WO2018010206A1 - 用于电镀处理的芳香族聚酰胺复合物及其制备方法 - Google Patents

用于电镀处理的芳香族聚酰胺复合物及其制备方法 Download PDF

Info

Publication number
WO2018010206A1
WO2018010206A1 PCT/CN2016/091017 CN2016091017W WO2018010206A1 WO 2018010206 A1 WO2018010206 A1 WO 2018010206A1 CN 2016091017 W CN2016091017 W CN 2016091017W WO 2018010206 A1 WO2018010206 A1 WO 2018010206A1
Authority
WO
WIPO (PCT)
Prior art keywords
aromatic polyamide
powder
electroplating treatment
inorganic oxide
aromatic
Prior art date
Application number
PCT/CN2016/091017
Other languages
English (en)
French (fr)
Inventor
金良文
郑红专
梁永华
Original Assignee
江门市德众泰工程塑胶科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江门市德众泰工程塑胶科技有限公司 filed Critical 江门市德众泰工程塑胶科技有限公司
Publication of WO2018010206A1 publication Critical patent/WO2018010206A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/10Polyamides derived from aromatically bound amino and carboxyl groups of amino-carboxylic acids or of polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation

Definitions

  • the present invention relates to an aromatic polyamide composite, and is particularly suitable for use in an electroplated coated aromatic polyamide composite and a process for the preparation thereof.
  • Polyamide commonly known as nylon (Nylon), is a general term for heterochain polymers containing repeating structural unit amide groups (NHCO-) in macromolecular chains of polymers, mainly composed of dibasic acids and binary Amine or amino acid lactam is obtained by polycondensation and self-polymerization. It is the earliest and most used thermoplastic engineering plastic.
  • PA polyamide
  • PA can be divided into aliphatic polyamide, semi-aromatic polyamide, wholly aromatic polyamide, heterocyclic aromatic polyamide and aliphatic polyamide according to the main chain structure, among which the amine or acid of nylon raw material When there is a benzene ring, it is a semi-aromatic nylon.
  • Semi-aromatic or wholly aromatic polyamides can significantly improve the heat resistance and rigidity of nylon. Similar to aliphatic polyamides, aromatic polyamides can be polycondensed from dibasic acids and diamines, or can be self-condensed from amino acids. Semi-aromatic polyamides can be derived from aromatic dibasic acids (such as p-benzoic acid). Formic acid) is polycondensed with an aliphatic dibasic acid such as decanediamine, such as nylon 9T.
  • Electroplated grade nylon materials usually require coating modification.
  • the most common practice is to "activate" the polyamide surface by surface treatment so that it can be plated non-electroplated and then optionally electrolyzed. Cover most of the metal.
  • the surface treatment of the polyamide may involve mechanical and/or chemical surface “etching” in order to improve the electroless plating and improve the adhesion of the metal layer to the polyamide surface.
  • the treatment liquid on the surface of the polyamide includes a sulfuric acid solution and chromic acid, such as U.S. Patent No. 5,324,766.
  • the use of heavy metal chromic acid is extremely hazardous to workers and can also cause significant pollution to the environment.
  • conventional electroplating grade nylon materials such as aliphatic polyamide (PA6-based) resin
  • PA6-based resin aliphatic polyamide
  • the electroplating solution first swells the aliphatic polyamide resin, and then infiltrates into the interior to corrode the inorganic ore powder in the material to form a surface roughening effect, which is used to increase the surface bonding force between the electroplated metal layer and the nylon substrate.
  • electroplated grade nylon materials have large defects: high water absorption, unstable size, low temperature resistance, and low plating adhesion of the substrate, which cannot meet the requirements for adhesion of metal electroplated products.
  • the present invention provides an aromatic polyamide composite for electroplating treatment, which is prepared by adding a special aliphatic polyamide material and an inorganic oxide ore powder with an aromatic polyamide resin as a main substrate. Into a composite material, and then subjected to a surface metallization coating through an electroplating process to obtain a high Strength, high temperature resistance, low water absorption, dimensionally stable products, especially with excellent substrate plating adhesion.
  • the present invention adopts the following technical solutions.
  • the aromatic polyamide composite used for the electroplating treatment includes, by mass percentage, the following components: 40% to 70% of the aromatic polyamide resin, 5% to 10% of the aliphatic polyamide powder, and 0.2% to 1% of the caprolactam. , sodium caprolactam 0.1% to 0.5% and inorganic oxide ore powder 20% to 50%.
  • the aromatic polyamide resin refers to an aromatic polyamide resin having an aromatic ring structure in a molecular main chain, and includes a wholly aromatic polyamide resin, a semi-aromatic polyamide resin, and a partially aromatic polyamide resin.
  • the wholly aromatic polyamide resin may be obtained by polycondensation of a dibasic acid each having a benzene ring structure and a diamine, or may be self-condensed by an amino acid.
  • Semi-aromatic polyamides can be obtained by polycondensation of aromatic dibasic acids (such as terephthalic acid) with aliphatic dibasic acids (such as diamines), or aromatic diamines (such as p-phenylenediamine) and fats.
  • Partially aromatic polyamide refers to a polyamide having a content of aromatic monomers of less than 50% in the polyamide, such as PA6T/66, PA6/10T and the like.
  • the mass fraction of the aromatic polyamide resin when the mass fraction of the aromatic polyamide resin is less than 40%, the thermosetting property is not sufficiently exhibited, and the adhesion between the base resin and the surface of the plating coating layer cannot be sufficiently exhibited.
  • the mass fraction is more than 70%, the viscosity as the resin solution is too high, and it is difficult for the surface to form a uniform thickness at the time of corrosion coating.
  • the amount of the aliphatic polyamide powder to be added is not balanced, and the hardness is too high and becomes brittle after curing.
  • the aliphatic polyamide powder is soluble in concentrated sulfuric acid or concentrated hydrochloric acid solution.
  • the aliphatic polyamide powder refers to an aliphatic polyamide having a total number of methylene groups in the polymerization unit of more than 8, including aliphatic polyamides having branched and unbranched chains. More preferably, the aliphatic polyamide powder refers to PA11 (poly ⁇ -aminoundecanoyl), PA12 (polylaurolactam), PA1010 (polydecanoyldiamine), and the like.
  • PA11 poly ⁇ -aminoundecanoyl
  • PA12 polylaurolactam
  • PA1010 polydecanoyldiamine
  • the aliphatic polyamide powder has an average particle diameter of 0.5 to 5 ⁇ m.
  • the particle diameter referred to herein means that the powder particles form a certain secondary aggregation state, and are directly observed by a scanning electron microscope (SEM) to obtain an average particle diameter.
  • the inorganic oxide ore powder is one or a mixture of zinc oxide, aluminum oxide, iron oxide, and silicon oxide.
  • the inorganic oxide ore fine powder has an average particle diameter of 0.1 to 1 ⁇ m, and the particle diameter herein refers to a median diameter (D50) measured by a laser particle size analyzer, and the inorganic oxide is used.
  • D50 median diameter
  • the particle size distribution of the ore powder is normally distributed.
  • the particle size of the above inorganic oxide ore powder cannot satisfy the distribution requirement, it needs to be depolymerized, and the depolymerization treatment should ensure the depolymerization between the ore particles while avoiding causing the fracture thereof because Due to the presence of a large number of fine particles in the crushed inorganic oxide ore fine powder, the specific surface area will be further increased, resulting in an increase in agglomeration between the inorganic oxide ore fines, which is disadvantageous for its complexation in the aromatic polyamide. Uniform dispersion in the composition.
  • the inorganic oxide ore fine powder is preferably an inorganic oxide ore fine powder modified with a silane coupling agent.
  • the silane coupling agent improves the wettability of the surface between the inorganic oxide ore powder and the plated metal, and serves as an auxiliary agent when pressed on the substrate resin. Improve the effect of adhesion.
  • the silane coupling agent is an epoxy silane coupling agent, an amino silane coupling agent, or a fluorenyl silane coupling agent, and particularly preferably an amino silane coupling agent or a fluorenyl silane coupling agent.
  • the aromatic polyamide composite for electroplating generally has a peel strength of 0.8 kgf/cm or more, which satisfies the application requirements. If it is 1.0 kgf/cm or more, it can be said that it does not appear at all. Peel off the problem.
  • the silane coupling agent is modified by using various silane coupling agents such as an olefin group silane or an acryl silane represented by the most general epoxy silane coupling agent, and then the plating treatment is performed.
  • various silane coupling agents such as an olefin group silane or an acryl silane represented by the most general epoxy silane coupling agent
  • the peel strength can be 1.0 kgf/cm or more, which is particularly preferable.
  • the silane coupling agent-modified inorganic oxide ore fine powder is carried out by a usual dipping method, a shower method, a spray method, or the like, and the modification method thereof is not particularly limited in the present invention. According to the process design, a method in which the inorganic oxide ore fine powder and the solution containing the silane coupling agent are more uniformly contacted and adsorbed can be used.
  • epoxy silane coupling agent examples include vinyltrimethoxysilane, vinylphenyltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -glycidoxypropyl Trimethoxysilane, 4-glycidylbutyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, N-3 -(4-(3-Aminopropoxy)butoxy)propyl-3-aminopropyltrimethoxysilane, imidazolylsilane, triazinesilane.
  • the amino-based silane coupling agent or mercapto-based silane coupling agent includes ⁇ -mercaptopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, and N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxy Silane, N-3-(4-(3-aminopropoxy)butoxy)propyl-3-aminopropyltrimethoxysilane.
  • caprolactam is mainly used for treating inorganic oxide ore powder, and the inorganic oxide ore powder is more compatible with the polyamide resin and more uniformly distributed.
  • the sodium caprolactam is mainly used for forming a polymerization reaction of an aliphatic polyamide resin, improving the molecular weight and temperature resistance of the aliphatic polyamide, and facilitating plastic forming of the product.
  • a method for preparing an aromatic polyamide composite for electroplating treatment comprising the steps of:
  • the present invention has an advantageous effect that the present invention provides an aromatic polyamide composite for electroplating treatment and a preparation method thereof, which have the following advantages as compared with the prior art.
  • the aliphatic polyamide resin of the present invention employs an aliphatic polyamide having a total number of methylene groups in the polymerization unit of more than 8, and these resins have lower crystallinity than PA6 and PA66, and are more easily swollen by an acid solution in the plating solution, and It has a low water absorption rate and can be electroplated without a special electroplating process, which reduces the production process cost of the enterprise.
  • the aromatic polyamide composite for electroplating treatment of the present invention has a high surface finish, and does not contain glass fiber as compared with the patent CN101878252, and the surface of the electroplated product has no pitting and orange peel.
  • the aromatic polyamide composite for electroplating treatment of the present invention uses the modified inorganic oxide ore powder as a filler, has a more stable reaction with electroplating syrup, and has the advantages of low water absorption and high temperature resistance.
  • the plating adhesion to the surface of the electroplated coating layer can reach 1.0 kgf/cm or more, and it can be said that there is no peeling and detachment problem at all, and the protection is guaranteed. It is safe to use.
  • the aromatic polyamide composite used for the electroplating treatment includes, by mass percentage, the following components: 40% of an aromatic polyamide resin, 9.5% of an aliphatic polyamide powder, 0.3% of caprolactam (DuPont, USA), sodium caprolactam ( DuPont of the United States) 0.2% and inorganic oxide ore powder 50%.
  • the aromatic polyamide resin is a product of DuPont of the United States;
  • the aliphatic polyamide powder is PA11 (Arkema, France), and the average particle size is 0.5 micrometer;
  • the inorganic oxide ore powder is a zinc oxide modified by vinyltrimethoxysilane. (K.K.), with an average particle size of 0.2 microns.
  • the aromatic polyamide composite used for the electroplating treatment includes, by mass percentage, 55% of an aromatic polyamide resin, 10% of an aliphatic polyamide powder, caprolactam caprolactam (DuPont, USA) 0.2%, sodium caprolactam (DuPont, USA) 0.1% and inorganic oxide ore powder 34.7%.
  • the aromatic polyamide resin is the product of DuPont of the United States;
  • the aliphatic polyamide powder is PA12 (the United States) DuPont), having an average particle size of 2 microns;
  • the inorganic oxide ore fines are gamma-mercaptopropyltrimethoxysilane-modified alumina powder (Martin, Germany) having an average particle size of 0.1 micron.
  • the aromatic polyamide composite used for the electroplating treatment includes, by mass percentage, 62% of an aromatic polyamide resin, 5% of an aliphatic polyamide powder, caprolactam (DuPont, USA) 0.6%, sodium caprolactam ( DuPont, USA, 0.4% and 32% inorganic oxide ore.
  • the aromatic polyamide resin is a product of DuPont of the United States; the aliphatic polyamide powder is PA1010 (DuPont, USA), and the average particle size is 5 micrometers; the inorganic oxide ore powder is N- ⁇ (aminoethyl) ⁇ -aminopropyl.
  • the trimethoxysilane-modified silica powder (Wacker, Germany) has an average particle size of 0.5 ⁇ m.
  • the aromatic polyamide composite used for the electroplating treatment includes, by mass percentage, the following components: 70% of an aromatic polyamide resin, 8.5% of an aliphatic polyamide powder, 1% of caprolactam (DuPont, USA), sodium caprolactam ( DuPont of the United States) 0.5% and inorganic oxide ore powder 20%.
  • the aromatic polyamide resin is a product of DuPont of the United States; the aliphatic polyamide powder is PA10 (DuPont, USA), and the average particle size is 0.8 micrometer; the inorganic oxide ore powder is N- ⁇ (aminoethyl) ⁇ -aminopropyl.
  • the base trimethoxysilane-modified iron oxide powder (Langsheng, Germany) has an average particle size of 0.3 ⁇ m.
  • the aromatic polyamide composite used for the electroplating treatment includes, by mass percentage, the following components: aromatic polyamide resin 47%, aliphatic polyamide powder 7%, caprolactam (DuPont, USA) 0.5%, sodium caprolactam ( DuPont Company of the United States) 0.5% and inorganic oxide ore powder 45%.
  • the aromatic polyamide resin is a product of DuPont of the United States; the aliphatic polyamide powder is PA1010 (DuPont, USA), and the average particle size is 2.0 micrometer; the inorganic oxide ore powder is N-3-(4-(3-aminopropyl). Oxy)butoxy)propyl-3-aminopropyltrimethoxysilane-modified silica powder (Wacker, Germany) having an average particle size of 1.0 ⁇ m.
  • the preparation method of the aromatic polyamide composite for electroplating treatment in Examples 1-5 includes the following steps:
  • Comparative Example 1 Product obtained in Patent CN101878252.
  • Comparative Example 2 BASF's Ultramid B3M6 product (commercially available), the main component is PA6+30% ore.
  • Comparative Example 3 Rhodia S218MT40 product (commercially available), the main component is PA6 + 40% mineral powder.
  • Comparative Example 4 BM240 product (commercially available) of the German LANXESS company, the main component is PA6+40% ore powder.
  • Example 2 The mechanical properties and water resistance of the aromatic polyamide composite material for electroplating treatment obtained in Example 1 and the products of Comparative Examples 2-4 were tested, and the results are shown in Table 2.
  • the bending performance test standard is tested using ISO 178.
  • the impact performance test standard is tested using ISO 180.
  • the aromatic polyamide composite material for electroplating treatment uses an aromatic polyamide resin as a main substrate by adding an aliphatic polyamide material and a silane coupling agent.
  • the modified inorganic oxide ore powder is prepared into a composite material, and after surface metallization coating by electroplating, the surface of the electroplated layer and the aromatic polyamide resin substrate have very good electroplating bonding force, and can reach 1kgf/cm or more.
  • the aromatic polyamide resin composite material for electroplating treatment provided by the present invention has tensile strength, bending strength and impact resistance as compared with the same type of products on the market. It has excellent comprehensive performance, especially its excellent performance in water resistance, far exceeding the performance of similar products on the market. (Note: After immersion, the higher the impact performance of the sample, the greater the hygroscopic expansion, which deteriorates the tensile strength, indicating that the water resistance is worse.)
  • the aromatic polyamide composite material obtained by the present invention for electroplating treatment is obtained in the electroplating layer in combination of adhesion, water resistance, tensile strength, flexural strength and impact resistance as compared with the prior art. A large increase will be more suitable for the needs of consumers and industry development.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Polyamides (AREA)

Abstract

一种用于电镀处理的芳香族聚酰胺复合物,按质量百分比计,包括如下组分:芳香族聚酰胺树脂40%~70%、脂肪族聚酰胺粉末5%~10%、己内酰胺0.2%~1%、己内酰胺钠0.1%~0.5%和无机氧化物矿粉20%~50%。还提供了该用于电镀处理的芳香族聚酰胺复合物的制备方法。与现有技术相比,在电镀层结合力、耐水性、拉伸强度、弯曲强度和抗冲击性能上均获得了较大幅度的提升,必能更加适应消费者和行业发展的需求。

Description

用于电镀处理的芳香族聚酰胺复合物及其制备方法 技术领域
本发明涉及芳香族聚酰胺复合物,特别适用于电镀被覆处理的芳香族聚酰胺复合物及其制备方法。
背景技术
聚酰胺(polyamide,PA)通常称为尼龙(Nylon),它是在聚合物大分子链中含有重复结构单元酰胺基团(NHCO-)的杂链聚合物总称,主要由二元酸与二元胺或氨基酸内酰胺经缩聚、自聚而得,是开发最早、使用量最大的热塑性工程塑料。PA品种较多,按主链结构可分为脂肪族聚酰胺、半芳香族聚酰胺、全芳香族聚酰胺、含杂环芳香族聚酰胺和脂肪族聚酰胺,其中尼龙原料的胺或者酸中有一样含有苯环时为半芳香尼龙,两种原料都含有苯环时为全芳香聚酰胺。半芳香族或全芳香族聚酰胺,可显著提高尼龙的耐热性和刚性。与脂肪族聚酰胺相似,芳香族聚酰胺可以由二元酸与二元胺缩聚,也可以由胺基酸自缩聚而成,半芳香族聚酰胺可以由芳香族二元酸(如对苯二甲酸)与脂族二元酸(如壬二胺)缩聚而成,如尼龙9T。
电镀级的尼龙材料,通常需要对其进行被覆改性,最常见的做法是通过表面处理然后“活化”聚酰胺表面,以便其可以非电镀方式被镀覆,然后任选地以电解的方式包覆大部分金属。聚酰胺的表面处理可涉及机械的和/或化学的表面“蚀刻”,以便提高非电镀的镀覆和改善金属层与聚酰胺表面的粘附力。聚酰胺(包括部分芳香族聚酰胺)表面的处理液包括硫酸溶液和铬酸,如美国专利US5,324,766。然而,使用重金属铬酸对于工人而言极具危害性,并且也会对环境产生较大污染。
目前,传统的电镀级尼龙材料,如脂肪族聚酰胺(PA6为主)树脂,通过添加一定比例的无机矿粉填充,对其进行电镀被覆改性。电镀液先把脂肪族聚酰胺树脂溶胀,再渗入内部把材料中的无机矿粉腐蚀,形成表面粗糙的效果,用于增加电镀金属层与尼龙基材的表面结合力。但是这种电镀级尼龙材料存在较大的缺陷是:吸水率高,尺寸不稳定,耐温性较低,基材电镀结合力不高,无法满足金属电镀制品粘合性的要求。
发明内容
为了解决上述问题,本发明提供了一种用于电镀处理的芳香族聚酰胺复合物,以芳香族聚酰胺树脂为主要基材,通过添加特殊的脂肪族聚酰胺材料和无机氧化物矿粉制备成复合材料,再经过电镀工艺进行表面金属化被覆,得到高 强度,耐高温,低吸水,尺寸稳定的产品,特别是具有极好的基材电镀结合力。
为了实现本发明的技术目的,本发明采用如下技术方案。
用于电镀处理的芳香族聚酰胺复合物,按质量百分比计,包括如下组分:芳香族聚酰胺树脂40%~70%、脂肪族聚酰胺粉末5%~10%、己内酰胺0.2%~1%、己内酰胺钠0.1%~0.5%和无机氧化物矿粉20%~50%。
进一步,所述芳香族聚酰胺树脂是指分子主链中含有芳香环结构的芳香族聚酰胺树脂,包括全芳香族聚酰胺树脂、半芳香族聚酰胺树脂和部分芳香族聚酰胺树脂。例如全芳香族聚酰胺树脂可以由均含有苯环结构的二元酸与二元胺缩聚,也可以由胺基酸自缩聚而成。半芳香族聚酰胺可以由芳香族二元酸(如对苯二甲酸)与脂族二元酸(如已二胺)缩聚而成,或芳香族二元胺(如对苯二胺)与脂肪族二元胺(如己二酸)缩聚而成。部分芳香族聚酰胺是指聚酰胺中芳香族单体含量低于50%的聚酰胺,如PA6T/66、PA6/10T等。
在本发明中,芳香族聚酰胺树脂质量分数低于40%时,不能充分发挥热固性,不能充分发挥其作为基材树脂与电镀被覆层表面间的粘合性。当质量分数大于70%时,作为树脂溶液的粘度过高,表面难以在在腐蚀被覆时形成均匀的厚度。同时,还会与下述脂肪族聚酰胺粉末的添加量达不到平衡,固化后硬度过高、变脆。
进一步,所述脂肪族聚酰胺粉末可溶于浓硫酸或浓盐酸溶液。
优选的,所述脂肪族聚酰胺粉末是指聚合单元中亚甲基总个数大于8的脂肪族聚酰胺,包括带有支链和不带支链的脂肪族聚酰胺。进一步优选的,所述脂肪族聚酰胺粉末是指PA11(聚ω-氨基十一酰)、PA12(聚月桂内酰胺)、PA1010(聚癸二酰癸二胺)等。
进一步优选的,所述脂肪族聚酰胺粉末平均粒径为0.5~5微米。这里所说的粒径是指由于粉粒彼此形成某种一定的二次凝聚状态,使用扫描型电子显微镜(SEM)直接观察所得,求出平均粒径。
优选的,所述无机氧化物矿粉是氧化锌、氧化铝、氧化铁、氧化硅中的一种或几种混合。特别优选的,所述无机氧化物矿粉的平均粒径为0.1~1μm,这里所说的粒径是指采用激光粒度测试仪测定法测定的中值粒径(D50),并且该无机氧化物矿粉的粒度分布呈正态分布。
在本发明中,如上述无机氧化物矿粉的粒度不能满足分布要求,则需要对其进行解聚处理,解聚处理时应保证矿粉颗粒间解聚的同时,尽量避免造成其破碎,因为破碎后无机氧化物矿粉的中由于存在大量的细小颗粒,比表面积将进一步增加,导致无机氧化物矿粉间的团聚增加,不利于其在芳香族聚酰胺复 合物中的均匀分散。
进一步,优选的所述无机氧化物矿粉是经硅烷偶合剂改性后的无机氧化物矿粉。在本发明涉及的用于电镀处理的芳香族聚酰胺复合物中,硅烷偶合剂改善无机氧化物矿粉与电镀金属间表面的润湿性,在基材树脂上进行压制加工时具有作为助剂提高粘合性的作用。
进一步优选的所述硅烷偶合剂为环氧基硅烷偶合剂、氨基类硅烷偶合剂、巯基类硅烷偶合剂,特别优选为氨基类硅烷偶合剂或巯基类硅烷偶合剂。本发明中,对于电镀用芳香族聚酰胺复合物,一般而言,如剥离强度在0.8kgf/cm以上,完全可以满足应用的要求,若为1.0kgf/cm以上,则可以说根本不会出现剥落脱离问题。基于上述考虑,硅烷偶合剂通过采用最一般的环氧基硅烷偶合剂为代表的烯烃基团硅烷、丙烯酸基团硅烷等各种硅烷偶合剂,对无机氧化物矿粉改性后,测定电镀处理的芳香族聚酰胺复合物的电镀表面剥离强度时,可以得到0.8kgf/cm以上的剥离强度。但是,当采用氨基基团硅烷偶合剂或巯基基团硅烷偶合剂时,该剥离强度可达到1.0kgf/cm以上,故特别优选。
硅烷偶合剂改性的无机氧化物矿粉采用通常的浸渍法、喷淋法、喷雾法等方法进行,本发明中对其改性方法未作特别限定。根据工序设计,可任意采用使无机氧化物矿粉与含有硅烷偶合剂的溶液更加均匀地接触、吸附的方法。
具体的所述环氧基硅烷偶合剂包括乙烯基三甲氧基硅烷、乙烯基苯基三甲氧基硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷、γ-环氧丙氧基丙基三甲氧基硅烷、4-缩水甘油基丁基三甲氧基硅烷、γ-氨基丙基三乙氧基硅烷、N-β(氨基乙基)γ-氨基丙基三甲氧基硅烷、N-3-(4-(3-氨基丙氧基)丁氧基)丙基-3-氨基丙基三甲氧基硅烷、咪唑基硅烷、三嗪硅烷。所述氨基类硅烷偶合剂或巯基类硅烷偶合剂包括γ-巯基丙基三甲氧基硅烷、γ-氨基丙基三乙氧基硅烷、N-β(氨基乙基)γ-氨基丙基三甲氧基硅烷、N-3-(4-(3-氨基丙氧基)丁氧基)丙基-3-氨基丙基三甲氧基硅烷。
进一步,本发明中己内酰胺主要用于处理无机氧化物矿粉,使无机氧化物矿粉与聚酰胺树脂的相容性更好,分布更均匀。己内酰胺钠主要用于使脂肪族聚酰胺树脂形成聚合反应,提高脂肪族聚酰胺的分子量和耐温性,有利于产品的塑性成形。
一种用于电镀处理的芳香族聚酰胺复合物的制备方法,包括如下步骤:
(a)将脂肪族聚酰胺树脂粉末放置在具有密封和抽真空装置的高混机中,加入己内酰胺钠,进行高速混合反应,期间抽真空脱水,取出待用;
(b)把经过表面活化处理的无机氧化物矿粉加入高混机中,加入己内酰胺,高 速混合使己内酰胺浸润无机氧化物矿粉表面,取出待用;
(c)把芳香族聚酰胺树脂和处理过的脂肪族聚酰胺树脂粉末按配比混合后通过主喂料机加入双螺杆挤出机中,同时在侧喂料机中加入处理过的无机氧化物矿粉,混合后挤出切粒,得到用于电镀处理的芳香族聚酰胺复合物。
本发明的有益效果是:本发明提供了一种用于电镀处理的芳香族聚酰胺复合物及其制备方法,与现有技术相比,具有如下优点。
1.本发明中脂肪族聚酰胺树脂采用聚合单元中亚甲基总个数大于8的脂肪族聚酰胺,这些树脂结晶度比PA6和PA66低,更容易被电镀药水中的酸溶液溶胀,并且具有较低的吸水率,可不需要经过特殊的电镀工艺便可进行电镀,从企业生产上来说,降低了企业的生产工序成本。
2.本发明的用于电镀处理的芳香族聚酰胺复合物具有高的表面光洁度,与专利CN101878252相比,不含有玻璃纤维,电镀后的产品表面无麻点和橘皮现象。
3.本发明的用于电镀处理的芳香族聚酰胺复合物选用经过改性的无机氧化物矿粉作为填料,与电镀药水的反应更加稳定,并且具有低吸水、耐高温的优点。
4.本发明的用于电镀处理的芳香族聚酰胺复合物经电镀被覆后,其与电镀被覆层表面的电镀结合力可达1.0kgf/cm以上,可以说根本不会出现剥落脱离问题,保障了使用安全。
具体实施方式
为了更好的理解本发明,下面结合具体实施例对发明作详细的说明。
实施例1
用于电镀处理的芳香族聚酰胺复合物,按质量百分比计,包括如下组分:芳香族聚酰胺树脂40%、脂肪族聚酰胺粉末9.5%、己内酰胺(美国杜邦公司)0.3%、己内酰胺钠(美国杜邦公司)0.2%和无机氧化物矿粉50%。其中芳香族聚酰胺树脂为美国杜邦公司产品;脂肪族聚酰胺粉末为PA11(法国Arkema公司),平均粒度为0.5微米;无机氧化物矿粉为经乙烯基三甲氧基硅烷改性的氧化锌粉(美国克顿),平均粒度为0.2微米。
实施例2
用于电镀处理的芳香族聚酰胺复合物,按质量百分比计,包括如下组分:芳香族聚酰胺树脂55%、脂肪族聚酰胺粉末10%、己内酰胺己内酰胺(美国杜邦公司)0.2%、己内酰胺钠(美国杜邦公司)0.1%和无机氧化物矿粉34.7%。其中芳香族聚酰胺树脂为美国杜邦公司产品;脂肪族聚酰胺粉末为PA12(美国 杜邦公司),平均粒度为2微米;无机氧化物矿粉为经γ-巯基丙基三甲氧基硅烷改性的氧化铝粉(德国马丁),平均粒度为0.1微米。
实施例3
用于电镀处理的芳香族聚酰胺复合物,按质量百分比计,包括如下组分:芳香族聚酰胺树脂62%、脂肪族聚酰胺粉末5%、己内酰胺(美国杜邦公司)0.6%、己内酰胺钠(美国杜邦公司)0.4%和无机氧化物矿粉32%。其中芳香族聚酰胺树脂为美国杜邦公司产品;脂肪族聚酰胺粉末为PA1010(美国杜邦公司),平均粒度为5微米;无机氧化物矿粉为经N-β(氨基乙基)γ-氨基丙基三甲氧基硅烷改性的氧化硅粉(德国瓦克),平均粒度为0.5微米。
实施例4
用于电镀处理的芳香族聚酰胺复合物,按质量百分比计,包括如下组分:芳香族聚酰胺树脂70%、脂肪族聚酰胺粉末8.5%、己内酰胺(美国杜邦公司)1%、己内酰胺钠(美国杜邦公司)0.5%和无机氧化物矿粉20%。其中芳香族聚酰胺树脂为美国杜邦公司产品;脂肪族聚酰胺粉末为PA10(美国杜邦公司),平均粒度为0.8微米;无机氧化物矿粉为经N-β(氨基乙基)γ-氨基丙基三甲氧基硅烷改性的氧化铁粉(德国朗盛),平均粒度为0.3微米。
实施例5
用于电镀处理的芳香族聚酰胺复合物,按质量百分比计,包括如下组分:芳香族聚酰胺树脂47%、脂肪族聚酰胺粉末7%、己内酰胺(美国杜邦公司)0.5%、己内酰胺钠(美国杜邦公司)0.5%和无机氧化物矿粉45%。其中芳香族聚酰胺树脂为美国杜邦公司产品;脂肪族聚酰胺粉末为PA1010(美国杜邦公司),平均粒度为2.0微米;无机氧化物矿粉为经N-3-(4-(3-氨基丙氧基)丁氧基)丙基-3-氨基丙基三甲氧基硅烷改性的氧化硅粉(德国瓦克),平均粒度为1.0微米。
实施例1-5中用于电镀处理的芳香族聚酰胺复合物的制备方法,包括如下步骤:
(a)将脂肪族聚酰胺树脂粉末放置在具有密封和抽真空装置的高混机中,加入己内酰胺钠,进行高速混合反应,高混机转速为800~2000转/分钟,反应时间为20~40分钟,期间抽真空脱水,取出待用;
(b)把经过表面活化处理的无机氧化物矿粉加入高混机中,加入己内酰胺,高速混合使己内酰胺浸润无机氧化物矿粉表面,高混机转速为800~2000转/分钟,反应时间为10~30分钟,取出待用;
(c)把芳香族聚酰胺树脂和处理过的脂肪族聚酰胺树脂粉末按配比混合后通过主喂料机加入双螺杆挤出机中,同时在侧喂料机中加入处理过的无机氧化物矿 粉,混合后挤出切粒,得到用于电镀处理的芳香族聚酰胺复合物。
对比例1:专利CN101878252中所得产品。
对比例2:巴斯夫公司Ultramid B3M6产品(市售),主要成分为PA6+30%矿粉。
对比例3:罗地亚公司S218MT40产品(市售),主要成分为PA6+40%矿粉。
对比例4:德国朗盛公司BM240产品(市售),主要成分为PA6+40%矿粉。
将对比例1和实施例1-5得到的用于电镀处理的芳香族聚酰胺复合物,在电镀药水中进行基材表面腐蚀被覆,对电镀后形成的镀层进行电镀结合力测试,结果如表1所示。
对实施例1得到的用于电镀处理的芳香族聚酰胺复合物材料与对比例2-4产品的力学性能与耐水性能进行测试,结果如表2所示。
表1对比例1和实施例1-5所得芳香族聚酰胺复合物电镀结合力测试
Figure PCTCN2016091017-appb-000001
表2实施例1与对比例1-3产品性能测试
Figure PCTCN2016091017-appb-000002
Figure PCTCN2016091017-appb-000003
注:拉伸性能测试标准采用ISO 527进行检测。
弯曲性能测试标准采用ISO 178进行检测。
冲击性能测试标准采用ISO 180进行检测。
根据表1中数据可以明显看出,本发明提供的用于电镀处理的芳香族聚酰胺复合物材料,以芳香族聚酰胺树脂为主要基材,通过添加脂肪族聚酰胺材料和经硅烷耦合剂改性的无机氧化物矿粉制备成复合物材料,经电镀进行表面金属化被覆后,电镀层表面与芳香族聚酰胺树脂基材间具有非常好的电镀结合力,可达1kgf/cm以上。与专利CN101878252中所得产品相比较而言,具有显著的性能提升。
根据表2中数据可以看出,本发明提供的用于电镀处理的芳香族聚酰胺树脂复合物材料,与现有市场上同类型产品相比较,在拉伸强度、弯曲强度和抗冲击性能上具有优异的综合性能,特别是其在耐水性上的优异表现,远远超出目前市场同类产品的表现。(注:浸泡后,样品的冲击性能上升越高,表示吸湿膨胀越大,从而使拉力强度劣化,表示耐水性能越差。)
综上,本发明所获得的用于电镀处理的芳香族聚酰胺复合物材料,与现有技术相比,在电镀层结合力、耐水性、拉伸强度、弯曲强度和抗冲击性能上均获得了较大幅度的提升,必能更加适应消费者和行业发展的需求。
以上显示和描述了本发明的基本原理、主要特征和优点。本行业的技术人员应该了解,上述实施例不以任何形式限制本发明,凡采用等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。

Claims (9)

  1. 用于电镀处理的芳香族聚酰胺复合物,其特征在于,按质量百分比计,包括如下组分:芳香族聚酰胺树脂40%~70%、脂肪族聚酰胺粉末5%~10%、己内酰胺0.2%~1%、己内酰胺钠0.1%~0.5%和无机氧化物矿粉20%~50%。
  2. 根据权利要求1所述的用于电镀处理的芳香族聚酰胺复合物,其特征在于:所述芳香族聚酰胺树脂是指分子主链中含有芳香环结构的芳香族聚酰胺树脂,包括全芳香族聚酰胺树脂、半芳香族聚酰胺树脂和部分芳香族聚酰胺树脂。
  3. 根据权利要求1或2所述的用于电镀处理的芳香族聚酰胺复合物,其特征在于:所述脂肪族聚酰胺粉末可溶于浓硫酸或浓盐酸溶液。
  4. 根据权利要求1或2所述的用于电镀处理的芳香族聚酰胺复合物,其特征在于:所述脂肪族聚酰胺粉末是指聚合单元中亚甲基总个数大于8的脂肪族聚酰胺,包括带有支链和不带支链的脂肪族聚酰胺。
  5. 根据权利要求1或2所述的用于电镀处理的芳香族聚酰胺复合物,其特征在于:所述脂肪族聚酰胺粉末平均粒径为0.5微米~5微米。
  6. 根据权利要求1所述的用于电镀处理的芳香族聚酰胺复合物,其特征在于:所述无机氧化物矿粉是氧化锌、氧化铝、氧化铁、氧化硅中的一种或几种混合。
  7. 根据权利要求1所述的用于电镀处理的芳香族聚酰胺复合物,其特征在于:所述无机氧化物矿粉是经硅烷偶合剂改性后的无机氧化物矿粉。
  8. 根据权利要求7所述的用于电镀处理的芳香族聚酰胺复合物,其特征在于:所述硅烷偶合剂为氨基类硅烷偶合剂、巯基类硅烷偶合剂。
  9. 根据权利要求1-8任一项所述的用于电镀处理的芳香族聚酰胺复合物的制备方法,其特征在于,包括如下步骤:
    (a)将脂肪族聚酰胺树脂粉末放置在具有密封和抽真空装置的高混机中,加入己内酰胺钠,进行高速混合反应,期间抽真空脱水,取出待用;
    (b)把经过表面活化处理的无机氧化物矿粉加入高混机中,加入己内酰胺,高速混合使己内酰胺浸润无机氧化物矿粉表面,取出待用;
    (c)把芳香族聚酰胺树脂和处理过的脂肪族聚酰胺树脂粉末按配比混合后通过主喂料机加入双螺杆挤出机中,同时在侧喂料机中加入处理过的无机氧化物矿粉,混合后挤出切粒,得到用于电镀处理的芳香族聚酰胺复合物。
PCT/CN2016/091017 2016-07-12 2016-07-22 用于电镀处理的芳香族聚酰胺复合物及其制备方法 WO2018010206A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610548027.3A CN106046781B (zh) 2016-07-12 2016-07-12 用于电镀处理的芳香族聚酰胺复合物及其制备方法
CN201610548027.3 2016-07-12

Publications (1)

Publication Number Publication Date
WO2018010206A1 true WO2018010206A1 (zh) 2018-01-18

Family

ID=57186423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/091017 WO2018010206A1 (zh) 2016-07-12 2016-07-22 用于电镀处理的芳香族聚酰胺复合物及其制备方法

Country Status (2)

Country Link
CN (1) CN106046781B (zh)
WO (1) WO2018010206A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111732726A (zh) * 2020-06-19 2020-10-02 山东东辰瑞森新材料科技有限公司 一种高流动本体阻燃长碳链尼龙及其制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106832760B (zh) * 2017-01-13 2018-10-12 江门市德众泰工程塑胶科技有限公司 一种手机卡托用复合材料及其制备方法和应用
CN107663371B (zh) * 2017-09-19 2019-11-19 江门市德众泰工程塑胶科技有限公司 一种用于环保电镀的脂肪族聚酰胺复合物及其制备方法
CN107663372B (zh) * 2017-09-19 2019-11-19 江门市德众泰工程塑胶科技有限公司 一种用于环保电镀的聚酰胺复合物及其制备方法
KR101940418B1 (ko) 2017-10-30 2019-01-18 롯데첨단소재(주) 폴리아미드 수지 조성물 및 이를 포함하는 성형품
CN108164995B (zh) * 2017-12-27 2020-10-23 上海锦湖日丽塑料有限公司 高强度、易电镀的聚酰胺复合材料及其制备方法
US11577496B2 (en) 2017-12-31 2023-02-14 Lotte Chemical Corporation Polyamide resin composition and molded article comprising the same
KR102171421B1 (ko) 2017-12-31 2020-10-29 롯데첨단소재(주) 폴리아미드 수지 조성물 및 이를 포함하는 성형품
CN108251874B (zh) * 2018-01-24 2019-08-16 永星化工(上海)有限公司 适于电镀的功能性树脂组合物上涂布金属层的预处理溶液
CN111004497B (zh) 2019-12-24 2022-03-29 上海中镭新材料科技有限公司 一种电镀尼龙材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102153857A (zh) * 2011-03-16 2011-08-17 金发科技股份有限公司 一种高填充良表面的增强聚酰胺组合物
CN102206411A (zh) * 2010-03-30 2011-10-05 E.I.内穆尔杜邦公司 阻燃性聚酰胺树脂组合物及包含该组合物的制品
CN103391962A (zh) * 2010-12-21 2013-11-13 索维公司 聚合物混合物
CN103694698A (zh) * 2012-09-27 2014-04-02 金发科技股份有限公司 一种选择性沉积金属的聚酰胺组合物及其制备方法与应用
CN105531309A (zh) * 2013-06-04 2016-04-27 沙特基础全球技术有限公司 具有激光直接成型功能的导热聚合物组合物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100460445C (zh) * 2003-04-18 2009-02-11 上海杰事杰新材料股份有限公司 增韧尼龙、其制备方法及用途
US20090143520A1 (en) * 2007-11-30 2009-06-04 E.I. Du Pont De Nemours And Company Partially aromatic polyamide compositions for metal plated articles
CN103421310B (zh) * 2013-07-29 2016-08-10 安徽科聚新材料有限公司 一种聚己内酰胺复合材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102206411A (zh) * 2010-03-30 2011-10-05 E.I.内穆尔杜邦公司 阻燃性聚酰胺树脂组合物及包含该组合物的制品
CN103391962A (zh) * 2010-12-21 2013-11-13 索维公司 聚合物混合物
CN102153857A (zh) * 2011-03-16 2011-08-17 金发科技股份有限公司 一种高填充良表面的增强聚酰胺组合物
CN103694698A (zh) * 2012-09-27 2014-04-02 金发科技股份有限公司 一种选择性沉积金属的聚酰胺组合物及其制备方法与应用
CN105531309A (zh) * 2013-06-04 2016-04-27 沙特基础全球技术有限公司 具有激光直接成型功能的导热聚合物组合物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111732726A (zh) * 2020-06-19 2020-10-02 山东东辰瑞森新材料科技有限公司 一种高流动本体阻燃长碳链尼龙及其制备方法
CN111732726B (zh) * 2020-06-19 2022-04-08 山东东辰瑞森新材料科技有限公司 一种高流动本体阻燃长碳链尼龙及其制备方法

Also Published As

Publication number Publication date
CN106046781A (zh) 2016-10-26
CN106046781B (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
WO2018010206A1 (zh) 用于电镀处理的芳香族聚酰胺复合物及其制备方法
Zhao et al. Improved fracture toughness of epoxy resin reinforced with polyamide 6/graphene oxide nanocomposites prepared via in situ polymerization
JP6578281B2 (ja) マトリクス添加剤の改良
CN103582664B (zh) 树脂组合物、预浸料、以及层压板
TWI445757B (zh) 纖維強化複合材料用環氧樹脂組成物
US8383243B2 (en) Composite containing polymer, filler and metal plating catalyst, method of making same, and article manufactured therefrom
CN107075142B (zh) 纤维增强热塑性树脂成型品及纤维增强热塑性树脂成型材料
CN111615530B (zh) 纤维增强热塑性树脂成型品及纤维增强热塑性树脂成型材料
TW201903013A (zh) 金屬-纖維強化樹脂材料複合體及其製造方法
US20110244183A1 (en) Resin composition, cured body and multilayer body
TWI599607B (zh) 具有硬質中間相之纖維強化聚合物複合物
TW201433600A (zh) 包含層間韌化粒子之熱固性樹脂複合材料
CN102311530A (zh) 一种脲醛树脂原位聚合表面改性空心玻璃微珠的方法
CN110740847A (zh) 在金属表面上塑料包覆成型的方法和塑料-金属混杂部件
EP3904074A1 (en) Metal-fiber reinforced plastic composite material
CN112601781B (zh) 聚酰胺组合物及其镀敷应用
WO2022095360A1 (zh) 一种自组装网络聚酰胺组合物及其制备方法和应用
Luo et al. Reinforcement effect of glass fiber modified by tannic acid and polyethyleneimine on polyamide 6 composites with no volatile organic compounds emission
JP3807188B2 (ja) エポキシ樹脂と無機成分の複合体及びその製造方法
TWI764575B (zh) 熱固化性樹脂組合物及纖維強化樹脂
CN111621144B (zh) 一种耐氯化钙的尼龙复合材料及其制备方法
JP2003347320A (ja) 半導体用樹脂ペースト及び半導体装置
EP3814415A1 (en) Polyamide compositions and plating applications thereof
TW201628016A (zh) 導電性樹脂組合物及半導體裝置
Ali et al. The Adhesive Strength of Epoxy/Sol-Gel Materials Modified by Various Ratio of γ-Al2O3 Nanoparticles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908531

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16908531

Country of ref document: EP

Kind code of ref document: A1