TWI599607B - 具有硬質中間相之纖維強化聚合物複合物 - Google Patents

具有硬質中間相之纖維強化聚合物複合物 Download PDF

Info

Publication number
TWI599607B
TWI599607B TW102148110A TW102148110A TWI599607B TW I599607 B TWI599607 B TW I599607B TW 102148110 A TW102148110 A TW 102148110A TW 102148110 A TW102148110 A TW 102148110A TW I599607 B TWI599607 B TW I599607B
Authority
TW
Taiwan
Prior art keywords
fiber
resin
interface material
adhesive composition
composition
Prior art date
Application number
TW102148110A
Other languages
English (en)
Other versions
TW201434907A (zh
Inventor
菲利克斯N 谷岩
吉岡健一
史威仁恩 都恩
阿維得P 哈羅
Original Assignee
東麗股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東麗股份有限公司 filed Critical 東麗股份有限公司
Publication of TW201434907A publication Critical patent/TW201434907A/zh
Application granted granted Critical
Publication of TWI599607B publication Critical patent/TWI599607B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/248Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using pre-treated fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2363/02Polyglycidyl ethers of bis-phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2363/04Epoxynovolacs

Description

具有硬質中間相之纖維強化聚合物複合物
本發明提供一種創新的纖維強化聚合物組成物,其包含強化纖維及黏著性組成物,該黏著性組成物至少包含熱固性樹脂、固化劑、及界面材料,該界面材料具有玻璃轉移溫度為至少-50℃且對該黏著性組成物之模數的模數比為至少0.1之成分,其中在固化時,在強化纖維與黏著性組成物之間的界面區域包含該界面材料,且該黏著性組成物與該強化纖維形成良好黏結,而獲得高界面剪切強度及開孔壓縮性。
當以樹脂基質將強化纖維黏結在一起而製造纖維強化聚合物複合物時,纖維表面上有官能基非常重要。另外,該黏結在接受環境及/或不適條件時必須耐用。黏結強度,即每單位界面面積將(固化)樹脂從接觸該固化樹脂的纖維分離所需之力,為黏附性之測度。當樹脂或纖維或兩者之膠合失效時,會觀察到最大黏附性,纖維與樹脂之間的黏著失效則相反。
為了使黏結堅固,首先將氧官能基有利地引入原來纖維表面上;其次可選擇黏附促進劑而使黏附促 進劑之一端可共價鍵結纖維表面上的氧官能基,黏附促進劑之另一端則可促進或參與樹脂中官能基之化學相互作用。重點為該黏附促進劑在固化期間將纖維橋接全體樹脂。其經常使用表面處理,如電漿、UV、電暈放電、或濕式電-化學處理,將氧官能基引入纖維表面上。
最後,為了使黏結堅固,當然在纖維與樹脂之間的界面處不可有空隙,即在固化時其間有充分的分子接觸。此界面經常被視為體積區域或「中間相」。依上漿纖維表面上的化學組成物、纖維與全體樹脂之間的化學相互作用、及固化期間其他化學部分向界面之遷移而定,中間相可從纖維表面延伸數奈米至數微米。因此,中間相具有非常獨特的組成物,且其性質與纖維表面及全體樹脂相差極大。此外,由於纖維與樹脂之間的模數不匹配,造成在中間相中存在高應力濃度,經常造成複合物易初始裂開。此高應力濃度會因纖維所誘發的樹脂化學脆化、及由於熱膨脹係數差所造成的局部殘餘應力而增強,使得在施加負載時觀察到複合物之劇變失效。
習知上,不當的黏附性會使裂開能量沿纖維/基質界面耗散,但是大幅損失從黏著劑通過中間相至纖維的應力轉移力。另一方面,強黏附性經常造成界面基質脆化增加而在這些區域中造成裂痕的開始,且傳播至富樹脂區域中。另外,纖維斷裂端之裂開能量無法沿纖維/基質界面釋放,因此藉由實質上將其斷裂而轉向鄰接纖維。因此,現有的最新技藝纖維複合物系統被設計成 可得最適的黏附程度。
在一些情形,尤其是涉及碳纖維時,希望有弱至中等黏附程度而得到黏附性相關性質之平衡,如拉伸強度及壓縮性質(如壓縮強度與開孔壓縮(OHC)強度)。一般而言,較高的樹脂模數主要造成較高的壓縮強度。然而,至多達到4-5GPa之特定(撓曲)樹脂模數,這些強度便持平且不進一步增加。原因可能為弱中間相所造成,此弱中間相不適合防止纖維由變形(buckling)所致的早期失效。另一方面,高樹脂模數會造成聚合物變脆,因此會造成低拉伸相關性質及低破裂韌性。
近來,複合材料由於其優於金屬合金之高比強度及硬度而成功用於商業飛行器,如在Boeing 787及Air Bus 380與350飛機所見到。尤其是碳纖維複合材料可得金屬合金無法完成的薄及高縱橫比之機翼設計,故因機身阻力降低而造成較佳的空氣動力效率。此設計預期需要複合材料之高扭轉及彎曲硬度。因此,現在需要克服以上障礙,以改善壓縮強度與拉伸相關強度及破裂韌性。
WO2012116261A1號專利(Nguyen等人,Toray Industries Inc.,2012)試圖以其中將界面材料併入樹脂中之自我組合法,且利用強化纖維之表面化學將界面材料集中在纖維附近,而製造中間相。此方法已證明利用橡膠性界面材料有效形成強化中間相,其進而同時改良複合物之拉伸強度及破裂韌性。然而,由於製造此軟質中間相而無法防止纖維彎曲。另外,雖然無法直接測量中 間相之模數,但此具有高破裂韌性之軟質中間相仍會具有低模數,因此會降低聚合物至強化纖維之負載轉移力,尤其是在纖維為高模數碳纖維時。結果需要製造硬質中間相但不過度損及其破裂韌性,同時提供良好的黏附性及高黏附性相關性質,且改良壓縮性質。
一具體實施例在此介紹一種具有高黏附性、高拉伸及高壓縮性質之纖維強化聚合物複合物系統的突破性設計。該纖維強化聚合物組成物包含強化纖維及黏著性組成物,其中該黏著性組成物至少包含熱固性樹脂、固化劑、及界面材料,該界面材料至少具有玻璃轉移溫度(Tg)為至少-50℃之成分,其中該界面材料之表面至少包含與強化纖維相容的官能基,其中該強化纖維適合用以將界面材料集中在強化纖維與黏著性組成物之間的界面區域,其中該界面區域包含黏附層與硬質層,其中該黏附層比該硬質層更接近強化纖維,且具有與硬質層之組成物不同的組成物,及其中該硬質層至少包含該界面材料。
另一具體實施例關於一種纖維強化聚合物組成物,其包含強化纖維及黏著性組成物,其中該黏著性組成物至少包含熱固性樹脂、固化劑、及界面材料,其中該黏著性組成物在固化時與該強化纖維形成良好黏結,其中該纖維強化聚合物組成物在固化時具有界面區域,其包含硬質界面材料,且具有至少1240Mpa(180ksi)、至少1380MPa(200ksi)、或甚至至少1520MPa(220ksi)之壓 縮強度,及至少300MPa(43.5ksi)、至少310MPa(45ksi)、或甚至至少330MPa(48ksi)之開孔壓縮性。另外可觀察到至少70%且至多100%之平移,及至少90MPa(13ksi)之層間剪切強度(ILSS)。此外,該黏著性組成物在固化時可具有至少2.8GPa之撓曲模數,及至少2毫米之撓曲偏折。
其他的具體實施例關於以上纖維強化聚合物組成物,其中該界面材料包含至少一種Tg為至少-50℃、至少0℃、至少25℃、或甚至至少50℃之成分。另外,該成分或界面材料對該聚合物之模數的模數比為至少0.1、至少0.5、或甚至至少1。該界面材料可為傳導性或非傳導性材料、核材料比殼材料硬之硬核-軟殼粒子、聚合物、無機材料、氧化物、基於矽之材料、或碳質材料。該黏著性組成物進一步包含遷移劑,且可甚至進一步包含加速劑、熱塑性樹脂、增韌劑、中間層增韌劑至少之一、或其組合。
在本發明之一具體實施例中,上述纖維強化聚合物組成物為多功能性。纖維強化聚合物組成物之多功能性係指其承載加上至少一種非承載功能(如電、熱、熱電、感應、或健康監測)的能力。
其他的具體實施例關於一種包含上述纖維強化聚合物組成物之一的預浸體,及一種製造方法,其包含由上述纖維強化聚合物組成物之一製造複合物品。
1‧‧‧碳纖維
2‧‧‧黏附層
3‧‧‧硬質層
4‧‧‧外層
5‧‧‧全體樹脂組成物
第1圖顯示一種多層中間相之示意圖,其包括碳纖維(1)。黏附層(2)至少包含上漿材料、及來自纖維表面之官能基。硬質層(3)至少包含硬質界面材料。外層(4)包含一種實質上類似全體樹脂組成物(5)之組成物。該硬質中間相至少包含黏附層(2)及硬質層(3)。
熱固性樹脂及硬化劑/加速劑
本發明之一具體實施例關於一種纖維強化聚合物組成物,其包含強化纖維及黏著性組成物,其中該黏著性組成物至少包含熱固性樹脂、界面材料、及固化劑。固化黏著性組成物依照如ASTM D-790之三點彎曲法在室溫乾燥測量,可具有至少2.0GPa、至少2.8GPa、至少3.5GPa、或甚至至少4.0GPa之撓曲樹脂模數(以下稱為「樹脂模數」)。該強化纖維適合用以將界面材料集中在強化纖維與黏著性組成物之間的界面區域,且該界面區域包含該界面材料。該界面材料至少包含具有硬質材料之成分。在此使用的「硬質材料」係指玻璃轉移溫度(Tg)及/或模數比橡膠性材料高的材料。該黏著性組成物與該強化纖維形成良好黏結,且可進一步包含固化劑、加速劑、遷移劑、增韌劑、與中間層增韌劑至少之一。
熱固性樹脂可為任何可藉外部供應的能量來源(如熱、光、電磁波(如微波、UV、電子束)、或其他合適的方法),以固化劑固化而形成三維交聯網路的樹脂。固化劑係定義為任何具有至少一個與樹脂反應的活性基之化合物。其可使用固化加速劑將樹脂與固化劑之間的 交聯反應加速。
該熱固性樹脂可選自但不限於環氧樹脂、環氧酚醛樹脂、酯樹脂、乙烯酯樹脂、氰酸酯樹脂、順丁烯二醯亞胺樹脂、貳順丁烯二醯亞胺-三樹脂、酚樹脂、酚醛樹脂、間苯二酚樹脂、不飽和聚酯樹脂、酞酸二烯丙酯樹脂、脲樹脂、三聚氰胺樹脂、苯并樹脂、聚胺基甲酸酯樹脂、及其混合物。合適的混合物之一實例為環氧樹脂與苯并樹脂的混合物。
在本發明之一具體實施例中,在以上熱固性樹脂中使用環氧樹脂。合適的環氧樹脂包括單官能基、二官能基、及更高官能基環氧樹脂、及其混合物。這些環氧化物可由先質製備,如胺類(例如由二胺類、及含有至少一個胺基與至少一個羥基之化合物所製備的環氧樹脂,如四環氧丙基二胺基二苯基甲烷、三環氧丙基-對胺基酚、三環氧丙基-間胺基酚、與三環氧丙基胺基甲酚、及其異構物)、酚類(例如雙酚A環氧樹脂、雙酚F環氧樹脂、雙酚S環氧樹脂、雙酚R環氧樹脂、酚-酚醛環氧樹脂、甲酚-酚醛環氧樹脂、與間苯二酚環氧樹脂)、萘環氧樹脂類、及具有碳-碳雙鍵之化合物(例如脂環族環氧樹脂類)。應注意,環氧樹脂不限於以上實例。亦可使用將這些環氧樹脂鹵化而製備的鹵化環氧樹脂類。此外,可將二或更多種這些環氧樹脂的混合物、及具有一個環氧基之化合物或單環氧基化合物,用於熱固性樹脂基質之調配物。
在本發明之特定具體實施例中,組合經選擇 的環氧樹脂而製造100重量份之包含二官能基環氧樹脂與高於二官能基之環氧樹脂的環氧樹脂混合物。該環氧樹脂混合物之組合環氧基當量可為至少50、至少80、至少100、或甚至至少120。在其他具體實施例中,可將環氧樹脂或官能基不同的環氧樹脂混合物混合苯并樹脂或種類不同的苯并樹脂混合物。環氧樹脂對苯并樹脂之重量比可為0.01至100之間。
適合用於環氧樹脂之固化劑的實例包括但不限於苯并類、聚醯胺類、二氰二胺[DICY]、醯胺基胺類(尤其是芳香族醯胺基胺類,例如胺基苯甲醯胺類、胺基苯甲醯苯胺類、胺基苯磺醯胺類)、芳香族二胺類(例如二胺基二苯基甲烷、二胺基二苯基碸[DDS])、胺基苯甲酸酯(例如三亞甲二醇二對胺基苯甲酸酯、與新戊二醇二對胺基苯甲酸酯)、脂肪族胺類(例如三伸乙四胺、異佛酮二胺)、環脂肪族胺類(例如異佛酮二胺)、咪唑衍生物、胍類(如四甲基胍)、羧酸酐類(例如甲基六氫苯二甲酸酐)、羧酸醯肼類(例如己二酸醯肼)、酚-酚醛樹脂類與甲酚-酚醛樹脂類、羧酸醯胺類、多酚化合物、多硫化物與硫醇類、及路易士酸與鹼(例如三氟化硼乙胺、參(二乙胺基甲基)酚)。應注意,其可使用二種或以上的上述固化劑的混合物,如DDS與DICY。一般而言,固化劑可以每100重量份的熱固性樹脂總重量為約15至約50重量份之範圍之量使用。
依所欲的固化黏結結構(如纖維強化環氧基複合物)之性質而定,由上列選擇合適的固化劑。例如如 果使用二氰二胺,則通常對產物提供良好的高溫性質、良好的抗化學性、及良好的拉伸與剝除強度組合。另一方面,芳香族二胺類一般產生中至高抗熱與化學性、及高模數。胺基苯甲酸酯通常提供優良的拉伸伸長,雖然其經常提供比芳香族二胺類差的抗熱性。酸酐通常對樹脂基質提供低黏度及優良的加工性,及在固化後之抗熱性。酚-酚醛樹脂類或甲酚-酚醛樹脂類由於形成醚鍵而提供防潮性,其具有優良的抗水解性。
在一具體實施例中,藉由設計熱固性樹脂與固化劑之化學結構且將其組合及混合比例最適化,藉由併加高模數添加劑,或組合這兩種方式,則本發明之黏著性組成物在固化時可獲得高樹脂模數。玻璃轉移溫度為至少-50℃及/或模數大於0.1GPa之高模數添加劑的實例包括但不限於氧化物(例如氧化矽)、黏土、多面寡聚物半矽氧烷(POSS)、硬核-軟殼粒子、塗覆硬質粒子、官能化硬質粒子、碳質材料(例如實質上有定向及不定向之碳奈米管、碳奈米板、碳奈米纖維)、纖維質材料(例如鎳奈米束、敘永石)、陶瓷、碳化矽、鑽石、及其混合物。熱固性樹脂與固化劑之化學結構具有一種或以上的芳香族(例如苯)環為適當的。合適的熱固性樹脂之實例包括但不限於環氧丙基苯胺、四環氧丙基二胺基二苯基甲烷、三環氧丙基-對胺基酚、三環氧丙基-間胺基酚、與三環氧丙基胺基甲酚、基於萘之環氧化物、基於參(羥基苯基)甲烷之環氧化物、乙二醛酚-酚醛類之四環氧丙基醚、其異構物與衍生物;二順丁烯二醯胺基二苯基甲烷 、聚醯胺-醯亞胺樹脂、基於酚-酚醛之氰酸酯樹脂;及苯并樹脂,其包括但不限於多官能基正苯基苯并樹脂,如基於酚酞、基於硫二苯基、基於雙酚A、基於雙酚F、及/或基於二環戊二烯之苯并樹脂。適合用於以上樹脂之固化劑可具有一個或以上的苯或其他芳香族環與其他官能基,如碸、胺、醯胺、羧酸、羥基、及/或酐基,該一個或以上之基可直接或間接附接到芳香族環。與上述環氧樹脂達成高樹脂模數之固化劑的實例包括但不限於二胺基二苯基甲烷、二胺基二苯基碸、三亞甲二醇二對胺基苯甲酸酯、與新戊二醇二對胺基苯甲酸酯、及其衍生物與異構物。在另一具體實施例中,額外的適合用於環氧樹脂之固化劑可為苯并樹脂。
本發明之一具體實施例利用合適的固化劑達成高樹脂模數、高應變、及樹脂對強化纖維之高黏附性,其中該固化劑之化學結構在一具體實施例中至少包含醯胺基,如有機醯胺基、磺醯胺基、或磷醯胺基,或者在另一具體實施例中至少包含醯胺基、及可將環氧樹脂固化之額外官能基,如胺基或其他含氮基(例如一級或二級胺基)、羥基、羧酸基、或酐基,或者在又一具體實施例中至少包含芳香族基、醯胺基、及上述額外官能基至少之一。具有至少包含醯胺基與胺基之化學結構的固化劑在此稱為「醯胺基胺類」。具有至少包含芳香族基、醯胺基、與胺基之化學結構的固化劑在此稱為「芳香族醯胺基胺類」。
芳香族環可經額外的可固化官能基及/或醯 胺基取代。例如芳香族醯胺基胺類適合作為本發明之固化劑。這些固化劑之實例包括但不限於苯甲醯胺類、苯甲醯苯胺類、與苯磺醯胺類(不僅包括基本化合物,亦及經取代衍生物,如其中醯胺基及/或苯環之氮原子經一個或以上的取代基(如烷基、芳基、芳烷基、非烴基等)所取代之化合物),胺基苯甲醯胺,包括如胺基苯甲醯胺(鄰胺基苯甲醯胺、2-胺基苯甲醯胺)、3-胺基苯甲醯胺、4-胺基苯甲醯胺,二胺基苯甲醯苯胺類之化合物及其衍生物或異構物,如2,3-二胺基苯甲醯苯胺、3,3-二胺基苯甲醯苯胺、3,4-二胺基苯甲醯苯胺、與4,4-二胺基苯甲醯苯胺,胺基苯磺醯胺類,如2-胺基苯磺醯胺、3-胺基苯磺醯胺、4-胺基苯磺醯胺(對苯胺磺醯胺)、4-(2-胺基乙基)苯磺醯胺、與N-(苯基磺醯基)苯磺醯胺,及磺醯基醯肼類,如對甲苯磺醯基醯肼。
適合用於環氧樹脂之加速劑/固化劑對的實例為三氟化硼哌啶、對第三丁基兒茶酚、磺酸酯化合物、脲、咪唑衍生物、及三級胺。如果使用脲衍生物,則此加速劑可選自由3-苯基-1,1-二甲基脲、3-(3,4-二氯苯基)-1,1-二甲基脲(DCMU)、與2,4-甲苯貳二甲基脲(U-24)所組成的群組。如果使用磺酸酯化合物,則加速劑可為對甲苯磺酸乙酯或對甲苯磺酸甲酯。
增韌劑及填料
本發明之黏著性組成物可使用一種或以上的聚合及/或無機增韌劑/填料,而進一步增強固化黏著性組成物之破裂韌性。增韌劑可為傳導性或非傳導性材料,且可 均勻分布在固化複合物結構中。增韌劑粒子之直徑可小於5微米、或甚至直徑小於1微米。粒子之最短尺寸可小於500奈米。此增韌劑包括但不限於彈性體、分支聚合物、過度分支聚合物、樹枝狀聚合物、橡膠性聚合物、橡膠性共聚物、嵌段共聚物、核-殼粒子、氧化物或無機材料(如黏土)、多面寡聚物半矽氧烷(POSS)、碳質材料(例如碳黑、碳奈米管、碳奈米纖維、富勒烯)、陶瓷、及碳化矽,且表面經或未經修改或官能化。合適的嵌段共聚物之實例包括其組成揭述於US 6894113號專利(Court等人,Atofina,2005)之共聚物,亦包括“Nanostrength®”SBM(聚苯乙烯-聚丁二烯-聚甲基丙烯酸酯)、及AMA(聚甲基丙烯酸酯-聚丙烯酸丁酯-聚甲基丙烯酸酯),其均由Arkema製造。其他合適的嵌段共聚物包括Fortegra®、及讓渡予Dow Chemical之US 7820760B2號專利所揭述的兩性嵌段共聚物。已知的核-殼粒子之實例包括其組成揭述於US20100280151A1號專利(Nguyen等人,Toray Industries,Inc.,2010)之核-殼(樹枝狀聚合物)粒子,其以胺分支聚合物作為殼而接枝至由含不飽和碳-碳鍵之可聚合單體所聚合的核聚合物;其組成揭述於讓渡予Kaneka Corporation之EP 1632533A1與EP 2123711A1號專利的核-殼橡膠粒子,及此粒子/環氧基摻合物之“KaneAce MX”產品線,其粒子具有由如丁二烯、苯乙烯、其他的不飽和碳-碳鍵單體、或其組合之可聚合單體所聚合的聚合核,及與環氧基相容的聚合殼,一般為聚甲基丙烯酸甲酯、聚甲基丙烯酸環氧丙酯、聚丙烯腈、或 類似聚合物。亦適合使用由JSR Corporation所製造的“JSR SX”系列之羧化聚苯乙烯/聚二乙烯基苯。其他合適的聚合物包括“Kureha Paraloid”EXL-2655(由Kureha Chemical Industry Co.,Ltd.製造),其為丁二烯甲基丙烯酸烷酯苯乙烯共聚物;“Stafiloid”AC-3355與TR-2122(均由Takeda Chemical Industries,Ltd.製造),其均為丙烯酸酯甲基丙烯酸酯共聚物;及“PARALOID”EXL-2611與EXL-3387(均由Rohm & Haas製造),其均為丙烯酸丁酯甲基丙烯酸甲酯共聚物。合適的氧化物粒子之實例包括由nanoresins AG所製造的Nanopox®。其為官能化奈米氧化矽粒子與環氧樹脂之主批摻合物。
遷移劑及界面材料
本發明之黏著性組成物中的遷移劑為任何在黏著性組成物固化時,誘使黏著性組成物中一種或以上的成分較集中在纖維與黏著性組成物之間的界面區域之材料。此現象為成分至纖維附近的遷移過程,以下可稱為「粒子遷移」。任何較集中在纖維附近而非遠離纖維、或者存在於纖維表面至固化黏著性組成物中界定距離之間的界面區域或中間相的材料,均組成本發明之黏著性組成物的界面材料。應注意,如果在黏著性組成物固化時,一界面材料可造成第二界面材料在纖維附近的濃度比遠離纖維高,則可扮演用於另一界面試劑的遷移劑之角色。在此及以下所述的界面材料係指至少包含Tg為至少-50℃、至少0℃、至少25℃、或甚至至少50℃之成分的硬質界面材料。另外,界面材料成分之模數對固化黏著 性組成物之模數的比例可為至少0.1、至少0.5、或甚至至少1。
存在於黏著性組成物中的遷移劑可為熱塑性樹脂。一般而言,為了加工目的而選擇熱塑性添加劑以修改熱固性樹脂之黏度及/或增強其韌性,亦會某種程度影響界面材料在黏著性組成物中的分布。若有熱塑性添加劑,則為了易於處理可以每100重量份之熱固性樹脂為至多50重量份(50phr)、或至多35phr之量使用。一般而言,黏著性組成物含有每100重量份之熱固性樹脂為約5至約30重量份之遷移劑。
其可使用但不限於以下熱塑性材料之一種或以上作為遷移劑:聚乙烯基甲醛類、聚醯胺類、聚碳酸酯類、聚縮醛類、聚苯醚類、聚苯硫醚類、聚芳化物類、聚酯類、聚醯胺醯亞胺類、聚醯亞胺類、聚醚醯亞胺類、具有苯基三甲基茚烷結構之聚醯亞胺類、聚碸類、聚醚碸類、聚醚酮類、聚醚醚酮類、聚芳醯胺類、聚醚腈類、聚苯并咪唑類、其衍生物及其混合物。
其可使用不損害樹脂之高抗熱性及高彈性模數的一種或以上的熱塑性添加劑。經選擇的熱塑性添加劑可大量溶於樹脂而形成均質混合物。該熱塑性添加劑可為具有芳香族骨架、或環結構之化合物,其選自由聚碸類、聚醚碸類、聚醯胺類、聚醯胺醯亞胺類、聚醯亞胺類、聚醚醯亞胺類、聚醚酮類、聚醚醚酮類、與聚乙烯基甲醛類、以及其衍生物、類似聚合物、及其混合物所組成的群組。
在另一具體實施例中,遷移劑選自由聚醚碸類、聚醯亞胺類、及其混合物所組成的群組。合適的聚醚碸類例如可具有約10,000至約75,000之數量平均分子量。
在另一具體實施例中,本發明之黏著性組成物中的界面材料包括對遷移劑不似對纖維表面化學相容的硬質材料或硬質材料混合物,因此,當黏著性組成物中有某種比例的界面材料與遷移劑時,可集中停留在纖維與黏著性組成物之間的界面區域。相容力係指化學上相同分子、或化學上相似分子、或其化學組成包含類似的原子或結構之分子、或彼此結合且可彼此化學地相互作用之分子。相容力隱含一成分在另一成分中的溶解性及/或一成分與另一成分之反應性。「無法相容/不相容」或「不似」係指當黏著性組成物中有特定量(濃度)之遷移劑時,造成界面材料(若無遷移劑則在黏著性組成物固化後會均勻分布於其中)以某種程度不均勻分布之現象。當黏著性組成物之黏度為適當低時,界面材料在黏著性組成物中不必均勻分布即可促進粒子遷移至或接近纖維表面。隨黏著性組成物之黏度增至某種程度,界面材料在黏著性組成物中均勻分布可助於改良粒子遷移至或接近纖維表面。
該界面材料至少包含Tg為至少-50℃、至少0℃、至少25℃、或甚至至少50℃之成分。另外,該成分或界面材料之模數均可使成分或界面材料之模數對黏著性組成物之模數的比例為至少0.1、至少0.5、或甚至至少 1。界面材料可另外包含至少一種Tg小於-50℃之其他成分(例如界面材料可包含Tg為至少-50℃之第一成分、及Tg小於-50℃之第二成分)。在一具體實施例中,界面材料整體具有至少-50℃之Tg。該界面材料可為傳導性或非傳導性材料。在此使用的「傳導性」係指材料之導電度。在一些情形,其亦指導熱度,或一併指材料之導電度及導熱度,或其熱電性質,即其由溫度差產生電位、或由電位差產生熱之能力。導電性材料在此係指導電度比熱固性樹脂高至少10-13S/米、至少10-10S/米、或甚至至少10-5S/米之材料,非傳導性材料則為導電度小於10-13S/米之材料。
合適的界面材料之實例包括但不限於金屬或過渡金屬(例如鎳、銅、銀、鋅、金、鉑、鈷、錫、鈦、鐵、鉻、鋁)、金屬合金(例如鋁合金、鎂合金、鋰鋁合金)、碳質材料(例如碳奈米管、碳黑、碳奈米纖維、石墨、石墨烯、石墨烯氧化物、石墨奈米片)、氧化物(例如氧化銦錫、氧化矽、氧化鋁、氧化鋅、氧化鈦)、基於矽之材料(例如陶瓷、碳化矽、POSS)、聚合物、或塗覆材料、及其混合物。該塗覆材料在此包含核材料及殼材料。核材料可選自聚合物(例如線形聚合物、分支聚合物、過度分支聚合物、樹枝狀聚合物、共聚物、與嵌段共聚物)、包含預成形聚合粒子(例如核-殼粒子、軟核-硬殼粒子、硬核-軟殼粒子)之聚合物、及無機材料(例如金屬、氧化物、碳質材料、基於矽之材料)。核材料、殼材料或兩者均可為傳導性材料。在將黏著性組成物固化後, 界面材料不溶於或部分溶於黏著性組成物,且最長尺寸可小於纖維直徑,或甚至小於5微米、小於1微米、小於500奈米、或甚至小於250奈米。界面材料可以例如至多50phr、或約1至約25phr之間之量存在於黏著性組成物。
在另一具體實施例中,界面材料可具有符合強化纖維之表面化學,使該纖維可將界面材料集中在其附近的官能基。該官能基可為含氮基(例如胺基)、含氧基(例如羥基、甲基丙烯酸酯基、或羧酸基)、含硫官能基(例如硫基)、醯胺基(例如有機醯胺、磺醯胺、或磷醯胺)、或乙烯基之至少一種或以上。例如如果強化纖維具有環氧基,或者表面被特異化而與環氧樹脂相容,則界面材料表面可具有至少一個環氧基、羥基、或羧酸基。在一具體實施例中,強化纖維表面含有第一官能基且界面材料表面含有第二官能基,其中第一與第二官能基可與彼此反應。
在另一具體實施例中,合適的硬質界面材料可選自氧化物、基於矽之材料、或核材料比殼材料硬的硬核-軟殼材料。氧化物可為包含至少一個選自含氮基(例如胺基)、含氧基(例如羥基、甲基丙烯酸酯基、羧酸基、環氧基)、含硫官能基(例如硫基)、醯胺基(例如有機醯胺、磺醯胺、或磷醯胺)、或乙烯基至少之一的官能基之氧化矽或POSS。硬質界面材料可包含經至少一個環氧基官能化之氧化矽。
在一具體實施例中,界面材料為非聚合性(即不含聚合成分)。在其他的具體實施例中,界面材料包 含無機成分(例如以有機官能基衍生的無機物質),或者為完全無機性。
本發明之一具體實施例關於一種纖維強化聚合物組成物,其包含強化纖維及黏著性組成物,其中該黏著性組成物至少包含熱固性樹脂、硬質界面材料、及遷移劑。該熱固性樹脂可為環氧樹脂、或官能基不同的環氧樹脂混合物、環氧基與苯并樹脂的混合物、或官能基不同的苯并樹脂混合物。環氧樹脂對苯并樹脂之重量比可為0.01至100之間。該硬質界面材料可為至少在表面上具有官能基之氧化矽粒子,或者可具有至少一種包含氧化矽之成分。該官能基可為含氧基,如環氧基。遷移劑可為選自聚醚碸、聚醚醯亞胺、其衍生物、或其組合之熱塑性樹脂。該黏著性組成物可進一步包含加速劑、熱塑性樹脂、增韌劑、中間層增韌劑至少之一、或其組合。
當黏著性組成物中有遷移劑與界面材料時,其可以約0.1至約30、或約0.1至約20之遷移劑對界面材料重量比存在。最適比例可依所欲的界面材料量(即界面材料層之徑向厚度)而定。
本發明之多功能纖維強化聚合物組成物之一具體實施例關於至少選擇環氧樹脂、固化劑、硬質界面材料、遷移劑、及其相對量而調整黏著性組成物,以提供在固化時樹脂模數為至少2.8GPa、或至少3.2GPa,高撓曲偏折為至少約2毫米,及獲得(結合固化纖維強化聚合物組成物中的強化纖維)層間剪切強度(ILSS)為至少 90MPa(13ksi)、或甚至至少104MPa(15ksi)之高黏附性,平移為至少70%且至多100%之高拉伸強度,壓縮強度為至少1240MPa(180ksi)、至少1380MPa(200ksi)、或甚至至少1520MPa(2200ksi),開孔壓縮性為至少300MPa(43.5ksi)、至少310MPa(45ksi)、或甚至至少330MPa(48ksi),及/或z-方向導電度為至少1S/米、或甚至至少2S/米的組成物。纖維強化聚合物組成物之多功能性係指其承載加上至少一種非承載功能(如電、熱、熱電、感應、或健康監測)的能力。
本發明之纖維強化聚合物組成物之一具體實施例關於調整在強化纖維與黏著性組成物之間所形成的多層中間相。該黏著性組成物至少具有黏著層及硬質層。該黏著層較接近強化纖維,與強化纖維形成良好黏結,且在將強化纖維以黏著性樹脂組成物浸漬之前至少包含在纖維表面上的官能基、及塗覆在強化纖維上的上漿材料。該硬質層比該黏附層更接近全體樹脂且包含硬質界面材料。
中間層增韌劑
另一具體實施例,尤其是對於纖維強化聚合物複合物,為使用本發明之增韌劑及其他的中間層增韌劑,以使複合材料之損壞容忍度及抗性最大。在此具體實施例中,中間層增韌材料可選自熱塑物、彈性體、或彈性體與熱塑物之組合、或彈性體與無機物(如玻璃)之組合。中間層增韌劑之平均粒度可不超過100微米、或10-50微米,而在固化後將中間層增韌劑粒子保持在中間層。此 粒子通常以至多約30、或至多約15重量百分比之量使用(按複合物組成物中的黏著性組成物總重量計)。
適合作為中間層增韌劑之熱塑性材料的實例包括聚醯胺。已知的聚醯胺粒子包括由Toray Industries,Inc.所製造的SP-500、由Arkema所製造的“Orgasol®”、及由EMS-Grivory所製造的Grilamid® TR-55、耐綸-6、耐綸-12、耐綸6/12、耐綸6/6、及Evonik之Trogamid® CX。
另一具體實施例關於一種在纖維強化聚合物組成物中製造多層硬質中間相之方法,其中利用低樹脂黏度之樹脂注入法。在此情形,將遷移劑集中在堆疊的纖維織物及/或纖維蓆外部而完成所欲的重組物(reform)。將至少包含熱固性樹脂、固化劑、與硬界面材料之黏著性組成物加壓及滲入該重組物中,且在滲入程序期間將一些遷移劑部分混合該黏著性組成物及穿透該重組物。該黏著性組成物中有一些遷移劑而可在纖維強化聚合物組成物固化期間形成強化中間相。將其餘的遷移劑集中在二織物片或蓆之間的中間層,且可改良纖維強化聚合物組成物之衝擊與損壞抗性。其可使用平均尺寸小於50微米之熱塑性粒子。此熱塑性材料之實例包括但不限於聚碸類、聚醚碸類、聚醯胺類、聚醯胺醯亞胺類、聚醯亞胺類、聚醚醯亞胺類、聚醚酮類、聚醚醚酮類、其衍生物、類似聚合物、及其混合物。
另一具體實施例關於中間層增韌劑,其為導電度為至少10-13S/米、至少10-10S/米、或甚至至少10-5S/米之傳導性材料、傳導性材料與導電度小於10-13S/米之 非傳導性材料的混合物、或其組合。傳導性材料及非傳導性材料均可具有至多100微米、至多50微米、或甚至至多20微米之最短尺寸。
強化纖維
在一具體實施例中,強化纖維可使用但不限於任何以下的纖維及其組合:碳纖維、有機纖維(例如芳香族醯胺纖維)、高分子量聚乙烯纖維、碳化矽纖維、金屬纖維(例如氧化鋁纖維)、硼纖維、碳化鎢纖維、玻璃纖維、及天然/生物纖維。這些纖維中尤其是可使用碳纖維。其可使用強度為2000MPa或以上,伸長為0.5%或以上,及模數為200GPa或以上的碳纖維。亦可使用拉伸模數為至少250GPa、或甚至高於300GPa之碳纖維。
所使用的強化纖維之形態及排列並未特別界定。所屬技術領域已知的任何形態及空間排列之強化纖維均可使用,如方向性長纖維、定向無規的切碎纖維、單拖、窄拖、紡織物、蓆、針織物、與編織物。需要特別高的比強度及比模數之應用可使用其中將強化纖維按同方向排列之複合結構,但是亦可使用容易處理的布(織物)結構。
藉其中改變或修改表面化學以增強其黏結力之方法,製備用以黏結該黏著性組成物之強化纖維。該表面之表面化學一般以表面能量特徵化。一般而言,表面能量為兩種主要成分,分散性(非極性,LW)成分與酸/鹼(極性,AB)成分之和。表面能量之說明可在Sun與Berg之刊物(高等膠體及表面科學(Advances in Colloid and Interface Science)105(2003)151-175、及色層分析期刊A(Journal of Chromatography A),969(2002)59-72)中發現,其歸納於下段。
固體之表面自由能量在許多狀況及應用為重要性質。其在藉由粉碎(切割、壓碎、研磨等)、或藉由從溶液或氣體混合物以晶核生成與成長而凝結之固體粒子形成,扮演重要角色。其掌管承受液體之潤濕力及塗覆力、及在液體中成為微粒之分散力。對於其燒結力及其與黏著劑之交互作用為重要的。其控制其從相鄰流體相吸附物種之傾向,且影響其催化活性。
另外,可將纖維表面粗化而進一步增強黏結強度。這些粗化方法經常亦增加表面上的氧官能基濃度。此方法之實例包括電漿處理、UV處理、電漿輔助微波處理、及濕式化學-電氧化。另外或或者可將纖維表面上漿,例如以有機材料或有機/無機材料接枝,如矽烷偶合劑或矽烷網路、或與樹脂基質相容及/或為化學反應性的聚合物組成物,而改良黏結強度或易化中間產物之處理、或兩者。此處理對纖維表面提供酸性或鹼性特徵,且使纖維表面與黏著性組成物形成良好黏結。在此情形,據稱纖維具有與黏著性組成物形成良好黏結之合適表面能量。在30℃之典型合適表面能量可為至少30毫焦/平方米、至少40毫焦/平方米、或甚至至少50毫焦/平方米,酸/鹼成分則為至少約2毫焦/平方米、或甚至至少約4毫焦/平方米。
表面之酸性或鹼性性質可使用任何目前可用 方法測定,如酸-鹼滴定、紅外線(IR)光譜術技術、逆相氣體層析術(IGC)、及X-射線光電子光譜術(XPS)、或類似方法。XPS可被用以將氧化或上漿纖維之氧對碳之量或O/C比定量。該強化纖維可能需要至少0.03、至少0.05、或甚至至少0.1之O/C比。IGC可被用以將固體表面(包括氧化/未氧化及/或上漿/未上漿纖維)之酸/鹼性質評比,其係揭述於Sun與Berg之刊物。簡單概要係揭述於下段。
將已知液體探子之蒸汽帶入填充表面能量未知的固體材料之管中,且與表面相互作用。基於氣體通過該管之時間可測定吸附自由能。因此,表面能量之分散性分量可由一系列烷屬烴探子測定;表面能量之酸/鹼分量的相對值則可使用2至5種酸/鹼探子,比較各表面之酸對鹼常數的比例,而在被偵測的表面中被評比。
具有指定的酸-鹼性質、表面能量、及模數之強化纖維,結合具有其對樹脂模數適當的熱固性樹脂與固化劑之適當化學性的黏附組成物,結合硬質界面材料/遷移劑之系統及其適合用以將界面材料遷移至強化纖維附近之量的適當選擇,需要重複許多次。生成複合物可為多功能系統。
複合物品之製造技術
本發明之纖維強化聚合物組成物可為例如可熱固化或可在室溫固化。在本發明之一具體實施例中,上述纖維強化聚合物組成物可藉達到最終固化溫度之單步驟固化,或者藉其中將纖維強化聚合物組成物在特定靜置溫 度靜置(維持)一段靜置時間,以使纖維強化聚合物組成物中的硬質界面材料遷移至強化纖維表面上,及升溫至最終固化溫度且固化所欲時間之多步驟固化而固化。靜置溫度可為黏著性組成物具有低黏度之溫度範圍。靜置時間可為至少約5分鐘。黏著性組成物之最終固化溫度可在黏著性組成物於升溫期間達到至少20%固化程度之後設定。最終固化溫度可為約250℃或以下、或約180℃或以下。纖維強化聚合物組成物可被保持在最終固化溫度直到固化程度達到至少80%。在固化期間可對強化聚合物組成物施加真空及/或外部壓力。這些方法之實例包括熱壓器、真空袋、壓力機(即物品欲固化之側接觸受熱工具表面,另一側則有或無熱空氣而處於加壓空氣下)、及類似方法。應注意,亦可應用使用熱以外的能量來源之固化方法,如電子束、電導法、微波爐、或電漿輔助微波爐、或其組合。另外可使用其他的外部壓力法,如縮繞、囊爆、壓板、及/或機台軋延。
至於纖維強化聚合物複合物,本發明之一具體實施例關於一種組合纖維與黏著性組成物而製造可固化纖維強化聚合物組成物(有時稱為「預浸體」),繼而將其固化而製造複合物品之製造方法。其可使用濕式法,其中將纖維浸泡在黏著性組成物溶於溶劑(如甲基乙基酮或甲醇)之浴中,且從該浴抽出而移除溶劑。
另一種合適的方法為熱熔法,其中將黏著性組成物加熱以降低其黏度,直接塗布在強化纖維而獲得經樹脂浸漬之預浸體;或者,另一種方法為將黏著性組 成物塗覆在脫模紙上而獲得薄膜。將該膜在強化纖維片之兩個表面上藉熱及壓力固結。
為了由預浸體製造複合物品,例如在工具表面或心軸上施加一或多層。此程序經常稱為捲帶。其需要熱及壓力而層壓該層。該工具可在固化後瓦解或移除。固化方法可使用如熱壓器、及在裝有真空線路之烤箱中的真空袋。其可使用各步驟均在特定溫度實行一段時間之單步驟固化循環或多步驟固化循環,達到約220℃或甚至180℃或以下的固化溫度。然而,亦可使用其他合適的方法,如傳導加熱、微波加熱、電子束加熱、及類似方法。熱壓器法係提供壓力緊壓該層,而真空袋法則依賴當零件在烤箱中硬化時引入袋中的真空壓力。熱壓器法可被用於高品質複合零件。
亦可不形成預浸體而將黏著性組成物直接塗布於或結合符合所欲零件形狀之工具或心軸的強化纖維,及在加熱下固化。合適的方法包括但不限於纖絲捲繞、拉擠成型、樹脂射出成型、及樹脂轉移成型/樹脂注入。其可使用樹脂轉移成型法、樹脂注入成型法、樹脂射出成型法、真空輔助樹脂轉移成型法、或類似方法。
黏附性及強化中間相之檢驗
在機械測試中將黏結結構負載至破裂點。破裂(黏著破裂、膠合破裂、基質破裂、或其組合)之本質提供關於黏結品質及關於任何可能的製造失誤之資訊。對於纖維強化聚合物複合物,短束剪切測試或三點彎曲(撓曲)測試為記載纖維與黏著劑之間的黏附程度之典型測試。應 注意,上述測試為典型的。依感興趣的系統及幾何而定,可使用其修改或其他可應用的測試來記載黏附性。
黏著(adhesive)失效係指強化纖維與黏著性組成物之間的界面處之破裂失效,而在表面上發現纖維表面的黏著性極小或無。膠合(cohesive)失效係指在黏著性組成物中發生的破裂失效,其中纖維表面主要被黏著性組成物覆蓋。應注意,纖維中會發生膠合失效,但是並非此具體實施例所指。纖維表面之黏著性組成物覆蓋率為約50%或以上、或約70%或以上。應注意,不需要表面覆蓋率之定性記載,尤其是在纖維強化聚合物複合物之情形。黏著失效係指裸纖維、幾乎裸纖維、或纖維表面被黏著劑覆蓋不超過約10%。混合模式失效係指黏著失效與膠合失效均有,且包含纖維表面被黏著劑覆蓋至少10%、或甚至至少20%。黏著模式及膠合失效係分別指弱黏附性及強黏附性,而混合模式失效係表示介於其間之黏附性。混合模式及膠合失效使黏著性組成物與纖維表面之間形成良好黏結,黏著失效則產生不良的黏結。固化黏著性組成物與強化纖維之間的良好黏結特徵為至少13ksi之層間剪切強度(ILSS)值。在本發明之各具體實施例中,纖維強化聚合物組成物在固化時具有至少14ksi、至少15ksi、至少16ksi、或甚至至少17ksi之ILSS值。
目視檢視可使用高倍率光學顯微鏡或掃描電子顯微鏡(SEM)記錄硬質界面材料之失效模式及位置/分布。在黏結結構失效之後可在具有黏著性組成物之纖維表面上發現界面材料。在此情形可能為黏著性組成物之 混合模式失效或膠合失效。驗證強化中間相,良好的粒子遷移係指在纖維表面上粒子之覆蓋率為約50%或以上,無粒子遷移係指覆蓋率小於約5%,及一些粒子遷移係指覆蓋率為約5-50%。
所屬技術領域者已知許多種檢驗及探測厚度中有無界面材料之方法。一實例為將複合結構以相對纖維方向為90°、45°而切割。將切割的橫切面機械性或以離子束(如氬)研磨,及在高倍率光學顯微鏡或電子顯微鏡下檢驗。SEM為一種可行方法。應注意,在SEM無法觀察中間相之情形可使用其他可用的最新技藝儀器,且經由其他的電子掃描法記錄有無中間相及其厚度,如TEM、化學分析(例如X-射線光電子光譜術(XPS)、飛行時間二級離子質譜術(ToF-SIMS)、紅外線(IR)光譜術、拉曼光譜術、或類似方法)、或機械性質(例如奈米壓痕、原子力顯微鏡(AFM)、或類似方法)。
其可觀察及記錄界面材料被集中之界面區域或中間相。比較周圍富樹脂區域的界面材料濃度,中間相一般測量從纖維表面至界面材料不再被集中之界定距離。依在兩條纖維之間所發現的固化黏著性組成物量而定,中間相可延伸至多100微米,包含一或多層之一種或以上的不同界面材料。該中間相厚度可至多約1纖維直徑,包含一或多層之一種或以上的不同界面材料。該厚度或可為至多約為纖維直徑之½,或者該黏附層之厚度可為至少1奈米、至少5奈米、至少15奈米、或甚至至少30奈米。
[實施例]
其次使用以下成分,藉以下實施例詳述本發明之特定具體實施例:
將購自Fiber Optic Center,Inc.之AngstromSphere氧化矽粉末(100奈米)併入依照以下表1之配方的環氧化物混合物中,而製造氧化矽-X材料。環氧丙氧基丙基三甲氧基矽烷(GPS)係購自Gelest。將氧化矽粉末置於3重量百分比之GPS於甲醇/DI水(95/5重量百分比)之溶液中且攪拌90分鐘。將固體藉離心移除且再分散於新鮮甲醇中。將該步驟重複2次而獲得官能化氧化矽於甲醇的最終分散液。將該分散液混合環氧樹脂混合物,且將甲醇在熱及真空下移除。
比較例1-2及實施例1-5
比較例1-2及實施例1-4顯示硬質中間相相對軟質中間相及無中間相在纖維複合物系統之機械性質上的效果。其使用T700G-31纖維。
將適量的樹脂組成物之各成分裝入預熱至100℃之混合器中。在裝載後將溫度提高至160℃同時攪拌混合物,且保持1小時。然後將混合物冷卻至65℃且裝載固化劑。將最終樹脂混合物攪拌1小時,然後排放且將一部分儲存在冰箱中。
將一些熱混合物在以1500rpm轉動的行星式混合器中脫氣總共20分鐘,且倒入具有0.25吋厚的Teflon®嵌件之金屬模具中。將樹脂以1.7℃/分鐘之升溫速率加熱至180℃,停留2小時以完全固化,最終冷卻至室溫。依照ASTM D-790之撓曲測試製備測試用之樹脂板。
為了製備預浸體,首先使用刀塗器將熱樹脂 在脫模紙上流延成為薄膜。將該膜藉熱及緊壓壓力在纖維床兩側上固結。其獲得碳纖維面積重量為約190克/平方米、及樹脂含量為約35重量百分比之UD預浸體。將該預浸體切割,且依照表2所列的順序以手疊層,依照ASTM步驟及z-方向導電度測試而用於各型機械測試。將嵌板在180℃熱壓器中以1.7℃/分鐘之升溫速率及0.59MPa之壓力固化2小時。或者,在升溫至180℃之前,可採用在90℃靜置45分鐘,以提升粒子的遷移。
如所示,由於環氧樹脂系統與T700G-31纖維之間有強黏附性,故發現所有系統的ILSS均為至少13ksi。相較於無中間相之比較例1的OHC強度(約41ksi),當如比較例2以CSR材料調整軟質中間相時,OHC強度降至約40ksi。儘管如此,在實施例1-2將氧化矽引入中間相中時,OHC增至約47ksi,使得使用的氧化矽量越高則OHC越大。當如實施例3以PEI遷移劑取代PES2遷移劑時,在這些系統之間所觀察到的性能差異不大。最後,在將中間層增韌劑PA引入實施例2而製造實施例4時,觀察到模式II破裂韌性GIIC顯著增加。
比較例3-5及實施例5-6
使用如先前實施例之步驟實行樹脂、預浸體、及機械與導度測試。這些系統顯示硬質中間相比樹脂模數更能改良OHC的優點。其使用T800S-10與T800G-31纖維。
比較例3之T800S-10纖維一般為使環氧樹脂對纖維為低至中黏附性,比較例4之T800G-31纖維則促進強黏附性。但在將軟質中間相引入這些比較例時發現兩 系統之ILSS類似。OHC亦類似。儘管如此,當如比較例5所示而調配較高的樹脂模數時,ILSS與OHC均變高。
在將硬質中間相引入實施例5,同時如比較例5將樹脂模數保持在約4GPa時,OHC改良超過2ksi。此顯著增強教示硬質中間相克服OHC障礙之重要性,高樹脂模數單獨則無法達成。組合高模數樹脂與硬質中間相進一步改良OHC達至多約48ksi,如實施例6所示。
現已提供以上的說明使所屬技術領域者可製造及使用本發明,且在特定應用及其要求之內容中提供。各種對較佳具體實施例之修改對所屬技術領域者為顯而易知,且在此定義之一般原理可被應用於其他的具體實施例及應用而不背離本發明之精神及範圍。因此,本發明不意圖限於上示具體實施例,而是符合與在此揭示的原理及特點一致之最廣義範圍。
本申請案揭示許多數字範圍限制。雖然在說明書中未逐字敘述精確的範圍限制,但所揭示的數字範圍即支持所揭示的數字範圍內之任何範圍,因為本發明可完全以所揭示的數字範圍實行。最後,本申請案所參考的專利及文獻之全部揭示均納入此處作為參考。
平移係數。平移百分比為在纖維強化聚合物複合物中如何有效利用纖維強度之測度。其由以下方程式計算,其中將所測量的拉伸強度(TS)以在纖維強化聚合物複合物中所測量的纖維束強度及纖維破裂體積(Vf)標準化。應注意,Vf可由酸消化法測定。
z-方向導電度測量。由嵌板製備25毫米×25毫米試片(W1×W2)。將試片之上下表面機械拋光而移除至多50微米之上層,且測定試片厚度。將銀漆(Dotite® D-550)塗刷在拋光表面上,繼而施加25毫米寬銅膠帶(3M 1181)。由以下測定體積電阻率(RV)。導電度為1/RV。
其中R為由數位多用電表(Advantest R6581)以4探針法在試片的上下表面之間測量的電阻。
1‧‧‧碳纖維
2‧‧‧黏附層
3‧‧‧硬質層
4‧‧‧外層
5‧‧‧全體樹脂組成物

Claims (9)

  1. 一種纖維強化聚合物組成物,其包含強化纖維及黏著性組成物,其中該黏著性組成物至少包含熱固性樹脂、固化劑、及界面材料,該界面材料至少具有玻璃轉移溫度(Tg)為至少-50℃之成分,其中該界面材料之表面至少包含與該強化纖維相容的官能基,其中該強化纖維適合用以將該界面材料集中在該強化纖維與該黏著性組成物之間的界面區域,其中該界面區域包含黏附層與硬質層,其中該黏附層比該硬質層更接近該強化纖維,並具有與該硬質層之組成物不同的組成物,且其中該硬質層至少包含該界面材料,其中該黏著性組成物在固化時與該強化纖維形成良好黏結,該界面材料之成分的撓曲模數有效使該界面材料的撓曲模數對該黏著性組成物的撓曲模數的比例為至少0.1,且該固化黏著性組成物的撓曲模數為至少4.0GPa。
  2. 如請求項1之纖維強化聚合物組成物,其中該界面材料之該官能基包含含氧基、含氮基、醯胺基、或含硫基至少之一。
  3. 如請求項2之纖維強化聚合物組成物,其中該界面材料之成分具有至少0℃之Tg。
  4. 如請求項1之纖維強化聚合物組成物,其中該比例為至少0.5。
  5. 如請求項4之纖維強化聚合物組成物,其中該比例為至少1。
  6. 如請求項5之纖維強化聚合物組成物,其中該黏著性組 成物進一步包含遷移劑。
  7. 如請求項6之纖維強化聚合物組成物,其中該黏著性組成物進一步包含加速劑、熱塑性樹脂、增韌劑、中間層增韌劑至少之一、或其組合。
  8. 一種預浸體,其包含如請求項1之纖維強化聚合物組成物。
  9. 一種製造複合物品之方法,其包含將如請求項1之纖維強化聚合物組成物固化。
TW102148110A 2012-12-27 2013-12-25 具有硬質中間相之纖維強化聚合物複合物 TWI599607B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261746213P 2012-12-27 2012-12-27
US201361901909P 2013-11-08 2013-11-08

Publications (2)

Publication Number Publication Date
TW201434907A TW201434907A (zh) 2014-09-16
TWI599607B true TWI599607B (zh) 2017-09-21

Family

ID=51019959

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102148110A TWI599607B (zh) 2012-12-27 2013-12-25 具有硬質中間相之纖維強化聚合物複合物

Country Status (7)

Country Link
US (1) US9688891B2 (zh)
EP (1) EP2938658B1 (zh)
JP (1) JP6384487B2 (zh)
KR (1) KR20150102939A (zh)
CN (1) CN104884511B (zh)
TW (1) TWI599607B (zh)
WO (1) WO2014102603A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10327429B2 (en) 2015-06-02 2019-06-25 G-Rods International Llc Incorporation of graphene in various components and method of manufacturing
US10064400B2 (en) 2015-06-02 2018-09-04 G-Rods International Llc Fishing rod with graphene and method of manufacturing
US10793950B1 (en) * 2015-12-23 2020-10-06 Reineke Leland M CVI/CVD preform separator
US10018426B2 (en) 2016-05-12 2018-07-10 The Boeing Company Composite heat pipes and sandwich panels, radiator panels, and spacecraft with composite heat pipes
CN109972400B (zh) * 2017-12-28 2022-04-12 中国科学院宁波材料技术与工程研究所 一种石墨烯改性上浆剂及其制备方法和应用
KR102044906B1 (ko) * 2018-01-07 2019-11-14 김은도 플라즈마 처리에 의한 섬유 강화 플라스틱 및 그 수리 방법
EP3553132A1 (en) * 2018-04-13 2019-10-16 SABIC Global Technologies B.V. Fiber reinforced composition with good impact performance and flame retardance
US11485833B2 (en) 2019-10-23 2022-11-01 Hexcel Corporation Thermoplastic toughened matrix resins containing nanoparticles
CN112213521B (zh) * 2020-08-18 2023-11-03 中国航空制造技术研究院 一种纤维复合材料界面区硬度的评估方法
CN112516685A (zh) * 2020-11-17 2021-03-19 华东师范大学重庆研究院 一种可见光光催化空气净化玻璃纤维滤芯及其制备方法
US20240124660A1 (en) * 2022-06-15 2024-04-18 Hanwha Azdel, Inc. High strength to weight consolidated porous core layers and articles including them
CN115320184A (zh) * 2022-07-04 2022-11-11 孟慧 一种耐火隔热防护面料及其制备方法
CN115490987B (zh) * 2022-09-18 2024-01-16 西北工业大学 端氨基超支化聚合物改性碳布增强树脂基摩擦材料及制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3280433B2 (ja) * 1992-10-09 2002-05-13 株式会社日清製粉グループ本社 超微粒子を表面に均一に分散付着した繊維または織布およびその製造方法およびそれを用いた繊維強化複合材
JP3365110B2 (ja) * 1994-12-02 2003-01-08 東レ株式会社 プリプレグおよび繊維強化複合材料
US5648407A (en) 1995-05-16 1997-07-15 Minnesota Mining And Manufacturing Company Curable resin sols and fiber-reinforced composites derived therefrom
FR2809741B1 (fr) 2000-05-31 2002-08-16 Atofina Materiaux thermodurs a tenue au choc amelioree
JP4668788B2 (ja) 2003-06-09 2011-04-13 株式会社カネカ 変性エポキシ樹脂の製造方法
KR101226379B1 (ko) 2004-11-10 2013-01-24 다우 글로벌 테크놀로지스 엘엘씨 양친매성 블록 공중합체-개질된 에폭시 수지 및 그로부터제조된 접착제
WO2008105189A1 (ja) 2007-02-28 2008-09-04 Kaneka Corporation ゴム状重合体粒子分散熱硬化性樹脂組成物、及びその製造方法
US20100280151A1 (en) 2009-05-04 2010-11-04 Toray Industries, Inc. Toughened fiber reinforced polymer composite with core-shell particles
CN102834440B (zh) * 2010-03-30 2014-04-02 东丽株式会社 预浸料坯、纤维增强复合材料及预浸料坯的制造方法
JP2012149237A (ja) * 2010-12-27 2012-08-09 Toray Ind Inc 熱硬化性樹脂組成物、プリプレグ、および繊維強化複合材料
EP2678153A4 (en) * 2011-02-24 2015-07-08 Toray Industries REINFORCED INTERPHASE AND RELATED STRUCTURES THEREOF

Also Published As

Publication number Publication date
TW201434907A (zh) 2014-09-16
CN104884511A (zh) 2015-09-02
JP2016503102A (ja) 2016-02-01
EP2938658A4 (en) 2016-10-12
CN104884511B (zh) 2018-03-13
EP2938658A1 (en) 2015-11-04
JP6384487B2 (ja) 2018-09-05
WO2014102603A1 (en) 2014-07-03
EP2938658B1 (en) 2019-09-18
US9688891B2 (en) 2017-06-27
US20150315430A1 (en) 2015-11-05
KR20150102939A (ko) 2015-09-09

Similar Documents

Publication Publication Date Title
TWI599607B (zh) 具有硬質中間相之纖維強化聚合物複合物
TWI601771B (zh) 傳導性纖維強化聚合物複合物及多功能複合物
JP6036706B2 (ja) 繊維強化ポリマー組成物、プリプレグ、複合物を製造する方法
TWI595030B (zh) 高模數纖維強化聚合物複合物及其製造方法
JP6354763B2 (ja) 強化界面相を有する繊維強化高弾性ポリマー複合材料
KR102511723B1 (ko) 금속-섬유 강화 수지 재료 복합체 및 그의 제조 방법
TWI408171B (zh) 環氧樹脂組成物、預浸漬物及纖維強化複合材料
Verrey et al. Interlaminar fracture toughness improvement in composites with hyperbranched polymer modified resin
Xing et al. Mechanical performance of a novel glass fiber reinforced maleic anhydride grafted polypropylene composite and its thermoplastic‐based fiber metal laminates

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees