定し、隣節車線判断枠に存在する隣接車両に基づいて、自車両V1の車線変更可否を判断する構成としてもよい。
 さらに、上述した実施形態では、車間時間(THW)および衝突余裕時間(TTC)に基づいて、前方車間距離D1および後方車間距離D2を算出し、隣接車線対象領域R3を設定する構成を例示したが、この構成に限定されず、たとえば、車線変更判断機能は、車速ごとに、前方車間距離D1および後方車間距離D2を予め決めておき、自車両の車速に応じた前方車間距離D1および後方車間距離D2に基づいて隣接車線対象領域R3を設定する構成とすることができる。また、車線変更判断機能は、自車両V1から最も近い距離を走行する前方隣接車両V2および後方隣接車両V3に基づいて、前方車間距離D1および後方車間距離D2を決定する構成とすることもできる。たとえば、車線変更判断機能は、前方隣接車両V2または後方隣接車両V3が大きいほど前方車間距離D1または後方車間距離D2を長くする構成とすることができる。さらに、車線変更判断機能は、前方隣接車両V2または後方隣接車両V3が自車両から近いほど、前方隣接車両V2の車速が遅いほど、あるいは、後方隣接車両V3の車速が速いほどに、前方車間距離D1または後方車間距離D2を長くする構成とすることもできる。加えて、第2実施形態の判断対象領域R1と同様に、自車両V1の前方の道路の道路形状に基づいて、隣接車線対象領域R3の長さを設定する構成とすることできる。
 加えて、上述した実施形態では、隣接車線における一般的な車両の車速を後方隣接車両V3の車速として取得することで、車間時間(THW)に基づく後方車間距離を算出する構成を例示したが、この構成に限定されず、たとえば、後方隣接車両V3の絶対車速を算出し、後方隣接車両V3の絶対車速に基づいて、車間時間(THW)に基づく後方車間距離を算出する構成とすることができる。
 なお、上述した実施形態に係る制御装置150は本発明の制御器に、それぞれ相当する。
 100…走行制御装置
  110…センサー群
  120…地図データベース
  130…提示装置
  140…駆動機構
  150…制御装置

Claims (7)

  1.  自車両が走行する道路の道路情報に基づいて、車線変更が推奨されない非推奨領域を特定し、
     自車両の位置情報および車速情報に基づいて、自車両の車線変更に必要とする領域を、判断対象領域として設定し、
     前記判断対象領域内に前記非推奨領域の一部または全部が含まれる場合には、自車両は車線変更を行えないと判断し、当該判断結果を出力する車線変更支援方法。
  2.  請求項1に記載の車線変更支援方法であって、
     前記自車両の位置情報および車速情報に基づいて自車両が車線変更に必要とする走行距離を算出し、自車両が走行する車線上の領域のうち前記走行距離に応じた領域を前記判断対象領域として設定する車線変更支援方法。
  3.  請求項1または2に記載の車線変更支援方法であって、
     自車両前方の道路の道路形状に基づいて、自車両が前方の道路を走行する際の車速を推定し、前記推定した自車両の車速に基づいて、前記判断対象領域を設定する車線変更支援方法。
  4.  請求項1~3のいずれかに記載の車線変更支援方法であって、
     自車両が走行する車線に隣接する隣接車線に隣接車線対象領域を設定し、
     前記判断対象領域内に前記非推奨領域が含まれない場合には、前記隣接車線対象領域と前記隣接車線を走行する隣接車両とに基づいて、自車両は車線変更を行えるか否かを判断する車線変更支援方法。
  5.  請求項4に記載の車線変更支援方法であって、
     前記隣接車両が前記隣接車線対象領域に存在する場合には、前記隣接車両が自車両に接近する接近度を隣接車両接近度として算出し、前記隣接車両接近度が所定の閾値以上である場合には、自車両は車線変更を行えないと判断し、前記隣接車両接近度が所定の閾値未満である場合には、自車両は車線変更を行えると判断する車線変更支援方法。
  6.  請求項4または5に記載の車線変更支援方法であって、
     前記隣接車両が前記隣接車線対象領域に存在する場合には、自車両が前記隣接車両に接近する接近度を自車両接近度として算出し、前記自車両接近度が所定の閾値以上である場合には、自車両は車線変更を行えないと判断し、前記自車両接近度が所定の閾値未満である場合には、自車両は車線変更を行えると判断する車線変更支援方法。
  7.  自車両の車線変更可否を判断する制御器を備えた車線変更支援装置であって、
     前記制御器は、
     自車両が走行する道路の道路情報に基づいて、車線変更が推奨されない非推奨領域を特定し、
     自車両の位置情報および車速情報に基づいて、自車両の車線変更に必要とする領域を、判断対象領域として設定し、前記判断対象領域内に前記非推奨領域の一部または全部が含まれる場合に、自車両は車線変更を行えないと判断し、当該判断結果を出力する車線変更支援装置。
PCT/JP2016/071712 2016-07-25 2016-07-25 車線変更支援方法および車線変更支援装置 WO2018020547A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
BR112019001268-0A BR112019001268A2 (pt) 2016-07-25 2016-07-25 método de assistência de mudança de faixa e dispositivo de assistência de mudança de faixa
CA3032064A CA3032064A1 (en) 2016-07-25 2016-07-25 Lane change assistance method and lane change assistance device
CN201680087814.0A CN109564733A (zh) 2016-07-25 2016-07-25 车道变更援助方法及车道变更援助装置
US16/319,753 US20200066160A1 (en) 2016-07-25 2016-07-25 Lane Change Assistance Method and Lane Change Assistance Device
EP16910451.0A EP3489926A4 (en) 2016-07-25 2016-07-25 CHANNEL CHANNEL ASSISTING METHOD AND CHANNEL CHANNEL ASSISTING DEVICE
KR1020197003077A KR20190025675A (ko) 2016-07-25 2016-07-25 차선 변경 지원 방법 및 차선 변경 지원 장치
JP2018530212A JP6597905B2 (ja) 2016-07-25 2016-07-25 車線変更支援方法および車線変更支援装置
PCT/JP2016/071712 WO2018020547A1 (ja) 2016-07-25 2016-07-25 車線変更支援方法および車線変更支援装置
RU2019103142A RU2721635C1 (ru) 2016-07-25 2016-07-25 Способ помощи при смене полосы движения и устройство помощи при смене полосы движения
MX2019000929A MX2019000929A (es) 2016-07-25 2016-07-25 Metodo de asistencia al cambio de carril y dispositivo de asistencia al cambio de carril.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/071712 WO2018020547A1 (ja) 2016-07-25 2016-07-25 車線変更支援方法および車線変更支援装置

