WO2018019277A1 - 一种用于基片对准的机器视觉系统及对准装置 - Google Patents

一种用于基片对准的机器视觉系统及对准装置 Download PDF

Info

Publication number
WO2018019277A1
WO2018019277A1 PCT/CN2017/094769 CN2017094769W WO2018019277A1 WO 2018019277 A1 WO2018019277 A1 WO 2018019277A1 CN 2017094769 W CN2017094769 W CN 2017094769W WO 2018019277 A1 WO2018019277 A1 WO 2018019277A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
substrate
objective lens
beam splitter
projected onto
Prior art date
Application number
PCT/CN2017/094769
Other languages
English (en)
French (fr)
Inventor
朱鸷
霍志军
Original Assignee
上海微电子装备(集团)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微电子装备(集团)股份有限公司 filed Critical 上海微电子装备(集团)股份有限公司
Priority to KR1020197005074A priority Critical patent/KR102177005B1/ko
Priority to SG11201900821RA priority patent/SG11201900821RA/en
Priority to JP2019504814A priority patent/JP6785361B2/ja
Priority to US16/321,632 priority patent/US10985044B2/en
Publication of WO2018019277A1 publication Critical patent/WO2018019277A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • G01B11/272Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes using photoelectric detection means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/0016Technical microscopes, e.g. for inspection or measuring in industrial production processes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • G02B21/04Objectives involving mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/18Arrangements with more than one light path, e.g. for comparing two specimens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/241Devices for focusing
    • G02B21/245Devices for focusing using auxiliary sources, detectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7065Production of alignment light, e.g. light source, control of coherence, polarization, pulse length, wavelength
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/285Analysis of motion using a sequence of stereo image pairs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/26Stages; Adjusting means therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • G06T2207/10021Stereoscopic video; Stereoscopic image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30164Workpiece; Machine component
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30241Trajectory
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/757Means for aligning
    • H01L2224/75753Means for optical alignment, e.g. sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/758Means for moving parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/758Means for moving parts
    • H01L2224/75801Lower part of the bonding apparatus, e.g. XY table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/759Means for monitoring the connection process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/759Means for monitoring the connection process
    • H01L2224/75901Means for monitoring the connection process using a computer, e.g. fully- or semi-automatic bonding

Definitions

  • the present invention relates to the field of substrate bonding technology, and in particular to a machine vision system and alignment device for substrate alignment.
  • the prior art substrate alignment method is as follows: firstly, the surfaces of the two substrates are opposed, and two sets of microscope objectives are used to respectively detect the positions of the alignment marks on the two substrates, and then the two bases detected by the actuator are compensated. The relative positional deviation of the on-chip alignment marks.
  • spacers must be placed in the middle of the two substrates during the alignment process to ensure that the two substrates do not touch each other before bonding, which results in a gap between the two substrates.
  • a detecting device is proposed in the prior art.
  • two pairs of microscopic objective lenses 3' are disposed between the first substrate 1' and the second substrate 2'.
  • the microscope objective 3' observes the alignment marks on the first substrate 1' and the second substrate 2', respectively, and finally realizes the first substrate 1' and the second substrate 2 by the movement of the six degrees of freedom of the stage. 'Alignment.
  • the microscope objective lens 3' in the machine vision system can realize X, Y, Z.
  • the microscope objective 3' is arranged horizontally coaxially, and requires more space in the direction of the lens barrel, resulting in a smaller range of machine vision system detection in the direction of the lens barrel, so that it cannot be realized on the entire substrate. Detection at any position ultimately reduces the alignment accuracy of the substrate.
  • the invention provides a machine vision system and an alignment device for substrate alignment, so as to solve the horizontal coaxial arrangement of the microscope objective lens existing in the prior art, and occupying more space in the direction of the lens barrel to cause detection
  • the range is small and the problem of substrate alignment accuracy is lowered.
  • the technical solution of the present invention is: a machine vision system for substrate alignment, disposed between first and second substrates symmetrically disposed along an X axis, including first and second Illuminating light source, first and second mirrors, first and second objective lenses, first and second detectors, wherein between the first and second illumination sources, the first and second mirrors Between the first and second objective lenses and between the first and second detectors, the X-axis is symmetrical, and the illumination light emitted by the first and second illumination sources is irradiated onto the corresponding substrate for reflection, and After being amplified by the corresponding objective lens, it is projected onto the corresponding detector for detection.
  • first and second illumination sources, the first and second mirrors, the first and second objective lenses, and the first and second detectors are fixed on the base frame
  • the base frame is coupled with a driving mechanism for driving the base frame to move along any one or more of the X axis, the Y axis, and the Z axis, wherein the Y axis is orthogonal to the X axis, and the Z axis is simultaneously with the X axis and The Y axis is orthogonal.
  • first objective lens and the second objective lens are symmetrically disposed along the X axis, and respectively correspond to the first substrate and the second substrate, and the first and second mirrors are related to the first objective lens and The second objective lens is symmetrically arranged.
  • first mirror and the first detector are horizontally disposed along the X axis
  • the second mirror and the second detector are horizontally disposed along the X axis
  • the first and second detectors are located on the same side of the first objective lens and the second objective lens in the X-axis direction.
  • a first beam splitter is disposed between the first mirror and the first detector, and the position of the first illumination source corresponds to the first beam splitter, the second mirror and the second a second beam splitter is disposed between the two detectors, the second illumination source is located at a position corresponding to the second beam splitter, and the illumination light emitted by the first illumination source is projected through the first beam splitter To the first mirror, the illumination light emitted by the second illumination source is projected onto the second mirror via the second beam splitter.
  • a third mirror is disposed between the first objective lens and the first mirror
  • a fourth mirror is disposed between the second objective lens and the second mirror, and is projected to the first
  • the light on a mirror is projected onto the first substrate through the third mirror, and the light reflected on the first substrate is amplified by the first objective lens, and then sequentially turned by the third mirror and the first mirror.
  • Projecting onto the first detector; light projected onto the second mirror is projected onto the second substrate via the fourth mirror, and the light reflected on the second substrate is amplified by the second objective lens
  • the fourth mirror and the second mirror are turned to be sequentially projected onto the second detector.
  • a third beam splitter mirror is disposed between the first mirror and the second mirror, and the third beam splitter mirror corresponds to positions of the first objective lens and the second objective lens; the first reflection The light on the mirror is projected onto the first substrate through the third beam splitting mirror, and the light reflected on the first substrate is amplified by the first objective lens, and then sequentially turned by the third beam splitting mirror and the first mirror. Projecting onto the first detector; the light on the second mirror is projected onto the second substrate through the third beam splitter, and the light reflected on the second substrate is amplified by the second objective lens After being deflected by the third beam splitter mirror and the second mirror, it is projected onto the second detector.
  • first mirror, the first objective lens and the first detector are sequentially arranged in the X-axis direction
  • second mirror, the second objective lens and the second detector are sequentially arranged in the X-axis direction.
  • a third mirror is disposed between the first objective lens and the first substrate
  • a fourth mirror is disposed between the second objective lens and the second substrate, and is projected to the first Light on a mirror is projected onto the first substrate through the third mirror, and the light reflected on the first substrate is sequentially turned by the third mirror, the first mirror is turned to the first objective lens, and then projected.
  • the light projected onto the second mirror is projected onto the second substrate via the fourth mirror, and the light reflected on the second substrate is sequentially subjected to the fourth reflection
  • the mirror and the second mirror are turned to the second objective lens to be enlarged and projected onto the second detector.
  • a third mirror is disposed between the first objective lens and the first substrate
  • a fourth mirror is disposed between the second objective lens and the second substrate, the first reflection
  • the light on the mirror is projected onto the first substrate through the third mirror, and the light reflected on the first substrate is sequentially rotated by the third mirror and the first mirror to the first objective lens, and then projected onto the mirror.
  • the light on the second mirror is projected onto the second substrate via the fourth mirror, and the light reflected on the second substrate passes through the fourth mirror and the second The mirror is turned to the second objective lens to be enlarged and projected onto the second detector.
  • a third beam splitter is disposed between the first mirror and the second mirror; the light on the first mirror is projected onto the first substrate through the third beam splitter, The light reflected on the first substrate is sequentially turned by the third beam splitting mirror, the first mirror is turned to the first objective lens, and then projected onto the first detector; the light on the second mirror is The third beam splitter is projected onto the second substrate, and the light reflected on the second substrate is sequentially turned by the third beam splitter mirror, the second mirror is turned to the second objective lens, and then projected to the second detector. on.
  • first illumination source and the second illumination source are disposed between the first mirror and the second mirror along an X-axis direction, and the first illumination source and the second illumination source are symmetrically disposed along a Y-axis And corresponding to the first substrate and the second substrate respectively, the illumination light emitted by the first illumination source and the second illumination source are directly projected onto the first substrate and the second substrate, respectively.
  • a third mirror is disposed between the first objective lens and the first illumination source
  • a fourth mirror is disposed between the second objective lens and the second illumination source, the first base
  • the light reflected on the sheet is sequentially turned by the third mirror, the first mirror is turned to the first objective lens, and then projected onto the first detector; the light reflected on the second substrate is sequentially subjected to the fourth reflection.
  • the mirror and the second mirror are turned to the second objective lens to be enlarged and projected onto the second detector.
  • a third beam splitter mirror is disposed between the first illumination source and the second illumination source, and the third beam splitter mirror corresponds to positions of the first illumination source and the second illumination source;
  • the light reflected on a substrate is sequentially turned by the third beam splitter mirror, the first mirror is turned to the first objective lens, and then projected onto the first detector; the light reflected on the second substrate is sequentially
  • the third beam splitter mirror and the second mirror are turned to the second objective lens to be enlarged and projected onto the second detector.
  • first and second detectors adopt a CCD camera.
  • the present invention also provides a substrate alignment apparatus employing the machine vision system for substrate alignment as described above.
  • the invention provides a machine vision system for substrate alignment and an alignment device, the system comprising first and second illumination sources, first and second mirrors, first and second objective lenses, first and second a detector, between the first and second illumination sources, between the first and second mirrors, between the first and second objective lenses, and between the first and second detectors about the X axis Symmetrical, the illumination light emitted by the first and second illumination sources is irradiated onto the corresponding substrate for reflection, and is amplified by the corresponding objective lens and then projected onto the corresponding detector for detection.
  • the invention relates to between the first and second illumination sources, between the first and second mirrors, between the first and second objective lenses, and between the first and second detectors.
  • the axisymmetric setting greatly reduces the occupation volume of the machine vision system in the direction of the lens barrel, expands the detection range of the machine vision system, and improves the alignment efficiency and precision.
  • FIG. 1 is a schematic structural view of a detecting device in the prior art
  • FIG. 2 is a schematic structural view of a machine vision system for substrate alignment according to Embodiment 1 of the present invention
  • Figure 3 is a side view of A in Figure 2;
  • FIG. 4 is a schematic structural view of a machine vision system for substrate alignment according to Embodiment 2 of the present invention.
  • Figure 5 is a side view of A in Figure 4.
  • FIG. 6 is a schematic structural view of a machine vision system for substrate alignment according to Embodiment 3 of the present invention.
  • Figure 7 is a side view of A in Figure 6;
  • Figure 8 is a schematic structural view of a machine vision system for substrate alignment according to Embodiment 5 of the present invention.
  • Figure 9 is a side view of A in Figure 8.
  • Shown in Figure 1 is: 1', a first substrate; 2', a second substrate; 3', a microscope objective;
  • the present invention provides a machine vision system for substrate alignment, disposed between first and second substrates symmetrically disposed along a Y-axis, including first and second illumination sources. 11, 12, first and second mirrors 21, 22, first and second objective lenses 31, 32, first and second detectors 41, 42, between the first and second illumination sources 11, 12 Between the first and second mirrors 21, 22, between the first and second objective lenses 31, 32 and between the first and second detectors 41, 42 are symmetric about the X axis, the 1.
  • the illumination light emitted by the second illumination source 11 and 12 is irradiated to The corresponding substrate is reflected and amplified by the corresponding objective lens and then projected onto the corresponding detector for detection.
  • the first and second detectors 41, 42 are CCD cameras. Specifically, the illumination light emitted by the first illumination source 11 is irradiated onto the first substrate 1 for reflection, and is amplified by the first objective lens 31 and then projected onto the first detector 41 for detection, and the illumination emitted by the second illumination source 12 is emitted. The light is irradiated onto the second substrate 2 for reflection, and is amplified by the second objective lens 32 and then projected onto the second detector 42 for detection.
  • the two detectors 41, 42 are arranged symmetrically about the X axis, that is, the system includes two detection optical paths symmetrically along the X axis, respectively detecting the first and second substrates, thereby greatly reducing the direction of the machine vision system in the lens barrel.
  • the occupied volume ie along the X-axis direction expands the detection range of the machine vision system and improves alignment efficiency and accuracy.
  • the first and second illumination sources 11, 12, the first and second mirrors 21, 22, the first and second objective lenses 31, 32, and the first and second probes are fixed on the base frame, and the base frame is connected with a driving mechanism for driving the base frame to move in the X/Y/Z direction, thereby realizing detection for any position on the first and second substrates.
  • the first objective lens 31 and the second objective lens 32 are symmetrically disposed along the Y axis, and respectively correspond to the first substrate and the second substrate, and the first and second mirrors 21, 22 are The first objective lens and the second objective lens 31, 32 are symmetrically arranged.
  • the first and second mirrors 21 and 22 are respectively located on upper and lower sides of the XY plane.
  • the first mirror 21 and the first detector 41 are horizontally disposed along the X axis
  • the second mirror 21 and the second detector 41 are horizontally disposed along the X axis
  • the first The second detectors 41 and 42 are located on the same side of the first objective lens 31 and the second objective lens 32 along the X-axis direction.
  • a first beam splitter 51 is disposed between the first mirror 21 and the first detector 41, and the position of the first illumination source 11 corresponds to the first beam splitter 51,
  • Two mirror A second beam splitter 52 is disposed between the 22 and the second detector 42.
  • the position of the second illumination source 22 corresponds to the second beam splitter 52, and the illumination light emitted by the first illumination source 11 is
  • the first beam splitter 51 is projected onto the first mirror 21, and the illumination light emitted by the second illumination source 12 is projected onto the second mirror 22 via the second beam splitter 52. probe.
  • a third mirror 23 is disposed between the first objective lens 31 and the first mirror 11, and a fourth mirror 24 is disposed between the second objective lens 32 and the second mirror 22.
  • the light on the first mirror 11 is projected onto the first substrate through the third mirror 23, and the light reflected on the first substrate is amplified by the first objective lens 31 and sequentially passed through the third mirror.
  • the first mirror 21 is turned and projected onto the first detector 41; the light on the second mirror 22 is projected onto the second substrate via the fourth mirror 24, the second base
  • the light reflected on the sheet is amplified by the second objective lens 32, sequentially turned by the fourth mirror 24 and the second mirror 22, and then projected onto the second detector 42 for detection.
  • the present invention also provides a substrate alignment apparatus employing the machine vision system for substrate alignment as described above.
  • a third beam splitter 53 (see FIG. 5) is disposed between the first mirror 21 and the second mirror 22,
  • the third beam splitter mirror 53 corresponds to the positions of the first objective lens 31 and the second objective lens 32, and the light on the first mirror 21 is projected onto the first substrate through the third beam splitter mirror 53.
  • the light reflected on the first substrate is amplified by the first objective lens 31, sequentially rotated by the third beam splitting mirror 53 and the first mirror 21, and then projected onto the first detector 41 for detection;
  • the light on the second mirror 22 is projected onto the second substrate via the third beam splitter 53.
  • the light reflected on the second substrate is amplified by the second objective lens 22 and sequentially passed through the third beam splitter mirror 53.
  • the second mirror 22 is turned and then projected to the second probe Detection is performed on the detector 42.
  • the third beam splitter 53 is used to simultaneously reflect the light of the two light paths. In this process, the wavelengths of the illumination light emitted by the first illumination source 11 and the second illumination source 12 are controlled to be different. Interference occurs in the third beam splitter mirror 53 to affect the detection result.
  • the first mirror 21, the first objective lens 31, and the first detector 42 are sequentially arranged along the X-axis direction.
  • the second mirror 22, the second objective lens 32, and the second detector 42 are sequentially arranged in the X-axis direction.
  • a first beam splitter 51 is disposed between the first objective lens 31 and the first detector 41, and the position of the first illumination source 11 corresponds to the first beam splitter 51, and the second A second beam splitter 52 is disposed between the objective lens 32 and the second detector 42.
  • the position of the second illumination source 12 corresponds to the second beam splitter 52, and the illumination light emitted by the first illumination source 11 Projected onto the first mirror 21 via the first beam splitter 51, and the illumination light emitted by the second illumination source 12 is projected onto the second mirror 22 via the second beam splitter 52.
  • a third mirror 23 is disposed between the first objective lens 31 and the first substrate, and a fourth mirror 24 is disposed between the second objective lens 22 and the second substrate.
  • the light on the first mirror 21 is projected onto the first substrate through the third mirror 23, and the light reflected on the first substrate is sequentially turned to the third mirror 23 and the first mirror 21 to
  • the first objective lens 31 is enlarged and projected onto the first detector 41 for detection; the light on the second mirror 22 is projected onto the second substrate via the fourth mirror 24, on the second substrate.
  • the reflected light is sequentially turned by the fourth mirror 24 and the second mirror 22 to be amplified by the second objective lens 32, and then projected onto the second detector 42 for detection.
  • a third beam splitter 53 is disposed between the first mirror 21 and the second mirror 22; the light on the first mirror 21 is The third beam splitter mirror 53 is projected onto the first substrate, and the light reflected on the first substrate is sequentially turned by the third beam splitter mirror 53 and the first mirror 21 to the first objective lens 31 to be enlarged and projected to the
  • the first detector 41 performs detection; the light on the second mirror 22 is projected onto the second substrate via the third beam splitter 53, and the light reflected on the second substrate passes through the third
  • the beam splitter mirror 53 and the second mirror 22 are turned to the second objective lens 32 for amplification and then projected onto the second detector 42 for detection.
  • the first illumination source 11 and the second illumination source 12 are disposed between the first mirror 21 and the second mirror 22, along with the embodiment 3-4.
  • the Y-axis is symmetrically disposed, and corresponding to the first substrate and the second substrate respectively, the illumination light emitted by the first illumination source 11 and the second illumination source 12 is directly projected onto the first substrate or the second substrate. .
  • a third mirror 23 is disposed between the first objective lens 31 and the first illumination source 11, and a fourth mirror 24 is disposed between the second objective lens 32 and the second illumination source 12.
  • the light reflected on the first substrate is sequentially turned by the third mirror 23 and the first mirror 21 to be amplified by the first objective lens 31 and projected onto the first detector 41 for detection;
  • the light reflected on the substrate is sequentially turned by the fourth mirror 24 and the second mirror 22 to be amplified by the second objective lens 32, and then projected onto the second detector 42 for detection.
  • the first illumination source 11 and the second illumination A third beam splitter 53 is disposed between the light sources 12, and the third beam splitter 53 corresponds to the positions of the first illumination source 11 and the second illumination source 12; the light reflected on the first substrate is sequentially The third beam splitter mirror 53 and the first mirror 21 are turned to the first objective lens 31 for amplification and then projected onto the first detector 41 for detection; the light reflected on the second substrate is sequentially passed through the third The beam splitter mirror 53 and the second mirror 22 are turned to the second objective lens 32 for amplification and then projected onto the second detector 42 for detection.
  • the present invention provides a machine vision system for substrate alignment and an alignment device, the system including first and second illumination sources 11, 12, first and second mirrors 21, 22, a second objective lens 31, 32, first and second detectors 41, 42, between the first and second illumination sources 11, 12, between the first and second mirrors 21, 22,
  • the first and second objective lenses 31 and 32 and the first and second detectors 41 and 42 are symmetric about the X axis, and the illumination light emitted by the first and second illumination sources 11 and 12 is irradiated to correspond to
  • the substrate is reflected and amplified by a corresponding objective lens and then projected onto a corresponding detector for detection.
  • the invention passes between the first and second illumination light sources 11, 12, between the first and second mirrors 21, 22, between the first and second objective lenses 31, 32 and the first
  • the second detectors 41, 42 are arranged symmetrically about the X-axis, which greatly reduces the occupation volume of the machine vision system in the direction of the lens barrel, expands the detection range of the machine vision system, and improves the alignment efficiency and precision.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

一种用于基片对准的机器视觉系统,包括第一、第二照明光源(11,12),第一、第二反射镜(21,22),第一、第二物镜(31,32)以及第一、第二探测器(41,42)。第一、第二照明光源之间,第一、第二反射镜之间,第一、第二物镜之间以及第一、第二探测器之间关于X轴对称,第一、第二照明光源发出的照明光线照射至对应的基片(1,2)上进行反射,并经对应的物镜放大之后投射至对应的探测器上进行探测。还公开了一种对准装置。通过将第一、第二照明光源之间,第一、第二反射镜之间,第一、第二物镜之间以及第一、第二探测器之间关于X轴对称设置,大大减少了机器视觉系统在镜筒方向的占用体积,扩大机器视觉系统的检测范围,提高对准效率和精度。

Description

一种用于基片对准的机器视觉系统及对准装置 技术领域
本发明涉及基片键合技术领域,具体涉及一种用于基片对准的机器视觉系统及对准装置。
背景技术
现有技术中用于半导体工艺中基片键合的配套设备,在键合进行之前需将两片基片进行对准。基片对准是基片键合设备中最重要的技术之一。
现有的基片对准方法为:先将两片基片的表面相对,使用两组显微物镜分别检测出两片基片上对准标记的位置,然后通过执行器补偿检测出的两片基片上对准标记的相对位置偏差。然而由于基片键合工艺的需求,在对准过程中,两片基片中间必须放置间隔片,用于确保在键合之前两片基片相互不接触,这导致了两片基片之间存在较大的间隙,该间隙通常大于0.4mm,而该间隙的存在使得所选用的显微物镜的景深必须大于两片基片之间存在的距离,这样两片基片上的对准标记才能清晰成像,而对于显微物镜来说,其景深与分辨率是矛盾的关系,即景深越大的显微物镜,其分辨率就越低,因此想要进一步提高对准精度,首先应该提高显微物镜的分辨率,但由于存在景深的要求,使得基片的对准精度难以提高。
针对上述问题,现有技术中提出一种检测装置,如图1所示,通过将两对显微物镜3’布置在第一基片1’和第二基片2’之间,使用两对显微物镜3’分别观测第一基片1’和第二基片2’上的对准标记,最终通过承载台六个自由度的运动,实现第一基片1’和第二基片2’的对准。然而该技术中为了实现显微物镜对第一基片1’和第二基片2’的对焦及找寻对准标记,需要机器视觉系统中的显微物镜3’能够实现X、Y、Z三个方向的运动,然而由于 机器视觉系统中显微物镜3’是水平同轴布置的,在镜筒方向需要占用的空间较多,导致机器视觉系统在镜筒方向能够检测的范围较小,因此无法实现对整张基片上的任意位置进行检测,最终降低了基片的对准精度。
发明内容
本发明提供了一种用于基片对准的机器视觉系统及对准装置,以解决现有技术中存在的显微物镜水平同轴布置,在镜筒方向所占用的空间较多而导致检测的范围较小以及降低基片对准精度的问题。
为了解决上述技术问题,本发明的技术方案是:一种用于基片对准的机器视觉系统,设于沿X轴对称设置的第一、第二基片之间,包括第一、第二照明光源,第一、第二反射镜,第一、第二物镜,第一、第二探测器,其中,所述第一、第二照明光源之间,所述第一、第二反射镜之间,所述第一、第二物镜之间以及第一、第二探测器之间关于X轴对称,所述第一、第二照明光源发出的照明光线照射至对应的基片上进行反射,并经对应的物镜放大之后投射至对应的探测器上进行探测。
进一步的,所述第一、第二照明光源,所述第一、第二反射镜,所述第一、第二物镜,以及所述第一、第二探测器固设于基础框架上,所述基础框架上连有驱动机构,带动所述基础框架沿X轴、Y轴、Z轴中的任意一个或几个方向运动,其中,Y轴与X轴正交,Z轴同时与X轴和Y轴正交。
进一步的,所述第一物镜和第二物镜沿X轴对称设置,且分别与所述第一基片和第二基片对应,所述第一、第二反射镜关于所述第一物镜和第二物镜对称设置。
进一步的,所述第一反射镜和第一探测器沿所述X轴水平设置,所述 第二反射镜和第二探测器沿所述X轴水平设置,且所述第一、第二探测器位于所述第一物镜、第二物镜沿X轴方向的同一侧。
进一步的,所述第一反射镜和第一探测器之间设有第一分束镜,所述第一照明光源的位置与所述第一分束镜对应,所述第二反射镜和第二探测器之间设有第二分束镜,所述第二照明光源的位置与所述第二分束镜对应,所述第一照明光源发出的照射光线经所述第一分束镜投射至所述第一反射镜上,所述第二照明光源发出的照射光线经所述第二分束镜投射至所述第二反射镜上。
进一步的,所述第一物镜和所述第一反射镜之间设有第三反射镜,所述第二物镜和所述第二反射镜之间设有第四反射镜,投射至所述第一反射镜上的光线经所述第三反射镜投射至第一基片上,所述第一基片上反射的光线经第一物镜放大后依次经所述第三反射镜、第一反射镜转向后投射至所述第一探测器上;投射至所述第二反射镜上的光线经所述第四反射镜投射至第二基片上,所述第二基片上反射的光线经第二物镜放大后依次经所述第四反射镜、第二反射镜转向后投射至所述第二探测器上。
进一步的,所述第一反射镜和第二反射镜之间设有第三分束镜,所述第三分束镜与所述第一物镜和第二物镜的位置对应;所述第一反射镜上的光线经所述第三分束镜投射至第一基片上,所述第一基片上反射的光线经第一物镜放大后依次经所述第三分束镜、第一反射镜转向后投射至所述第一探测器上;所述第二反射镜上的光线经所述第三分束镜投射至第二基片上,所述第二基片上反射的光线经第二物镜放大后依次经所述第三分束镜、第二反射镜转向后投射至所述第二探测器上。
进一步的,所述第一反射镜、第一物镜和第一探测器沿X轴方向依次排列,所述第二反射镜、第二物镜和第二探测器沿X轴方向依次排列。
进一步的,所述第一物镜和所述第一基片之间设有第三反射镜,所述第二物镜和所述第二基片之间设有第四反射镜,投射至所述第一反射镜上的光线经所述第三反射镜投射至第一基片上,所述第一基片上反射的光线依次经所述第三反射镜、第一反射镜转向至第一物镜放大后投射至所述第一探测器上;投射至所述第二反射镜上的光线经所述第四反射镜投射至第二基片上,所述第二基片上反射的光线依次经所述第四反射镜、第二反射镜转向至第二物镜放大后投射至所述第二探测器上。
进一步的,所述第一物镜和所述第一基片之间设有第三反射镜,所述第二物镜和所述第二基片之间设有第四反射镜,所述第一反射镜上的光线经所述第三反射镜投射至第一基片上,所述第一基片上反射的光线依次经所述第三反射镜、第一反射镜转向至第一物镜放大后投射至所述第一探测器上;所述第二反射镜上的光线经所述第四反射镜投射至第二基片上,所述第二基片上反射的光线依次经所述第四反射镜、第二反射镜转向至第二物镜放大后投射至所述第二探测器上。
进一步的,所述第一反射镜和第二反射镜之间设有第三分束镜;所述第一反射镜上的光线经所述第三分束镜投射至第一基片上,所述第一基片上反射的光线依次经所述第三分束镜、第一反射镜转向至第一物镜放大后投射至所述第一探测器上;所述第二反射镜上的光线经所述第三分束镜投射至第二基片上,所述第二基片上反射的光线依次经所述第三分束镜、第二反射镜转向至第二物镜放大后投射至所述第二探测器上。
进一步的,所述第一照明光源、第二照明光源沿X轴方向设于所述第一反射镜和第二反射镜之间,所述第一照明光源、第二照明光源沿Y轴对称设置,且分别与所述第一基片和第二基片对应,所述第一照明光源、第二照明光源发出的照明光线分别直接投射至第一基片、第二基片上。
进一步的,所述第一物镜和所述第一照明光源之间设有第三反射镜,所述第二物镜和所述第二照明光源之间设有第四反射镜,所述第一基片上反射的光线依次经所述第三反射镜、第一反射镜转向至第一物镜放大后投射至所述第一探测器上;所述第二基片上反射的光线依次经所述第四反射镜、第二反射镜转向至第二物镜放大后投射至所述第二探测器上。
进一步的,所述第一照明光源和第二照明光源之间设有第三分束镜,所述第三分束镜与所述第一照明光源和第二照明光源的位置对应;所述第一基片上反射的光线依次经所述第三分束镜、第一反射镜转向至第一物镜放大后投射至所述第一探测器上;所述第二基片上反射的光线依次经所述第三分束镜、第二反射镜转向至第二物镜放大后投射至所述第二探测器上。
进一步的,所述第一、第二探测器采用CCD相机。
本发明还提供一种基片对准装置,采用如上所述的用于基片对准的机器视觉系统。
本发明提供的用于基片对准的机器视觉系统及对准装置,该系统包括第一、第二照明光源,第一、第二反射镜,第一、第二物镜,第一、第二探测器,所述第一、第二照明光源之间,所述第一、第二反射镜之间,所述第一、第二物镜之间以及第一、第二探测器之间关于X轴对称,所述第一、第二照明光源发出的照明光线照射至对应的基片上进行反射,并经对应的物镜放大之后投射至对应的探测器上进行探测。本发明通过将所述第一、第二照明光源之间,所述第一、第二反射镜之间,所述第一、第二物镜之间以及第一、第二探测器之间关于X轴对称设置,大大减少了机器视觉系统在镜筒方向的占用体积,扩大机器视觉系统的检测范围,提高对准效率和精度。
附图说明
图1是现有技术中检测装置的结构示意图;
图2是本发明实施例1用于基片对准的机器视觉系统的结构示意图;
图3是图2中A处的侧视图;
图4是本发明实施例2用于基片对准的机器视觉系统的结构示意图;
图5是图4中A处的侧视图;
图6是本发明实施例3用于基片对准的机器视觉系统的结构示意图;
图7是图6中A处的侧视图;
图8是本发明实施例5用于基片对准的机器视觉系统的结构示意图;
图9是图8中A处的侧视图。
图1中所示:1’、第一基片;2’、第二基片;3’、显微物镜;
图2-9中所示:1、第一基片;2、第二基片;11-12、第一、第二照明光源;21-24、第一-第四反射镜;31-32、第一、第二物镜;41-42、第一、第二探测器;51-53、第一-第三分束镜。
具体实施方式
下面结合附图对本发明作详细描述。
实施例1
如图2-3所示,本发明提供一种用于基片对准的机器视觉系统,设于沿Y轴对称设置的第一、第二基片之间,包括第一、第二照明光源11、12,第一、第二反射镜21、22,第一、第二物镜31、32,第一、第二探测器41、42,所述第一、第二照明光源11、12之间,所述第一、第二反射镜21、22之间,所述第一、第二物镜31、32之间以及第一、第二探测器41、42之间关于X轴对称,所述第一、第二照明光源11、12发出的照明光线照射至 对应的基片上进行反射,并经对应的物镜放大之后投射至对应的探测器上进行探测,优选的,所述第一、第二探测器41、42采用CCD相机。具体的,第一照明光源11发出的照明光线照射至第一基片1上进行反射,并经第一物镜31放大之后投射至第一探测器41上进行探测,第二照明光源12发出的照明光线照射至第二基片2上进行反射,并经第二物镜32放大之后投射至第二探测器42上进行探测。通过将所述第一、第二照明光源11、12之间,所述第一、第二反射镜21、22之间,所述第一、第二物镜31、32之间以及第一、第二探测器41、42之间关于X轴对称设置,即本系统包括两条沿X轴对称的检测光路,分别对第一、第二基片进行检测,大大减少了机器视觉系统在镜筒方向(即沿X轴方向)的占用体积,扩大机器视觉系统的检测范围,提高对准效率和精度。
优选的,所述第一、第二照明光源11、12,所述第一、第二反射镜21、22,所述第一、第二物镜31、32,以及所述第一、第二探测器41、42固设于基础框架上,所述基础框架上连有驱动机构,带动所述基础框架沿X/Y/Z方向运动,从而实现针对第一、第二基片上任意位置进行检测。
优选的,所述第一物镜31和第二物镜32沿Y轴对称设置,且分别与所述第一基片和第二基片对应,所述第一、第二反射镜21、22关于所述第一物镜、第二物镜31、32对称设置。具体的,所述第一、第二反射镜21、22分别位于XY平面的上下两侧。优选的,所述第一反射镜21和第一探测器41沿所述X轴水平设置,所述第二反射镜21和第二探测器41沿所述X轴水平设置,且所述第一、第二探测器41、42位于所述第一物镜31、第二物镜32沿X轴方向的同一侧。
优选的,所述第一反射镜21和第一探测器41之间设有第一分束镜51,所述第一照明光源11的位置与所述第一分束镜51对应,所述第二反射镜 22和第二探测器42之间设有第二分束镜52,所述第二照明光源22的位置与所述第二分束镜52对应,所述第一照明光源11发出的照射光线经所述第一分束镜51投射至所述第一反射镜21上,所述第二照明光源12发出的照射光线经所述第二分束镜52投射至所述第二反射镜22上进行探测。
优选的,所述第一物镜31和所述第一反射镜11之间设有第三反射镜23,所述第二物镜32和所述第二反射镜22之间设有第四反射镜24,所述第一反射镜11上的光线经所述第三反射镜23投射至第一基片上,所述第一基片上反射的光线经第一物镜31放大后依次经所述第三反射镜23、第一反射镜21转向后投射至所述第一探测器41上;所述第二反射镜22上的光线经所述第四反射镜24投射至第二基片上,所述第二基片上反射的光线经第二物镜32放大后依次经所述第四反射镜24、第二反射镜22转向后投射至所述第二探测器42上进行探测。
本发明还提供一种基片对准装置,采用如上所述的用于基片对准的机器视觉系统。
实施例2
如图4-5所示,与实施例1不同的是,本实施例中,所述第一反射镜21和第二反射镜22之间设有第三分束镜53(见图5),所述第三分束镜53与所述第一物镜31和第二物镜32的位置对应,所述第一反射镜21上的光线经所述第三分束镜53投射至第一基片上,所述第一基片上反射的光线经第一物镜31放大后依次经所述第三分束镜53、第一反射镜21转向后投射至所述第一探测器41上进行探测;所述第二反射镜22上的光线经所述第三分束镜53投射至第二基片上,所述第二基片上反射的光线经第二物镜22放大后依次经所述第三分束镜53、第二反射镜22转向后投射至所述第二探 测器42上进行探测。本实施例中采用第三分束镜53同时实现对两个光路的光线进行反射,在此过程中,需控制第一照明光源11和第二照明光源12发出的照明光线的波长不同,以免在第三分束镜53中发生干涉而影响探测结果。
实施例3
如图6-7所示,与实施例1-2不同的是,本实施例中,所述第一反射镜21、第一物镜31和第一探测器42沿X轴方向依次排列,所述第二反射镜22、第二物镜32和第二探测器42沿X轴方向依次排列。采用该排列方式可以获得更大的物镜的工作距,节约Y向空间。
优选的,所述第一物镜31和第一探测器41之间设有第一分束镜51,所述第一照明光源11的位置与所述第一分束镜51对应,所述第二物镜32和第二探测器42之间设有第二分束镜52,所述第二照明光源12的位置与所述第二分束镜52对应,所述第一照明光源11发出的照射光线经所述第一分束镜51投射至所述第一反射镜21上,所述第二照明光源12发出的照射光线经所述第二分束镜52投射至所述第二反射镜22上。
优选的,所述第一物镜31和所述第一基片之间设有第三反射镜23,所述第二物镜22和所述第二基片之间设有第四反射镜24,所述第一反射镜21上的光线经所述第三反射镜23投射至第一基片上,所述第一基片上反射的光线依次经所述第三反射镜23、第一反射镜21转向至第一物镜31放大后投射至所述第一探测器41上进行探测;所述第二反射镜22上的光线经所述第四反射镜24投射至第二基片上,所述第二基片上反射的光线依次经所述第四反射镜24、第二反射镜22转向至第二物镜32放大后投射至所述第二探测器42上进行探测。
实施例4
与实施例3不同的是,本实施例中,所述第一反射镜21和第二反射镜22之间设有第三分束镜53;所述第一反射镜21上的光线经所述第三分束镜53投射至第一基片上,所述第一基片上反射的光线依次经所述第三分束镜53、第一反射镜21转向至第一物镜31放大后投射至所述第一探测器41上进行探测;所述第二反射镜22上的光线经所述第三分束镜53投射至第二基片上,所述第二基片上反射的光线依次经所述第三分束镜53、第二反射镜22转向至第二物镜32放大后投射至所述第二探测器42上进行探测。
实施例5
如图8-9所示,与实施例3-4不同的是,所述第一照明光源11、第二照明光源12设于所述第一反射镜21和第二反射镜22之间,沿Y轴对称设置,且分别与所述第一基片和第二基片对应,所述第一照明光源11、第二照明光源12发出的照明光线直接投射至第一基片或第二基片上。
优选的,所述第一物镜31和所述第一照明光源11之间设有第三反射镜23,所述第二物镜32和所述第二照明光源12之间设有第四反射镜24,所述第一基片上反射的光线依次经所述第三反射镜23、第一反射镜21转向至第一物镜31放大后投射至所述第一探测器41上进行探测;所述第二基片上反射的光线依次经所述第四反射镜24、第二反射镜22转向至第二物镜32放大后投射至所述第二探测器42上进行探测。
实施例6
与实施例5不同的是,本实施例中,所述第一照明光源11和第二照明 光源12之间设有第三分束镜53,所述第三分束镜53与所述第一照明光源11和第二照明光源12的位置对应;所述第一基片上反射的光线依次经所述第三分束镜53、第一反射镜21转向至第一物镜31放大后投射至所述第一探测器41上进行探测;所述第二基片上反射的光线依次经所述第三分束镜53、第二反射镜22转向至第二物镜32放大后投射至所述第二探测器42上进行探测。
综上所述,本发明提供的用于基片对准的机器视觉系统及对准装置,该系统包括第一、第二照明光源11、12,第一、第二反射镜21、22,第一、第二物镜31、32,第一、第二探测器41、42,所述第一、第二照明光源11、12之间,所述第一、第二反射镜21、22之间,所述第一、第二物镜31、32之间以及第一、第二探测器41、42之间关于X轴对称,所述第一、第二照明光源11、12发出的照明光线照射至对应的基片上进行反射,并经对应的物镜放大之后投射至对应的探测器上进行探测。本发明通过将所述第一、第二照明光源11、12之间,所述第一、第二反射镜之间21、22,所述第一、第二物镜31、32之间以及第一、第二探测器41、42之间关于X轴对称设置,大大减少了机器视觉系统在镜筒方向的占用体积,扩大机器视觉系统的检测范围,提高对准效率和精度。
虽然说明书中对本发明的实施方式进行了说明,但这些实施方式只是作为提示,不应限定本发明的保护范围。在不脱离本发明宗旨的范围内进行各种省略、置换和变更均应包含在本发明的保护范围内。

Claims (16)

  1. 一种用于基片对准的机器视觉系统,设于沿X轴对称设置的第一、第二基片之间,包括第一、第二照明光源,第一、第二反射镜,第一、第二物镜,第一、第二探测器,其特征在于,所述第一、第二照明光源之间,所述第一、第二反射镜之间,所述第一、第二物镜之间以及第一、第二探测器之间关于X轴对称,所述第一、第二照明光源发出的照明光线照射至对应的基片上进行反射,并经对应的物镜放大之后投射至对应的探测器上进行探测。
  2. 根据权利要求1所述的用于基片对准的机器视觉系统,其特征在于,所述第一、第二照明光源,所述第一、第二反射镜,所述第一、第二物镜,以及所述第一、第二探测器固设于基础框架上,所述基础框架上连有驱动机构,带动所述基础框架沿X轴、Y轴、Z轴中的任意一个或几个方向运动,其中,Y轴与X轴正交,Z轴同时与X轴和Y轴正交。
  3. 根据权利要求2所述的用于基片对准的机器视觉系统,其特征在于,所述第一物镜和第二物镜沿X轴对称设置,且分别与所述第一基片和第二基片对应,所述第一、第二反射镜关于所述第一物镜和第二物镜对称设置。
  4. 根据权利要求3所述的用于基片对准的机器视觉系统,其特征在于,所述第一反射镜和第一探测器沿所述X轴水平设置,所述第二反射镜和第二探测器沿所述X轴水平设置,且所述第一、第二探测器位于所述第一物镜、第二物镜沿X轴方向的同一侧。
  5. 根据权利要求4所述的用于基片对准的机器视觉系统,其特征在于,所述第一反射镜和第一探测器之间设有第一分束镜,所述第一照明光源的位置与所述第一分束镜对应,所述第二反射镜和第二探测器之间设有第二 分束镜,所述第二照明光源的位置与所述第二分束镜对应,所述第一照明光源发出的照射光线经所述第一分束镜投射至所述第一反射镜上,所述第二照明光源发出的照射光线经所述第二分束镜投射至所述第二反射镜上。
  6. 根据权利要求5所述的用于基片对准的机器视觉系统,其特征在于,所述第一物镜和所述第一反射镜之间设有第三反射镜,所述第二物镜和所述第二反射镜之间设有第四反射镜,投射至所述第一反射镜上的光线经所述第三反射镜投射至第一基片上,所述第一基片上反射的光线经第一物镜放大后依次经所述第三反射镜、第一反射镜转向后投射至所述第一探测器上;投射至所述第二反射镜上的光线经所述第四反射镜投射至第二基片上,所述第二基片上反射的光线经第二物镜放大后依次经所述第四反射镜、第二反射镜转向后投射至所述第二探测器上。
  7. 根据权利要求5所述的用于基片对准的机器视觉系统,其特征在于,所述第一反射镜和第二反射镜之间设有第三分束镜,所述第三分束镜与所述第一物镜和第二物镜的位置对应;所述第一反射镜上的光线经所述第三分束镜投射至第一基片上,所述第一基片上反射的光线经第一物镜放大后依次经所述第三分束镜、第一反射镜转向后投射至所述第一探测器上;所述第二反射镜上的光线经所述第三分束镜投射至第二基片上,所述第二基片上反射的光线经第二物镜放大后依次经所述第三分束镜、第二反射镜转向后投射至所述第二探测器上。
  8. 根据权利要求2所述的用于基片对准的机器视觉系统,其特征在于,所述第一反射镜、第一物镜和第一探测器沿X轴方向依次排列,所述第二反射镜、第二物镜和第二探测器沿X轴方向依次排列。
  9. 根据权利要求8所述的用于基片对准的机器视觉系统,其特征在于,所述第一物镜和第一探测器之间设有第一分束镜,所述第一照明光源的位 置与所述第一分束镜对应,所述第二物镜和第二探测器之间设有第二分束镜,所述第二照明光源的位置与所述第二分束镜对应,所述第一照明光源发出的照射光线经所述第一分束镜投射至所述第一反射镜上,所述第二照明光源发出的照射光线经所述第二分束镜投射至所述第二反射镜上。
  10. 根据权利要求9所述的用于基片对准的机器视觉系统,其特征在于,所述第一物镜和所述第一基片之间设有第三反射镜,所述第二物镜和所述第二基片之间设有第四反射镜,投射至所述第一反射镜上的光线经所述第三反射镜投射至第一基片上,所述第一基片上反射的光线依次经所述第三反射镜、第一反射镜转向至第一物镜放大后投射至所述第一探测器上;投射至所述第二反射镜上的光线经所述第四反射镜投射至第二基片上,所述第二基片上反射的光线依次经所述第四反射镜、第二反射镜转向至第二物镜放大后投射至所述第二探测器上。
  11. 根据权利要求9所述的用于基片对准的机器视觉系统,其特征在于,所述第一反射镜和第二反射镜之间设有第三分束镜;所述第一反射镜上的光线经所述第三分束镜投射至第一基片上,所述第一基片上反射的光线依次经所述第三分束镜、第一反射镜转向至第一物镜放大后投射至所述第一探测器上;所述第二反射镜上的光线经所述第三分束镜投射至第二基片上,所述第二基片上反射的光线依次经所述第三分束镜、第二反射镜转向至第二物镜放大后投射至所述第二探测器上。
  12. 根据权利要求8所述的用于基片对准的机器视觉系统,其特征在于,所述第一照明光源、第二照明光源沿X轴方向设于所述第一反射镜和第二反射镜之间,所述第一照明光源、第二照明光源沿Y轴对称设置,且分别与所述第一基片和第二基片对应,所述第一照明光源、第二照明光源发出的照明光线分别直接投射至第一基片、第二基片上。
  13. 根据权利要求12所述的用于基片对准的机器视觉系统,其特征在于,所述第一物镜和所述第一照明光源之间设有第三反射镜,所述第二物镜和所述第二照明光源之间设有第四反射镜,所述第一基片上反射的光线依次经所述第三反射镜、第一反射镜转向至第一物镜放大后投射至所述第一探测器上;所述第二基片上反射的光线依次经所述第四反射镜、第二反射镜转向至第二物镜放大后投射至所述第二探测器上。
  14. 根据权利要求12所述的用于基片对准的机器视觉系统,其特征在于,所述第一照明光源和第二照明光源之间设有第三分束镜,所述第三分束镜与所述第一照明光源和第二照明光源的位置对应;所述第一基片上反射的光线依次经所述第三分束镜、第一反射镜转向至第一物镜放大后投射至所述第一探测器上;所述第二基片上反射的光线依次经所述第三分束镜、第二反射镜转向至第二物镜放大后投射至所述第二探测器上。
  15. 根据权利要求1所述的用于基片对准的机器视觉系统,其特征在于,所述第一、第二探测器采用CCD相机。
  16. 一种基片对准装置,其特征在于,采用如权利要求1-15任一项所述的用于基片对准的机器视觉系统。
PCT/CN2017/094769 2016-07-29 2017-07-27 一种用于基片对准的机器视觉系统及对准装置 WO2018019277A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197005074A KR102177005B1 (ko) 2016-07-29 2017-07-27 기판 정렬을 위한 머신 비전 시스템 및 정렬 장치
SG11201900821RA SG11201900821RA (en) 2016-07-29 2017-07-27 Machine vision system for substrate alignment and alignment device
JP2019504814A JP6785361B2 (ja) 2016-07-29 2017-07-27 基板アライメント用マシンビジョンシステム及びアライメント装置
US16/321,632 US10985044B2 (en) 2016-07-29 2017-07-27 Machine vision system for substrate alignment and alignment device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610608686.1A CN107664833B (zh) 2016-07-29 2016-07-29 一种用于基片对准的机器视觉系统及对准装置
CN201610608686.1 2016-07-29

Publications (1)

Publication Number Publication Date
WO2018019277A1 true WO2018019277A1 (zh) 2018-02-01

Family

ID=61016829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/094769 WO2018019277A1 (zh) 2016-07-29 2017-07-27 一种用于基片对准的机器视觉系统及对准装置

Country Status (7)

Country Link
US (1) US10985044B2 (zh)
JP (1) JP6785361B2 (zh)
KR (1) KR102177005B1 (zh)
CN (1) CN107664833B (zh)
SG (1) SG11201900821RA (zh)
TW (1) TWI641866B (zh)
WO (1) WO2018019277A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11031368B2 (en) * 2018-05-14 2021-06-08 Panasonic Intellectual Property Management Co., Ltd. Bonding apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108663779A (zh) * 2018-07-27 2018-10-16 广东阿达智能装备有限公司 两路光路的光学镜头
CN110749282A (zh) * 2019-11-04 2020-02-04 和卓生物科技(上海)有限公司 一种吸头校准设备
CN110849295B (zh) * 2019-11-29 2022-04-05 中国科学院长春光学精密机械与物理研究所 一种芯片封装系统及应用于芯片封装工艺的检测装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166228A (ja) * 1986-12-27 1988-07-09 Canon Inc 位置検出装置
CN102881621A (zh) * 2012-10-19 2013-01-16 无锡尚实电子科技有限公司 一种倒装对位方法及装置
TW201423893A (zh) * 2012-12-07 2014-06-16 Cello Technology Co Ltd 鍵合設備潛望式正面對位方法
CN105023871A (zh) * 2015-06-24 2015-11-04 中国电子科技集团公司第四十五研究所 一种用于相对面对准的视觉系统
CN105914171A (zh) * 2016-05-31 2016-08-31 广东工业大学 一种机器视觉飞行系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4899921A (en) * 1988-10-28 1990-02-13 The American Optical Corporation Aligner bonder
JPH0843057A (ja) * 1994-07-28 1996-02-16 Copal Co Ltd 整列確認装置
JP2005019873A (ja) * 2003-06-27 2005-01-20 Casio Comput Co Ltd 駆動素子のボンディング方法
WO2009125867A1 (ja) 2008-04-11 2009-10-15 株式会社ニコン ステージ装置、露光装置、及びデバイス製造方法
JP5274960B2 (ja) * 2008-09-26 2013-08-28 株式会社ディスコ 切削装置
KR101215094B1 (ko) * 2010-10-25 2012-12-24 삼성전자주식회사 피측정체 정렬장치
CN103543609B (zh) 2012-07-12 2016-01-20 上海微电子装备有限公司 用于光刻设备的双汞灯拼接曝光系统
JP6250329B2 (ja) * 2013-08-19 2017-12-20 株式会社ディスコ 加工装置
WO2015165623A1 (en) 2014-04-28 2015-11-05 Asml Netherlands B.V. Estimating deformation of a patterning device and/or a change in its position
DE102015200393A1 (de) 2015-01-14 2016-07-14 Automotive Lighting Reutlingen Gmbh Verfahren zum Anordnen eines SMD-Halbleiterlichtquellenbauteils einer Beleuchtungseinrichtung eines Kraftfahrzeugs

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166228A (ja) * 1986-12-27 1988-07-09 Canon Inc 位置検出装置
CN102881621A (zh) * 2012-10-19 2013-01-16 无锡尚实电子科技有限公司 一种倒装对位方法及装置
TW201423893A (zh) * 2012-12-07 2014-06-16 Cello Technology Co Ltd 鍵合設備潛望式正面對位方法
CN105023871A (zh) * 2015-06-24 2015-11-04 中国电子科技集团公司第四十五研究所 一种用于相对面对准的视觉系统
CN105914171A (zh) * 2016-05-31 2016-08-31 广东工业大学 一种机器视觉飞行系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11031368B2 (en) * 2018-05-14 2021-06-08 Panasonic Intellectual Property Management Co., Ltd. Bonding apparatus

Also Published As

Publication number Publication date
TW201816462A (zh) 2018-05-01
US10985044B2 (en) 2021-04-20
TWI641866B (zh) 2018-11-21
CN107664833B (zh) 2020-10-16
JP6785361B2 (ja) 2020-11-18
KR20190032475A (ko) 2019-03-27
US20200090971A1 (en) 2020-03-19
KR102177005B1 (ko) 2020-11-10
SG11201900821RA (en) 2019-02-27
JP2019523420A (ja) 2019-08-22
CN107664833A (zh) 2018-02-06

Similar Documents

Publication Publication Date Title
WO2018019277A1 (zh) 一种用于基片对准的机器视觉系统及对准装置
KR101808388B1 (ko) 프로브 장치 및 프로브 방법
JPH1183753A (ja) 光学式基板検査装置
KR102515770B1 (ko) 광학 시스템 및 이 시스템을 이용하여 마스크 결함을 보정하기 위한 방법
US8836943B2 (en) Workpiece alignment device
JP2015513219A (ja) ウェーハなどのターゲットを処理するためのリソグラフィシステム及び方法
JP2006024944A (ja) アライメント方法及び装置、リソグラフィ装置、デバイス製造方法並びにアライメント・ツール
WO2023070283A1 (zh) 晶圆键合设备及方法
US20180275528A1 (en) Optical system for producing lithographic structures
JP2005202092A (ja) 合焦点検出方法及びそれを用いた光学顕微鏡
WO2009139190A1 (ja) 位置検出装置、基板重ね合わせ装置
KR100879007B1 (ko) 기판의 광학검사기능을 구비한 리페어장치
JP2009074849A (ja) 線幅測定装置の検査方法
JPH11243049A (ja) ウエハとマスクとの位置検出装置及び変形誤差検出方法
KR102395738B1 (ko) 계측 장치, 리소그래피 장치, 물품의 제조 방법 및 계측 방법
US9594230B2 (en) On-axis focus sensor and method
JP2005021916A (ja) 欠陥修正機能付き顕微鏡装置
JPH11173813A (ja) 基板上の光スポットの位置決め方法および膜厚測定方法
CN114726995B (zh) 检测方法和检测系统
CN114675514A (zh) 调平调焦装置
JP2013038350A (ja) 露光装置用のアライメント装置
KR20230031140A (ko) 묘화 장치 및 묘화 방법
CN116819892A (zh) 一种光学量测装置及方法
JP2011170297A (ja) 顕微鏡、基板貼り合せ装置、積層半導体装置製造方法及び積層半導体装置
JPH03241313A (ja) 光軸調整方法とそれに用いる光軸調整装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833580

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019504814

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197005074

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17833580

Country of ref document: EP

Kind code of ref document: A1