WO2018012329A1 - 近接触覚センサ - Google Patents

近接触覚センサ Download PDF

Info

Publication number
WO2018012329A1
WO2018012329A1 PCT/JP2017/024277 JP2017024277W WO2018012329A1 WO 2018012329 A1 WO2018012329 A1 WO 2018012329A1 JP 2017024277 W JP2017024277 W JP 2017024277W WO 2018012329 A1 WO2018012329 A1 WO 2018012329A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
sensor
external force
electrode
foam
Prior art date
Application number
PCT/JP2017/024277
Other languages
English (en)
French (fr)
Inventor
アレクサンダー シュミッツ
ソフォン ソムロア
ティト プラドノ トモ
ハリス クリスタント
振善 黄
重樹 菅野
Original Assignee
学校法人早稲田大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人早稲田大学 filed Critical 学校法人早稲田大学
Priority to CN201780043020.9A priority Critical patent/CN109477740A/zh
Priority to US16/316,159 priority patent/US20210285830A1/en
Publication of WO2018012329A1 publication Critical patent/WO2018012329A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/023Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/24Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in magnetic properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • G01L1/122Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress by using permanent magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/165Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/22Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers
    • G01L5/226Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers to manipulators, e.g. the force due to gripping
    • G01L5/228Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers to manipulators, e.g. the force due to gripping using tactile array force sensors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/945Proximity switches
    • H03K17/955Proximity switches using a capacitive detector
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K17/962Capacitive touch switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/965Switches controlled by moving an element forming part of the switch
    • H03K17/97Switches controlled by moving an element forming part of the switch using a magnetic movable element
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/965Switches controlled by moving an element forming part of the switch
    • H03K17/975Switches controlled by moving an element forming part of the switch using a capacitive movable element