Publications (1)

Publication Number Publication Date
WO2018020547A1 true WO2018020547A1 (ja) 2018-02-01

Family

ID=61016413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071712 WO2018020547A1 (ja) 2016-07-25 2016-07-25 車線変更支援方法および車線変更支援装置

Country Status (10)

Country Link
US (1) US20200066160A1 (ja)
EP (1) EP3489926A4 (ja)
JP (1) JP6597905B2 (ja)
KR (1) KR20190025675A (ja)
CN (1) CN109564733A (ja)
BR (1) BR112019001268A2 (ja)
CA (1) CA3032064A1 (ja)
MX (1) MX2019000929A (ja)
RU (1) RU2721635C1 (ja)
WO (1) WO2018020547A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019220717A1 (ja) * 2018-05-15 2019-11-21 日立オートモティブシステムズ株式会社 車両制御装置
JP2020189543A (ja) * 2019-05-21 2020-11-26 スズキ株式会社 車両の走行制御装置
JP2021011254A (ja) * 2019-07-09 2021-02-04 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
US11383714B2 (en) 2019-07-09 2022-07-12 Honda Motor Co., Ltd. Vehicle control device, vehicle control method, and storage medium
RU2805577C1 (ru) * 2023-04-03 2023-10-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет"(ЮЗ ГУ) Устройство предупреждения дорожно-транспортных происшествий при перестроении на автомобильных дорогах

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6564424B2 (ja) * 2017-06-09 2019-08-21 株式会社Subaru 車両制御装置
KR102546343B1 (ko) * 2018-07-16 2023-06-21 르노 에스.아.에스. 주행 지원 방법 및 주행 지원 장치
US11046321B2 (en) * 2019-03-13 2021-06-29 GM Global Technology Operations LLC Adaptive control of automated lane change in vehicle
JP7159109B2 (ja) * 2019-05-16 2022-10-24 本田技研工業株式会社 車両制御装置、車両制御装方法、およびプログラム
KR20210044961A (ko) * 2019-10-15 2021-04-26 현대자동차주식회사 자율주행차량의 차선변경 전략 결정 장치 및 그 방법
US11880201B2 (en) * 2019-12-30 2024-01-23 Baidu Usa Llc Fastest lane determination algorithm under traffic jam
DE102020201755A1 (de) 2020-02-12 2021-08-12 Psa Automobiles Sa Verfahren zur Spurwechselassistenz, Computerprogrammprodukt sowie Kraftfahrzeug
FR3121411B1 (fr) 2021-04-06 2023-10-27 Renault Sas Procédé de commande de trajectoire de changement de voie pour véhicule autonome.
KR20230066204A (ko) * 2021-11-05 2023-05-15 현대자동차주식회사 차량 제어 장치 및 제어 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012226392A (ja) * 2011-04-14 2012-11-15 Honda Elesys Co Ltd 運転支援システム
JP2015184722A (ja) * 2014-03-20 2015-10-22 アイシン・エィ・ダブリュ株式会社 自動運転支援装置、自動運転支援方法及びプログラム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3824784B2 (ja) 1998-06-30 2006-09-20 富士通株式会社 走行支援装置、車線変更可否判断装置、その方法及び記録媒体
JP2001109519A (ja) * 1999-10-05 2001-04-20 Komatsu Ltd 車両の走行管制装置
JP4366419B2 (ja) * 2007-09-27 2009-11-18 株式会社日立製作所 走行支援装置
US8126642B2 (en) * 2008-10-24 2012-02-28 Gray & Company, Inc. Control and systems for autonomously driven vehicles
JP4992959B2 (ja) * 2009-11-30 2012-08-08 株式会社デンソー 衝突回避支援装置、および衝突回避支援プログラム
JP5541103B2 (ja) * 2010-11-15 2014-07-09 アイシン・エィ・ダブリュ株式会社 走行案内装置、走行案内方法及びコンピュータプログラム
DE102011003881A1 (de) * 2011-02-09 2012-08-09 Robert Bosch Gmbh Verfahren zur Unterstützung eines Fahrers eines Kraftfahrzeugs
JP5743022B2 (ja) * 2012-03-12 2015-07-01 日産自動車株式会社 走行制御装置
JP5850771B2 (ja) * 2012-03-16 2016-02-03 アルパイン株式会社 車線逸脱警報装置および車線逸脱警報の発生制御方法
RU126822U1 (ru) * 2012-09-06 2013-04-10 Открытое акционерное общество "Российский институт радионавигации и времени" Навигационное устройство, встроенное в одежду
US8949016B1 (en) * 2012-09-28 2015-02-03 Google Inc. Systems and methods for determining whether a driving environment has changed

