WO2018018985A1 - Oled显示装置及其封装效果的检修方法 - Google Patents

Oled显示装置及其封装效果的检修方法 Download PDF

Info

Publication number
WO2018018985A1
WO2018018985A1 PCT/CN2017/083000 CN2017083000W WO2018018985A1 WO 2018018985 A1 WO2018018985 A1 WO 2018018985A1 CN 2017083000 W CN2017083000 W CN 2017083000W WO 2018018985 A1 WO2018018985 A1 WO 2018018985A1
Authority
WO
WIPO (PCT)
Prior art keywords
display device
oled display
package
oled
detecting portion
Prior art date
Application number
PCT/CN2017/083000
Other languages
English (en)
French (fr)
Inventor
徐朝哲
李纪
赵婷婷
王立森
Original Assignee
京东方科技集团股份有限公司
合肥京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/571,233 priority Critical patent/US10381603B2/en
Publication of WO2018018985A1 publication Critical patent/WO2018018985A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/70Testing, e.g. accelerated lifetime tests
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/846Passivation; Containers; Encapsulations comprising getter material or desiccants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/874Passivation; Containers; Encapsulations including getter material or desiccant
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/88Dummy elements, i.e. elements having non-functional features
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/861Repairing

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to an OLED display device and an inspection method thereof.
  • the organic light emitting diode (OLED) display device has the characteristics of self-luminous, high brightness, wide viewing angle, high contrast, flexibility, low energy consumption, etc., and thus has received extensive attention as a new generation display.
  • the way is widely used in mobile phone screens, computer monitors, full color TVs, etc.
  • An OLED display device generally includes a substrate substrate, an OLED device, and a package structure.
  • the OLED device is disposed on the substrate substrate, and the package structure and the substrate substrate together form a package cavity to encapsulate the OLED device in the package cavity. Since OLED devices are very sensitive to oxygen or/and moisture, the packaging effect of OLED display devices is generally required to be high. At present, in the production of an OLED display device, the packaging effect of the OLED display device is monitored or detected to screen out the packaged OLED display device (the OLED display device in which water or/and oxygen has penetrated into the package cavity). Improve the factory pass rate of OLED display devices.
  • An object of the present disclosure is to provide an OLED display device and an inspection method thereof for improving the factory pass rate of the OLED display device.
  • a first aspect of the present disclosure provides an OLED display device including a substrate substrate, an OLED device on the substrate substrate, a package structure encapsulating the OLED device, and between the package structure and the substrate substrate A package cavity is formed, the OLED device being located within the package cavity.
  • the OLED display device further includes a detecting portion located in the package cavity, and the chemical activity of the detecting portion for oxygen is not lower than a chemical activity of the OLED device for oxygen.
  • a second aspect of the present disclosure provides a method for repairing a package effect of an OLED display device, for repairing an OLED display device as described above, including:
  • the OLED display device with a package failure is selected, and in the OLED display device with a package failure, the detection portion is corroded.
  • FIG. 1 is a schematic plan view showing an OLED display device according to an embodiment of the present disclosure
  • Figure 2 is a cross-sectional view taken along the crease line C-C of Figure 1;
  • FIG. 3 is a schematic diagram of image information of a surface of the detection portion of FIG. 1 facing away from the substrate of FIG. 1 according to an embodiment of the present disclosure
  • FIG. 4 is a schematic plan view showing another OLED display device according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of image information of the surface of the detecting portion facing away from the base substrate of FIG. 4;
  • FIG. 6 is a schematic structural view of a package failure portion and a package reinforcement portion corresponding to FIG. 5;
  • FIG. 7 is a schematic diagram of image information of a surface of the detection portion of FIG. 1 facing away from a substrate of FIG. 1 according to another embodiment of the present disclosure
  • FIG. 8 is a schematic plan view showing an OLED display device according to another embodiment of the present disclosure.
  • Figure 9 is a cross-sectional view taken along the imaginary fold line E-E of Figure 8.
  • FIG. 10 is a flowchart of a method for repairing a package effect of an OLED display device according to an embodiment of the present disclosure
  • FIG. 11 is a flowchart of a method for repairing a package effect of an OLED display device according to another embodiment of the present disclosure.
  • FIG. 12 is a flowchart of a method for repairing a package effect of an OLED display device according to still another embodiment of the present disclosure.
  • the detection of the packaging effect of the OLED display device is generally achieved by detecting the appearance of the package structure of the OLED display device (such as the package cover and the sealant) or the display quality of the screen of the OLED display device. For example, in the case where the package structure includes the package cover and the sealant, whether the width of the projection of the sealant of the OLED display device on the substrate is satisfactory, or whether the image display quality of the OLED display device is detected A bad phenomenon, so that the packaged OLED display device is screened out.
  • the reliability and accuracy of detecting the packaging effect of the OLED display device by the above two methods are low.
  • a sealant for an OLED display device on a substrate When the width of the projection is detected, defects such as pores and cracks in the package structure cannot be detected, and thus it is impossible to detect an OLED display device in which water or/and oxygen penetrates into the package cavity through defects such as pores and cracks, thereby causing package failure. .
  • the picture display quality of the OLED display device When the picture display quality of the OLED display device is detected, the OLED display device with good picture display quality but water or oxygen has slowly penetrated into the package cavity cannot be detected, that is, the picture display quality is not good but the package is slightly ineffective. OLED display device. That is to say, when the package effect of the OLED display device is detected by the existing two methods, the OLED display device with insignificant package failure cannot be detected, and thus the factory pass rate of the OLED display device is low.
  • an OLED display device provided by an embodiment of the present disclosure includes a substrate substrate 10 , an OLED device 20 , and a package structure 30 .
  • a package cavity 40 is formed between the package structure 30 and the substrate substrate 10 , and the OLED device 20 is formed.
  • the OLED display device further includes a detecting portion 50 located in the package cavity 40.
  • the chemical activity of the detecting portion 50 for oxygen is the same as the chemical activity of the OLED device 20 for oxygen, or the chemical activity of the detecting portion 50 for oxygen is higher than
  • the chemical activity of the OLED device 20 on oxygen, ie, the chemical activity of the detection portion on oxygen is not lower than the chemical activity of the OLED device on oxygen.
  • the chemical activity of the detection portion 50 on water is not lower than the chemical activity of the OLED device on water.
  • the OLED display device may be packaged in various manners.
  • the OLED display device may be packaged in a conventional package, a thin film package, a FRIT package, or a dam&fill package.
  • the package structure 30 generally includes a package cover and an encapsulant, the package cover is opposite to the substrate 10, and the encapsulant is used to enclose the package cover and the lining
  • the base substrate 10 is bonded together to encapsulate the OLED device 20 within the package cavity 40 in which the package cover, the base substrate 10, and the encapsulant are enclosed.
  • the FRIT package mode is taken as an example for the package of the OLED display device.
  • the OLED display device includes a substrate substrate 10, an OLED device 20, and a package structure 30.
  • the OLED device 20 is disposed on the substrate substrate 10.
  • the package structure 30 includes a package cover 31 and an encapsulant 32.
  • the board 31 is disposed opposite to the base substrate 10.
  • the encapsulant 32 may be a glass glue or a UV glue.
  • the encapsulant 32 is located between the package cover 31 and the base substrate 10.
  • the encapsulant 32 is respectively associated with the package cover 31 and the base substrate. 10 is bonded together such that the package cover 31 and the base substrate 10 are bonded together, and the base substrate 10, the package cover 31 and the encapsulant 32 collectively enclose the package cavity 40.
  • the OLED display device includes a display area 70 corresponding to the OLED device 20, a non-display area 80 surrounding the display area 70, and an encapsulant 32 located within the non-display area 80.
  • the OLED display device further includes a detecting portion 50 located in the package cavity 40.
  • the chemical activity of the detecting portion 50 for water or/and oxygen is the same as the chemical activity of the OLED device 20 for water or/and oxygen, or the detecting portion 50 is for water.
  • the chemical activity of or/and oxygen is higher than the chemical activity of the OLED device 20 on water or/and oxygen.
  • the organic light-emitting layer of the OLED device 20 generally has the highest chemical activity for water or/and oxygen, that is, the organic light-emitting layer of the OLED device 20 is most susceptible to corrosion by water or/and oxygen, therefore,
  • the chemical activity of the detecting portion 50 on water or/and oxygen is the same as the chemical activity of the organic light-emitting layer in the OLED device 20 with respect to water or/and oxygen, or the detecting portion 50 is water or/and
  • the chemical activity of oxygen is higher than the chemical activity of the organic light-emitting layer within the OLED device 20 for water or/and oxygen.
  • the detecting portion 50 is as susceptible to corrosion by water or/and oxygen as the organic light-emitting layer in the OLED device 20, or the detecting portion 50 is more susceptible to water or/and oxygen than the organic light-emitting layer in the OLED device 20. corrosion.
  • the detecting portion 50 When water or/and oxygen outside the OLED display device enters the package cavity 40 through the package structure 30, the detecting portion 50 comes into contact with water or/and oxygen, and the detecting portion 50 corrodes under the action of water or/and oxygen. At this time, the color change or the topography change of the region where the detecting portion 50 is in contact with water or/and oxygen can detect the detecting portion 50 to realize the detection of the packaging effect of the OLED display device.
  • the image information of the surface of the detecting portion 50 (such as the surface of the detecting portion 50 facing the base substrate 10 or the surface facing away from the base substrate 10) can be imaged by a microscope, a camera, or the like, and the color of the detecting portion 50 displayed based on the image information.
  • Judgment, appearance, etc. Whether or not the detecting portion 50 is corroded. Alternatively, it is determined whether the detection portion 50 is corroded by the human eye, thereby determining whether the packaging effect of the OLED display device is good, thereby screening the OLED display device that fails the package.
  • the detecting portion 50 and the OLED device 20 are in the same package cavity 40, and the chemical activity of the detecting portion 50 on water or/and oxygen is matched with the OLED device 20
  • the chemical activity of water or/and oxygen is not lower than the chemical activity of the OLED device 20 on water or/and oxygen, and therefore, water or/and oxygen outside the OLED display device penetrates into the package cavity through the package structure of the OLED display device.
  • the detecting portion 50 comes into contact with water or/and oxygen, the detecting portion 50 is corroded by the action of water or/and oxygen.
  • the packaging effect of the OLED display device it is only necessary to detect the surface of the detecting portion 50 in the package cavity 40, and determine whether the detecting portion 50 is corroded to determine whether the packaging effect of the OLED display device is good, and further The packaged OLED display device is screened out, and the packaged OLED display device is intercepted in the factory, thereby improving the factory pass rate of the OLED display device.
  • the detecting portion 50 since the chemical activity of the detecting portion 50 on water or/and oxygen is not lower than the chemical activity of the OLED device 20 on water or/and oxygen, and thus, when external to the OLED display device When water or/and oxygen penetrates into the package cavity 40 through the package structure of the OLED display device, the detecting portion 50 reacts sensitively to water or/and oxygen, and examines the appearance of the package structure using the OLED display device. Compared with the method for detecting the packaging effect of the OLED display device, the OLED display device with good appearance of the package structure but other defects of the package structure and causing the package failure can be detected, and the display quality of the screen of the OLED display device is detected.
  • an OLED display device in which the package failure is not obvious can be detected.
  • an OLED display device with a progressive package failure can be screened out, thereby improving the accuracy and reliability of detecting the packaging effect of the OLED display device, and improving the predictability of the packaged OLED display device.
  • the chemical activity of the detecting portion for oxygen is not lower than the chemical activity of the OLED device for oxygen.
  • the chemical activity of the detecting portion for water is not lower than the chemical activity of the OLED device for water, that is, the detecting portion 50 is Both the sensitivity of water and oxygen are higher than the sensitivity of the OLED device to water and oxygen, and the conventional method of detecting the packaging effect of the OLED display device by providing a desiccant in the package cavity 40 to detect the encapsulation effect of the OLED display device according to the degree of expansion of the desiccant.
  • the water and oxygen infiltrated into the package cavity can be simultaneously detected to improve the display of the OLED display. The comprehensiveness of the detection of the package effect.
  • the chemical activity of the detecting portion 50 on water or/and oxygen is not lower than the chemical activity of the OLED device 20 on water or/and oxygen, when the OLED display device is externally When the water or/and oxygen penetrates into the package cavity 40 through the package structure of the OLED display device, the detecting portion 50 reacts sensitively to water or/and oxygen, and when the package effect of the OLED display device is detected, only The detection portion 50 in the package cavity 40 needs to be detected, so that the OLED display device with the package failure can be screened out without detecting the OLED device of the OLED display device one by one, thereby saving the packaging effect of the OLED display device. Time of time.
  • the worker or the automatic detecting device may detect the detecting unit 50 by using a microscope, a camera, or the like to determine whether or not the detecting unit 50 is corroded, and determine whether the package of the OLED display device is sealed. Invalid.
  • the image information of the surface of the detecting portion 50 in the package-deactivated OLED display device may be imaged using a microscope, a camera, or the like, and it may be determined whether the detecting portion 50 is corroded based on the image information, and whether the package of the OLED display device is invalid.
  • the measured corrosion ratio of the detecting portion 50 can be determined based on the image information of the surface of the detecting portion 50.
  • FIG. 3 shows image information of the surface of the detecting portion 50 facing away from the base substrate 10 at A in FIG. 1, that is, image information of the upper surface of the detecting portion 50 in FIG.
  • the image information is obtained, the corrosion area of the detecting unit 50 is obtained, and the corrosion area of the detecting unit 50 is compared with the initial area of the detecting unit 50 to obtain the measured corrosion ratio of the detecting unit 50, which can then be based on the screening criteria of the OLED display device. Determine the package failure level of the OLED display device.
  • the package failure level of the OLED display device is one level, and the measured corrosion ratio of the detecting portion 50 is greater than 10% and less than or equal to 30%, the OLED The package failure level of the display device is two, and when the measured corrosion ratio of the detecting portion 50 is greater than 30% and less than or equal to 50%, the package failure level of the OLED display device is three.
  • the OLED display device that fails the package can be directly applied to an environment in which the package effect of the OLED display device is not critical, that is, the OLED display with a package failure
  • the device can be directly downgraded, or the package structure 30 in the packaged OLED display device can be repaired and reinforced to prevent water or/and oxygen outside the OLED display device from continuing to penetrate into the package cavity 40 through the package structure 30, The package structure 30 will then be repaired
  • the OLED display device after the supplement and reinforcement is degraded, thereby reducing the scrap rate of the OLED display device and reducing waste of resources.
  • the relationship between the corrosion ratio of the detecting portion 50 and the life of the OLED display device may be established according to the chemistry of the detecting portion 50.
  • the corrosion ratio of the detecting portion 50 is greater than 0% and less than or When the ratio is 10%, the lifetime of the OLED display device can reach LT95>200h (the lifetime of the OLED display device is greater than 200 hours when the brightness of the OLED display device is attenuated to 98%), and the corrosion ratio of the detecting portion 50 is greater than 10% and less than or When it is equal to 30%, the lifetime of the OLED display device can reach LT95>100h, and when the corrosion ratio of the detecting portion 50 is greater than 30% and less than or equal to 50%, the lifetime of the OLED display device can reach LT95>75h.
  • the screening criteria of the OLED display device are established.
  • the lifetime requirement of the OLED display device is LT95>200h, that is, the OLED display device with a lifetime of LT95>200h is an OLED display device that meets the factory requirements.
  • the corrosion ratio allowed by the detecting portion 50 is greater than 0% and less than or 10%
  • the OLED display device having a corrosion ratio of the detecting portion 50 of more than 0% and less than or equal to 10% is an OLED display device that meets the factory requirements but has a package failure
  • the etching ratio of the detecting portion 50 is greater than 10% of the OLED display.
  • the device does not meet the factory requirements, that is, the OLED display device in which the corrosion ratio of the detecting portion 50 is greater than 10% cannot be shipped.
  • the etching ratio of the detecting portion 50 may be greater than 0% and less than or equal to 10% of the package of the OLED display device.
  • the failure level is set to one level
  • the package failure level of the OLED display device in which the corrosion ratio of the detecting portion 50 is greater than 10% and less than or equal to 30% is set to two, and the corrosion ratio of the detecting portion 50 is greater than 30% and less than or equal to
  • the package failure rating of 50% of OLED display devices is set at three levels.
  • An OLED display device with a package failure level of one level is an OLED display device that meets the factory requirements but has a package failure, that is, the OLED display device with a package failure level of one level can be shipped together with the OLED display device whose detection portion 50 is not corroded, and the package is invalid.
  • the OLED display device of the second or third grade is an OLED display device that does not meet the factory requirements, that is, the OLED display device with a package failure level of two or three stages cannot be shipped.
  • the image information of the surface of the detecting portion 50 is displayed as pitting corrosion, as shown at B in FIG. 3, the number of pitting corrosion in the image information can be acquired.
  • the screening standard of the OLED display device can be detected according to the detection.
  • the number of pitting corrosion on the surface of the portion 50 is established, and then according to the screening criteria of the OLED display device, the package failure of the OLED display device is determined. level.
  • the OLED display device includes a substrate substrate 10, an OLED device 20, a package structure 30, and a detecting portion 50.
  • the OLED device 20 and the detecting portion 50 are both located on the substrate.
  • the OLED device 20 corresponds to the OLED display device display area 70, and the detecting portion 50 is located in the non-display area 80 surrounding the display area 70.
  • the number of the detecting portions 50 is two, and the two detecting portions 50 are respectively located in the display area 70.
  • the package structure 30 includes a package cover 31 and an encapsulant 32.
  • the package cover 31 is opposite to the substrate 10, and the encapsulant 32 is located between the package cover 31 and the substrate 10.
  • the board 31, the base substrate 10 and the encapsulant 32 collectively enclose the OLED device 20 and the detecting portion 50 in the package cavity 40;
  • the detecting portion 50 is a block detecting portion on the base substrate 10, and the detecting portion 50 includes the lining
  • On the base substrate 10 a single layer of magnesium (Mg) metal layer, the orthographic projection of the detecting portion 50 on the base substrate 10 is square, the length of the square is 30 ⁇ m, and the distance between the detecting portion 50 and the encapsulant 32 can be set to 500 ⁇ m.
  • the life expectancy of the above OLED display device is LT95>100h.
  • an organic light emitting layer pair corresponding to the G pixel is compared to the organic light emitting layer corresponding to the R pixel and the B pixel.
  • Water or / and oxygen have the highest sensitivity, that is, G pixels are more susceptible to damage and shrinkage under the influence of water or / and oxygen. Therefore, the lifetime of G pixels can be used as a standard screening standard for OLED display devices. Make it up.
  • the corrosion ratio of the detecting portion 50 when the corrosion ratio of the detecting portion 50 is less than or equal to 30%, the life of the OLED display device satisfies the life requirement, that is, the OLED display device meets the factory requirements, but the OLED The package of the display device fails, and the package failure level of the OLED display device is set to one level; when the corrosion ratio of the detecting portion 50 is greater than 30%, the life of the OLED display device does not meet the life requirement, and the OLED display device does not meet the factory requirements.
  • the OLED display device of the OLED display device in which the etching ratio of the detecting portion 50 is greater than 30% and less than or equal to 40% can be set to two levels, and the etching ratio of the detecting portion 50 is greater than 40% and less than or equal to 50%.
  • the package failure level is set to three levels.
  • the detecting unit 50 may be first detected to determine whether the detecting portion 50 is corroded, and the OLED display device that is not corroded by the detecting portion 50 has an excellent packaging effect, and may directly enter the next step. Or directly from the factory, the OLED display device with the detecting portion 50 being etched is screened out, that is, the OLED display device with the package failure is screened out, and then the OLED display device with the package failure is classified.
  • the measured corrosion ratio of the detecting portion 50 in the package-deactivated OLED display device may be obtained first, and then the package failure level of the OLED display device is determined according to the measured corrosion ratio of the detecting portion 50 and the screening standard of the OLED display device, for example, the detecting portion 50
  • the package failure level of the OLED display device is one level, and when the measured corrosion ratio of the detecting portion 50 falls within 30% to 40%, the package failure level of the OLED display device is two.
  • the package failure level of the OLED display device is three.
  • the material of the detecting portion 50 can be selected according to actual needs. For example, for an OLED display device in which the sensitivity of the OLED device 20 to water is high and the sensitivity to oxygen is low, the material of the detecting portion 50 can be selected to satisfy the water. a highly sensitive material; for an OLED display device in which the OLED device 20 is highly sensitive to oxygen and less sensitive to water, the material of the detecting portion 50 may be selected to satisfy a material having high sensitivity to oxygen; The OLED display device in which the device 20 is highly sensitive to water and oxygen, the material of the detecting portion 50 needs to select a material that satisfies the sensitivity to water and oxygen.
  • the OLED display device includes a display area 70 and a non-display area 80 surrounding the display area 70.
  • the non-display area 80 is provided with a repairing portion 60, and the repairing portion 60
  • the package structure 30 is repaired after the detecting portion 50 detects that the package of the OLED display device has failed.
  • the repairing portion 60 may be an annular repairing portion surrounding the display area 70.
  • the repairing portion 60 may be surrounded by a plurality of strip-shaped repairing portions, and the plurality of strip-shaped repairing portions collectively form a ring.
  • the repairing portion 60 may be surrounded by a plurality of block-like repairing portions. A plurality of block repair portions are evenly distributed on the annular track surrounding the display area 70.
  • the repairing portion 60 is an annular repairing portion, and the annular repairing portion will be described in detail below as an example.
  • the OLED display device is packaged in a FRIT package.
  • the OLED display device includes a substrate substrate 10, an OLED device 20, a package structure 30, and a detecting portion 50.
  • the OLED device 20 is located on the substrate.
  • the package structure 30 includes a package cover plate 31 and a package adhesive 32.
  • the package cover plate 31 is disposed opposite to the base substrate 10.
  • the package adhesive 32 may be a glass glue or a UV glue.
  • the package adhesive 32 is located on the package cover 31 and the lining. Between the base substrates 10, the encapsulant 32 is bonded to the package cover 31 and the base substrate 10, respectively, thereby bonding the package cover 31 and the base substrate 10 together, the base substrate 10, the package cover 31 and the package.
  • the glue 32 collectively encloses the package cavity 40, encapsulating the OLED device 20 and the detection portion 50 within the package cavity 40.
  • the OLED display device includes a display area 70 corresponding to the OLED device 20, a non-display area 80 surrounding the display area 70, and an encapsulant 32 located in the non-display area 80.
  • the detection unit 50 may be first detected by a worker or an automatic detecting device using a microscope, a camera, or the like, to determine whether the detecting portion 50 is corroded, and the OLED display device with a package failure is selected, and the package is ineffective.
  • the detecting portion 50 in the OLED display device is corroded.
  • the annular repair portion in the OLED display device with the package failure may be processed to melt the annular repair portion under specific conditions, for example, the annular repair portion is laser processed. Melting under ultraviolet treatment, infrared treatment or heat treatment to repair the package structure 30.
  • the package failure level of the OLED display device can be determined according to the measured corrosion ratio of the detecting portion 50 and the screening standard of the OLED display device, and the OLED display that meets the factory requirements but has a package failure.
  • the device for example, for an OLED display device with a package failure level of one level, the OLED display device meets the factory requirements, but the detecting portion 50 has been corroded, indicating that water or/and oxygen penetrates into the package cavity 40 through the encapsulant 32, that is, the encapsulant 32 defects occur
  • the entire annular repairing portion can be treated, so that the entire annular repairing portion is melted under certain conditions to form an annular reinforcing portion, and the annular reinforcing portion is fused with the encapsulant 32 to repair the encapsulant 32
  • the package structure 30 is repaired by the annular repair portion, and water or/and oxygen outside the OLED display device is prevented from continuing to penetrate into the package cavity 40 through the package structure 30.
  • the detecting portion 50 is an annular detecting portion that surrounds the display region 70 or is disposed along an edge of the display region 70.
  • the detecting portion 50 includes a plurality of block-shaped detecting portions that are evenly distributed on the annular track surrounding the display region 70 or uniformly distributed on the edge of the display region 70.
  • the package failure portion 33 of the package structure 30 can be determined based on the image information of the surface of the overall detecting portion 50.
  • FIG. 5 shows image information of the surface of the detecting portion 50 facing away from the base substrate 10. As can be seen from FIG. 5, a portion 52 of the detecting portion 50 in FIG. 5 is etched. Referring to FIG.
  • the portion of the encapsulant 32 corresponding to the portion where the detecting portion 50 is etched in FIG. 4 is the package failing portion 33.
  • the portion corresponding to the package failure portion 33 of the annular repair portion 60 is processed, and the portion corresponding to the package failure portion 33 is formed into a package reinforcement portion 61, and the package reinforcement portion is formed. 61 is fused with the package failure portion 33 to repair the package failure portion 33 to prevent water or/and oxygen outside the OLED display device from continuing to penetrate into the package cavity 40 through the package failure portion 33.
  • the package structure 30 is repaired by the repairing portion 60 to improve the packaging effect of the OLED display device that meets the factory requirements but has a package failure, and prevents the OLED display device that meets the factory requirements but has a package failure, and the life of the OLED display device is rapidly shortened during use, thereby improving the OLED. Shows the quality of the device and reduces user complaints.
  • the entire ring repair can also be performed.
  • the portion is processed to melt the entire annular repair portion under specific conditions to form an annular reinforcing portion, and the annular reinforcing portion is fused with the encapsulant 32 to repair the encapsulant 32 to realize the encapsulation structure 30 through the annular repair portion. Repair is performed to prevent water or/and oxygen outside the OLED display device from continuing to penetrate into the package cavity 40 through the package structure 30.
  • the package structure 30 is repaired by the repairing portion 60 to improve the packaging effect of the packaged OLED display device, so as to reduce the use of the OLED display device that does not meet the factory requirements, reduce the scrap rate of the OLED display device, and reduce resource waste. .
  • whether the package structure 30 of the OLED display device is repaired may be determined according to the package failure level of the OLED display device and the repair standard of the OLED display device. For example, for an OLED display device with a package failure level of three, when it is judged incorrect according to the repairing standard of the OLED display device When the package structure 30 of the OLED display device is repaired, the OLED display device can be directly scrapped to prevent an increase in the production cost of the OLED display device when the package structure 30 of the OLED display device is repaired.
  • the interval between the inspection of the OLED display device and the packaging effect of the OLED display device 30 can be checked according to the package failure level of the OLED display device, and the package of the OLED display device can be packaged.
  • the repairing portion 60 is located in the non-display area 80.
  • the repairing portion 60 may be disposed in the package cavity 40 or may be disposed outside the package cavity 40, that is, the repairing portion 60 may be disposed on the package adhesive.
  • the outside of the encapsulant 32 can also be provided.
  • the repairing portion 60 is located in the package cavity 40, and when the repairing portion 60 is an annular repairing portion, the detecting portion 50 is located inside the annular repairing portion.
  • the package structure 30 includes a package cover plate 31 and a package adhesive 32 .
  • the package cover plate 31 is disposed opposite to the base substrate 10 , and the package adhesive 32 is located on the package cover plate 31 and the base substrate 10 . Between the base substrate 10, the package cover 31 and the encapsulant 32, the package cavity 40 is enclosed; the OLED device 20 is disposed on the base substrate 10, and the OLED device 20 is located in the package cavity 40; the OLED display device includes Display area 70 and non-display area 80, display area 70 corresponds to OLED device 20, non-display area 80 surrounds display area 70, encapsulant 32 is located in non-display area 80, and encapsulant 32 surrounds display area 70; repair portion 60 is located In the package cavity 40, the repairing portion 60 is an annular repair portion, and the annular repair portion is disposed around the display region 70 and the detecting portion 50.
  • the repairing portion 60 is disposed in the package cavity 40. After the repairing portion 60 is processed to repair the package structure 30, the repairing portion 60 forms a package reinforcing portion, and the package reinforcing portion repairs the package structure 30 in the package cavity 40. And reinforced, the water or/and oxygen remaining in the package structure 30 can be isolated from the package cavity 40, preventing water or/and oxygen remaining in the package structure 30 from penetrating into the package cavity 40, and reducing the OLED device 20 and Risk of contact with water or / and oxygen.
  • the material of the repairing portion 60 may be various.
  • the material of the repairing portion 60 may be a glass powder or a polymer precursor, and the glass powder or polymer precursor is subjected to laser treatment, ultraviolet treatment, infrared treatment or heating. After the treatment, a melting and solidification phenomenon occurs, and is fused with the package structure 30 to repair the package structure 30.
  • the material of the repairing portion 60 can also be selected to have higher water after post-treatment. Other materials that have barrier capabilities, oxygen barrier capabilities, or water and oxygen barrier capabilities.
  • the repairing unit 60 is processed to melt the repairing unit 60 under specific conditions, and when the package structure 30 is repaired, the process of processing the repairing portion 60 can be determined according to the material of the repairing portion 60.
  • the OLED display device includes a display area 70 and a non-display area 80.
  • the non-display area 80 surrounds the display area 70.
  • the detecting portion 50 is located in the same package cavity 40 as the OLED device 20.
  • the detecting portion 50 can be It is located in the non-display area 80, and may also be located in the display area 70, which will be described below with reference to specific examples, but the invention is not limited to these specific examples.
  • the OLED display device includes a display area 70 and a non-display area 80 surrounding the display area 70 ; the detecting portion 50 is located in the non-display area 80 .
  • the detection portion 50 is disposed in the non-display area 80, and the detection portion 50 can be prevented from blocking the light output from the display area 70.
  • the detecting portion 50 may be disposed on a surface of the base substrate 10 on which the OLED device 20 is disposed.
  • the OLED display device shown in FIG. 1 and FIG. 2 is taken as an example.
  • the OLED display device includes a base substrate 10, an OLED device 20, a package structure 30, a detecting portion 50, and the OLED device 20 and the detecting portion 50 are located.
  • the package structure 30 includes a package cover 31 and an encapsulant 32.
  • the package cover 31 is located above the substrate 10 in FIG. 2, and the encapsulant 32 is located on the substrate 10 and the package.
  • the cover plates 31, and the encapsulant 32 is bonded to the base substrate 10 and the package cover 31, respectively, and the OLED device 20 and the detecting portion 50 are packaged on the base substrate 10, the package cover 31, and the encapsulant 32. Enclosed within the package cavity 40.
  • the OLED device 20 generally includes two electrodes and an organic light emitting layer between the two electrodes, and the two electrodes and the organic light emitting layer constitute a sandwich structure.
  • One of the electrodes of the OLED device 20 may employ a metal electrode, and when the detecting portion 50 is formed of a metal material, the detecting portion 50 and the metal electrode of the OLED device 20 may be formed in one patterning process. For example, when the metal electrode and the detecting portion 50 are formed, the electrode metal layer may be deposited first, and then the detecting portion metal layer may be deposited, and then the metal electrode and the detecting portion 50 may be patterned by using a mask to form the metal electrode and the detecting portion. 50.
  • the metal electrode and the detecting portion 50 are formed in one patterning process.
  • the electrode metal layer may be deposited first, and then a mask is used simultaneously. Patterning the metal electrode and the detecting portion 50 to form a metal electrode And the detecting portion 50, the metal electrode and the detecting portion 50 are formed in one patterning process.
  • the detecting portion 50 is a metal detecting portion
  • the detecting portion 50 and the metal electrode of the OLED device 20 are formed in one patterning process, which can reduce the manufacturing process steps of the OLED display device, save time, and reduce the number of masks used. cut costs.
  • the OLED display device further includes an OLED module 51 disposed in a region of the base substrate 10 corresponding to the non-display area 80, and the OLED module 51 is connected to a driving circuit of the OLED display device.
  • the OLED module 51 is used to simulate the operating state of the OLED device 20; the detecting portion 50 is located on the surface of the OLED module 51 facing away from the base substrate 10.
  • An OLED module 51 is disposed in a region corresponding to the non-display area 80.
  • the OLED module 51 has the same structure as the OLED device 20, and the OLED module 51 is connected to the driving circuit of the OLED display device.
  • the OLED module 51 also operates and generates light and heat; the detecting portion 50 is disposed on the surface of the OLED module 51 facing away from the base substrate 10. When the OLED display device operates, the detecting portion 50 is also subjected to light and heat generated by the OLED module 51. Impact.
  • the OLED device 20 when the OLED display device is in operation, the OLED device 20 generates light and heat, and thus, when water or/and oxygen outside the OLED display device penetrates into the package cavity 40 through the package structure 30, the OLED device 20 is exposed to light and heat as well.
  • the effect of water or/and oxygen, i.e., the operating environment of OLED device 20, is typically complex, making OLED device 20 more susceptible to corrosion by water or/and oxygen.
  • the OLED module 51 is disposed in a region corresponding to the non-display area 80 of the base substrate 10, and the OLED module 51 is connected to the driving circuit of the OLED display device, and the detecting portion 50 is disposed on the side of the OLED module 51 facing away from the base substrate 10.
  • the OLED module 51 when the OLED display device is in operation, the OLED module 51 generates light and heat for simulating the working state of the OLED device 20, and the detecting portion 50 is affected by the light and heat generated by the OLED module 51, when the water outside the OLED display device or / and oxygen penetrate into the package cavity 40 through the package structure 30, the detection portion 50 is affected by light and heat and water or / and oxygen, that is, when the OLED display device operates, the environment in which the detection portion 50 is located can be close to the OLED The environment in which the device 20 is located, or the environment in which the detecting portion 50 is located, is the same as the environment in which the OLED device 20 is located.
  • the detection result can accurately reflect the state of the OLED device 20 during operation, and it can be understood that the OLED device 20 is affected by water or/and oxygen during operation, thereby further improving the factory pass rate of the OLED display device. .
  • the detecting portions 50 are all disposed on the base substrate 10 toward the package structure 30.
  • the detecting portion 50 may also be disposed on the surface of the package cover 31 facing the base substrate 10. .
  • the detection unit 50 may have various configurations.
  • the detection unit 50 may be a block-shaped detection unit, and the cross-sectional shape of the detection unit 50 may be a rectangle or a circle.
  • the detecting unit 50 is a block detecting unit
  • the number of the detecting units 50 may be one or plural, and when the number of the detecting units 50 is plural, the plurality of detecting units 50 are evenly distributed around the display area 70, for example, As shown in FIG. 1, the number of the detecting portions 50 is two, and the sectional shape of the display region 70 of the OLED display device is a rectangle, and the two detecting portions 50 may be located on a pair of diagonal sides of the display region 70.
  • the detecting portion 50 may also be an annular detecting portion, and the detecting portion 50 is disposed around the display area 70. At this time, the detecting portion 50 may detect each of the package structures 30 surrounding the OLED device 20. Partially infiltrated water or/and oxygen to facilitate confirmation of the package failure portion 33 of the package structure 30 facilitates repair of the package failure portion 33 of the package structure 30.
  • the detecting portion 50 surrounds the display region 70, that is, the detecting portion 50 surrounds the OLED device 20, when water or/and oxygen outside the OLED display device penetrates into the package cavity 40 through the package structure 30, water or/and oxygen first Contact with the detecting portion 50, and thus, the amount of water or/and oxygen directly contacting the OLED device 20 can be reduced, thereby reducing the risk of corrosion of the OLED device 20.
  • a corresponding cross-sectional view of the OLED display device shown in FIG. 4 may refer to a cross-sectional view of the OLED display device shown in FIG. 2.
  • the detecting unit 50 may also be a strip detecting unit 50.
  • the detecting portion 50 can be disposed in the non-display area 80 of the OLED display device. In other embodiments, the detecting portion 50 can also be disposed in the display area 70 of the OLED display device.
  • an OLED display device provided by an embodiment of the present disclosure includes a display area 70 and a non-display area 80 surrounding the display area 70 .
  • the display area 70 includes a plurality of pixel units arranged in an array; the detecting portion 50 is disposed in a non-opening area of the display area 70.
  • the detecting portion 50 is disposed in the display region 70, and the degree of corrosion of the OLED device 20 can be detected by the detecting portion 50, thereby understanding the extent to which the OLED device 20 located at the center of the display region 70 is damaged.
  • the detecting portion 50 is disposed in the non-opening region of the display region 70. Therefore, the orthographic projection of the detecting portion 50 on the base substrate 10 does not overlap with the orthographic projection of the pixel unit on the base substrate 10, and the OLED display device operates. The detecting unit 50 does not block the light emitted from the display area 70.
  • the detecting portion 50 is disposed in the display area 70, and the detecting portion 50 may be disposed on a side of the base substrate 10 facing the package structure 30.
  • the OLED display device may further include an OLED covering A protective layer (not shown in FIG. 8) on the device 20, the detecting portion 50 is located on the protective layer.
  • the detecting portion 50 may also be disposed on the surface of the package cover 31 facing the substrate 10.
  • the detection unit 50 may have various configurations.
  • the detection unit 50 may be a strip detection unit, or the detection unit 50 may be an annular detection unit, or the detection unit 50 may be It is a block detection unit.
  • the number of the detecting portions 50 may be set according to actual needs.
  • the number of the detecting portions 50 may be one.
  • the detecting portion 50 may correspond to the middle portion of the display region 70.
  • the number of the detecting portions 50 may be At this time, the plurality of detecting portions 50 may be uniformly distributed in the display region 70.
  • the detecting portion 50 may be composed of at least one layered structure.
  • the detecting portion 50 may be composed of a layered structure, that is, when the detecting portion 50 is formed, only one layer is formed.
  • the detecting portion layer; or the detecting portion 50 may be composed of a plurality of layered structures, that is, when the detecting portion 50 is formed, it is necessary to form a multilayer detecting portion layer.
  • the material of the detecting portion 50 can be variously selected.
  • the material of the detecting portion 50 can be selected from metals such as magnesium (Mg), aluminum (A1) and the like.
  • the material of the detecting portion 50 may also be an organic material.
  • the sensitivity of the organic material to water is higher than or equal to the sensitivity of the organic light emitting layer of the OLED device 20 to water, or the sensitivity of the organic material to oxygen is higher than or equal to that of the OLED device.
  • the sensitivity of the organic light-emitting layer of 20 to oxygen, or the sensitivity of the organic material to water and oxygen is higher than or equal to the sensitivity of the organic light-emitting layer of the OLED device 20 to water and oxygen.
  • the material of the detecting portion 50 may also be a fluorescent probe molecule.
  • the detecting portion 50 may be prepared by an evaporation process or an inkjet printing process.
  • the detecting portion and the OLED device are in the same package cavity, and the chemical activity of the detecting portion for oxygen is not lower than the chemical activity of the OLED device for oxygen. Further, the chemical activity of the detection portion on water may also be not lower than the chemical activity of the OLED device on water. Therefore, when water or/and oxygen outside the OLED display device penetrates into the package cavity through the package structure of the OLED display device, after the detecting portion contacts water or/and oxygen, The detecting portion may corrode under the action of water or/and oxygen; when detecting the packaging effect of the OLED display device, it is only necessary to detect the detecting portion in the package cavity, and determine whether the detecting portion is corroded or according to the detection.
  • the corrosion condition of the part can determine whether there is water or/and oxygen infiltrating into the package cavity to detect whether the packaging effect of the OLED display device is good, and then the OLED display device that fails the package is screened out, and the OLED display device that fails the package is detected. Intercepted in the factory, thereby improving the factory pass rate of the OLED display device.
  • an embodiment of the present disclosure further provides a method for repairing an encapsulation effect of an OLED display device, which is used to repair an OLED display device according to the above embodiment.
  • Step S100 detecting the detecting unit to determine whether the detecting unit is corroded
  • step S200 the OLED display device with the package failure is screened out, and in the OLED display device with the package failure, the detection portion is corroded.
  • the surface of the detecting portion may be observed by an automatic detecting device or a worker using a microscope, a camera, or the like, for example, observing a color change of the surface of the detecting portion,
  • the morphological change or the like determines whether the detecting portion is corroded; when it is determined that the detecting portion is corroded, indicating that the package of the OLED display device fails, the OLED display device with the package failure is screened out, and the OLED display device that fails the package is prevented from leaving the factory.
  • the worker or the automatic detecting device may first observe the detecting portion by using a microscope, a camera, or the like, determine whether the detecting portion is corroded, and determine whether the package of the OLED display device is sealed.
  • step S100 detecting the detecting unit, and determining whether the detecting portion is corroded includes:
  • Step S110 acquiring image information of the surface of the detecting portion facing or facing away from the substrate substrate;
  • step S120 based on the image information, it is determined whether or not the detecting portion is corroded.
  • the image information of the surface of the detecting portion can be captured by a microscope, a camera, or the like by an automatic detecting device or a worker.
  • image information of the detecting portion facing away from the surface of the base substrate can be captured, or The image information of the detecting portion toward the surface of the substrate is photographed; and then, based on the image information of the surface of the detecting portion, it is determined whether or not the detecting portion is corroded, for example, according to the color change of the detecting portion displayed in the image information of the surface of the detecting portion, The topography changes, etc., to determine whether the detecting portion is corroded to determine whether the package of the OLED display device has failed.
  • the OLED display device includes a display area and a non-display area surrounding the display area, and the non-display area is provided with an annular repairing portion surrounding the display area; in step S200, the package is invalidated.
  • the method for repairing the packaging effect of the OLED display device further includes:
  • Step S300 determining whether to repair the package structure of the OLED display device with a package failure
  • Step S400 When repairing the package structure of the package failure OLED display device, the annular repair portion is formed into an annular reinforcement portion, and the annular reinforcement portion is fused with the package structure.
  • the OLED display device with the package failure may be first evaluated to determine whether the package structure of the packaged OLED display device is repaired.
  • the annular repairing part is processed, for example, laser processing, ultraviolet processing, infrared processing, or heat treatment is performed on the annular repairing portion, and the annular repairing portion is melted to form an annular reinforcing portion, which is annular.
  • the reinforcement portion is fused with the package structure to repair the package structure of the OLED display device with a package failure.
  • the method for repairing the packaging effect of the OLED display device further includes:
  • Step S300 determining whether to repair the package structure of the OLED display device with a package failure
  • Step S500 when repairing a package structure of the packaged OLED display device, determining, according to the image information, a package failure portion of the package structure in the package failure OLED display device;
  • Step S600 forming a portion of the repair portion corresponding to the package failure portion to form a package reinforcement portion, and the package reinforcement portion is merged with the package failure portion.
  • the OLED display device with the package failure may be evaluated first to determine whether the package structure of the OLED display device with the package failure is repaired.
  • the package failure portion of the package structure in the package failure LED is determined according to image information of the detection portion facing or facing away from the surface of the substrate substrate; and then the portion corresponding to the repair portion and the package failure portion is processed, for example Laser processing, ultraviolet processing, infrared processing or heat treatment is performed on the portion corresponding to the repairing portion and the package failure portion, so that the portion corresponding to the repairing portion and the package failure portion is melted to form a package reinforcing portion, and the package reinforcing portion is integrated with the package failure portion.
  • the package structure of the OLED display device with the package failure is repaired.
  • the portion corresponding to the repair portion and the package failure portion is processed to form a package reinforcement portion, and the package reinforcement portion and the package failure portion are merged to realize the OLED that fails the package.
  • the package structure of the display device is repaired, and the package structure of the OLED display device that fails the package can be saved compared with the method of repairing the package structure of the package failure device. Time and save on repair costs.
  • step S300 determining whether to repair the package structure of the packaged OLED display device includes:
  • Step S310 acquiring a corrosion area of the detecting portion according to the image information
  • Step S320 obtaining the measured corrosion ratio of the detecting portion according to the corrosion area of the detecting portion and the initial area of the detecting portion;
  • Step S330 determining a package failure level of the OLED display device according to the measured corrosion ratio of the detecting portion and the screening standard of the OLED display device;
  • Step S340 Determine whether to repair the package structure of the packaged OLED display device according to the package failure level of the OLED display device and the repairing standard of the OLED display device.
  • the display device comprises: an OLED display device that meets the factory requirements and an OLED display device that does not meet the factory requirements.
  • the life of the OLED display device meeting the factory requirements can reach the life requirement, and the life of the OLED display device that does not meet the factory requirements cannot meet the life requirement.
  • the step of repairing the package structure may be completely performed, that is, the package structure of all the OLED display devices meeting the factory requirements but the package failure is repaired to prevent water or/or outside the OLED display device. And oxygen continues to infiltrate into the package cavity through the package structure, thereby preventing the OLED display device from infiltrating into the package cavity through the package structure due to water or/and oxygen during use, thereby causing a sharp drop in the display quality of the OLED display device, thereby reducing the use.
  • oxygen continues to infiltrate into the package cavity through the package structure, thereby preventing the OLED display device from infiltrating into the package cavity through the package structure due to water or/and oxygen during use, thereby causing a sharp drop in the display quality of the OLED display device, thereby reducing the use.
  • the package structure of the OLED display device that does not meet the factory requirements
  • the picture display quality of the OLED display device does not meet the requirements of the degradation product, that is, the OLED display may not be degraded after the package structure of the OLED display device is repaired.
  • the device can take measures to directly scrap.
  • the method for repairing the packaging effect of the OLED display device provided by the embodiment of the present disclosure further includes: Step S100: Step S100, detecting the detecting portion, and determining whether the detecting portion is corroded.
  • Step S10 establishing a relationship between a corrosion ratio of the detecting portion and a life of the OLED display device according to a chemical property of the detecting portion;
  • Step S20 establishing a screening standard of the OLED display device according to the relationship between the corrosion ratio of the detecting portion and the life of the OLED display device, and the life expectancy of the OLED display device.
  • the method for repairing the packaging effect of the OLED display device provided by the embodiment of the present disclosure further includes: Step S100: Step S100, detecting the detecting portion, and determining whether the detecting portion is corroded.
  • Step S30 according to the screening standard of the OLED display device, checking the packaging effect of the OLED display device and repairing the package structure of the OLED display device The repair process of repairing the package structure of the OLED display device at intervals, and establishing a repair standard for the OLED display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种OLED显示装置及其封装效果的检修方法,涉及显示技术领域,以提高OLED显示装置的出厂合格率。所述OLED显示装置包括衬底基板(10)、OLED器件(20)、封装结构(30),封装结构(30)与衬底基板(10)之间形成封装空腔(40),OLED器件(20)位于封装空腔(40)内;所述OLED显示装置还包括检测部(50),检测部(50)位于封装空腔(40)内,检测部(50)对氧的化学活性不低于OLED器件(20)对氧的化学活性。

Description

OLED显示装置及其封装效果的检修方法 技术领域
本公开涉及显示技术领域,尤其涉及一种OLED显示装置及其封装效果的检修方法。
背景技术
有机电致发光(Organic Light Emitting Diode,以下简称OLED)显示装置具备自发光、高亮度、宽视角、高对比度、可挠曲、低能耗等特性,因此受到广泛的关注,并作为新一代的显示方式,被广泛应用在手机屏幕、电脑显示器、全彩电视等。
OLED显示装置通常包括衬底基板、OLED器件和封装结构,OLED器件位于衬底基板上,封装结构与衬底基板共同形成封装空腔,将OLED器件封装在封装空腔内。由于OLED器件对氧或/和水汽非常敏感,因此,OLED显示装置的封装效果通常要求较高。目前,在生产OLED显示装置时,会对OLED显示装置的封装效果进行监控或检测,以将封装失效的OLED显示装置(水或/和氧已渗入封装空腔内的OLED显示装置)筛选出来,提高OLED显示装置的出厂合格率。
发明内容
本公开的目的在于提供一种OLED显示装置及其封装效果的检修方法,用于提高OLED显示装置的出厂合格率。
本公开的第一方面提供一种OLED显示装置,包括衬底基板、位于所述衬底基板上的OLED器件、封装所述OLED器件的封装结构,所述封装结构与所述衬底基板之间形成封装空腔,所述OLED器件位于所述封装空腔内。所述OLED显示装置还包括检测部,所述检测部位于所述封装空腔内,并且所述检测部对氧的化学活性不低于所述OLED器件对氧的化学活性。
本公开的第二方面提供一种OLED显示装置的封装效果的检修方法,用于检修如以上所述的OLED显示装置,包括:
对检测部进行检测,判断所述检测部是否被腐蚀;
筛选出封装失效的OLED显示装置,封装失效的OLED显示装置中,所述检测部被腐蚀。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开实施例提供的一种OLED显示装置的平面结构示意图;
图2为沿着图1中虚折线C-C得到的截面图;
图3为根据本公开的一个实施例的图1中A处检测部背向衬底基板的表面的图像信息的示意图;
图4为本公开实施例提供的另一种OLED显示装置的平面结构示意图;
图5为图4中检测部背向衬底基板的表面的图像信息的示意图;
图6为与图5对应的封装失效部和封装加固部的结构示意图;
图7为根据本公开的另一实施例的图1中A处检测部背向衬底基板的表面的图像信息的示意图;
图8为本公开的另一实施例提供的OLED显示装置的平面结构示意图;
图9为沿着图8中的虚折线E-E得到的截面图;
图10为本公开的一个实施例提供的OLED显示装置的封装效果的检修方法的流程图;
图11为本公开的另一实施例提供的OLED显示装置的封装效果的检修方法的流程图;
图12为本公开的又一实施例提供的OLED显示装置的封装效果的检修方法的流程图。
具体实施方式
目前,对OLED显示装置的封装效果的检测,通常是通过对OLED显示装置的封装结构(如封装盖板和封框胶)的外观或OLED显示装置的画面显示质量进行检测来实现的。例如,在封装结构包括封装盖板和封框胶的情况中,检测OLED显示装置的封框胶在衬底基板上的投影的宽度是否符合要求,或者,检测OLED显示装置的画面显示质量是否有不良的现象,从而将封装失效的OLED显示装置筛选出来。然而,采用上述两种方式对OLED显示装置的封装效果进行检测的可靠性和精度较低。例如,对OLED显示装置的封框胶在衬底基板上的 投影的宽度进行检测时,则无法检测到封装结构中存在的气孔、裂纹等缺陷,因而也无法检测到水或/和氧经气孔、裂纹等缺陷渗入封装空腔而导致封装失效的OLED显示装置。对OLED显示装置的画面显示质量进行检测时,则无法检测到画面显示质量良好但水或/氧已缓慢渗入封装空腔内的OLED显示装置,即无法检测到画面显示质量良好但封装有轻微失效的OLED显示装置。也就是说,采用已有的两种方式对OLED显示装置的封装效果进行检测时,无法检测封装失效不明显的OLED显示装置,因而导致OLED显示装置的出厂合格率较低。
为了进一步说明本公开实施例提供的OLED显示装置及其封装效果的检修方法,下面结合说明书附图进行详细描述。其中,各个附图中的附图标记对应的特征如下:附图标记:
10-衬底基板,20-OLED器件,
30-封装结构,31-封装盖板,
32-封框胶,33-封装失效部,
40-封装空腔,50-检测部,
51-OLED模块,52-腐蚀区,
53-未腐蚀区,60-修补部,
61-封装加固部,70-显示区,
80-非显示区。
请参阅图1和图2,本公开实施例提供的OLED显示装置包括衬底基板10、OLED器件20和封装结构30,封装结构30与衬底基板10之间形成封装空腔40,OLED器件20位于封装空腔40内。OLED显示装置还包括检测部50,检测部50位于封装空腔40内,检测部50对氧的化学活性与OLED器件20对氧的化学活性相同,或者,检测部50对氧的化学活性高于OLED器件20对氧的化学活性,即检测部对氧的化学活性不低于OLED器件对氧的化学活性。进一步地,在另外的实施例中,检测部50对水的化学活性也不低于OLED器件对水的化学活性。
上述实施例中,OLED显示装置的封装方式可以为多种,例如,OLED显示装置的封装方式可以采用传统封装方式、薄膜封装方式、FRIT封装方式或dam&fill封装方式。封装结构30通常包括封装盖板和封装胶,封装盖板与衬底基板10相对,封装胶用于将封装盖板和衬 底基板10粘接在一起,以将OLED器件20封装在封装盖板、衬底基板10和封装胶共同围成的封装空腔40内。
在本公开实施例中,以OLED显示装置的封装方式采用FRIT封装方式为例进行说明。
请参阅图1和图2,OLED显示装置包括衬底基板10、OLED器件20和封装结构30,OLED器件20位于衬底基板10上;封装结构30包括封装盖板31和封装胶32,封装盖板31与衬底基板10相对设置,封装胶32可以为玻璃胶或UV胶,封装胶32位于封装盖板31与衬底基板10之间,封装胶32分别与封装盖板31和衬底基板10粘接在一起,从而使封装盖板31和衬底基板10粘接在一起,衬底基板10、封装盖板31和封装胶32共同围成封装空腔40。在实际应用中,OLED显示装置包括显示区70和非显示区80,显示区70与OLED器件20对应,非显示区80环绕显示区70,封装胶32位于非显示区80内。
OLED显示装置还包括位于封装空腔40内的检测部50,检测部50对水或/和氧的化学活性与OLED器件20对水或/和氧的化学活性相同,或者,检测部50对水或/和氧的化学活性高于OLED器件20对水或/和氧的化学活性。在实际应用中,OLED器件20内,OLED器件20的有机发光层对水或/和氧的化学活性通常最高,即OLED器件20的有机发光层最容易受到水或/和氧的腐蚀,因此,在本公开的实施例中,检测部50对水或/和氧的化学活性与OLED器件20内的有机发光层对水或/和氧的化学活性相同,或者,检测部50对水或/和氧的化学活性高于OLED器件20内的有机发光层对水或/和氧的化学活性。也就是说,检测部50与OLED器件20内的有机发光层一样容易受到水或/和氧的腐蚀,或者,检测部50比OLED器件20内的有机发光层更容易受到水或/和氧的腐蚀。
当OLED显示装置外部的水或/和氧透过封装结构30进入封装空腔40内时,检测部50接触到水或/和氧,检测部50在水或/和氧的作用下发生腐蚀,此时,检测部50接触到水或/和氧的区域会发生颜色变化或形貌变化可以对检测部50进行检测,以实现对OLED显示装置的封装效果的检测。例如,可以通过显微镜、照相机等拍摄检测部50的表面(如检测部50朝向衬底基板10或背向衬底基板10的表面)的图像信息,根据该图像信息所显示的检测部50的颜色、形貌等,以判断 检测部50是否被腐蚀。替代性地,通过人眼查看检测部50是否被腐蚀,进而判断OLED显示装置的封装效果是否良好,从而将封装失效的OLED显示装置筛选出来。
由上述可知,在本公开实施例提供的OLED显示装置中,检测部50与OLED器件20处在同一封装空腔40内,且检测部50对水或/和氧的化学活性与OLED器件20对水或/和氧的化学活性相同不低于OLED器件20对水或/和氧的化学活性,因此,当OLED显示装置外部的水或/和氧透过OLED显示装置的封装结构渗入封装空腔40内时,检测部50接触到水或/和氧后,检测部50在水或/和氧的作用下会发生腐蚀。欲对OLED显示装置的封装效果进行检测,则只需要对封装空腔40内的检测部50的表面进行检测,并判断检测部50是否被腐蚀,以确定OLED显示装置的封装效果是否良好,进而将封装失效的OLED显示装置筛选出来,将封装失效的OLED显示装置拦截在厂内,从而提高OLED显示装置的出厂合格率。
另外,在本公开实施例提供的显示装置中,由于检测部50对水或/和氧的化学活性不低于OLED器件20对水或/和氧的化学活性,因而,当OLED显示装置外部的水或/和氧透过OLED显示装置的封装结构渗入封装空腔40内时,检测部50会对水或/和氧做出敏感反应,与采用对OLED显示装置的封装结构的外观进行检以实现对OLED显示装置的封装效果进行检测的方式相比,可以检测到封装结构的外观良好但封装结构具有其它缺陷而导致封装失效的OLED显示装置,与采用对OLED显示装置的画面显示质量进行检测以实现对OLED显示装置的封装效果进行检测的方式相比,可以检测到封装失效不明显的OLED显示装置。例如,可以将具有进行性的封装失效的OLED显示装置筛选出来,从而可以提高对OLED显示装置的封装效果进行检测的准确性和可靠性,并提高对封装失效的OLED显示装置的预知性。
在一些实施例中,检测部对氧的化学活性不低于OLED器件对氧的化学活,进一步地,检测部对水的化学活性不低于OLED器件对水的化学活性,即检测部50对水和氧的敏感度均高于OLED器件对水和氧的敏感度,与常规的通过在封装空腔40内设置干燥剂以根据干燥剂的膨胀程度来检测OLED显示装置的封装效果的方式相比,该实施例可以同时对渗入封装空腔内的水和氧进行检测,提高对OLED显示装 置的封装效果的检测的全面性。
再者,在本公开实施例提供的显示装置中,由于检测部50对水或/和氧的化学活性不低于OLED器件20对水或/和氧的化学活性,因而,当OLED显示装置外部的水或/和氧透过OLED显示装置的封装结构渗入封装空腔40内时,检测部50会对水或/和氧做出敏感反应,对OLED显示装置的封装效果进行检测时,则只需要对封装空腔40内的检测部50进行检测,即可将封装失效的OLED显示装置筛选出来,而不用对OLED显示装置的OLED器件逐个进行检测,节省了对OLED显示装置的封装效果进行检测时的时间。
在上述实施例中,对检测部50进行检测时,可以是工作人员或自动检测设备利用显微镜、照相机等对检测部50进行检测,以判断检测部50是否被腐蚀,确定OLED显示装置的封装是否失效。例如,可采用显微镜、照相机等拍摄封装失效的OLED显示装置中的检测部50的表面的图像信息,根据图像信息,判断检测部50是否被腐蚀,确定OLED显示装置的封装是否失效。对于封装失效的OLED显示装置,可根据检测部50的表面的图像信息,判断检测部50的实测腐蚀比率。例如,请参阅图3,图3示出了图1中A处的检测部50背向衬底基板10的表面的图像信息,即图2中检测部50的上表面的图像信息,根据图3所示出的图像信息,获取检测部50的腐蚀面积,将检测部50的腐蚀面积与检测部50的初始面积相比,得到检测部50的实测腐蚀比率,然后可以根据OLED显示装置的筛选标准,确定OLED显示装置的封装失效等级。例如,检测部50的实测腐蚀比率大于0%且小于或等于10%时,OLED显示装置的封装失效等级为一级,检测部50的实测腐蚀比率大于10%且小于或等于30%时,OLED显示装置的封装失效等级为二级,检测部50的实测腐蚀比率大于30%且小于或等于50%时,OLED显示装置的封装失效等级为三级。
对于封装失效的OLED显示装置,确定OLED显示装置的封装失效等级后,可以将封装失效的OLED显示装置直接应用于对OLED显示装置的封装效果的要求不高的环境中,即封装失效的OLED显示装置可以直接降级使用,或者,可以对封装失效的OLED显示装置中的封装结构30进行修补和加固,以防止OLED显示装置外的水或/和氧经封装结构30继续渗入封装空腔40内,然后将对封装结构30进行修 补和加固后的OLED显示装置降级使用,从而可以减少OLED显示装置的报废率,并减少资源的浪费。
在制定OLED显示装置的筛选标准时,可以先根据检测部50的化学性质,建立检测部50的腐蚀比率与OLED显示装置的寿命之间的关系,例如检测部50的腐蚀比率大于0%且小于或等于10%时,OLED显示装置的寿命可以达到LT95>200h(OLED显示装置的亮度衰减至98%时OLED显示装置的使用寿命高于200小时),检测部50的腐蚀比率大于10%且小于或等于30%时,OLED显示装置的寿命可以达到LT95>100h,检测部50的腐蚀比率大于30%且小于或等于50%时,OLED显示装置的寿命可以达到LT95>75h。
然后,根据检测部50的腐蚀比率与OLED显示装置的寿命之间的关系、以及OLED显示装置的寿命要求,建立OLED显示装置的筛选标准。例如,OLED显示装置的寿命要求为达到LT95>200h,即寿命达到LT95>200h的OLED显示装置为符合出厂要求的OLED显示装置,此时,检测部50允许的腐蚀比率为大于0%且小于或等于10%,检测部50的腐蚀比率为大于0%且小于或等于10%的OLED显示装置为符合出厂要求但封装失效的OLED显示装置,而检测部50的腐蚀比率为大于10%的OLED显示装置不符合出厂要求,即检测部50的腐蚀比率为大于10%的OLED显示装置不能出厂,此时,可以将检测部50的腐蚀比率大于0%且小于或等于10%的OLED显示装置的封装失效等级定为一级,将检测部50的腐蚀比率大于10%且小于或等于30%的OLED显示装置的封装失效等级定为二级,将检测部50的腐蚀比率大于30%且小于或等于50%的OLED显示装置的封装失效等级定为三级。封装失效等级为一级的OLED显示装置为符合出厂要求但封装失效的OLED显示装置,即封装失效等级为一级的OLED显示装置可以与检测部50未被腐蚀的OLED显示装置一起出厂,封装失效等级为二级或三级的OLED显示装置为不符合出厂要求的OLED显示装置,即封装失效等级为二级或三级的OLED显示装置不能出厂。
当检测部50的表面的图像信息显示为点状腐蚀时,如图3中B处所示,则可以获取图像信息中点状腐蚀的数量,此时,OLED显示装置的筛选标准则可以根据检测部50的表面的点状腐蚀数量建立,然后根据OLED显示装置的筛选标准,以确定OLED显示装置的封装失效等 级。
举例来说,假设有一种OLED显示装置,OLED显示装置的尺寸为5寸,可以在衬底母板上制作多个5寸的OLED显示装置,然后经过切割后获得单个的OLED显示装置。OLED显示装置采用FRIT封装方式进行封装,请参阅图1和图2,OLED显示装置包括衬底基板10、OLED器件20、封装结构30和检测部50,OLED器件20和检测部50均位于衬底基板10上,且OLED器件20对应OLED显示装置显示区70,检测部50位于环绕显示区70的非显示区80内,检测部50的数量为两个,两个检测部50分别位于显示区70的其中一对对角上;封装结构30包括封装盖板31和封装胶32,封装盖板31与衬底基板10相对,封装胶32位于封装盖板31和衬底基板10之间,封装盖板31、衬底基板10和封装胶32共同将OLED器件20和检测部50封装在封装空腔40内;检测部50为位于衬底基板10上的块状检测部,检测部50包括位于衬底基板10上单层镁(Mg)金属层,检测部50在衬底基板10上的正投影呈正方形,正方形的长为30μm,检测部50与封装胶32的距离可以设置为500μm。上述OLED显示装置的寿命要求为LT95>100h。
对于采用RGB(Red红,Green绿,Blue蓝)配色方案的OLED显示装置,在OLED器件20中,相比于与R像素、B像素对应的有机发光层,与G像素对应的有机发光层对水或/和氧的敏感度最高,也就是说,G像素在水或/和氧的影响下更容易受损并发生收缩,因此,可以将G像素的寿命作为标准对OLED显示装置的筛选标准进行建立。
经过对镁金属的化学性质的研究,并将OLED显示装置置于温度为60℃、湿度为90%的实验环境中,并保持240h,获得了大量实验数据,分析这些实验数据后得出:当检测部50的腐蚀比率小于或等于30%时,即检测部50的腐蚀面积小于或等于30%的检测部50的初始面积时,G像素的寿命可达到LT95>100h;当检测部50的腐蚀比率大于30%且小于或等于40%时,G像素的寿命可达到LT95>75h;当检测部50的腐蚀比率大于40%且小于或等于50%时,G像素的寿命可达到LT95>50h。
也就是说,检测部50的腐蚀比率小于或等于30%时,OLED显示装置的寿命满足寿命要求,即OLED显示装置符合出厂要求,但OLED 显示装置的封装失效,对于该类OLED显示装置的封装失效等级定为一级;检测部50的腐蚀比率大于30%时,OLED显示装置的寿命不满足寿命要求,OLED显示装置不符合出厂要求,可以将检测部50的腐蚀比率大于30%且小于或等于40%的OLED显示装置的封装失效等级定为二级,将检测部50的腐蚀比率大于40%且小于或等于50%的OLED显示装置的封装失效等级定为三级。
当对OLED显示装置的封装效果进行检测时,可以先对检测部50进行检测,判断检测部50是否被腐蚀,检测部50未被腐蚀的OLED显示装置封装效果优良,则可以直接进入下一步工序或直接出厂,检测部50被腐蚀的OLED显示装置则被筛选出来,即将封装失效的OLED显示装置筛选出来,然后对封装失效的OLED显示装置进行分级。可以先获取封装失效的OLED显示装置中检测部50的实测腐蚀比率,然后根据检测部50的实测腐蚀比率和OLED显示装置的筛选标准,确定OLED显示装置的封装失效等级,例如,检测部50的实测腐蚀比率落入0%至30%时,OLED显示装置的封装失效等级为一级,检测部50的实测腐蚀比率落入30%至40%时,OLED显示装置的封装失效等级为二级,检测部50的实测腐蚀比率落入40%至50%时,OLED显示装置的封装失效等级为三级。
检测部50的材料可以根据实际需要进行选择,例如,对于其中OLED器件20对水的敏感度较高而对氧的敏感度较低的OLED显示装置,检测部50的材料可以选择满足对水的敏感度高的材料;对于其中OLED器件20对氧的敏感度较高而对水的敏感度较低的OLED显示装置,检测部50的材料可以选择满足对氧的敏感度高的材料;对于OLED器件20对水和氧的敏感度均较高的OLED显示装置,检测部50的材料则需要选择满足对水和氧的敏感度均高的材料。
请参阅图1或图4,在本公开的另一实施例中,OLED显示装置包括显示区70及环绕显示区70的非显示区80;非显示区80内设置有修补部60,修补部60用于在检测部50检测到OLED显示装置的封装失效后,对封装结构30进行修补。
在实际应用中,修补部60可以为环绕显示区70的环状修补部,替代性地,修补部60可以为由多个条状修补部围成,多个条状修补部共同围成一个环状,替代性地,修补部60可以由多个块状修补部围成, 多个块状修补部均匀分布在环绕显示区70的环状轨迹上。在本公开的图1所示实施例中,修补部60为环状修补部,下面以环状修补部为例进行详细说明。
举例来说,请参阅图1至图2,OLED显示装置的封装方式采用FRIT封装方式,OLED显示装置包括衬底基板10、OLED器件20、封装结构30和检测部50,OLED器件20位于衬底基板10上;封装结构30包括封装盖板31和封装胶32,封装盖板31与衬底基板10相对设置,封装胶32可以为玻璃胶或UV胶,封装胶32位于封装盖板31与衬底基板10之间,封装胶32分别与封装盖板31和衬底基板10粘接,从而使封装盖板31和衬底基板10粘接在一起,衬底基板10、封装盖板31和封装胶32共同围成封装空腔40,将OLED器件20和检测部50封装在封装空腔40内。,OLED显示装置包括显示区70和非显示区80,显示区70与OLED器件20对应,非显示区80环绕显示区70,封装胶32位于非显示区80内。
对OLED显示装置的封装效果进行检测时,可以先通过工作人员或自动检测设备使用显微镜、照相机等检测检测部50,判断检测部50是否被腐蚀,筛选出封装失效的OLED显示装置,封装失效的OLED显示装置中的检测部50被腐蚀。
完成对OLED显示装置的封装效果的检测后,可以对封装失效的OLED显示装置中的环状修补部进行处理,使环状修补部在特定条件下融化,例如,使环状修补部在激光处理、紫外处理、红外处理或加热处理下融化,以对封装结构30进行修补。
通过环状修补部对封装结构30进行修补时,可以根据检测部50的实测腐蚀比率和OLED显示装置的筛选标准确定出的OLED显示装置的封装失效等级,对于符合出厂要求但封装失效的OLED显示装置(例如对于封装失效等级为一级的OLED显示装置,OLED显示装置符合出厂要求,但检测部50已被腐蚀,表明水或/和氧经封装胶32渗入封装空腔40内,即封装胶32出现缺陷),可以对整个环状修补部进行处理,使整个环状修补部在特定条件下融化,形成环状加固部,环状加固部与封装胶32融合,以对封装胶32进行修补,从而实现通过环状修补部对封装结构30进行修补,防止OLED显示装置外部的水或/和氧经封装结构30继续渗入封装空腔40内。
在一些实施例中,检测部50为环状检测部,环状检测部环绕显示区70或者沿显示区70的边缘设置。在另一些实施例中,检测部50包括多个块状检测部,多个块状检测部均匀分布在环绕显示区70的环状轨迹上或均匀分布在显示区70的边缘。在这些实施例中,可以根据整体的检测部50的表面的图像信息确定封装结构30的封装失效部33。例如,图5示出了检测部50背向衬底基板10的表面的图像信息,从图5中可以看出,图5中检测部50的一部分52被腐蚀。请参阅图6,根据图5所示出的检测部50的表面的图像信息,可以判断图4中封装胶32对应于检测部50被腐蚀的部位的部分为封装失效部33。确定封装胶32的封装失效部33后,对环状修补部60与封装失效部33对应的部分进行处理,使环状修补部与封装失效部33对应的部分形成封装加固部61,封装加固部61与封装失效部33融合,以对封装失效部33进行修补,防止OLED显示装置外部的水或/和氧继续经封装失效部33渗入封装空腔40内。
通过修补部60对封装结构30进行修补,以改善符合出厂要求但封装失效的OLED显示装置的封装效果,防止符合出厂要求但封装失效的OLED显示装置在使用过程中寿命快速缩短,从而可以提高OLED显示装置的质量,并减少使用者的抱怨。
对于不符合出厂要求的OLED显示装置,例如,对于封装失效等级为二级或三级的OLED显示装置,当修补部60为环绕显示区70的环状修补部时,也可以对整个环状修补部进行处理,使整个环状修补部在特定条件下融化,形成环状加固部,环状加固部与封装胶32融合,以对封装胶32进行修补,实现通过环状修补部对封装结构30进行修补,防止OLED显示装置外部的水或/和氧继续经封装结构30渗入封装空腔40内。
通过修补部60对封装结构30进行修补,以改善封装不合格的OLED显示装置的封装效果,以便于将不符合出厂要求的OLED显示装置降级使用,减少OLED显示装置的报废率,并减少资源浪费。
在对OLED显示装置的封装结构30进行修补前,可以根据OLED显示装置的封装失效等级和OLED显示装置的修补标准,判断是否对OLED显示装置的封装结构30进行修补。例如,对于封装失效等级为三级的OLED显示装置,当根据OLED显示装置的修补标准判断不对 OLED显示装置的封装结构30进行修补时,该OLED显示装置则可直接报废,以防止对OLED显示装置的封装结构30进行修补时造成OLED显示装置的生产成本的增加。
建立OLED显示装置的修补标准时,可以根据OLED显示装置的封装失效等级、对OLED显示装置的封装效果进行检查与对OLED显示装置的封装结构30进行修补之间的间隔时间、对OLED显示装置的封装结构30进行修补的修补工艺,综合考虑上述因素后,建立OLED显示装置的修补标准。
上述实施例中,修补部60位于非显示区80内,具体实施时,修补部60可以设置在封装空腔40内,也可以设置在封装空腔40外,即修补部60可以设置在封装胶32内侧,也可以设置封装胶32外侧。在本公开实施例中,修补部60位于封装空腔40内,当修补部60为环状修补部时,检测部50位于环状修补部内侧。举例来说,请参阅图1至图4,封装结构30包括封装盖板31和封装胶32,封装盖板31与衬底基板10相对设置,封装胶32位于封装盖板31和衬底基板10之间,衬底基板10、封装盖板31和封装胶32共同围成封装空腔40;OLED器件20设置在衬底基板10上,且OLED器件20位于封装空腔40内;OLED显示装置包括显示区70和非显示区80,显示区70与OLED器件20对应,非显示区80环绕显示区70,封装胶32位于非显示区80内,且封装胶32环绕显示区70;修补部60位于封装空腔40内,修补部60为环状修补部,环状修补部环绕显示区70和检测部50设置。
将修补部60设置在封装空腔40内,当对修补部60进行处理对封装结构30进行修补后,修补部60形成封装加固部,封装加固部在封装空腔40内对封装结构30进行修补和加固,可以将残留在封装结构30内的水或/和氧隔离在封装空腔40外,防止残留在封装结构30内的水或/和氧渗入封装空腔40内,降低OLED器件20与水或/和氧接触的风险。
上述实施例中,修补部60的材料可以选用多种,例如,修补部60的材料可以为玻璃粉或聚合物前驱体,玻璃粉或聚合物前驱体经激光处理、紫外处理、红外处理或加热处理后,发生熔化、固化现象,并与封装结构30融合在一起,起到对封装结构30进行修补的作用。在实际应用中,修补部60的材料还可以选择经过后处理后具有较高的水 阻隔能力、氧阻隔能力或水氧阻隔能力的其它材料。
对修补部60进行处理,使修补部60在特定条件下融化,以对封装结构30进行修补时,对修补部60进行处理的工艺可以根据修补部60的材料确定。
对于本公开所提供的实施例,OLED显示装置包括显示区70和非显示区80,非显示区80环绕显示区70,检测部50与OLED器件20位于同一封装空腔40内,检测部50可以位于非显示区80内,也可以位于显示区70内,以下将参照具体示例予以说明,但是本发明并不限于这些具体示例。
请参阅图1、图2和图4,OLED显示装置包括显示区70及环绕显示区70的非显示区80;检测部50位于非显示区80内。将检测部50设置在非显示区80内,可以防止检测部50遮挡显示区70的出光。
当检测部50设置在非显示区80内时,请参阅图2,检测部50可以设置在衬底基板10设置有OLED器件20的表面上。具体地,以图1和图2示出的OLED显示装置为例进行说明,OLED显示装置包括衬底基板10、OLED器件20、封装结构30、检测部50,OLED器件20和检测部50均位于图2中衬底基板10的上表面上;封装结构30包括封装盖板31和封装胶32,封装盖板31位于图2中衬底基板10的上方,封装胶32位于衬底基板10和封装盖板31之间,且封装胶32分别与衬底基板10和封装盖板31粘接在一起,将OLED器件20和检测部50封装在衬底基板10、封装盖板31、封装胶32共同围成的封装空腔40内。
OLED显示装置中,OLED器件20通常包括两个电极和有机发光层,有机发光层位于两个电极之间,两个电极和有机发光层构成三明治结构。OLED器件20的其中一个电极可以采用金属电极,当检测部50采用金属材料形成时,检测部50和OLED器件20的金属电极可以在一次构图工艺中形成。举例来说,当形成金属电极和检测部50时,可以先沉积电极金属层,再沉积检测部金属层,然后采用一个掩膜板对金属电极和检测部50进行构图,形成金属电极和检测部50,实现金属电极和检测部50在一次构图工艺中形成,替代性地,金属电极和检测部50所采用的金属为同一种金属时,可以先沉积电极金属层,然后采用一个掩膜板同时对金属电极和检测部50进行构图,形成金属电极 和检测部50,实现金属电极和检测部50在一次构图工艺中形成。
检测部50为金属检测部时,将检测部50与OLED器件20的金属电极在一次构图工艺中形成,可以减少OLED显示装置的制备工艺步骤,节省时间,并可以减少掩膜板的使用数量,降低成本。
参照图7,在另一实施例中,OLED显示装置还包括OLED模块51,OLED模块51设置在衬底基板10对应于非显示区80的区域内,OLED模块51与OLED显示装置的驱动电路连接,OLED模块51用于模拟OLED器件20的工作状态;检测部50位于OLED模块51背向衬底基板10的表面上。在衬底基板10与非显示区80对应的区域内设置OLED模块51,OLED模块51与OLED器件20的结构相同,且OLED模块51与OLED显示装置的驱动电路连接,当OLED显示装置工作时,OLED模块51也工作,并产生光和热;检测部50设置在OLED模块51背向衬底基板10的表面上,OLED显示装置工作时,检测部50也会受到OLED模块51产生的光和热的影响。
通常,OLED显示装置在工作时,OLED器件20产生光和热,因此,当OLED显示装置外的水或/和氧经封装结构30渗入封装空腔40内,使得OLED器件20受到光和热以及水或/和氧的影响,即OLED器件20的工作环境通常较复杂,使得OLED器件20更容易受到水或/和氧的腐蚀。
因此,在衬底基板10与非显示区80对应的区域内设置OLED模块51,且OLED模块51与OLED显示装置的驱动电路连接,检测部50设置在OLED模块51背向衬底基板10的侧面上,当OLED显示装置工作时,OLED模块51产生光和热,用于模拟OLED器件20的工作状态,检测部50受到OLED模块51产生的光和热的影响,当OLED显示装置外的水或/和氧经封装结构30渗入封装空腔40内,检测部50受到光和热以及水或/和氧的影响,也就是说,OLED显示装置工作时,检测部50所处的环境可以接近OLED器件20所处的环境,或者说,检测部50所处的环境与OLED器件20所处的环境相同。如此,对检测部50进行检测时,检测结果可以准确反映OLED器件20工作时的状态,可以了解OLED器件20在工作时受到水或/和氧的影响,从而进一步提高OLED显示装置的出厂合格率。
上述实施例中,检测部50均设置在衬底基板10朝向封装结构30 的一侧,在实际应用中,当OLED显示装置的封装结构30包括与衬底基板10相对的封装盖板31时,检测部50还可以设置在封装盖板31朝向衬底基板10的表面上。
检测部50的结构可以有多种,例如,请参阅图1,检测部50可以为块状检测部,检测部50的截面形状为矩形或圆形等。当检测部50为块状检测部时,检测部50的数量可以为一个,也可以为多个,检测部50的数量为多个时,多个检测部50环绕显示区70均匀分布,例如,如图1所示,检测部50的数量为两个,OLED显示装置的显示区70的截面形状为矩形,则两个检测部50可以位于显示区70的其中一对对角上。
替代性地,请参阅图4,检测部50还可以为环状检测部,且检测部50环绕显示区70设置,此时,检测部50可以检测出由环绕OLED器件20的封装结构30的各个部位渗入的水或/和氧,以便于对封装结构30的封装失效部33的确认,方便对封装结构30的封装失效部33进行修补。另外,由于检测部50环绕显示区70,即检测部50环绕OLED器件20,当OLED显示装置外的水或/和氧透过封装结构30渗入封装空腔40内时,水或/和氧首先与检测部50接触,因而,可以减少直接与OLED器件20接触的水或/和氧的量,从而降低OLED器件20受腐蚀的风险。图4中所示出的OLED显示装置对应的截面图可以参考图2所示出的OLED显示装置的截面图。检测部50还可以为条状检测部50。
上述实施例说明了检测部50可以设置在OLED显示装置的非显示区80内,在其它实施例中,检测部50还可以设置OLED显示装置的显示区70内。
参阅图8和图9,本公开实施例提供的OLED显示装置包括显示区70及环绕显示区70的非显示区80。显示区70包括呈阵列排布的多个像素单元;检测部50设置在显示区70的非开口区域内。将检测部50设置在显示区70内,可以通过检测部50检测OLED器件20受腐蚀的程度,从而了解位于显示区70的中部的OLED器件20受损的程度。
另外,检测部50设置在显示区70的非开口区域内,因而,检测部50在衬底基板10上的正投影与像素单元在衬底基板10上的正投影不重叠,OLED显示装置工作时,检测部50不会遮挡显示区70所发出的光。
在图8和图9的实施例中,检测部50设置在显示区70内,检测部50可以设置衬底基板10朝向封装结构30的一侧,此时,OLED显示装置还可包括覆盖在OLED器件20上的保护层(图8中未示出),检测部50位于保护层上。
当OLED显示装置的封装结构30包括与衬底基板10相对的封装盖板31时,检测部50还可以设置在封装盖板31朝向衬底基板10的表面上。
检测部50设置显示区70内时,检测部50的结构可以为多种,例如,检测部50可以为条状检测部,或者,检测部50可以为环状检测部,或者,检测部50可以为块状检测部。
检测部50的数量也可以根据实际需要进行设定,例如,检测部50的数量可以为一个,此时,检测部50可以与显示区70的中部对应;或者,检测部50的数量可以为多个,此时,多个检测部50可以均匀分布在显示区70内。
在上述实施例中,检测部50可以由至少一层层状结构组成,例如,检测部50可以由一层层状结构组成,也就是说,在制作检测部50时,,只需形成一层检测部层;或者,检测部50可以由多层层状结构组成,即在制作检测部50时,需要形成多层检测部层。
检测部50的材料可以有多种选择,例如,检测部50的材料可以选用金属,如镁(Mg)、铝(A1)等。
检测部50的材料也可以选用有机材料,有机材料对水的敏感度高于或等于OLED器件20的有机发光层对水的敏感度,或,有机材料对氧的敏感度高于或等于OLED器件20的有机发光层对氧的敏感度,或,有机材料对水和氧的敏感度高于或等于OLED器件20的有机发光层对水和氧的敏感度。
在一些实施例中,检测部50的材料也可以选用荧光探针分子。
上述实施例中,检测部50可以采用蒸镀工艺或喷墨打印工艺制备。
在本公开提供的OLED显示装置中,检测部与OLED器件处在同一封装空腔内,且检测部对氧的化学活性不低于OLED器件对氧的化学活性。进一步地,检测部对水的化学活性也可不低于OLED器件对水的化学活性。因此,当OLED显示装置外部的水或/和氧透过OLED显示装置的封装结构渗入封装空腔内时,检测部接触到水或/和氧后, 检测部在水或/和氧的作用下会发生腐蚀;对OLED显示装置的封装效果进行检测时,则只需要对封装空腔内的检测部进行检测,并判断检测部是否被腐蚀或根据检测部的腐蚀状况,即可判断是否有水或/和氧渗入封装空腔内,以检测OLED显示装置的封装效果是否良好,进而将封装失效的OLED显示装置筛选出来,将封装失效的OLED显示装置拦截的厂内,从而提高OLED显示装置的出厂合格率。
请参阅图10,本公开实施例还提供一种OLED显示装置的封装效果的检修方法,用于检修上述实施例所述的OLED显示装置,OLED显示装置的封装效果的检修方法包括:
步骤S100、对检测部进行检测,判断检测部是否被腐蚀;
步骤S200、筛选出封装失效的OLED显示装置,封装失效的OLED显示装置中,检测部被腐蚀。
在实施例中,当对OLED显示装置的封装效果进行检修时,可以先通过自动检测设备或工作人员利用显微镜、照相机等对检测部的表面进行观察,例如,观察检测部的表面的颜色变化、形貌变化等,判断检测部是否被腐蚀;当确定检测部被腐蚀时,即表明OLED显示装置的封装失效,则将封装失效的OLED显示装置筛选出来,防止封装失效的OLED显示装置出厂。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的是与其他实施例的不同之处。尤其,对于方法实施例而言,由于其基本原理相似于装置实施例,所以描述得比较简单,相关之处参见装置实施例的部分说明即可。
在上述实施例中,对检测部进行检测时,可以采用如下方式:工作人员或自动检测设备先利用显微镜、照相机等对检测部进行观察,判断检测部是否被腐蚀,确定OLED显示装置的封装是否失效,然后利用显微镜、照相机等拍摄封装失效的OLED显示装置中的检测部的表面的图像信息,以方便对OLED显示装置的失效等级进行确定,以及对封装结构的封装失效部进行确定;替代性地,工作人员或自动检测设备利用显微镜、照相机等拍摄检测部的表面的图像信息,然后根据图像信息,判断检测部是否被腐蚀,并根据图像信息,确定OLED显示装置的失效等级和封装结构的封装失效部。
在本公开的一个实施例中,采用后一种方式对检测部进行检测,请参阅图11,步骤S100、对检测部进行检测,判断检测部是否被腐蚀的步骤包括:
步骤S110、获取检测部朝向或背向衬底基板的表面的图像信息;
步骤S120、根据图像信息,判断检测部是否被腐蚀。
对检测部进行检测时,可以通过自动检测设备或工作人员,利用显微镜、照相机等拍摄检测部的表面的图像信息,例如,可以拍摄检测部背向衬底基板的表面的图像信息,或者,可以拍摄检测部朝向衬底基板的表面的图像信息;然后根据检测部的表面的图像信息,判断检测部是否被腐蚀,例如,可以根据检测部的表面的图像信息中显示的检测部的颜色变化、形貌变化等,判断检测部是否被腐蚀,以确定OLED显示装置的封装是否失效。
请继续参阅图11,本公开实施例中,OLED显示装置包括显示区及环绕显示区的非显示区,非显示区内设置有环绕显示区的环状修补部;在步骤S200、筛选出封装失效的OLED显示装置之后,OLED显示装置的封装效果的检修方法还包括:
步骤S300、判断是否对封装失效的OLED显示装置的封装结构进行修补;
步骤S400、当对封装失效的OLED显示装置的封装结构进行修补时,使环状修补部形成环状加固部,环状加固部与封装结构融合。
具体地,完成对OLED显示装置的封装效果的检测后,对于封装失效的OLED显示装置,可以先对封装失效的OLED显示装置进行评定,判断是否对封装失效的OLED显示装置的封装结构进行修补,当判断为是时,则对环状修补部进行处理,例如,对环状修补部进行激光处理、紫外处理、红外处理或加热处理,使环状修补部融化,形成环状加固部,环状加固部与封装结构融合,实现对封装失效的OLED显示装置的封装结构进行修补。
,替代性地,在另一实施例中,请参阅图12,在步骤S200、筛选出封装失效的OLED显示装置之后,OLED显示装置的封装效果的检修方法还包括:
步骤S300、判断是否对封装失效的OLED显示装置的封装结构进行修补;
步骤S500、当对封装失效的OLED显示装置的封装结构进行修补时,根据图像信息,确定封装失效的OLED显示装置中封装结构的封装失效部;
步骤S600、使修补部中与封装失效部对应的部分形成封装加固部,封装加固部与封装失效部融合。
完成对OLED显示装置的封装效果的检测后,对于封装失效的OLED显示装置,可以先对封装失效的OLED显示装置进行评定,判断是否对封装失效的OLED显示装置的封装结构进行修补,当判断为是时,则根据检测部朝向或背向衬底基板的表面的图像信息,确定封装失效的OLED显示装置中封装结构的封装失效部;然后对修补部与封装失效部对应的部分进行处理,例如,对修补部与封装失效部对应的部分进行激光处理、紫外处理、红外处理或加热处理,使修补部与封装失效部对应的部分融化,形成封装加固部,封装加固部与封装失效部融合,实现对封装失效的OLED显示装置的封装结构进行修补。
确定封装失效的OLED显示装置中的封装结构的封装失效部后,对修补部与封装失效部对应的部分进行处理,形成封装加固部,封装加固部与封装失效部融合,实现对封装失效的OLED显示装置的封装结构进行修补,与对全部的修补部进行处理以实现对封装失效的OLED显示装置的封装结构进行修补的方式相比,可以节省对封装失效的OLED显示装置的封装结构进行修补时的时间,并节约修补成本。
请继续参阅图11或图12,步骤S300、判断是否对封装失效的OLED显示装置的封装结构进行修补包括:
步骤S310、根据图像信息,获取检测部的腐蚀面积;
步骤S320、根据检测部的腐蚀面积和检测部的初始面积,获取检测部的实测腐蚀比率;
步骤S330、根据检测部的实测腐蚀比率和OLED显示装置的筛选标准,确定OLED显示装置的封装失效等级;
步骤S340、根据OLED显示装置的封装失效等级和OLED显示装置的修补标准,判断是否对封装失效的OLED显示装置的封装结构进行修补。
在实际应用中,当判断检测部被腐蚀后,即OLED显示装置的封装失效,则将封装失效的OLED显示装置筛选出来,封装失效的OLED 显示装置包括:符合出厂要求的OLED显示装置和不符合出厂要求的OLED显示装置,符合出厂要求的OLED显示装置的寿命可达到寿命要求,不符合出厂要求的OLED显示装置的寿命不能达到寿命要求。
对于符合出厂要求的OLED显示装置,则可以全部进行对封装结构的修补的步骤,即对所有符合出厂要求但封装失效的OLED显示装置的封装结构进行修补,以防止OLED显示装置外的水或/和氧继续经封装结构渗入封装空腔内,进而防止OLED显示装置在使用过程中因水或/和氧继续经封装结构渗入封装空腔而导致OLED显示装置的画面显示质量急剧下降,从而减少使用者的抱怨。
对于不符合出厂要求的OLED显示装置,则可以根据OLED显示装置的封装失效等级、OLED显示装置的修补标准,来判断是否对不符合出厂要求的OLED显示装置的封装结构进行修补,例如,如果对OLED显示装置的封装结构进行修补后,OLED显示装置的画面显示质量符合降级产品的要求,即对OLED显示装置的封装结构进行修补后可以降级使用时,则可以对OLED显示装置的封装结构进行修补;如果对OLED显示装置的封装结构进行修补后,OLED显示装置的画面显示质量不符合降级产品的要求,也就是说,对OLED显示装置的封装结构进行修补后不能降级使用时,则该OLED显示装置可以采取直接报废的措施。
请继续参阅图11或图12,步骤S100、对检测部进行检测,判断检测部是否被腐蚀的步骤之前,本公开实施例提供的OLED显示装置的封装效果的检修方法还包括:
步骤S10、根据检测部的化学性质,建立检测部的腐蚀比率与OLED显示装置的寿命之间的关系;
步骤S20、根据检测部的腐蚀比率与OLED显示装置的寿命之间的关系、以及OLED显示装置的寿命要求,建立OLED显示装置的筛选标准。
请继续参阅图11或图12,步骤S100、对检测部进行检测,判断检测部是否被腐蚀的步骤之前,本公开实施例提供的OLED显示装置的封装效果的检修方法还包括:
步骤S30、根据OLED显示装置的筛选标准、对OLED显示装置的封装效果进行检查与对OLED显示装置的封装结构进行修补之间的 间隔时间、对OLED显示装置的封装结构进行修补的修补工艺,建立OLED显示装置的修补标准。
以上所述,仅为本公开的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种OLED显示装置,包括衬底基板、OLED器件和封装结构,所述封装结构与所述衬底基板之间形成封装空腔,所述OLED器件位于所述封装空腔内,
    其中所述OLED显示装置还包括检测部,所述检测部位于所述封装空腔内,所述检测部对氧的化学活性不低于所述OLED器件对氧的化学活性。
  2. 根据权利要求1所述的OLED显示装置,其中所述检测部对水的化学活性不低于所述OLED器件对水的化学活性。
  3. 根据权利要求2所述的OLED显示装置,其中所述检测部对氧的化学活性不低于所述OLED器件中的有机发光层对氧的化学活性,所述检测部对水的化学活性不低于所述OLED器件中的有机发光层对水的化学活性。
  4. 根据权利要求1所述的OLED显示装置,其中,所述OLED显示装置包括显示区及环绕所述显示区的非显示区;
    所述非显示区内设置有修补部,所述修补部用于在所述检测部检测到所述OLED显示装置的封装失效后,对所述封装结构进行修补。
  5. 根据权利要求4所述的OLED显示装置,其中对于被确定为封装失效的OLED显示装置,所述修补部被处理以形成与封装结构融合的加固部,从而对所述封装结构进行修补。
  6. 根据权利要求5所述的OLED显示装置,其中所述封装结构包括封装胶和与衬底基板相对的封装盖板,封装胶用于将封装盖板和衬底基板粘接在一起,由所述修补部形成的加固部与封装胶融合。
  7. 根据权利要求6所述的OLED显示装置,其中,所述修补部为环绕所述显示区的环状修补部。
  8. 根据权利要求7所述的OLED显示装置,其中,所述环状修补部位于所述封装空腔内,且所述检测部位于所述环状修补部内侧。
  9. 根据权利要求8所述的OLED显示装置,其中,所述检测部为环绕所述显示区的环状检测部,其中针对被确定为封装失效的OLED显示装置,环状修补部与封装失效部相对应的部分被处理以形成与封装失效部融合的封装加固部,所述封装失效部是封装胶与检测部被腐 蚀的部分相对应的部分。
  10. 根据权利要求4所述的OLED显示装置,其中,所述修补部的材料为玻璃粉或聚合物前驱体。
  11. 根据权利要求1所述的OLED显示装置,其中,所述OLED显示装置包括显示区及环绕所述显示区的非显示区,所述检测部位于所述非显示区内。
  12. 根据权利要求11所述的OLED显示装置,其中,所述检测部位于所述衬底基板设置有所述OLED器件的表面上;
    所述OLED器件包括金属电极,所述检测部的材料为金属,所述检测部与所述金属电极在一次构图工艺中形成。
  13. 根据权利要求11所述的OLED显示装置,其中,所述OLED显示装置还包括OLED模块,所述OLED模块设置在所述衬底基板对应于所述非显示区的区域内,所述OLED模块用于模拟所述OLED器件的工作状态;所述检测部位于所述OLED模块背向所述衬底基板的表面上。
  14. 根据权利要求12所述的OLED显示装置,其中所述OLED模块具有与所述OLED器件相同的结构。
  15. 根据权利要求11所述的OLED显示装置,其中,所述检测部为块状检测部;所述检测部的数量为多个,多个所述块状检测部环绕所述显示区均匀分布。
  16. 根据权利要求1所述的OLED显示装置,其中,所述OLED显示装置包括显示区及环绕所述显示区的非显示区,所述检测部设置在所述显示区的非开口区域内。
  17. 根据权利要求1所述的OLED显示装置,其中,所述检测部包括至少一层层状结构;
    所述检测部的材料包括金属、有机材料或荧光探针分子;
    所述检测部采用蒸镀工艺或喷墨打印工艺制备。
  18. 根据权利要求11所述的OLED显示装置,其中所述封装结构包括与所述衬底基板相对的封装盖板,所述检测部位于封装盖板朝向衬底基板的表面上。
  19. 一种OLED显示装置的封装效果的检修方法,其用于检修如权利要求1-18任一所述的OLED显示装置,所述OLED显示装置的封 装效果的检修方法包括:
    对检测部进行检测,判断所述检测部是否被腐蚀;
    筛选出封装失效的OLED显示装置,封装失效的OLED显示装置中,所述检测部被腐蚀。
  20. 根据权利要求19所述的OLED显示装置的封装效果的检修方法,其中,所述OLED显示装置包括显示区及环绕所述显示区的非显示区,所述非显示区内设置有环绕所述显示区的环状修补部,其中所述检修方法还包括:
    判断是否对封装失效的所述OLED显示装置的封装结构进行修补;
    当对封装失效的所述OLED显示装置的封装结构进行修补时,对所述环状修补部进行处理以形成环状加固部,所述环状加固部与所述封装结构融合。
PCT/CN2017/083000 2016-07-26 2017-05-04 Oled显示装置及其封装效果的检修方法 WO2018018985A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/571,233 US10381603B2 (en) 2016-07-26 2017-05-04 OLED display device and method for detecting and repairing packaging effects of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610599622.XA CN106024842B (zh) 2016-07-26 2016-07-26 一种oled显示装置及其封装效果的检修方法
CN201610599622.X 2016-07-26

Publications (1)

Publication Number Publication Date
WO2018018985A1 true WO2018018985A1 (zh) 2018-02-01

Family

ID=57114642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083000 WO2018018985A1 (zh) 2016-07-26 2017-05-04 Oled显示装置及其封装效果的检修方法

Country Status (3)

Country Link
US (1) US10381603B2 (zh)
CN (1) CN106024842B (zh)
WO (1) WO2018018985A1 (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106025092B (zh) * 2016-07-19 2018-05-25 京东方科技集团股份有限公司 有机电致发光器件及其制备方法、显示装置
CN106024842B (zh) 2016-07-26 2019-07-23 京东方科技集团股份有限公司 一种oled显示装置及其封装效果的检修方法
CN106847792B (zh) * 2017-02-22 2019-09-24 武汉华星光电技术有限公司 一种oled显示面板及显示装置
CN107369701A (zh) 2017-07-19 2017-11-21 京东方科技集团股份有限公司 封装结构、显示面板、显示装置和用于检测封装结构的方法
CN109307964B (zh) * 2017-07-28 2021-09-10 京东方科技集团股份有限公司 断线修复方法、基板和显示装置
CN107742635B (zh) * 2017-09-27 2020-07-03 京东方科技集团股份有限公司 一种显示面板及其制备方法
CN108224148B (zh) * 2018-01-04 2023-04-18 京东方科技集团股份有限公司 一种oled照明面板及其驱动方法,照明装置
CN108878473B (zh) * 2018-04-23 2021-01-26 京东方科技集团股份有限公司 显示面板及其制造方法、检测方法和显示装置
US11289677B2 (en) * 2018-04-25 2022-03-29 Yungu (Gu'an) Technology Co., Ltd. Display panel and display device having a protective pattern
CN108550607B (zh) * 2018-05-04 2020-07-28 京东方科技集团股份有限公司 一种显示面板、显示装置及其封装检测方法
CN109728164A (zh) * 2019-01-03 2019-05-07 京东方科技集团股份有限公司 一种显示面板及其制备方法、oled显示装置
CN110137221A (zh) * 2019-04-26 2019-08-16 武汉华星光电半导体显示技术有限公司 验证结构及其制作方法
CN110412442B (zh) * 2019-07-30 2021-08-13 云谷(固安)科技有限公司 测试屏体及有机封装体的评估方法
CN110459698B (zh) * 2019-08-30 2022-04-15 合肥京东方光电科技有限公司 显示面板和显示面板的缺陷检测与修复系统
CN110739334A (zh) * 2019-10-16 2020-01-31 深圳市华星光电技术有限公司 显示面板、显示面板的制作方法和显示面板的检测方法
US11316134B2 (en) 2019-11-12 2022-04-26 Tcl China Star Optoelectronics Technology Co., Ltd. Display panel, method for manufacturing the same, and method for detecting the same
KR20210083471A (ko) 2019-12-26 2021-07-07 삼성디스플레이 주식회사 표시 장치 및 그의 제조 방법
CN111162097B (zh) * 2020-01-03 2022-03-29 武汉天马微电子有限公司 一种显示面板和显示装置
CN111668271B (zh) 2020-06-11 2021-08-24 武汉华星光电半导体显示技术有限公司 Oled显示面板及其制备方法、oled显示装置
KR20220000440A (ko) * 2020-06-25 2022-01-04 삼성디스플레이 주식회사 표시 장치 및 표시 장치의 제조 방법
CN111725284B (zh) * 2020-06-29 2023-06-27 合肥维信诺科技有限公司 一种显示面板、显示终端及检测显示面板失效的方法
CN112018158B (zh) * 2020-08-06 2022-07-29 武汉华星光电半导体显示技术有限公司 一种显示面板以及显示装置
CN112002830B (zh) * 2020-09-10 2024-03-08 合肥京东方光电科技有限公司 一种显示装置和显示装置的密封检测方法
CN113035914B (zh) * 2021-02-26 2024-03-19 安徽熙泰智能科技有限公司 一种具有微显示功能的隐形眼镜、制作工艺及眼镜盒
CN112952025A (zh) * 2021-03-31 2021-06-11 京东方科技集团股份有限公司 显示基板及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG87046A1 (en) * 1999-08-17 2002-03-19 Micron Technology Inc Multi-chip module with stacked dice
CN103247667A (zh) * 2013-05-29 2013-08-14 深圳市华星光电技术有限公司 Oled面板及其制作方法与封装效果的检测方法
CN103730071A (zh) * 2013-12-30 2014-04-16 深圳市华星光电技术有限公司 Oled面板及其制作方法与封装效果的检测方法
CN106024842A (zh) * 2016-07-26 2016-10-12 京东方科技集团股份有限公司 一种oled显示装置及其封装效果的检修方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW517356B (en) * 2001-10-09 2003-01-11 Delta Optoelectronics Inc Package structure of display device and its packaging method
US7256542B2 (en) * 2004-02-20 2007-08-14 Au Optronics Corporation Method and device for detecting moisture in electroluminescence display devices
US20140353594A1 (en) * 2013-05-29 2014-12-04 Shenzhen China Star Optoelectronics Technology Co., Ltd. OLED Panel, Manufacturing Method, and Related Testing Method
US20150185142A1 (en) * 2013-12-30 2015-07-02 Shenzhen China Star Optoelectronics Technology Co. Ltd. OLED Panel And Manufacturing Method Thereof And Method For Inspecting Packaging Effectiveness
US10008550B2 (en) * 2014-05-16 2018-06-26 Sharp Kabushiki Kaisha Display
JP2016004053A (ja) * 2014-06-13 2016-01-12 株式会社ジャパンディスプレイ 表示装置
CN105355645B (zh) * 2015-11-06 2019-07-26 上海天马微电子有限公司 一种柔性显示面板及其制造方法、显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG87046A1 (en) * 1999-08-17 2002-03-19 Micron Technology Inc Multi-chip module with stacked dice
CN103247667A (zh) * 2013-05-29 2013-08-14 深圳市华星光电技术有限公司 Oled面板及其制作方法与封装效果的检测方法
CN103730071A (zh) * 2013-12-30 2014-04-16 深圳市华星光电技术有限公司 Oled面板及其制作方法与封装效果的检测方法
CN106024842A (zh) * 2016-07-26 2016-10-12 京东方科技集团股份有限公司 一种oled显示装置及其封装效果的检修方法

Also Published As

Publication number Publication date
US20180233705A1 (en) 2018-08-16
CN106024842B (zh) 2019-07-23
CN106024842A (zh) 2016-10-12
US10381603B2 (en) 2019-08-13

Similar Documents

Publication Publication Date Title
WO2018018985A1 (zh) Oled显示装置及其封装效果的检修方法
JP6454673B2 (ja) 表示装置とその検査方法
KR20180077898A (ko) 검사장치 및 이를 이용한 검사방법
WO2016169368A1 (zh) Oled面板及其制造方法、显示装置
US11508932B2 (en) Package structure, display panel, display device, and method for detecting package structure
JP2015049972A (ja) 有機el表示装置
KR20130066647A (ko) 유기 el 디스플레이 패널 수정 설비 및 수정 방법
KR20140105482A (ko) 밀봉된 박막 디바이스 및 수리 방법, 수리하기 위한 시스템 및 컴퓨터 프로그램 제품
KR20130051796A (ko) 기판 검사장치
TW201411229A (zh) 顯示裝置之修復設備及其修復方法
US20210407330A1 (en) Foldable display panel
JP2010042392A (ja) 基板検査情報を用いたディスペンサーのペースト塗布方法(pastedispensingmethodofdispenserusingsubstrateinspectioninformation)
KR101955466B1 (ko) 실링 검사 장치 및 이를 이용한 평판 표시 장치의 실링 검사 방법
JP2009016195A (ja) 有機発光装置のリペア方法及びそれを用いた有機発光装置の製造方法
JP2004200012A (ja) 電解液漏洩検査方法、検査装置、および電池
KR20150010495A (ko) 실링 검사 장치 및 방법
KR20110113089A (ko) 유기 발광 표시 장치의 리페어 방법
TWI715277B (zh) 顯示面板及其製造方法
CN112582383B (zh) 芯片结构及芯片检测方法
JP4857917B2 (ja) カラーフィルタの外観検査方法及び外観検査装置
JP2007066656A (ja) 有機エレクトロルミネッセンス素子及びその製造方法並びに有機エレクトロルミネッセンス素子の修理方法
KR20130007897A (ko) 유기발광소자의 제조방법
CN111490083A (zh) 显示面板及其制备方法、边缘裂纹检测方法、显示装置
TW201604997A (zh) 用於溫測元件的晶圓級封裝結構
KR101331798B1 (ko) 액정표시소자 결함 검사장치 및 그 제어방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15571233

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/06/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17833291

Country of ref document: EP

Kind code of ref document: A1