WO2022001547A1 - 触觉传感器 - Google Patents

触觉传感器 Download PDF

Info

Publication number
WO2022001547A1
WO2022001547A1 PCT/CN2021/097426 CN2021097426W WO2022001547A1 WO 2022001547 A1 WO2022001547 A1 WO 2022001547A1 CN 2021097426 W CN2021097426 W CN 2021097426W WO 2022001547 A1 WO2022001547 A1 WO 2022001547A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
sensing
contact
tactile sensor
manipulator
Prior art date
Application number
PCT/CN2021/097426
Other languages
English (en)
French (fr)
Inventor
戚务昌
横道昌弘
Original Assignee
威海华菱光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 威海华菱光电股份有限公司 filed Critical 威海华菱光电股份有限公司
Priority to EP21834225.1A priority Critical patent/EP4101606A4/en
Priority to US17/802,146 priority patent/US20230103779A1/en
Priority to JP2022580804A priority patent/JP2023531288A/ja
Priority to KR1020227043863A priority patent/KR20230011363A/ko
Publication of WO2022001547A1 publication Critical patent/WO2022001547A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • B25J19/028Piezoresistive or piezoelectric sensing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/081Touching devices, e.g. pressure-sensitive
    • B25J13/084Tactile sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/081Touching devices, e.g. pressure-sensitive
    • B25J13/082Grasping-force detectors

Definitions

  • the present invention relates to the technical field of sensors, and in particular, to a tactile sensor.
  • a manipulator is an automatic operation device that can imitate some action functions of human hands and arms, grab, transport objects or operate tools according to fixed procedures. It can replace the heavy labor of people to realize the mechanization and automation of production. And it can also operate in harmful environments to protect personal safety, so it is widely used in machinery manufacturing, metallurgy, electronics, light industry and atomic energy.
  • the manipulator needs to sense the contact point between the manipulator and the object being grasped, as well as the size of the grasping force (ie tactile and force sense) at the contact point.
  • the contact sensors commonly used in manipulators are pressure sensors.
  • the pressure sensors have no tactile and force-sensing feedback, and their flexibility is greatly affected, resulting in a significant decrease in the grasping accuracy of objects, often causing the grasping to be tilted, resulting in objects A drop occurs.
  • the current pressure sensor usually adopts a single-point pressure sensor.
  • a sensor array is used in the joint of the manipulator, and the parameters of the contact point are measured by the array method.
  • the array pressure sensor is used in this method,
  • the position of the contact point cannot be accurately sensed, which cannot meet the requirements of the manipulator for grasping fine objects.
  • Embodiments of the present invention provide a tactile sensor to at least solve the technical problem in the related art that the manipulator adopts a pressure sensor and cannot accurately sense the contact point between the manipulator and the object, resulting in a significant decrease in the accuracy of grasping the object.
  • a tactile sensor which is applied to a manipulator, and includes: a contact part, which accepts the pressure transmitted when the manipulator grabs a target object, and transmits the pressure to the sensing part; the sensing part; The sensing part is located on one side of the contact part, and under the action of the pressure, the sensing part moves in a direction away from the contact part; the detection part is located on the side of the sensing part away from the contact part , the detection part senses the change of the position of the sensing part to generate a sensing signal, wherein the sensing signal is set to determine a contact parameter between the manipulator and the target object.
  • the tactile sensor further includes: an elastic part located on one side of the contact part, and the sensing part is located between the contact part and the elastic part.
  • the sensing part includes: sensing electrodes.
  • the detection part includes: a detection substrate; a sensor chip, located on the detection substrate, the sensing electrode has a projection on the sensor chip, and the sensor chip is connected to the detection substrate through bonding wires Electrical connections.
  • the detection substrate includes: an electrical interface, which is connected to an external device, provides an electrical control signal for the detection substrate, and transmits the sensing signal to the outside.
  • the sensor chip includes: a plurality of detection electrodes, forming an electric field with the sensing electrodes, wherein each of the detection electrodes and the sensing electrodes are arranged in the same direction.
  • the sensor chip further includes: electrical connection electrodes to provide the sensor chip with a working voltage and a drive signal, wherein the drive signal includes at least one of the following: a clock signal CLK, a row drive signal SI, an output signal SIG.
  • the detection part further includes: a frame body with an accommodating cavity and an opening, and the detection substrate and the sensor chip are located in the accommodating cavity; and a protection structure surrounding the frame body to form a sealed space.
  • the protective structure is one of the following: a protective cover plate and an encapsulant.
  • the material of the contact portion is a flexible material
  • the material of the elastic portion is a rubber material
  • the contact part receives the pressure transmitted by the manipulator when the target object is grasped, and transmits the pressure to the sensing part. Under the action of the pressure through the sensing part, the sensing part moves in a direction away from the contact part, and the sensing part passes through the sensing part.
  • a sensing signal is generated by sensing the change of the position of the sensing portion, wherein the sensing signal is set to determine a contact parameter between the manipulator and the target object.
  • a tactile sensor that can accurately detect the contact point between the object and the manipulator is provided, and the sensed pressure is output in real time in the form of an inductive signal, so as to continuously monitor the grasping state of the manipulator and adjust the manipulator.
  • the contact point when grasping the object improves the accuracy of grasping the object, thereby solving the technical problem that the manipulator adopts a pressure sensor in the related art, and the contact point between the manipulator and the object cannot be accurately sensed, resulting in a significant decrease in the accuracy of grasping the object.
  • FIG. 1 is a schematic outline view of an optional tactile sensor according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional structural diagram of an optional touch sensor according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an optional detection substrate according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an optional sensor chip according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an optional electrical connection electrode output signal according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of another optional tactile sensor according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of another optional sensor chip according to an embodiment of the present invention.
  • the following embodiments of the present invention can be applied to various manipulators, and provide a new tactile sensor on the manipulator, which uses different tactile pressures to act on the contact part and the elastic part, so that the sensing electrodes in the sensing part produce different At the same time, different amounts of charges are generated on the detection electrodes, thereby outputting different induction signals. According to the magnitude of the output signal and the output waveform of the signal, the magnitude of the contact force and the position of the contact point can be calculated.
  • Fig. 1 is the outline schematic diagram of a kind of optional tactile sensor according to the embodiment of the present invention, is applied on the manipulator, as shown in Fig. 1, this tactile sensor comprises: contact part 1, induction part 2, detection part 4, wherein,
  • the contact part 1 receives the pressure transmitted when the manipulator grasps the target object, and transmits the pressure to the sensing part.
  • the above-mentioned contact part 1 can be in contact with an external grasped object, receive the pressure of external contact, and transmit the pressure to the sensing part 2 and the elastic part 3 at the same time.
  • the induction part 2 is located on one side of the contact part, and under the action of pressure, the induction part moves in a direction away from the contact part.
  • the sensing part includes: sensing electrodes.
  • the sensing electrode can be set as a flat sheet-shaped electrode, which is set to generate corresponding deformation according to the magnitude of the acting force when the target object is in contact with the manipulator.
  • the tactile sensor further includes: an elastic part 3, which is located on one side of the contact part, and the sensing part is located between the contact part and the elastic part.
  • the material of the contact portion may be a flexible material, and the material of the elastic portion may be a rubber material.
  • the elastic part 3 receives the external pressure transmitted by the contact part 1 and drives the sensing electrode 2 to produce corresponding deformation, so that the distance D from the sensing electrode 2 to the detection part 4 changes with the action of the external force.
  • the above-mentioned sensing electrodes can carry a base voltage, form an electric field with the detection electrodes (disposed in the detection part), and form charges on the detection electrodes.
  • the sensing electrode is located between the contact part 1 and the elastic part 3, and can be deformed according to the degree of deformation of the contact part 1 and the elastic part 3; when an external force acts on the contact part 1 (for example, when the robot grasps the target object) , the force in contact with the target object is transmitted to the inside through the contact part 1, so that the sensing electrode 2 and the elastic part 3 are deformed correspondingly with the magnitude of the force. After the induction electrode 2 is deformed, the distance D between the induction electrode and the surface of the detection part 4 changes.
  • the size of the pressure and the position of the force point can be measured, that is, the position of the contact point and the size of the contact force can be determined.
  • the basic voltage carried by the sensing electrode may be pre-applied, and the basic voltage may be provided by the detection unit 4 or directly provided as required.
  • the voltage value of the base voltage is one of the key parameters of the entire tactile sensor.
  • the magnitude of the voltage value is related to the flexibility and thickness of the contact part 1 and the elastic part 3, as well as the initial distance D from the sensing electrode to the detection part 4, that is It is related to the upper limit design value of the initial weight of the grasped target object in the environment where the tactile sensor is used.
  • the gripping weight is large, the flexibility of the contact part 1 and the elastic part 3 should be low and the thickness should be large, the distance between the sensing electrode and the detection part 4 is large, and the voltage applied to the detection electrode 2 is high, and vice versa The applied voltage is low.
  • FIG. 2 is a schematic cross-sectional structure diagram of an optional tactile sensor according to an embodiment of the present invention.
  • the tactile sensor includes: a contact part 1, a sensing part 2 (which can be understood as a sensing electrode), an elastic part 3, detection unit 4 .
  • the detection part 4 is located on the side of the induction part away from the contact part.
  • the detection part generates an induction signal by sensing the change of the position of the induction part, wherein the induction signal is set to determine the contact parameters between the manipulator and the target object.
  • the detection part 4 includes: a detection substrate; a sensor chip, located on the detection substrate, the sensing electrode has a projection on the sensor chip, and the sensor chip is electrically connected to the detection substrate through bonding wires.
  • the change of the electric charge generated on the corresponding detection electrode due to the position change of the induction electrode 2 due to the deformation is measured.
  • the detection unit 4 includes a detection substrate 41 , a sensor chip 42 , and bonding wires 43 .
  • the detection substrate includes: an electrical interface, which is connected to an external device, provides electrical control signals for the detection substrate, and transmits induction signals to the outside.
  • the electrical interface is 44.
  • a sensor chip 42 is mounted on the detection substrate 41 , and detection electrodes 421 are provided on the sensor chip 42 , and the detection electrodes 421 are arranged linearly along the surface of the chip.
  • the type of the sensor chip may be a charge induction sensor chip.
  • the sensor chip on the detection unit 4 includes detection electrodes 421 and electrical connection electrodes 422 .
  • FIG. 3 is a schematic diagram of an optional detection substrate according to an embodiment of the present invention.
  • a sensor chip is disposed on the detection substrate, and the sensor chip includes detection electrodes 421 and electrical connection electrodes 422 .
  • the sensor chip 42 is electrically connected to the detection substrate 41 through the bonding wires 43 , and the detection substrate 41 is also provided with an electrical interface 44 connected to the outside, through which electrical control signals are provided for the detection substrate 41 and the detection The received induction signal is output to the outside.
  • FIG. 4 is a schematic diagram of an optional sensor chip according to an embodiment of the present invention. As shown in FIG. 4 , a plurality of detection electrodes 421 and electrical connection electrodes 422 are arranged on the sensor chip 42 in parallel.
  • the detection electrodes 421 form an electric field with the induction electrodes, wherein each detection electrode and the induction electrodes are arranged in the same direction.
  • the direction of the sensing electrode and the detection electrode 421 are arranged in the same direction, and can be placed on the upper part of the detection electrode 421.
  • An electric field is formed between the voltage applied on the sensing electrode and the detection electrode 421, and an induced charge is generated on the detection electrode 421.
  • the sensor chip 42 can convert the charge signal generated on the detection electrode 421 into a voltage signal to obtain a sensing signal, and output the sensing signal to the outside.
  • the sensing electrode 421 is a planar metal electrode fabricated by a semiconductor process, and the materials used include aluminum material.
  • the sensing electrode 421 is connected to the shift circuit inside the IC through a conventional logic switch, and is converted into a serial signal for output.
  • the electrical connection electrode 422 provides the sensor chip with a working voltage and a driving signal, wherein the driving signal includes at least one of the following: a clock signal CLK, a row driving signal SI, and an output signal SIG.
  • the driving signal is not limited to the aforementioned clock signal CLK and row driving signal SI.
  • FIG. 5 is a schematic diagram of an optional electrical connection electrode output signal according to an embodiment of the present invention.
  • the sensor chip driven by a clock signal, every time a row drive signal SI (positive pulse) is sent out, the sensor chip will A line scan is performed, and a line of voltage signals corresponding to each detection electrode 421 is output.
  • SI positive pulse
  • the tactile sensor can output the sensing signal in real time.
  • the control system/console After the control system/console receives the sensing signal, it converts it into Pressure and position signals, so that the working state of the manipulator can be continuously monitored.
  • the type of the sensor chip 42 provided on the detection substrate 41 in FIG. 4 can be selected by yourself.
  • the sensor chip is a chip (unpackaged bare chip) fabricated by a semiconductor CMOS process.
  • the detection electrodes 421 and the electrical connection electrodes are arranged on the surface of the chip. 422.
  • the detection electrodes 421 are evenly arranged along the length of the chip, and their size can be set according to the required resolution.
  • the detection part further includes: a frame body with an accommodating cavity and an opening, and the detection substrate and the sensor chip are located in the accommodating cavity; and a protection structure, surrounded with the frame body to form a sealed space.
  • the protective structure is one of the following: a protective cover plate and an encapsulant.
  • the protective cover is 45 and the frame is 46 .
  • the detection substrate 41 is installed inside the frame body 46
  • a protective cover plate 45 can be installed on the upper surface of the frame body 46 to protect the sensor chip 42 .
  • D between the induction part 2 and the protective cover plate 45 indicates the distance between the induction electrode and the surface of the detection part.
  • the above-mentioned tactile sensor can receive the pressure transmitted when the manipulator grasps the target object through the contact part 1, and transmit the pressure to the sensing part, and the sensing part moves in the direction away from the contact part under the action of the pressure through the sensing part 2, and by detecting The part 4 senses the change of the position of the aforementioned sensing part 2 to generate a sensing signal, wherein the sensing signal is set to determine the contact parameters between the manipulator and the target object.
  • a tactile sensor that can accurately detect the contact point between the object and the manipulator is provided, and the sensed pressure is output in real time in the form of an inductive signal, so as to continuously monitor the grasping state of the manipulator and adjust the manipulator.
  • the contact point when grasping the object improves the accuracy of grasping the object, thereby solving the technical problem that the manipulator adopts a pressure sensor in the related art, and the contact point between the manipulator and the object cannot be accurately sensed, resulting in a significant decrease in the accuracy of grasping the object.
  • the sensor chip 42 When the sensor chip 42 is in the connected working state, it will output the signal in real time (even if it does not touch the external object), therefore, the sensed pressure can be output feedback in the form of voltage signal in real time, and the control system can continuously monitor the manipulator crawl situation.
  • the sensing electrodes can be arranged in the same direction as the arrangement direction of the sensing electrodes 421 , and are arranged on the top of the sensing electrodes 421 , and the plane where the sensing electrodes 421 are located is parallel.
  • the amount of charges induced on the detection electrode 421 is mainly determined by the basic voltage V applied to the detection electrode and the distance D between the detection electrode and the detection electrode 421 .
  • the amount of charge is proportional to the applied base voltage. The higher the base voltage V, the more charges are induced, while the amount of charge is inversely proportional to the distance D, the closer the distance D, the more charges are induced.
  • the main purpose of grabbing light objects is to use the elastic part 3 and the contact part 1 with a thinner thickness.
  • the same rubber material is used.
  • the induction electrode choose different materials according to the quality of the object to be grasped by each manipulator.
  • the induction electrode uses a copper foil with a thickness of 0.03mm and a width of 2mm, and the copper foil is fixed and bonded to the contact part 1 and elastic Part 2 between.
  • the intensity of the sensing signal output by the tactile sensor is converted into the size of the contact force, and the position of the force point can be converted according to the output value of each detection electrode indicated by the output waveform.
  • the thickness of the contact part 1 and the elastic part 3 can be increased, and the flexibility can be reduced, so that the distance between the sensing electrode and the detection part 4 will be increased, so that the tactile sensor can withstand greater force.
  • the distance between the sensing electrode and the detection part 4 is increased, the charges induced on the detection electrode 421 will decrease, and the sensitivity to the acting force will decrease.
  • the intensity of the output signal can be increased by increasing the voltage on the sensing electrode.
  • FIG. 6 is a schematic diagram of another optional tactile sensor according to an embodiment of the present invention.
  • the sensor chip is protected by an encapsulation layer 451, which replaces the protective cover plate installed on the upper part of the chip, wherein, The encapsulation layer 451 can be formed by smearing with an encapsulant.
  • the encapsulant By using the encapsulant, the distance from the surface of the detection part to the surface of the sensor chip can be reduced, and the distance from the sensing electrode to the detection electrode on the chip surface can be reduced accordingly, and the measurement hardness and sensitivity can be improved.
  • Fig. 6 another difference is that the elastic part 3 is only arranged around the surface of the detection part 4, and the area between the sensing electrode and the surface of the detection part is empty (it can also be regarded as air as a medium), which can increase the sensitivity of the sensing electrode. position change range, thereby increasing the pressure measurement range.
  • the size of the tactile sensor can be made longer by arranging a plurality of sensor chips 42 on the detection substrate 41 to increase the detection range.
  • FIG. 7 is a schematic diagram of another optional sensor chip according to an embodiment of the present invention. As shown in FIG. 7 , three sensor chips 42 are arranged on the detection substrate 41 , and an electrical interface 44 is also deployed on the detection substrate 41 . At this time, the number of included detection electrodes 421 is 108, and the detection range can reach 54.9 mm.
  • the tactile sensors shown in FIG. 1 are arranged and installed on the grasping claw of the robotic arm at intervals to form a sensing structure of multiple contacts.
  • the disclosed technical content can be implemented in other ways.
  • the device embodiments described above are only illustrative, for example, the division of the units may be a logical function division, and there may be other division methods in actual implementation, for example, multiple units or components may be combined or Integration into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of units or modules, and may be in electrical or other forms.
  • the units described as separate parts may or may not be physically separate, and the parts shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solution of the present invention is essentially or the part that contributes to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present invention.
  • the aforementioned storage medium includes: U disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk and other media that can store program codes .
  • the solutions provided in the embodiments of the present application can be used to continuously monitor the grasping state of the manipulator, adjust the contact points when the manipulator grasps objects, and improve the accuracy of grasping objects.
  • the technical solutions provided in the embodiments of the present application can be applied to Various manipulators provide a new tactile sensor on the manipulator, which uses different tactile pressures to act on the contact part and the elastic part, so that the sensing electrodes in the sensing part produce different displacements, and at the same time produce different numbers on the detection electrodes.
  • the magnitude of the contact force and the position of the contact point can be calculated, thereby solving the problem that the manipulator adopts a pressure sensor in the related technology, which cannot accurately sense the contact between the manipulator and the object. point, a technical problem that leads to a significant drop in the accuracy of grasping objects.
  • the sensed pressure can be output in real time in the form of inductive signals, so as to continuously monitor the grasping state of the manipulator, adjust the contact points when the manipulator grasps the object, and improve the accuracy of grasping the object.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Manipulator (AREA)

Abstract

一种触觉传感器,其包括:接触部(1),接受机械手抓取目标物体时传输的压力,并将压力传递给感应部(2);感应部(2),位于接触部件的一侧,在压力的作用下,感应部(2)沿远离接触部(1)的方向移动;检测部(4),位于感应部(2)的远离接触部(1)的一侧,检测部(4)感应感应部(2)的位置的变化而生成感应信号,其中,感应信号设置为确定机械手与目标物体之间的接触参数。

Description

触觉传感器
本申请要求于2020年06月28日提交中国专利局、申请号为202010599981.1、申请名称“触觉传感器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及传感器技术领域,具体而言,涉及一种触觉传感器。
背景技术
相关技术中,机械手是一种能模仿人手和臂的某些动作功能,按固定程序抓取、搬运物件或操作工具的自动操作装置,它可代替人的繁重劳动以实现生产的机械化和自动化,并且还能在有害环境下操作以保护人身安全,因而广泛应用于机械制造、冶金、电子、轻工和原子能等部门。机械手在抓取过程中,需要感知机械手与被抓取物体之间的接触点,以及在接触点的抓取力的大小(即触觉和力觉)。
当前,机械手上常用的接触传感器大多是压力传感器,压力传感器没有触觉和力觉的反馈,灵活性受到很大影响,导致物体的抓取精确度会有明显下降,常常造成抓取倾斜,致使物体发生掉落的情况。另外目前的压力传感器,通常是采用单点式的压力传感器,例如,在机械手的关节中采用了传感器阵列,利用阵列方式测量接触点的参数,但是这种方式,虽然使用了阵列的压力传感器,但是由于机械手内的空间非常小,阵列内压力传感器的数量有限也无法准确感知接触点的位置,满足不了机械手对精细物件抓取的使用要求测量。
针对上述的问题,目前尚未提出有效的解决方案。
发明内容
本发明实施例提供了一种触觉传感器,以至少解决相关技术中机械手采用压力传感器,无法精确感知机械手与物体的接触点,导致抓取物体时的精确度明显下降的技术问题。
根据本发明实施例的一个方面,提供了一种触觉传感器,应用于机械手上,包括:接触部,接受所述机械手抓取目标物体时传输的压力,并将压力传递给感应部;所述 感应部,位于所述接触部件的一侧,在所述压力的作用下,所述感应部沿远离所述接触部的方向移动;检测部,位于所述感应部的远离所述接触部的一侧,所述检测部感应所述感应部的位置的变化而生成感应信号,其中,所述感应信号设置为确定机械手与所述目标物体之间的接触参数。
可选地,所述触觉传感器还包括:弹性部,位于所述接触部的一侧,且所述感应部位于所述接触部和所述弹性部之间。
可选地,所述感应部包括:感应电极。
可选地,所述检测部包括:检测基板;传感器芯片,位于所述检测基板上,所述感应电极在所述传感器芯片上具有投影,所述传感器芯片通过键合引线与所述检测基板进行电气连接。
可选地,所述检测基板包括:电气接口,与外部设备连接,为所述检测基板提供电气控制信号,并向外传输所述感应信号。
可选地,所述传感器芯片包括:多个检测电极,与所述感应电极形成电场,其中,每个所述检测电极与所述感应电极的排列方向相同。
可选地,所述传感器芯片还包括:电气连接电极,为所述传感器芯片提供工作电压和驱动信号,其中,所述驱动信号包括下述至少之一:时钟信号CLK、行驱动信号SI、输出信号SIG。
可选地,所述检测部还包括:框体,具有容纳腔和开口,所述检测基板和所述传感器芯片位于所述容纳腔内;保护结构,与所述框体围设形成密封空间。
可选地,所述保护结构为下述之一:保护盖板、封装胶。
可选地,所述接触部的材料为柔性材料,所述弹性部的材料为橡胶材料。
本发明实施例中,通过接触部接受机械手抓取目标物体时传输的压力,并将压力传递给感应部,通过感应部在压力的作用下,感应部沿远离接触部的方向移动,通过检测部感应前述感应部的位置的变化而生成感应信号,其中,感应信号设置为确定机械手与目标物体之间的接触参数。在该实施例中,提供了一种可准确检测物体与机械手的接触点的触觉传感器,实时将感知到的压力以感应信号的方式向外输出反馈,进而连续监控机械手的抓取状态,调整机械手抓取物体时的接触点,提高抓取物体的精确度,从而解决相关技术中机械手采用压力传感器,无法精确感知机械手与物体的接触点,导致抓取物体时的精确度明显下降的技术问题。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明设置为解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的一种可选的触觉传感器的外形示意图;
图2是根据本发明实施例的一种可选的触觉传感器的断面结构示意图;
图3是根据本发明实施例的一种可选的检测基板的示意图;
图4是根据本发明实施例的一种可选的传感器芯片的示意图;
图5是根据本发明实施例的一种可选的电气连接电极输出信号的示意图;
图6是根据本发明实施例的另一种可选的的触觉传感器的示意图;
图7是根据本发明实施例的另一种可选的传感器芯片的示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是设置为区别类似的对象,而不必设置为描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本发明下述各实施例,可应用于各种机械手上,在机械手上提供一种新的触觉传感器,利用不同的触觉压力作用于接触部和弹性部,使感应部中的感应电极产生不同的位移量,同时在检测电极上产生不同数量的电荷,从而输出不同的感应信号,根据输出信号的大小及信号的输出波形,可以算出接触力的大小及接触点的位置。
图1是根据本发明实施例的一种可选的触觉传感器的外形示意图,应用于机械手 上,如图1所示,该触觉传感器包括:接触部1、感应部2、检测部4,其中,
接触部1,接受机械手抓取目标物体时传输的压力,并将压力传递给感应部。
上述接触部1可与外部抓取物体接触,接受外部接触的压力,同时将压力传递给感应部2和弹性部3。
感应部2,位于接触部件的一侧,在压力的作用下,感应部沿远离接触部的方向移动。
可选的,感应部包括:感应电极。感应电极可设置为扁平薄片状的电极,设置为在目标物体与机械手接触时,根据受作用力的大小产生相应形变。
在图1中,触觉传感器还包括:弹性部3,位于接触部的一侧,且感应部位于接触部和弹性部之间。
作为本发明可选的实施例,接触部的材料可以为柔性材料,弹性部的材料可以为橡胶材料。
弹性部3,接受接触部1传递的外部压力,带动感应电极2产生相应的形变,使感应电极2至检测部4的距离D随着外力的作用而发生改变。
上述感应电极可携带基础电压,与检测电极(设置在检测部内)形成电场,在检测电极上形成电荷。感应电极位于接触部1和弹性部3之间,可以随着接触部1和弹性部3的变形程度发生相应的形变;当有外力作用于接触部1时(例如,机械手抓取目标物体时),与目标物体接触的作用力通过接触部1向内部传递,使感应电极2和弹性部3随着作用力的大小产生相应的变形。在感应电极2产生变形后,感应电极与检测部4表面的距离D就会发生变化。接触力越大,感应电极2产生的形变就越大,D的值就变得越小,感应电极距离检测部4的距离变越近,接触点的位置不同,D发生变化的位置也不同,由此可以测量出压力的大小和着力点的位置,即确定接触点的位置和接触力的大小。
对于感应电极携带的基础电压,可以是预先施加的,基础电压可以由检测部4提供,也可以按需要直接提供。基础电压的电压值是整个触觉传感器的关键参数之一,电压值的大小与接触部1和弹性部3的柔韧度和厚度有关,也与感应电极至检测部4的初始距离D有关,也就是与触觉传感器使用环境即抓取目标物体的初始重量的上限设计值有关。抓取重量大时,接触部1和弹性部3的柔韧度要低并且厚度要大,感应电极与检测部4之间的距离就大,这时施加在检测电极2上的电压就高,反之施加的电压就低。
图2是根据本发明实施例的一种可选的触觉传感器的断面结构示意图,如图2所示,触觉传感器包括:接触部1、感应部2(可理解为感应电极)、弹性部3、检测部4。
检测部4,位于感应部的远离接触部的一侧,检测部通过感应前述感应部的位置的变化而生成感应信号,其中,感应信号设置为确定机械手与目标物体之间的接触参数。
对于本发明实施例,检测部4包括:检测基板;传感器芯片,位于检测基板上,感应电极在传感器芯片上具有投影,传感器芯片通过键合引线与检测基板进行电气连接。
通过检测部4,测量感应电极2由于形变产生的位置变化而在相应检测电极上产生的电荷变化。
如图2所示,检测部4包括:检测基板41、传感器芯片42、键合引线43。
可选的,检测基板包括:电气接口,与外部设备连接,为检测基板提供电气控制信号,并向外传输感应信号。如图2所示,电气接口为44。
在检测基板41上搭载传感器芯片42,传感器芯片42上设置有检测电极421,检测电极421沿芯片表面直线排列。其中,传感器芯片的类型可以为电荷感应传感器芯片。
检测部4上的传感器芯片包括:检测电极421、电气连接电极422。
图3是根据本发明实施例的一种可选的检测基板的示意图,如图3所示,检测基板上设置传感器芯片,传感器芯片上包括:检测电极421、电气连接电极422。通过键合引线43将传感器芯片42与检测基板41实现电气连接,在检测基板41上还设置有与外部连接的电气接口44,通过该电气接口44为检测基板41提供电气控制信号,并将检测到的感应信号向外输出。
图4是根据本发明实施例的一种可选的传感器芯片的示意图,如图4所示,传感器芯片42上设置多个平行排列的检测电极421和电气连接电极422。
检测电极421,与感应电极形成电场,其中,每个检测电极与感应电极的排列方向相同。感应电极的方向与检测电极421沿同一方向排列,可置于检测电极421的正上部,感应电极上施加的电压与检测电极421之间形成电场,并在检测电极421上产生感应电荷,这样,传感器芯片42就能将检测电极421上产生的电荷信号转换成电压信号,得到感应信号,并向外输出该感应信号。感应电极421是通过半导体工艺制作的平面金属电极,其使用材料包括:铝材料,感应电极421通过常规的逻辑开关与IC 内部的移位电路相连,并转换成串行信号向外输出。
电气连接电极422,为传感器芯片提供工作电压和驱动信号,其中,驱动信号包括下述至少之一:时钟信号CLK、行驱动信号SI、输出信号SIG。驱动信号不限于前述的时钟信号CLK,行驱动信号SI。
图5是根据本发明实施例的一种可选的电气连接电极输出信号的示意图,如图5所示,在时钟信号的驱动下,每发出一个行驱动信号SI(正脉冲),传感器芯片将进行一次行扫描,并输出一行对应每一个检测电极421的电压信号,在连续工作状态下,触觉传感器能够实时地向外输出感应信号,控制系统/控制台收到感应信号后,将其转换成压力和位置信号,从而能对机械手的工作状态进行连续监控。
在图4中的检测基板41上设置的传感器芯片42的类型可自行选择,传感器芯片是一种半导体CMOS工艺制作的芯片(未封装的裸芯片),在芯片表面排列检测电极421以及电气连接电极422。检测电极421沿芯片长度方向均匀排列,其大小可以根据所需分辨率进行设置。
可选的,检测部还包括:框体,具有容纳腔和开口,检测基板和传感器芯片位于容纳腔内;保护结构,与框体围设形成密封空间。
在本发明实施例中,保护结构为下述之一:保护盖板、封装胶。如图2所示,保护盖板为45、框体为46。检测基板41安装在框体46内部,框体46的上表面可安装有保护盖板45,设置为保护传感器芯片42。
在图2中,感应部2与保护盖板45之间的D指示感应电极与检测部表面的距离。
上述触觉传感器,可以通过接触部1接受机械手抓取目标物体时传输的压力,并将压力传递给感应部,通过感应部2在压力的作用下,感应部沿远离接触部的方向移动,通过检测部4感应前述感应部2的位置的变化而生成感应信号,其中,感应信号设置为确定机械手与目标物体之间的接触参数。在该实施例中,提供了一种可准确检测物体与机械手的接触点的触觉传感器,实时将感知到的压力以感应信号的方式向外输出反馈,进而连续监控机械手的抓取状态,调整机械手抓取物体时的接触点,提高抓取物体的精确度,从而解决相关技术中机械手采用压力传感器,无法精确感知机械手与物体的接触点,导致抓取物体时的精确度明显下降的技术问题。
传感器芯片42处于连接工作状态时,会实时地将信号向外输出(即使没有接触外界物体),因此,能实时将感知到的压力以电压信号的方式向外输出反馈,控制系统可以连续监控机械手的抓取情况。
在本发明实施例中,可设置感应电极的方向与检测电极421的排列方向相同,并且设置于感应检测电极421的正上面,其所在的平面与检测电极421所在的平面平行。感应电极与检测电极421之间构成了平板电容的结构,根据平板电容的原理:C=q/V,其中,C为的电容器的电容量,q为检测电极上感应的电荷值,V为施加在感应电极上的基础电压。平板电容的结构,电容器的电容量还可以表示为:C=εS/D,其中,C为的电容器的电容量,ε为平板间的介质的介电常数,S为检测电极421的面积,D为感应电极与检测电极421之间距离,由此可以计算出检测电极上的感应电荷值:q=εS*V/D。
检测电极421上感应的电荷量主要是由感应电极上施加的基础电压V和感应电极与检测电极421之间距离D决定的。电荷量与施加的基础电压成正比,基础电压V越高,感应的电荷越多,而电荷量与距离D成反比,距离D越近,感应的电荷越多。
在本发明实施例中,以抓取较轻物体为主要目的,弹性部3和接触部1使用的是厚度较薄,例如,设置弹性部的厚度为2mm,选用橡胶材料;接触部1的厚度为5mm,同样使用橡胶材料。在选用感应电极的材料时,根据各个机械手所需抓取的物体质量选择不同材料,例如,感应电极使用厚度为0.03mm、宽度2mm的铜箔,将铜箔固定粘接与接触部1和弹性部2之间。
将触觉传感器输出的感应信号的强度换算成接触力的大小,同时根据输出波形指示的每个检测电极的输出值大小,可以换算出着力点的位置。
对于需要抓取较重物体的场合,可以加大接触部1和弹性部3的厚度,并降低柔韧性,这样感应电极与检测部4的距离就会加大,使触觉传感器能承受更大的作用力。感应电极与检测部4的距离加大后,检测电极421上感应的电荷就会减少,对作用力的感度就会降低,这时可通过加大感应电极上的电压来提高输出信号的强度。
图6是根据本发明实施例的另一种可选的的触觉传感器的示意图,如图6所示,使用封装层451对传感器芯片进行保护,取代了安装在芯片上部的保护盖板,其中,封装层451可以使用封装胶涂抹形成,利用封装胶,可以减小检测部表面到传感器芯片表面的距离,相应地减小了感应电极到芯片表面上检测电极的距离,提高测量硬度及灵敏度。
图6中,另一个不同点在于弹性部3只设置检测部4表面的四周,感应电极与检测部表面这一区域是空的(也可以认为是空气作为介质),这样可以增大感应电极的位置变化范围,从而增加压力的测量范围。
另外,对于抓取物较大的使用场合,可以将触觉传感器做的尺寸更长一些,其方 式是在检测基板41上排列多个传感器芯片42,使其能够检测的范围增大。
图7是根据本发明实施例的另一种可选的传感器芯片的示意图,如图7所示,在检测基板41上排列了3个传感器芯片42,在检测基板41同样部署了电气接口44,此时,所包含的检测电极421的数量为108个,检测范围可以达到54.9mm。
若是想要抓取更大的物体,可以布置多个触觉传感器,例如将图1示出的触觉传感器,间隔地设置安装在机械臂的抓取爪上,形成多个触点的感知结构。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
在本发明的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,可以为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
工业实用性
本申请实施例提供的方案可以用于连续监控机械手的抓取状态,调整机械手抓取物体时的接触点,提高抓取物体的精确度,在本申请实施例提供的技术方案中,可以应用于各种机械手,在机械手上提供一种新的触觉传感器,利用不同的触觉压力作用于接触部和弹性部,使感应部中的感应电极产生不同的位移量,同时在检测电极上产生不同数量的电荷,从而输出不同的感应信号,根据输出信号的大小及信号的输出波形,可以算出接触力的大小及接触点的位置,进而解决相关技术中机械手采用压力传感器,无法精确感知机械手与物体的接触点,导致抓取物体时的精确度明显下降的技术问题。本申请实施例可以实时将感知到的压力以感应信号的方式向外输出反馈,进而连续监控机械手的抓取状态,调整机械手抓取物体时的接触点,提高抓取物体的精确度。