Definitions

  • the present invention relates to a near-contact sensor having both functions of a proximity sensor and a tactile sensor, and capable of detecting both a proximity situation with respect to an object and an external force acting on the object in a wide range with the minimum number of sensors. .
  • a proximity sensor that detects a proximity state with an object a capacitive proximity sensor that detects a proximity distance to an object in a non-contact manner based on a change in capacitance of an electrode is known (for example, (See Patent Documents 1 and 2).
  • This magnetic tactile sensor includes an elastic body provided with a magnet therein and a magnetic sensor for detecting the state of a magnetic field generated by the magnet.
  • the elastic body When an external force is applied to the elastic body, the elastic body is deformed. The magnitude of the external force acting on the elastic body is detected from the change in the state of the magnetic field between the magnetic sensor and the magnet.
  • JP 2014-167415 A Japanese Patent Laying-Open No. 2015-94598 JP 2004-325328 A
  • the proximity sensor and the tactile sensor in order to control the operation of a robot coexisting with a human, it is necessary to dispose the proximity sensor and the tactile sensor in all the exposed parts of the robot from the viewpoint of safety and the like. Moreover, in order to accurately detect the proximity state and external force with the object, the number of elements and substrates constituting the sensor inevitably increases, which becomes a factor that hinders weight reduction of the robot.
  • the magnetic tactile sensor having the structure of Patent Document 3 cannot be arranged on the exposed portion of the robot where the capacitive proximity sensor having the structure of Patent Documents 1 and 2 is arranged. The capacitive proximity sensor cannot be disposed on the exposed portion of the robot where the magnetic tactile sensor is disposed. For this reason, in the exposed part of the robot where the sensor is arranged, a region where the proximity state cannot be detected and a region where the external force cannot be detected alternately occur, and the robot operation control considering safety is performed accurately. State measurement for this is insufficient.
  • the present invention has been devised by paying attention to such problems, and its purpose is to minimize the elements and substrates that constitute the sensor, and to make contact with an object non-contact in the same installation area.
  • Another object of the present invention is to provide a near-contact sensor that can detect an external force when an object comes into contact.
  • the present invention mainly functions as a capacitive proximity sensor that detects the approach distance of the object in a non-contact manner based on a change in capacitance generated between the object and the electrode.
  • a near-contact sensor having a function as a magnetic tactile sensor for detecting the magnitude of the external force by detecting a change in the magnetic field due to the displacement of the magnetic body according to the external force, wherein the electrode is
  • the magnetic body is formed of a conductive rigid body, and the magnetic body is integrally attached to the electrode so that a change in the magnetic field can be detected by the magnetic sensor, and is disposed outside the electrode and the magnetic body. It is configured to include a foam formed of an elastic body made of a material that does not prevent detection of a change in the magnetic field.
  • the present invention has the functions of a capacitive proximity sensor and a magnetic tactile sensor, and in the same installation area, it can detect the proximity state with an object in a non-contact manner and can detect an external force when the object comes in contact with it. can do.
  • the electrode used for detection by the capacitive proximity sensor is also used as a support member for the magnetic body, and is accompanied by elastic deformation of the foam when an external force is applied to the flexible foam of the surface layer portion.
  • external force is transmitted to some part of the electrode. For this reason, even if the magnetic body is arranged in one region of the electrode and the magnetic body and the external force transmitting portion are separated from each other, the magnetic body can be displaced using the displacement due to the rigidity of the electrode.
  • the influence of the displacement of the magnetic body due to the absorption of the external force in the foam can be reduced. Accordingly, it is possible to detect a wide range of external forces by minimizing the number and size of the substrates including the magnetic body and the magnetic sensor, thereby contributing to the weight reduction of the entire robot on which the present sensor is mounted.
  • FIG. 1 It is a schematic block diagram of the near contact sense sensor which concerns on this embodiment. It is a schematic exploded perspective view of the main-body part of the near-contact sensor. (A), (B) is a schematic diagram for demonstrating the effect of this invention using an electrode as an auxiliary member of external force transmission. It is a schematic block diagram showing the state in which the said near-contact sensor was installed two or more. It is a schematic block diagram of the near contact sense sensor which concerns on a modification.
  • FIG. 1 is a schematic configuration diagram of a near-contact sensor according to the present embodiment
  • FIG. 2 is a schematic exploded perspective view of a main body of the near-contact sensor.
  • the near-contact sensor 10 has a function as a proximity sensor that can detect an approaching state with an object such as a human in a non-contact manner at a detection target part such as a surface part of a robot arm (not shown), and a detection target. It has a function as a tactile sensor that can detect the applied state of the external force when an external force is applied to the part.
  • the near-contact sensor 10 is attached to the detection target part and generates an electrical signal corresponding to the approach distance from the object and the magnitude of the external force, and the main body 11 via a digital bus or the like.
  • a detection unit 12 that is electrically connected to obtain the approach distance and the magnitude of the external force from the electrical signal.
  • the main body 11 includes an electrode 14 having a substantially rectangular plate shape in plan view formed of a rigid body having conductivity, a magnetic body 15 fixed to a region substantially at the center of the lower surface of the electrode 14 in FIG. 14 and a foam 16 disposed around the outside of the magnetic body 15, and a magnetic sensor 17 disposed below the magnetic body 15 in FIG. 1 and detecting a change in magnetic field between the magnetic body 15 and the magnetic body 15. .
  • the magnetic body 15 is not particularly limited, but is composed of a permanent magnet having a rectangular parallelepiped shape or a cubic shape.
  • various magnetic bodies and magnetic field generators can be used as long as a magnetic field having a predetermined magnitude can be generated between the magnetic body 15 and the magnetic sensor 17.
  • the foam 16 is made of a material that does not prevent the magnetic sensor 17 from detecting a change in the magnetic field, is formed of an elastic body that has substantially no electrical conductivity, and the first and second layers stacked in the vertical direction in FIG. Forms 16A and 16B. These foams 16A and 16B are not particularly limited, but are formed of urethane foam or silicon foam.