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012226392A (ja) * 2011-04-14 2012-11-15 Honda Elesys Co Ltd 運転支援システム
JP2015184722A (ja) * 2014-03-20 2015-10-22 アイシン・エィ・ダブリュ株式会社 自動運転支援装置、自動運転支援方法及びプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3489926A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019220717A1 (ja) * 2018-05-15 2019-11-21 日立オートモティブシステムズ株式会社 車両制御装置
JPWO2019220717A1 (ja) * 2018-05-15 2021-05-27 日立Astemo株式会社 車両制御装置
JP6994567B2 (ja) 2018-05-15 2022-01-14 日立Astemo株式会社 車両制御装置
JP2020189543A (ja) * 2019-05-21 2020-11-26 スズキ株式会社 車両の走行制御装置
JP7316542B2 (ja) 2019-05-21 2023-07-28 スズキ株式会社 車両の走行制御装置
JP2021011254A (ja) * 2019-07-09 2021-02-04 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
JP7049391B2 (ja) 2019-07-09 2022-04-06 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
US11383714B2 (en) 2019-07-09 2022-07-12 Honda Motor Co., Ltd. Vehicle control device, vehicle control method, and storage medium
RU2805577C1 (ru) * 2023-04-03 2023-10-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет"(ЮЗ ГУ) Устройство предупреждения дорожно-транспортных происшествий при перестроении на автомобильных дорогах

Also Published As

Publication number Publication date
MX2019000929A (es) 2019-07-04
CA3032064A1 (en) 2018-02-01
KR20190025675A (ko) 2019-03-11
JPWO2018020547A1 (ja) 2019-05-16
RU2721635C1 (ru) 2020-05-21
US20200066160A1 (en) 2020-02-27
EP3489926A1 (en) 2019-05-29
JP6597905B2 (ja) 2019-10-30
CN109564733A (zh) 2019-04-02
EP3489926A4 (en) 2019-08-21
BR112019001268A2 (pt) 2019-04-30

Similar Documents

Publication Publication Date Title
JP6597905B2 (ja) 車線変更支援方法および車線変更支援装置
JP7040621B2 (ja) 車両の走行制御方法及び走行制御装置
US11541891B2 (en) Vehicle control method and vehicle control device
JP6460579B2 (ja) 運転支援制御装置
RU2767216C1 (ru) Способ управления движением транспортного средства и аппаратура управления движением транспортного средства
JP7250825B2 (ja) 車両の走行制御方法及び走行制御装置
JPWO2018047291A1 (ja) 車両の走行制御方法および走行制御装置
JP2018139030A (ja) 車両運転支援システム及び方法
JP6252399B2 (ja) 車線変更支援装置
JP2018138404A (ja) 車両運転支援システム及び方法
JP2018138402A (ja) 車両運転支援システム及び方法
JP2018086949A (ja) 車両制御装置
JP5772730B2 (ja) 運転者支援装置
WO2020148561A1 (ja) 運転支援方法及び運転支援装置
WO2020031238A1 (ja) 車両制御方法及び車両制御装置
JP6607526B2 (ja) 車両運転支援システム及び方法
JP2020045039A (ja) 車両制御方法及び車両制御装置
JP6618044B2 (ja) 運転支援制御装置
JP2018138405A (ja) 車両運転支援システム及び方法
JP2010079424A (ja) 車両の運転支援装置
JP2018138406A (ja) 車両運転支援システム及び方法
EP3838701B1 (en) Vehicle travel control method and travel control device
JP2022060075A (ja) 運転支援装置
JP6562387B2 (ja) 車両運転支援システム及び方法
JP7390884B2 (ja) 走行環境推定方法、走行支援方法及び走行環境推定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910451

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018530212

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3032064

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019001268

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197003077

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016910451

Country of ref document: EP

Effective date: 20190225

ENP Entry into the national phase

Ref document number: 112019001268

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190122