Claims (10)

  1. 一种触觉传感器,其中,应用于机械手上,包括:
    接触部,接受所述机械手抓取目标物体时传输的压力,并将压力传递给感应部;
    所述感应部,位于所述接触部件的一侧,在所述压力的作用下,所述感应部沿远离所述接触部的方向移动;
    检测部,位于所述感应部的远离所述接触部的一侧,所述检测部感应所述感应部的位置的变化而生成感应信号,其中,所述感应信号设置为确定机械手与所述目标物体之间的接触参数。
  2. 根据权利要求1所述的触觉传感器,所述触觉传感器还包括:
    弹性部,位于所述接触部的一侧,且所述感应部位于所述接触部和所述弹性部之间。
  3. 根据权利要求2所述的触觉传感器,所述感应部包括:
    感应电极。
  4. 根据权利要求3所述的触觉传感器,所述检测部包括:
    检测基板;
    传感器芯片,位于所述检测基板上,所述感应电极在所述传感器芯片上具有投影,所述传感器芯片通过键合引线与所述检测基板进行电气连接。
  5. 根据权利要求4所述的触觉传感器,所述检测基板包括:
    电气接口,与外部设备连接,为所述检测基板提供电气控制信号,并向外传输所述感应信号。
  6. 根据权利要求4所述的触觉传感器,所述传感器芯片包括:
    多个检测电极,与所述感应电极形成电场,其中,每个所述检测电极与所述感应电极的排列方向相同。
  7. 根据权利要求4所述的触觉传感器,所述传感器芯片还包括:
    电气连接电极,为所述传感器芯片提供工作电压和驱动信号,其中,所述驱 动信号包括下述至少之一:时钟信号CLK、行驱动信号SI、输出信号SIG。
  8. 根据权利要求4所述的触觉传感器,所述检测部还包括:
    框体,具有容纳腔和开口,所述检测基板和所述传感器芯片位于所述容纳腔内;
    保护结构,与所述框体围设形成密封空间。
  9. 根据权利要求8所述的触觉传感器,所述保护结构为下述之一:保护盖板、封装胶。
  10. 根据权利要求9所述的触觉传感器,所述接触部的材料为柔性材料,所述弹性部的材料为橡胶材料。
PCT/CN2021/097426 2020-06-28 2021-05-31 触觉传感器 WO2022001547A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21834225.1A EP4101606A4 (en) 2020-06-28 2021-05-31 TOUCH SENSOR
US17/802,146 US20230103779A1 (en) 2020-06-28 2021-05-31 Tactile Sensor
JP2022580804A JP2023531288A (ja) 2020-06-28 2021-05-31 触覚センサ
KR1020227043863A KR20230011363A (ko) 2020-06-28 2021-05-31 촉각 센서

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010599981.1A CN111618912A (zh) 2020-06-28 2020-06-28 触觉传感器
CN202010599981.1 2020-06-28

Publications (1)

Publication Number Publication Date
WO2022001547A1 true WO2022001547A1 (zh) 2022-01-06

Family

ID=72256703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097426 WO2022001547A1 (zh) 2020-06-28 2021-05-31 触觉传感器

Country Status (6)