  • the first foam 16A located on the upper side in the figure has a rectangular parallelepiped or cubic outer shape, and includes the electrode 14 and the magnetic body 15. That is, the electrode 14 having a plane size slightly smaller than the plane size and the magnetic body 15 attached integrally to the electrode 14 are embedded in the central portion of the first foam 16A.
  • the thickness of the first foam 16A which is the height in the vertical direction in FIG. 1, is set larger than that of the second foam 16B, but conversely than the first foam 16A.
  • the second form 16B may be set thicker.
  • FIG. It is also possible to set the upper side portion thinner than the magnetic body 15. That is, as long as the effects described later are exhibited, the sizes of the magnetic body 15 and the first foams 16A and 16B, such as the thickness, are not limited to the illustrated examples, and various variations can be adopted.
  • the magnetic sensor 17 employs a known configuration including a magnetic detection element 19 composed of a Hall element, a magnetoresistive element, and the like, and a substrate 20 to which the magnetic detection element 19 is electrically connected.
  • the electric signal is converted into an electric signal corresponding to the magnitude of the magnetic field between the magnetic body 15 and the first form 16A.
  • the magnetic detection element 19 is configured to detect the magnitude of the external force acting on the main body 11 in three orthogonal directions (x, y, and z axis directions in FIG. 2). It should be noted that they are provided in more than one place, and in FIG. 1 and FIG. 2 and the like, they are collectively illustrated as one rectangular parallelepiped.
  • the detection unit 12 is electrically connected to the electrode 14, and obtains an approach distance with a non-contact object and generates an electrical signal corresponding to the approach distance, and electrically with the magnetic sensor 17.
  • An external force sensing unit 23 that is connected and generates an electric signal corresponding to the external force by obtaining an external force acting on the first foam 16A based on an electric signal from the magnetic sensor 17 is provided.
  • non-contact is performed by a known method using a capacitive proximity sensor that can detect the approach distance of the object based on a change in capacitance generated between the electrode 14 and the non-contact object. The approaching distance to the object is detected.
  • the magnetic body 15 integrated with the electrode 14 is displaced by elastic deformation of the first foam 16A according to the magnitude of the external force.
  • the external force in the three orthogonal directions is obtained according to the displacement state. That is, here, a known mathematical expression or the like stored in advance from the magnitude of the magnetic field detected corresponding to the separation distance from the magnetic body 15 by the magnetic detection elements 19 provided at three or more locations. Using an algorithm, a shearing force that is an external force in the x and y axis directions in FIG. 2 and a pressing force that is an external force in the z axis direction in FIG. 2 are calculated.
  • the near-contact sensor 10 functions as a capacitive proximity sensor when the object is not in contact with the first form 16A, and the proximity (separation) distance from the object is non-contact.
  • an external force is applied to any object including a human being in contact with the first form 16A, it functions as a magnetic tactile sensor and detects the magnitude of the external force in the three orthogonal axes. be able to.
  • both the approaching state when the object is not in contact and the acting state of the external force when the object is in contact can be detected at the detection target portion where the main body 11 is installed. It is possible to eliminate any non-detection region in any of the operating states.
  • the electrode 14 is also used as a support for the magnetic body 15 disposed relative to the magnetic sensor 17 when used as a tactile sensor. It is possible to function as an external force transmission assisting member that facilitates transmission of deformation of the first foam 16A corresponding to the size of the first foam 16A to the magnetic body 15. That is, since the electrode 14 has a predetermined rigidity, as shown in FIG. 3B, for example, the surface of the first foam 16A, compared to the configuration of FIG. When an external force (see the arrow in each figure in FIG. 3) acts on the peripheral side of the magnetic material 15, it is easy to displace the magnetic body 15 located on the center side of the first foam 16A using the displacement of the electrode 14 can do.
  • the magnetic body 15 is more likely to be displaced than the configuration of FIG. It becomes easy to detect the magnitude of the external force.
  • the number and size of the magnetic body 15 and the magnetic sensor 17 can be minimized, and a wider area can be detected with a small number of sensors. It can contribute to weight reduction.
  • each electrode 14 is electrically connected, and each substrate 20 is electrically connected by a digital bus or the like.
  • FIG. 4 there is a gap between the adjacent main body portions 11 in order to avoid complications in the drawing, but the adjacent main body portions 11 are almost in close contact with each other with almost no gap. It is also possible to connect in a state of being allowed.
  • the electrode 14 is not limited to the shape and configuration of the above embodiment, and various shapes and configurations are adopted as long as the electrode 14 has a predetermined rigidity and can function as an electrode of a capacitive proximity sensor. can do.
  • the surface of the electrode 14 can be formed in an uneven shape in order to increase the detection accuracy of the capacitance.
  • a configuration that reduces noise and stray capacitance may be employed. As shown in FIG. 5, as shown in FIG. 5, by providing a shield electrode 25 disposed opposite to the lower side of the electrode 14 functioning as a detection electrode, and changing the substrate configuration of the proximity sensing unit 22, Measures such as noise reduction can be taken.
  • the shield electrode 25 is connected to the ground or a known mode in which a potential difference between the electrodes is eliminated by applying an in-phase AC voltage to the electrode 14 and the shield electrode 25 can be exemplified.
  • the first foam 16A is interposed between the electrode 14 functioning as the detection electrode and the shield electrode 25.
  • the present invention is not limited to this mode, and other materials having no conductivity are used.
  • the member which becomes can also be interposed.
  • the present invention is not limited to this, and the magnitude of the external force in one axis direction can be detected at a minimum.
  • the magnetic sensor 17 and the external force sensing unit 23 can be configured.
  • sensors such as a temperature sensor and an acceleration sensor can be further arranged on the substrate 20, and the near-contact sensor 10 can function as a multimodal sensor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Manipulator (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)

Abstract

本発明は、センサを構成する素子や基板を最小限とし、同一の設置領域において、物体との近接状況を非接触で検出可能にし、且つ、作用した外力を検出可能にすることを目的とする。本発明の近接触覚センサ10は、検出対象部位に取り付けられる本体部11と、本体部11に対する物体の接近距離や外力の大きさを求める検出部12とを備えている。本体部11は、導電性を有する剛体からなる電極14と、電極14に一体的に取り付けられた磁性体15と、これら電極14と磁性体15の外側に配置され、弾性体からなるフォーム16と、磁性体15との間の磁界の変化を検知する磁気センサ17とを備えている。検出部12は、電極14の静電容量の変化から接近距離を求める近接センシング部22と、磁気センサ17の検知に基づいて、フォーム16に作用した外力を求める外力センシング部23とを備えている。

Description

近接触覚センサ
 本発明は、近接センサ及び触覚センサの双方の機能を有し、必要最小限のセンサ数で、物体に対する近接状況と自身に作用した外力との双方の検知を広範囲で可能にする近接触覚センサに関する。
 人間と共存しながら作業するロボットの動作制御においては、安全性等の観点から、ロボットの周囲の環境中に存在する人間等の物体との接近距離の把握が必要であるとともに、当該物体が接触した際の外力を検知する必要がある。当該動作制御としては、例えば、ロボットのアーム等の可動部とその周囲に存在する人間との接近距離を検知し、当該人間への衝突を事前に回避するロボットの動作制御が考えられる。また、人間が不意にロボットに衝突した場合に、その外力を検出し、当該外力の大きさに応じて人間に与える衝撃を軽減するロボットの動作制御も考えられる。
 ところで、物体との近接状況を検知する近接センサとしては、電極の静電容量の変化に基づき、物体との接近距離を非接触で検出する静電容量型近接センサが知られている(例えば、特許文献1,2参照)。
 また、外力を検知する触覚センサとしては、外力の作用による磁界の変化を利用した磁気式触覚センサが知られている(例えば、特許文献3参照)。この磁気式触覚センサは、内部に磁石が設けられた弾性体と、磁石によって発生する磁界の状態を検知する磁気センサとを備え、弾性体に外力が付与されると、弾性体の変形に伴って磁石が変位することによる磁気センサとの間の磁界の状態変化から、弾性体に作用した外力の大きさを検出するようになっている。
特開2014-167415号公報 特開2015-94598号公報 特開2004-325328号公報
 前述のように、人間と共存するロボットの動作制御を行うためには、安全性等の観点から、ロボットの表出部分の全てに前記近接センサや前記触覚センサを配置する必要がある。しかも、物体との近接状況や外力を精度良く検出するには、センサを構成する素子や基板の数がどうしても増大してしまい、ロボットの軽量化を阻害する要因となる。また、特許文献1,2の構造の静電容量型近接センサが配置されたロボットの表出部分には、特許文献3の構造の磁気式触覚センサを配置することができず、逆に、当該磁気式触覚センサが配置されたロボットの表出部分には、前記静電容量型近接センサを配置することができない。このため、センサが配置されるロボットの表出部分のうち、近接状況を検知できない領域と外力を検知できない領域とが交互に生じることになり、安全性を考慮したロボットの動作制御を正確に行うための状態計測が不十分となる。
 本発明は、このような課題に着目して案出されたものであり、その目的は、センサを構成する素子や基板を最小限とし、同一の設置領域において、物体との近接状況を非接触で検出できるとともに、物体が接触した際の外力を検出することができる近接触覚センサを提供することにある。
 前記目的を達成するため、本発明は、主として、物体と電極の間に生じる静電容量の変化に基づき、非接触で前記物体の接近距離を検出する静電容量型近接センサとしての機能と、外力に応じた磁性体の変位による磁界の変化を磁気センサで検知することで、前記外力の大きさを検出する磁気式触覚センサとしての機能とを有する近接触覚センサであって、前記電極は、導電性を有する剛体により形成され、前記磁性体は、前記磁界の変化を前記磁気センサで検知可能に前記電極に一体的に取り付けられ、前記電極及び前記磁性体の外側に配置され、前記磁気センサでの磁界の変化の検知を阻止しない材料からなる弾性体により形成されるフォームを備える、という構成を採っている。
 本発明によれば、静電容量型近接センサ及び磁気式触覚センサの機能を兼ね備え、同一の設置領域において、物体との近接状況を非接触で検出できるとともに、物体が接触した際の外力を検出することができる。また、静電容量型近接センサでの検知に利用される電極が、磁性体の支持部材としても利用され、柔軟性を有する表層部分のフォームに外力が作用したときに、フォームの弾性変形を伴って電極のどこかの部分に外力が伝達される。このため、電極の一領域に磁性体を配置し、当該磁性体と外力の伝達部分とが離れた場所にあっても、電極の剛性による変位を利用して、磁性体を変位させることができ、フォーム内での外力の吸収による磁性体の変位の影響を軽減することができる。従って、磁性体や磁気センサを含む基板等の構成数やサイズを最小限にして、広範囲の外力の検出が可能になり、本センサが搭載されるロボット全体の軽量化に寄与することができる。
本実施形態に係る近接触覚センサの概略構成図である。 前記近接触覚センサの本体部の概略分解斜視図である。 (A)、(B)は、外力伝達の補助部材として電極を利用した本発明の効果を説明するための模式図である。 前記近接触覚センサが複数設置された状態を表す概略構成図である。 変形例に係る近接触覚センサの概略構成図である。
 以下、本発明の実施形態について図面を参照しながら説明する。
 図1には、本実施形態に係る近接触覚センサの概略構成図が示され、図2には、前記近接触覚センサの本体部の概略分解斜視図が示されている。これらの図において、前記近接触覚センサ10は、図示しないロボットアームの表面部位等の検出対象部位において、人間等の物体との接近状態を非接触で検出可能な近接センサとしての機能と、検出対象部位に外力が作用したときに、当該外力の作用状態を検出可能な触覚センサとしての機能とを有している。
 すなわち、この近接触覚センサ10は、前記検出対象部位に取り付けられて物体との接近距離や前記外力の大きさに対応した電気信号を発生させる本体部11と、本体部11にデジタルバス等を介して電気的に繋がり、前記電気信号から前記接近距離や前記外力の大きさを求める検出部12とを備えている。
 前記本体部11は、導電性を有する剛体により形成された平面視ほぼ方形板状の電極14と、電極14の図1中下面のほぼ中央となる一領域に固定された磁性体15と、電極14と磁性体15の外側の周囲に配置されるフォーム16と、磁性体15の図1中下方に配置され、磁性体15との間の磁界の変化を検知する磁気センサ17とを備えている。
 前記磁性体15は、特に限定されるものではないが、直方体状若しくは立方体状をなす永久磁石によって構成されている。なお、この磁性体15としては、磁気センサ17との間に所定の大きさの磁界を発生させることができる限りにおいて、種々の磁性体や磁界発生装置を用いることもできる。
 前記フォーム16は、磁気センサ17での磁界の変化の検知を阻止しない材料からなり、導電性をほぼ有しない弾性体によって形成されており、図1中上下方向に積層された第1及び第2のフォーム16A,16Bからなる。これらフォーム16A,16Bは、特に限定されるものではないが、ウレタンフォームやシリコンフォーム等により形成されている。同図中上側に位置する第1のフォーム16Aは、直方体状若しくは立方体状の外形をなし、電極14及び磁性体15を内包するようになっている。すなわち、第1のフォーム16Aの中央部分には、その平面サイズよりもやや小さい平面サイズを有する電極14と、電極14に一体的に取り付けられた磁性体15とが埋設されている。図1中下側に位置する第2のフォーム16Bは、磁気センサ17の外側を囲むように配置されている。なお、本実施形態では、第1のフォーム16Aの図1中上下方向の高さである厚みが、第2のフォーム16Bよりも大きく設定されているが、逆に、第1のフォーム16Aよりも第2のフォーム16Bの方を厚く設定しても良い。また、第1のフォーム16Aのうち、電極14を挟んで上側部分と下側部分の厚みや材料を相互に変えても良い。また、同上側部分を磁性体15よりも薄く設定することも可能である。つまり、後述する作用を奏する限りにおいて、磁性体15及び第1のフォーム16A,16Bの厚み等のサイズは、図示例に限定されず、種々のバリエーションを採ることができる。
 前記磁気センサ17は、ホール素子や磁気抵抗素子等からなる磁気検出用素子19と、磁気検出用素子19が電気的に接続された基板20とを含む公知の構成のものが採用されており、第1のフォーム16Aを介した磁性体15との間の磁界の大きさに対応する電気信号に変換する構造となっている。なお、磁気検出用素子19は、後述するように、本体部11に作用した直交3軸方向(図2中x、y、z軸方向)の外力の大きさをそれぞれ検出可能にするため、3箇所以上に設けられており、図1及び図2等においては、それらをまとめて1つの直方体で図示している点、了承されたい。
 前記検出部12は、電極14に電気的に接続され、非接触の物体との接近距離を求めて当該接近距離に対応する電気信号を生成する近接センシング部22と、磁気センサ17に電気的に接続され、磁気センサ17からの電気信号に基づいて、第1のフォーム16Aに作用した外力を求めて当該外力に対応する電気信号を生成する外力センシング部23とを備えている。
 前記近接センシング部22では、電極14と非接触の物体との間に生じる静電容量の変化に基づき、当該物体の接近距離を検出可能な静電容量型近接センサによる公知の手法によって、非接触の物体との接近距離が検出される。
 前記外力センシング部23では、第1のフォーム16Aに外力が付与されたときに、外力の大きさに応じた第1のフォーム16Aの弾性変形により、電極14に一体化された磁性体15が変位し、その変位状態に応じて前記直交3軸方向の外力を求めるようになっている。すなわち、ここでは、3箇所以上に設けられた磁気検出用素子19により、磁性体15との離間距離に対応してそれぞれ検知される磁界の大きさから、予め記憶された数式等からなる公知のアルゴリズムを利用して、図2中x、y軸方向の外力であるせん断力と同図中z軸方向の外力である押圧力とを算出するようになっている。
 以上の構成によれば、前記近接触覚センサ10は、物体が第1のフォーム16Aに接触していない状態では、静電容量型近接センサとして機能し、物体との接近(離間)距離を非接触で検出でき、人間を含めた何等かの物体が第1のフォーム16Aに接触して外力が付与されると、磁気式触覚センサとして機能し、前記直交3軸方向の外力の大きさを検出することができる。その結果、前記本体部11が設置された前記検出対象部位においては、物体の非接触時における接近状態と物体の接触時における外力の作用状態との双方を検知することができ、接近状態及び外力の作用状態の何れかの非検知領域を無くすことができる。
 また、電極14は、近接センサとして利用する際の検出用電極として機能する他に、触覚センサとして利用する際に、磁気センサ17に相対配置される磁性体15の支持体としても利用され、外力の大きさに対応した第1のフォーム16Aの変形を磁性体15に伝達し易くする外力伝達補助部材として機能させることができる。すなわち、電極14は、所定の剛性を有しているため、電極14のない図3(A)の構成に比べ、同図(B)に示されるように、例えば、第1のフォーム16Aの表面の周縁側に外力(図3各図中の矢印部分参照)が作用したような場合に、電極14の変位を利用して第1のフォーム16Aの中央側に位置する磁性体15を変位させ易くすることができる。従って、僅かな大きさの外力が作用した場合や、磁性体15から離れた位置で外力が作用した場合でも、図3(A)の構成に比べ、磁性体15の変位が発生し易くなり、外力の大きさを検出し易くなる。その結果、磁性体15及び磁気センサ17の数やサイズを最小限にすることができ、少ないセンサ数で、より広範な領域の検出が可能になり、近接触覚センサ10が設置されるロボット等の軽量化に寄与することができる。
 なお、近接触覚センサ10を複数の検出対象部位に設置する場合には、図4に示されるように、検出部12が一つのままで本体部11を複数連結すればよい。この場合、各電極14が電気的に接続されるとともに、各基板20がデジタルバス等で電気的に接続されることになる。この設置例によれば、少ない配線で、物体の接近状態と外力の作用状態の検出がより広範囲で可能になる。なお、図4では、図面の錯綜を回避するため、隣り合う本体部11間に隙間が存在する状態になっているが、当該隙間を殆ど設けずに、隣り合う本体部11同士をほぼぴったり接触させた状態で連結することもできる。
 また、前記電極14は、前記実施形態の形状及び構成に限らず、所定の剛性を有し、且つ、静電容量型近接センサの電極として機能させることができる限り、種々の形状及び構成を採用することができる。例えば、静電容量の検出精度を高めるために電極14の表面を凹凸形状にすることができる。また、ノイズや浮遊容量を低減させる構成を採用しても良い。この構成としては、図5に示されるように、検出用電極として機能する前記電極14の同図中下方に対向配置されるシールド電極25を設け、近接センシング部22の基板構成を変えることで、ノイズ軽減等の対策を行うことができる。この場合、シールド電極25をグランドに接続する公知の態様や、電極14とシールド電極25に同相の交流電圧を印加することで各電極間での電位差を無くす公知の態様を例示できる。なお、図5においては、検出用電極として機能する電極14とシールド電極25との間に第1のフォーム16Aが介在しているが、この態様に限らず、導電性を有しない他の材料からなる部材を介在させることもできる。
 更に、前記実施形態では、直交3軸方向の外力の大きさの検出を行う場合を図示説明したが、本発明はこれに限らず、最低限、1軸方向の外力の大きさの検出を行えるように、磁気センサ17や外力センシング部23を構成することも可能である。
 また、前記基板20に、温度センサや加速度センサ等の他のセンサを更に配置することもでき、近接触覚センサ10をマルチモーダルセンサとして機能させることも可能である。
 その他、本発明における装置各部の構成は図示構成例に限定されるものではなく、実質的に同様の作用を奏する限りにおいて、種々の変更が可能である。
 10 近接触覚センサ
 11 本体部
 12 検出部
 14 電極
 15 磁性体
 16 フォーム
 22 近接センシング部
 23 外力センシング部

Claims (4)

  1.  物体と電極の間に生じる静電容量の変化に基づき、非接触で前記物体の接近距離を検出する静電容量型近接センサとしての機能と、外力に応じた磁性体の変位による磁界の変化を磁気センサで検知することで、前記外力の大きさを検出する磁気式触覚センサとしての機能とを有する近接触覚センサであって、
     前記電極は、導電性を有する剛体により形成され、
     前記磁性体は、前記磁界の変化を前記磁気センサで検知可能に前記電極に一体的に取り付けられ、
     前記電極及び前記磁性体の外側に配置され、前記磁気センサでの磁界の変化の検知を阻止しない材料からなる弾性体により形成されるフォームを備えたことを特徴とする近接触覚センサ。
  2.  前記フォームは、その弾性変形に伴って前記電極及び前記磁性体が変位可能になるように、これら電極及び磁性体を内包することを特徴とする請求項1記載の近接触覚センサ。
  3.  物体との間に生じる静電容量の変化に基づき、非接触で前記物体の接近距離を検出する静電容量型近接センサとしての機能と、外力に応じた磁界の変化に基づき、前記外力の大きさを検出する磁気式触覚センサとしての機能とを有する近接触覚センサであって、
     前記接近距離や前記外力の大きさに対応して電気信号を発生させる本体部と、前記電気信号から前記接近距離や前記外力の大きさを求める検出部とを備え、
     前記本体部は、導電性を有する剛体により形成された電極と、当該電極に一体的に取り付けられた磁性体と、これら電極と磁性体の外側に配置されたフォームと、前記磁性体との間の磁界の変化を検知可能に配置された磁気センサとを備え、
     前記フォームは、前記磁気センサでの磁界の変化の検知を阻止しない材料からなる弾性体により形成され、
     前記検出部は、前記電極の静電容量の変化から前記接近距離を求める近接センシング部と、前記磁気センサの検知に基づいて、前記フォームに作用した前記外力を求める外力センシング部とを備えたことを特徴とする近接触覚センサ。
  4.  前記近接センシング部では、前記物体が前記フォームに非接触のときに、前記接近距離が検出される一方、前記外力センシング部では、前記フォームに外力が作用したときに、当該フォームの弾性変形に伴って前記電極と一体的に移動する前記磁性体の変位に基づいて、前記外力の大きさが検出されることを特徴とする請求項3記載の近接触覚センサ。
PCT/JP2017/024277 2016-07-11 2017-07-03 近接触覚センサ WO2018012329A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780043020.9A CN109477740A (zh) 2016-07-11 2017-07-03 接近触觉传感器
US16/316,159 US20210285830A1 (en) 2016-07-11 2017-07-03 Proximity and tactile sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-136574 2016-07-11
JP2016136574A JP6703728B2 (ja) 2016-07-11 2016-07-11 近接触覚センサ

Publications (1)

Publication Number Publication Date
WO2018012329A1 true WO2018012329A1 (ja) 2018-01-18

Family

ID=60952422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024277 WO2018012329A1 (ja) 2016-07-11 2017-07-03 近接触覚センサ

Country Status (4)

Country Link
US (1) US20210285830A1 (ja)
JP (1) JP6703728B2 (ja)
CN (1) CN109477740A (ja)
WO (1) WO2018012329A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3736541A1 (de) 2019-05-09 2020-11-11 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Kapazitives sensorsystem und verfahren zur multimodalen und/oder ortsselektiven messung von kräften, verformungen und/oder objekt-näherung
JP2021165641A (ja) * 2020-04-06 2021-10-14 株式会社東海理化電機製作所 検出装置
JP2021165642A (ja) * 2020-04-06 2021-10-14 株式会社東海理化電機製作所 検出装置
WO2022001547A1 (zh) * 2020-06-28 2022-01-06 威海华菱光电股份有限公司 触觉传感器
EP4020809A1 (de) * 2020-12-22 2022-06-29 Witte Automotive GmbH Elektronisches sensormodul, griffmodul und bewegliches fahrzeugelement
EP4020808A1 (de) * 2020-12-22 2022-06-29 Witte Automotive GmbH Multi-sensormodul, ein griffmodul und bewegliches fahrzeugelement

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7185319B2 (ja) * 2020-05-12 2022-12-07 学校法人 福山大学 触覚センサ
CN114252178B (zh) * 2020-09-25 2024-03-01 同济大学 触觉传感器、压力事件检测方法和装置及智能机器人
CN113218559B (zh) * 2021-05-28 2022-07-15 浙江工业大学 一种柔性三维力传感器及其制备方法
CN113418553B (zh) * 2021-06-11 2023-05-30 深圳大学 多模态传感器及其制备方法以及智能设备
CN114043506B (zh) * 2021-10-27 2023-05-30 南昌大学 一种多模态触觉感知装置及其应用方法
CN114354025B (zh) * 2021-11-26 2023-06-09 南方科技大学 一种测力装置及末端执行器
EP4286812A1 (en) * 2022-06-03 2023-12-06 Melexis Technologies SA A soft force sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63238502A (ja) * 1987-03-27 1988-10-04 Yokohama Rubber Co Ltd:The 近接覚・触覚センサ
JP2003216318A (ja) * 2002-01-23 2003-07-31 Tama Tlo Kk 入力表示装置
US20120274599A1 (en) * 2011-04-26 2012-11-01 Synaptics Incorporated Input device with force sensing and haptic response

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325328A (ja) * 2003-04-25 2004-11-18 Asahi Kasei Electronics Co Ltd 多分力検出器
US7256588B2 (en) * 2004-04-16 2007-08-14 General Electric Company Capacitive sensor and method for non-contacting gap and dielectric medium measurement
JP2014167415A (ja) * 2013-02-28 2014-09-11 Tokai Rubber Ind Ltd 静電容量式近接センサ装置
JP6171866B2 (ja) * 2013-11-08 2017-08-02 東洋インキScホールディングス株式会社 距離センサー

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63238502A (ja) * 1987-03-27 1988-10-04 Yokohama Rubber Co Ltd:The 近接覚・触覚センサ
JP2003216318A (ja) * 2002-01-23 2003-07-31 Tama Tlo Kk 入力表示装置
US20120274599A1 (en) * 2011-04-26 2012-11-01 Synaptics Incorporated Input device with force sensing and haptic response

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3736541A1 (de) 2019-05-09 2020-11-11 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Kapazitives sensorsystem und verfahren zur multimodalen und/oder ortsselektiven messung von kräften, verformungen und/oder objekt-näherung
DE102019206670A1 (de) * 2019-05-09 2020-11-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Kapazitives Sensorsystem und Verfahren zur multimodalen und/oder ortsselektiven Messung von Kräften, Verformungen und/oder Objekt-Näherung
JP2021165641A (ja) * 2020-04-06 2021-10-14 株式会社東海理化電機製作所 検出装置
JP2021165642A (ja) * 2020-04-06 2021-10-14 株式会社東海理化電機製作所 検出装置
JP7391754B2 (ja) 2020-04-06 2023-12-05 株式会社東海理化電機製作所 検出装置
JP7444685B2 (ja) 2020-04-06 2024-03-06 株式会社東海理化電機製作所 検出装置
WO2022001547A1 (zh) * 2020-06-28 2022-01-06 威海华菱光电股份有限公司 触觉传感器
EP4020809A1 (de) * 2020-12-22 2022-06-29 Witte Automotive GmbH Elektronisches sensormodul, griffmodul und bewegliches fahrzeugelement
EP4020808A1 (de) * 2020-12-22 2022-06-29 Witte Automotive GmbH Multi-sensormodul, ein griffmodul und bewegliches fahrzeugelement

Also Published As

Publication number Publication date
CN109477740A (zh) 2019-03-15
JP2018009792A (ja) 2018-01-18
JP6703728B2 (ja) 2020-06-03
US20210285830A1 (en) 2021-09-16

Similar Documents

Publication Publication Date Title
WO2018012329A1 (ja) 近接触覚センサ
JP5540797B2 (ja) センサ装置および表示装置
EP2741064B1 (en) Capacitive Tactile Sensor
JP5432207B2 (ja) 静電容量型センサ装置
JP6419317B2 (ja) 静電容量センサ
CN103534561B (zh) 力传感装置、尤其是电容性的称重单元
JP2014142193A (ja) 荷重分布検出装置
JP2022105964A (ja) 静電容量型センサ
JP2013015976A (ja) 多機能センサ
KR101818307B1 (ko) 촉각 근접 센서
CN108432138A (zh) 具有根据电容式测量的操作力进行的功能触发或控制和通过电容式触摸检测进行的适配的输入装置
US11906372B2 (en) Capacitance sensor and measurement device
JP2016081809A (ja) 立体センサ
US20100164759A1 (en) Input Arrangement
JP2007035334A (ja) 静電容量式タッチスイッチ
EP3111234B1 (en) Microelectromechanical structure with frames
US20220228938A1 (en) Electrostatic capacity sensor
JP2004226380A (ja) 触覚センサ及び分布型触覚センサ
WO2017134718A1 (ja) タッチセンサ及びそれを備えた入力装置
JP7058409B2 (ja) 設置自由度の高い静電容量型センサ
JP6650325B2 (ja) 入力装置
KR20200041322A (ko) 힘 검출 센서
JP2012145407A (ja) 感圧センサ
CN111857425A (zh) 输入装置及力传感器
JPH085472A (ja) 静電容量式3次元触覚センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17827459

Country of ref document: EP

Kind code of ref document: A1