Country Link
US (1) US20230103779A1 (zh)
EP (1) EP4101606A4 (zh)
JP (1) JP2023531288A (zh)
KR (1) KR20230011363A (zh)
CN (1) CN111618912A (zh)
WO (1) WO2022001547A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111618912A (zh) * 2020-06-28 2020-09-04 威海华菱光电股份有限公司 触觉传感器
JP2023550504A (ja) * 2020-11-23 2023-12-01 メカビジョン インコーポレーテッド 接触センサおよびそれを適用する自動化システム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6007728A (en) * 1997-08-14 1999-12-28 Institute Of Micoelectronics Design of a novel tactile sensor
KR20140074461A (ko) * 2012-12-10 2014-06-18 한국기계연구원 압전소자의 맞물림을 이용한 촉각 센서
WO2018012329A1 (ja) * 2016-07-11 2018-01-18 学校法人早稲田大学 近接触覚センサ
CN110216717A (zh) * 2019-06-05 2019-09-10 中国计量大学 一种协作机器人表面覆盖式触觉传感装置
CN110328660A (zh) * 2019-06-03 2019-10-15 深圳前海达闼云端智能科技有限公司 触觉检测方法、装置、设备及机器人
CN111015740A (zh) * 2019-12-12 2020-04-17 中国科学院重庆绿色智能技术研究院 触滑觉传感器、柔性手指抓取系统及其抓取方法
CN111168723A (zh) * 2019-12-31 2020-05-19 浙江清华柔性电子技术研究院 力位触觉结构及力位触觉传感器
CN111618912A (zh) * 2020-06-28 2020-09-04 威海华菱光电股份有限公司 触觉传感器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085482A (ja) * 1994-06-15 1996-01-12 S K S Kk 静電容量式触覚センサ
DE60328913D1 (de) * 2002-12-12 2009-10-01 Danfoss As Berührungssensorelement und sensorgruppe
CN1280069C (zh) * 2003-11-01 2006-10-18 中国科学院合肥智能机械研究所 一种柔性触觉传感器及触觉信息检测方法
TWI470197B (zh) * 2012-12-20 2015-01-21 Ind Tech Res Inst 電容式剪力感測器及其製造方法
US9802316B2 (en) * 2016-01-15 2017-10-31 Vision Robotics Corporation Compliant touch sensor
CN107655498A (zh) * 2016-07-24 2018-02-02 程媛 一种电容式触觉传感器信号检测系统
JP2018054446A (ja) * 2016-09-28 2018-04-05 セイコーエプソン株式会社 センサーおよびロボット
CN109163824A (zh) * 2018-10-10 2019-01-08 北京理工大学 一种具有触觉和接近觉双模感知功能的柔性电子皮肤
CN212666113U (zh) * 2020-06-28 2021-03-09 威海华菱光电股份有限公司 触觉传感器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6007728A (en) * 1997-08-14 1999-12-28 Institute Of Micoelectronics Design of a novel tactile sensor
KR20140074461A (ko) * 2012-12-10 2014-06-18 한국기계연구원 압전소자의 맞물림을 이용한 촉각 센서
WO2018012329A1 (ja) * 2016-07-11 2018-01-18 学校法人早稲田大学 近接触覚センサ
CN110328660A (zh) * 2019-06-03 2019-10-15 深圳前海达闼云端智能科技有限公司 触觉检测方法、装置、设备及机器人
CN110216717A (zh) * 2019-06-05 2019-09-10 中国计量大学 一种协作机器人表面覆盖式触觉传感装置
CN111015740A (zh) * 2019-12-12 2020-04-17 中国科学院重庆绿色智能技术研究院 触滑觉传感器、柔性手指抓取系统及其抓取方法
CN111168723A (zh) * 2019-12-31 2020-05-19 浙江清华柔性电子技术研究院 力位触觉结构及力位触觉传感器
CN111618912A (zh) * 2020-06-28 2020-09-04 威海华菱光电股份有限公司 触觉传感器

Also Published As

Publication number Publication date
CN111618912A (zh) 2020-09-04
KR20230011363A (ko) 2023-01-20
US20230103779A1 (en) 2023-04-06
EP4101606A4 (en) 2023-09-06
EP4101606A1 (en) 2022-12-14
JP2023531288A (ja) 2023-07-21

Similar Documents

Publication Publication Date Title
WO2022001547A1 (zh) 触觉传感器
TWI470197B (zh) 電容式剪力感測器及其製造方法
JP6163900B2 (ja) 力検出装置およびロボット
JP6252241B2 (ja) 力検出装置、およびロボット
US11642796B2 (en) Tactile perception apparatus for robotic systems
US9770826B2 (en) Force detecting device, robot, electronic component conveying apparatus
US11413760B2 (en) Flex-rigid sensor array structure for robotic systems
US11273555B2 (en) Multimodal sensor array for robotic systems
Kumagai et al. Event-based tactile image sensor for detecting spatio-temporal fast phenomena in contacts
CN109844480A (zh) 力和力矩探测器,用于这种力和力矩探测器的力传感器模块和具有这种力和力矩探测器的机器人
CN212666113U (zh) 触觉传感器
JP6354894B2 (ja) 力検出装置、およびロボット
Obinata et al. Vision based tactile sensor using transparent elastic fingertip for dexterous handling
US11433555B2 (en) Robotic gripper with integrated tactile sensor arrays
CN206140521U (zh) 机器人
JP2015184007A (ja) 力検出装置、ロボット、電子部品搬送装置および電子部品検出装置
CN215471198U (zh) 机械臂末端执行器、机械臂和机器人
JP6436261B2 (ja) 力検出装置、およびロボット
CN218592998U (zh) 机械臂末端执行器、机械臂和机器人
JP2018063258A (ja) 力検出装置、およびロボット
US20220228921A1 (en) Ferroelectric Sensor
KR101552801B1 (ko) 촉각 센서
KR20160094814A (ko) 무게 측정 장치 및 그 제조 방법
KR102420528B1 (ko) 소프트 그리퍼용 접촉력 센서
CN112577651B (zh) 一种机械手感知器用手指感知器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21834225

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021834225

Country of ref document: EP

Effective date: 20220905

ENP Entry into the national phase

Ref document number: 20227043863

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022580804

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE