WO2018010159A1 - 散热电路板、功率模块及制备散热电路板的方法 - Google Patents

散热电路板、功率模块及制备散热电路板的方法 Download PDF

Info

Publication number
WO2018010159A1
WO2018010159A1 PCT/CN2016/090102 CN2016090102W WO2018010159A1 WO 2018010159 A1 WO2018010159 A1 WO 2018010159A1 CN 2016090102 W CN2016090102 W CN 2016090102W WO 2018010159 A1 WO2018010159 A1 WO 2018010159A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive pattern
circuit board
layer
metal oxide
heat dissipation
Prior art date
Application number
PCT/CN2016/090102
Other languages
English (en)
French (fr)
Inventor
胡启钊
钟山
李国庆
林伟健
Original Assignee
乐健科技(珠海)有限公司
胡启钊
钟山
李国庆
林伟健
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 乐健科技(珠海)有限公司, 胡启钊, 钟山, 李国庆, 林伟健 filed Critical 乐健科技(珠海)有限公司
Priority to PCT/CN2016/090102 priority Critical patent/WO2018010159A1/zh
Priority to CN201680004437.XA priority patent/CN109863593B/zh
Publication of WO2018010159A1 publication Critical patent/WO2018010159A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the invention relates to a heat dissipation circuit board, a power module and a method for preparing the heat dissipation circuit board, in particular to a heat dissipation circuit board using a metal oxide substrate as an electrical insulation carrier, a power module including the heat dissipation circuit board, and preparing the heat dissipation The method of the board.
  • a heat dissipation circuit board having a conductive pattern formed on the surface of an aluminum nitride ceramic is generally used, but such a heat dissipation circuit board still has many disadvantages such as high cost and difficulty in miniaturization, and further improvement is possible. Necessary.
  • a first aspect of the invention provides a heat dissipation circuit board comprising:
  • a metal oxide substrate having opposite first and second surfaces
  • a first conductive pattern comprising: a first inner conductive layer extending from the first surface toward the second surface in a thickness direction of the metal oxide substrate; and a first outer conductive layer extending from the first surface away from the second surface;
  • the thickness of the first conductive pattern is greater than the thickness of the second conductive pattern.
  • the thermal circuit board has a low cost and has good heat dissipation performance.
  • the heat dissipation circuit board has a first conductive pattern and a second conductive pattern of different thicknesses, wherein the thicker first conductive pattern is used to load a larger current.
  • the thinner second conductive pattern is used to load a smaller current, and thus has good flexibility in load current design and conductive line thickness design; in addition, the first inner conductive layer in the thicker first conductive pattern is embedded In the metal oxide substrate, the first conductive pattern can adopt a narrower line width and reduce the thickness of the first outer conductive pattern, thereby facilitating miniaturization of the heat dissipation circuit board.
  • the metal described above is an anodizable metal, such as titanium, magnesium, aluminum or an aluminum alloy, especially aluminum or an aluminum alloy.
  • the metal oxide substrate can be prepared by selective anodizing a metal substrate such as an aluminum or aluminum alloy substrate, which has the advantages of low cost and ease of preparation.
  • the metal oxide substrate is prepared by subjecting the anodizable metal substrate to selective anodization, and the portion of the metal substrate that is not oxidized forms the first inner conductive layer.
  • the manufacturing cost of the heat dissipation circuit board is further reduced by forming the portion of the metal substrate that is not oxidized into the first inner conductive layer.
  • the first outer conductive layer completely covers the first inner conductive layer.
  • the first inner conductive layer can be protected by the first outer conductive layer, and the line width of the first conductive pattern can be reduced to further promote miniaturization of the heat dissipation circuit board.
  • the second conductive pattern includes a second inner conductive layer extending from the first surface toward the second surface in a thickness direction of the substrate, and a second extending from the first surface away from the second surface Two outer conductive layers.
  • the thickness of the second inner conductive layer is smaller than the thickness of the first inner conductive layer
  • the thickness of the second outer conductive layer is equal to the thickness of the first outer conductive layer.
  • the second inner conductive layer is also formed by the unoxidized portion of the metal substrate, and the second outer conductive layer completely covers the second inner conductive layer.
  • the outer surfaces of the first conductive pattern and the second conductive pattern are substantially flush.
  • the outer surfaces of the first conductive pattern and the second conductive pattern of different line thicknesses are substantially flush, thereby facilitating the mounting or packaging of various components during the fabrication of the power module.
  • a region of the first inner conductive layer corresponding to the power component mounting position (the number of which may be one or more as needed) at least partially penetrates the metal oxide substrate.
  • the regions of the first inner conductive layer corresponding to the mounting positions of the power components all penetrate the metal oxide substrate; more preferably, the first inner conductive layers all penetrate the metal oxide substrate.
  • the heat dissipation circuit board further includes:
  • the third conductive pattern and/or the heat diffusion layer for increasing the heat dissipation area of the ceramic heat sink is formed on the surface side of the resin insulating layer and the ceramic heat sink away from the metal oxide substrate.
  • the thickness of the metal oxide substrate is preferably controlled to be 50 ⁇ m to 300 ⁇ m, and more preferably controlled to be 80 ⁇ m to 250 ⁇ m.
  • the resin insulating layer can provide better mechanical support for the metal oxide substrate, thereby improving the mechanical strength of the heat dissipation circuit board; secondly, the heat in the first inner conductive layer can be conducted to the ceramic heat sink to The third conductive pattern and/or the thermal diffusion layer having a larger area allows the heat dissipation circuit board to have further enhanced heat dissipation performance.
  • the first outer conductive layer and the second outer conductive layer may include only a copper layer, and may also include other metal layers than the copper layer.
  • the first outer conductive layer and the second outer conductive layer include respectively An intermediate metal layer (eg, a layer of titanium, chromium or cobalt) formed on the first inner conductive layer and the second inner conductive layer, a copper layer formed on the intermediate metal layer, and a nickel layer formed on the copper layer and/or Gold layer.
  • An intermediate metal layer eg, a layer of titanium, chromium or cobalt
  • the power component may be directly disposed on the heat dissipation circuit board, or may be indirectly disposed on the heat dissipation circuit board through the package after being packaged.
  • the power component may be, for example, an LED (Light Emitting Diode), a Thyristor, a GTO (Gate Turn-Off Thyristor), a GTR (Power Transistor), a MOSFET (Power Field Effect Transistor), an IGBT (Insulated Gate Bipolar Transistor), and a Power Diode.
  • LED Light Emitting Diode
  • Thyristor Thyristor
  • GTO Gate Turn-Off Thyristor
  • GTR Power Transistor
  • MOSFET Power Field Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • Power Diode Various power components.
  • Still another aspect of the present invention provides a method of fabricating a heat dissipation circuit board, comprising the steps of:
  • the metal oxide substrate in which the inner conductive pattern is embedded is obtained by selective anodizing the metal substrate, so that the cost of the heat dissipation circuit board is low and the heat dissipation performance is good;
  • the inner conductive pattern is embedded in the metal oxide substrate, so that the outer conductive pattern can adopt a narrow line width and thickness, thereby facilitating miniaturization of the heat dissipation circuit board; in addition, since the surface of the obtained outer conductive pattern is substantially flush, the breakthrough Technical barriers in which different thickness lines cannot be coplanar in the prior art, thereby facilitating the preparation of power modules The installation or packaging of various components during the process.
  • the metal substrate is an aluminum substrate or an aluminum alloy substrate.
  • the metal substrate may be another anodizable metal substrate such as a titanium substrate or a magnesium substrate.
  • the inner conductive pattern includes a first inner conductive pattern and a second inner conductive pattern, and a thickness of the first inner conductive pattern is greater than a thickness of the second inner conductive pattern.
  • the obtained heat dissipation circuit board has the first inner conductive pattern and the second inner conductive pattern of different thicknesses, wherein the thicker first inner conductive pattern is used to load a larger current, the thinner The two inner conductive patterns are used to load smaller currents, resulting in greater flexibility in load current design and conductive line thickness design.
  • a region of the inner conductive pattern corresponding to the mounting location of the power component at least partially penetrates the metal oxide substrate.
  • the regions of the inner conductive pattern corresponding to the mounting positions of the power components all penetrate the metal oxide substrate; more preferably, the inner conductive patterns all penetrate the metal oxide substrate.
  • the foregoing method further includes the following steps:
  • the heat sink comprising a ceramic heat sink and a metal layer formed on opposite surfaces of the ceramic heat sink;
  • the resin insulating layer can provide better mechanical support for the metal oxide substrate, thereby improving the mechanical strength of the heat dissipation circuit board;
  • the heat in the inner conductive pattern can be conducted through the heat sink to form the resin.
  • the insulating layer and the heat sink are away from the conductive pattern and/or the heat diffusion layer of the surface of the metal oxide substrate, and the conductive pattern and/or the heat diffusion layer can increase the heat dissipation area of the heat dissipation circuit board, so that the heat dissipation circuit board has further enhanced heat dissipation performance.
  • the resin insulating layer is formed with a metal foil on a surface thereof away from the metal oxide substrate.
  • the "conductive pattern” and the “conductive layer” in the present invention mean that it has a conductive function but does not exclude that it has other functions (for example, heat dissipation), and in a practical application, a portion of the conductive pattern and the conductive layer It is not necessary for current to pass. That is to say, a part of the conductive pattern and the conductive layer may have no current passing in practical applications, and a part of the conductive pattern and the conductive layer is used not only for transmitting current but also for acting as a practical application. Heat transfer path to achieve heat transfer.
  • FIG. 1 to 4 are schematic views showing a preparation flow of Embodiment 1 of a heat dissipation circuit board of the present invention
  • Embodiment 1 of a heat dissipation circuit board of the present invention
  • Embodiment 2 is a schematic structural view of Embodiment 2 of a heat dissipation circuit board of the present invention.
  • FIGS. 7-8 are diagrams showing the preparation process of the metal oxide substrate in the third embodiment of the heat dissipation circuit board of the present invention. schematic diagram;
  • Embodiment 9 is a schematic structural view of Embodiment 3 of a heat dissipation circuit board of the present invention.
  • FIGS. 10-13 are schematic views showing a preparation flow of Embodiment 4 of the heat dissipation circuit board of the present invention.
  • Embodiment 4 is a schematic structural view of Embodiment 4 of a heat dissipation circuit board of the present invention.
  • FIG. 15 is a schematic structural view of an embodiment of a power module of the present invention.
  • FIG. 5 is a schematic structural view of Embodiment 1 of a heat dissipation circuit board of the present invention.
  • the heat dissipation circuit board of the present embodiment includes a metal oxide substrate 10, a first conductive pattern 21, and a second conductive pattern 22.
  • the metal oxide substrate 10 has a first surface 11 and a second surface 12 disposed opposite each other; the first conductive pattern 21 includes a first extending from the first surface 11 toward the second surface 12 in the thickness direction of the metal oxide substrate 10.
  • an anodizable metal substrate 1 for example, an aluminum substrate
  • a patterned anodized protective layer having a pattern conforming to the first inner conductive layer 211 is formed on the first surface 11 thereof.
  • 100B, on its second surface 12, an anodized protective layer 100A that completely covers the second surface 12 is formed.
  • the metal substrate 1 may have a thickness of 50 micrometers to 300 micrometers, preferably 100 micrometers to 200 micrometers.
  • the metal substrate 1 on which the protective layers 100A and 100B are formed is subjected to selective anodization.
  • This oxidation process first occurs from the first surface 11 of the metal substrate 1 such that the portion not covered by the protective layer 100B is oxidized to a predetermined thickness, forming the oxidized region 1A and the non-oxidized region 1B.
  • the protective layer 100A of the second surface 12 is removed but the protective layer 100B of the first surface is left to oxidize the metal substrate 1 from the second surface 12, so that the metal substrate 1 is transformed into an internal conductive layer.
  • the metal oxide substrate 10 of the pattern 211 (or the first inner conductive layer 211).
  • the inner conductive pattern 211 (or the first inner conductive layer 211 ) extends from the first surface 11 toward the second surface 12 in the thickness direction of the metal oxide substrate 10 , but does not penetrate the metal oxide substrate 10 .
  • a metal layer 20 is formed on the first surface 11 of the metal oxide substrate 10, wherein the metal layer 20 can be formed by first forming a first surface 11 of the metal oxide substrate 10 by a PVD process.
  • an intermediate metal layer of titanium, chromium or cobalt the intermediate metal layer may have a thickness of 20 nm to 200 nm, preferably 50 nm to 150 nm; and then a bottom copper layer is formed on the intermediate metal layer by a PVD process, the bottom
  • the thickness of the copper layer may be from 0.2 micrometers to 2 micrometers, preferably from 0.5 micrometers to 1.5 micrometers; finally, a thick copper layer of a predetermined thickness is formed on the bottom copper layer by electroplating, and the thickness of the thickened copper layer may be 35 micrometers. Up to 350 microns, for example about 210 microns.
  • the metal layer 20 is subjected to a patterned etching process to form an outer conductive pattern including the first outer conductive layer 212 and the second conductive pattern 22, thereby obtaining the heat dissipation circuit board embodiment 1 as shown in FIG. 5.
  • the first outer conductive layer 212 is formed in a pattern compatible with the first inner conductive layer 211 and completely covers the first inner conductive layer 211 (or the inner conductive pattern 211).
  • the heat dissipation circuit board of the present embodiment includes a metal oxide substrate 110 having a first surface 111 and a second surface 112 disposed opposite to each other, and the first conductive pattern 121 is included in the thickness direction of the metal oxide substrate 110.
  • a first inner conductive layer 1211 extending from the first surface 111 to the second surface 112 (ie, penetrating the metal oxide substrate 110) and a first outer conductive layer 1212 extending from the first surface 111 away from the second surface 112; a second conductive The pattern 122 is formed on the first surface 111 of the metal oxide substrate 10.
  • the first An outer conductive layer 1212 completely covers the first inner conductive layer 1211 and has a thickness substantially equal to the second conductive pattern 122.
  • the first inner conductive layer 1211 constitutes an inner conductive pattern
  • the first outer conductive layer 1212 and the second conductive pattern 122 constitute an outer conductive pattern
  • FIG. 9 is a schematic structural view of Embodiment 3 of a heat dissipation circuit board.
  • the heat dissipation circuit board of the present embodiment includes a metal oxide substrate 200 having a first surface 201 and a second surface 202 disposed opposite to each other, and the first conductive pattern 221 is included in the thickness direction of the metal oxide substrate 200.
  • a first inner conductive layer 2211 extending from the first surface 201 to the second surface 202 (ie, penetrating the metal oxide substrate 200) and a first outer conductive layer 2212 extending from the first surface 201 away from the second surface 202;
  • a second conductive The pattern 222 includes a second inner conductive layer 2221 extending from the first surface 201 toward the second surface 202 in the thickness direction of the metal oxide substrate 200 and a second outer conductive layer 2222 extending from the first surface 201 away from the second surface 202 .
  • the thickness of the second inner conductive layer 2221 is smaller than the thickness of the first inner conductive layer 2211, and the thickness of the second outer conductive layer 2222 is equal to the thickness of the first outer conductive layer 2212.
  • first inner conductive layer (first inner conductive pattern) 2211 and the second inner conductive layer (second inner conductive pattern) 2221 constitute an inner conductive pattern
  • first outer conductive layer 2212 and the second outer layer Conductive layer 2222 constitutes an outer conductive pattern
  • an anodizable metal substrate 1 for example, an aluminum substrate
  • the patterned anodized protective layer 100B forms an anodized protective layer 100A completely covering the second surface 202 on the second surface 202 thereof; then, selective anodizing the metal substrate 1 on which the protective layers 100A and 100B are formed
  • the oxidation process begins with the first The surface 201 is performed such that the portion not covered by the protective layer 100B is oxidized to a predetermined thickness.
  • the protective layer 100A of the second surface 202 is formed into a protective pattern 100A' adapted to the pattern of the first inner conductive layer 2211, and the metal substrate 1 is oxidized from the second surface 202 to make the metal
  • the substrate 1 is converted into a metal oxide substrate 200 in which an inner conductive pattern including the first inner conductive pattern 2211 (or the first inner conductive layer 2211) and the second inner conductive pattern 2221 (or the second inner conductive layer 2221) is embedded.
  • a metal layer is formed on the first surface 201 of the metal oxide substrate 200, and the metal layer is subjected to a patterned etching process to form the first outer conductive layer 2212 and the second layer.
  • the outer conductive pattern of the outer conductive layer 2222 thereby obtaining the heat dissipation circuit board embodiment 3 as shown in FIG.
  • the first outer conductive layer 2212 completely covers the first inner conductive layer 2211, and the second outer conductive layer 2222 completely covers the second inner conductive layer 2221.
  • FIG. 14 is a schematic structural view of Embodiment 4 of a heat dissipation circuit board.
  • the heat dissipation circuit board of the present embodiment further includes, on the basis of Embodiment 3 of the heat dissipation circuit board, resin insulating layers 40 and 52 formed on the second surface side of the metal oxide substrate 200;
  • the body 31 is thermally coupled to a region of the first inner conductive layer 2211 corresponding to the power component mounting location 2210 and through the resin insulating layers 40 and 52, and to the first inner conductive layer 2211 adjacent to the power component mounting location 2210;
  • the third conductive pattern 61 is formed on the surface of the resin insulating layer 52 away from the metal oxide substrate 200;
  • the heat diffusion layer 62 for increasing the heat dissipation area of the ceramic heat sink 31 is attached to the ceramic heat sink 31 and the resin insulating layer 52 away from The surface of the metal oxide substrate 200.
  • the metal oxide substrate 200 shown in FIG. 10 is prepared according to the method described in Embodiment 3, and a heat sink 30 is provided.
  • the heat sink 30 includes ceramic heat sinks 31 and are respectively formed on opposite surfaces of the ceramic heat sink 31.
  • Metal layer 32 is provided.
  • the opposite surfaces of the ceramic heat sink 31 will be formed by the solder material 33.
  • the metal layer 32 on one of the surfaces is soldered to the first inner conductive layer 2211 such that the plurality of heat spreaders 30 and the region of the first inner conductive layer 2211 corresponding to the power component mounting location 2210 and the adjacent power component mounting location 2210, respectively
  • the first inner conductive layer 2211 is thermally connected.
  • a prepreg 40 having a through hole 41 and an FR4 plate 50 having a through hole 51 are provided, and the FR4 plate 50 includes a resin dielectric layer 52 on the inner side and a copper foil layer 53 on the outer side, a through hole 41 and The through holes 51 allow the heat sink 30 to pass therethrough, respectively.
  • the number of prepregs 40 may be one or more layers as needed.
  • a resin insulating layer may be formed on the second surface side of the metal oxide substrate 200 by a method of mold injection molding, and the resin insulating layer may be ground by, for example, a grinding process to make the resin insulating layer and The surface of the heat sink away from the metal oxide substrate is substantially flush.
  • a metal layer 220 is formed on the first surface side of the heat dissipation circuit board, and a metal layer 60 is formed on the second surface side.
  • the metal layer 220 and the metal layer 60 may have the same or different thicknesses, and the metal layer 220 may be prepared according to the method for preparing the metal layer 20 in the heat dissipation circuit board manufacturing method embodiment 1.
  • the metal layer 60 may be prepared as follows: First, a bottom copper layer is prepared by chemical copper deposition on the second surface side of the heat dissipation circuit board, and the thickness of the bottom copper layer may be 0.2 micrometers to 2 micrometers, preferably 0.5 to 1.5 ⁇ m; a thick copper layer of a predetermined thickness is then formed on the underlying copper layer by electroplating, thereby obtaining a metal layer 60.
  • the metal layer 220 is subjected to an image etching process to obtain a first outer conductive layer 2212 covering the first inner conductive layer 2211, a second outer conductive layer 2222 covering the second inner conductive layer 2221, and a metal layer 60 and copper.
  • the foil layer 53 (and the metal layer 32 remote from the metal oxide substrate 200) is subjected to a pattern etching process to obtain a third conductive pattern 61 and a thermal diffusion layer 62.
  • the third conductive pattern 61 is electrically connected to the first conductive pattern 221 or the second conductive pattern 222 by means well known to those skilled in the art, such as by conductive vias.
  • the power module is an IGBT module, including the above-mentioned heat dissipation circuit board embodiment 4, two IGBT chips 71 disposed on the power component mounting position 2210 of the heat dissipation circuit board, and the second conductive pattern 222.
  • the first electronic component 72 and the second electronic component 73 are electrically connected, such as a capacitor or a resistor, and the second electronic component is, for example, an IC (Integrated Circuit) component.

Abstract

一种散热电路板、功率模块及制备散热电路板的方法,该散热电路板包括:金属氧化物基板(10),具有相对设置的第一表面(11)和第二表面(12);第一导电图案(21),包括在基板(10)的厚度方向上自第一表面(11)朝向第二表面(12)延伸的第一内导电层(211)以及自第一表面(11)远离第二表面(12)延伸的第一外导电层(212);第二导电图案(22),形成在基板(10)的第一表面(11)侧;其中,第一导电图案(21)的厚度大于第二导电图案(22)的厚度。通过采用金属氧化物基板作为导电图案的载体、并将导电图案的一部分嵌入金属氧化物基板内部从而降低了产品体积及成本。

Description

散热电路板、功率模块及制备散热电路板的方法 技术领域
本发明涉及一种散热电路板、功率模块及制备散热电路板的方法,尤其是涉及一种利用金属氧化物基板作为电绝缘载体的散热电路板、包括该散热电路板的功率模块及制备该散热电路板的方法。
背景技术
随着诸如EV(电动汽车)、HEV(混合动力汽车)以及变频器等的高电流产品市场的快速发展,高功率、高电流输出、高散热的功率元件,例如IGBT(绝缘栅双极型晶体管)等等,成为技术开发的焦点。目前,为了满足高电流和高散热的需求,通常采用在氮化铝陶瓷表面形成导电图案的散热电路板,但这种散热电路板仍存在成本高、难以实现小型化等诸多不足,存在进一步改进的必要。
发明内容
本发明的第一方面提供了一种散热电路板,包括:
金属氧化物基板,具有相对设置的第一表面和第二表面;
第一导电图案,包括在金属氧化物基板的厚度方向上自第一表面朝向第二表面延伸的第一内导电层以及自第一表面远离第二表面延伸的第一外导电层;
第二导电图案,形成在金属氧化物基板的第一表面侧;
其中,第一导电图案的厚度大于第二导电图案的厚度。
本发明中,首先,由于采用金属氧化物基板作为电绝缘载体,因而散 热电路板的成本较低,且具有良好的散热性能;其次,散热电路板具有不同厚度的第一导电图案和第二导电图案,其中较厚的第一导电图案用于负载较大的电流,较薄的第二导电图案用于负载较小的电流,因而在负载电流设计及导电线路厚度设计上具有很好的灵活性;另外,较厚的第一导电图案中的第一内导电层嵌入金属氧化物基板内,使得第一导电图案可以采用较窄的线路宽度,并降低第一外导电图案的厚度,从而促进散热电路板的小型化。
根据本发明的一种具体实施方式,上述的金属为可阳极氧化金属,例如钛、镁、铝或铝合金,尤其是铝或铝合金。金属氧化物基板可以通过对例如铝或铝合金基板的金属基板进行选择性阳极氧化而制备得到,这具有成本较低且易于制备的优点。
根据本发明的另一具体实施方式,金属氧化物基板通过对可阳极氧化的金属基板进行选择性阳极氧化处理而制备得到,金属基板未被氧化的部分形成第一内导电层。在该实施方式中,通过将金属基板未被氧化的部分形成为第一内导电层而进一步降低了散热电路板的制备成本。
根据本发明的另一具体实施方式,第一外导电层完全覆盖第一内导电层。由此,可以利用第一外导电层对第一内导电层进行保护,并降低第一导电图案的线路宽度,以进一步促进散热电路板的小型化。
根据本发明的另一具体实施方式,上述的第二导电图案包括在基板的厚度方向上自第一表面朝向第二表面延伸的第二内导电层以及自第一表面远离第二表面延伸的第二外导电层。其中,第二内导电层的厚度小于第一内导电层的厚度,且第二外导电层的厚度等于第一外导电层的厚度。
优选地,第二内导电层同样为金属基板中的未被氧化部分所形成,且第二外导电层完全覆盖第二内导电层。
根据本发明的另一具体实施方式,第一导电图案和第二导电图案的外表面基本上平齐。在该实施方式中,不同线路厚度的第一导电图案和第二导电图案的外表面基本上平齐,从而便于在制备功率模块的过程中对各种元件的安装或封装。
根据本发明的另一具体实施方式,第一内导电层中对应于功率元件安装位(其数量根据需要可以为一个或者多个)的区域至少部分地贯穿金属氧化物基板。优选地,第一内导电层中对应于功率元件安装位的区域全部贯穿金属氧化物基板;更优选地,第一内导电层全部贯穿金属氧化物基板。这样的好处在于,第一内导电层在散热电路板的厚度方向上形成贯穿金属氧化物基板的导热路径,以提高散热电路板的散热性能。
优选地,上述散热电路板进一步包括:
树脂绝缘层,形成在金属氧化物基板的第二表面侧;
陶瓷散热体,贯穿树脂绝缘层,并与对应功率元件安装位的第一内导电层中贯穿金属氧化物基板的部分热连接;
第三导电图案和/或用于增大陶瓷散热体散热面积的热扩散层,形成在树脂绝缘层和陶瓷散热体远离金属氧化物基板的表面侧。
上述技术方案中,金属氧化物基板的厚度优选控制为50微米至300微米,更优选控制为80微米至250微米。
上述技术方案中,首先,树脂绝缘层可以为金属氧化物基板提供较好的机械支撑,从而提高散热电路板的机械强度;其次,第一内导电层中的热量可经陶瓷散热体而传导至面积较大的第三导电图案和/或热扩散层,使得散热电路板具有进一步增强的散热性能。
本发明中,第一外导电层和第二外导电层可以仅包括铜层,也可以包括铜层之外的其他金属层。例如,第一外导电层和第二外导电层包括分别 形成在第一内导电层和第二内导电层上的中间金属层(例如钛、铬或钴层),形成在中间金属层上的铜层,以及形成在铜层上的镍层和/或金层。
本发明的另一方面提供了一种功率模块,其包括如上所述的任意一种散热电路板以及设置在该散热电路板上的功率元件。其中,该功率元件可以直接设置在该散热电路板上,也可以经封装后通过封装体而间接地设置在该散热电路板上。该功率元件可以是诸如LED(发光二极管)、晶闸管、GTO(门极可关断晶闸管)、GTR(电力晶体管)、MOSFET(电力场效应晶体管)、IGBT(绝缘栅双极晶体管)和电力二极管等的各种功率元件。
本发明的再一方面还提供了一种制备散热电路板的方法,其包括如下步骤:
⑴提供可阳极氧化的金属基板,该金属基板具有相对设置的第一表面和第二表面;
⑵对该金属基板进行选择性阳极氧化处理,以得到其中嵌入有内导电图案的金属氧化物基板;其中,该内导电图案自金属氧化物基板的第一表面向第二表面延伸;
⑶在金属氧化物基板的第一表面形成至少覆盖内导电图案的金属层;
⑷对该金属层进行图形化蚀刻处理,以得到形成在第一表面上并覆盖内导电图案的外导电图案。
上述技术方案中,一方面,通过对金属基板进行选择性阳极氧化处理而得到其中嵌入有内导电图案的金属氧化物基板,因而散热电路板的成本较低,且具有良好的散热性能;其次,内导电图案嵌入金属氧化物基板内,使得外导电图案可以采用较窄的线路宽度和厚度,从而促进散热电路板的小型化;另外,由于所得到的外导电图案的表面基本上平齐,突破了现有技术中不同厚度线路不能共面设计的技术壁垒,从而便于在制备功率模块 的过程中对各种元件的安装或封装。
根据本发明的一种具体实施方式,上述的金属基板为铝基板或铝合金基板。作为其他可选择的实施方式,上述的金属基板还可以是例如钛基板和镁基板等的其他可阳极氧化金属基板。
根据本发明的另一具体实施方式,上述内导电图案包括第一内导电图案和第二内导电图案,且第一内导电图案的厚度大于第二内导电图案的厚度。在该实施方式中,由于所得到的散热电路板具有不同厚度的第一内导电图案和第二内导电图案,其中较厚的第一内导电图案用于负载较大的电流,较薄的第二内导电图案用于负载较小的电流,因而在负载电流设计及导电线路厚度设计上具有更佳的灵活性。
根据本发明的另一具体实施方式,上述内导电图案中对应于功率元件安装位的区域至少部分地贯穿金属氧化物基板。优选地,内导电图案中对应于功率元件安装位的区域全部贯穿金属氧化物基板;更优选地,内导电图案全部贯穿金属氧化物基板。这样的好处在于,内导电图案在散热电路板的厚度方向上形成贯穿金属氧化物基板的导热路径,以提高散热电路板的散热性能。
作为一种优选实施方式,上述方法进一步包括如下步骤:
⑸提供散热器,该散热器包括陶瓷散热体以及形成在陶瓷散热体两相对表面的金属层;
⑹使形成在陶瓷散热体两相对表面中的一个表面上的金属层热连接至对应功率元件安装位的内导电图案中贯穿金属氧化物基板的部分;
⑺在金属氧化物基板的第二表面侧形成树脂绝缘层,并使得该树脂绝缘层和散热器远离金属氧化物基板的表面基本上平齐;
⑻在树脂绝缘层和散热器远离金属氧化物基板的表面制备导电图案和/ 或用于增大散热器的散热面积的热扩散层。
上述技术方案中,首先,树脂绝缘层可以为金属氧化物基板提供较好的机械支撑,从而提高散热电路板的机械强度;其次,内导电图案中的热量可经散热器而传导至形成在树脂绝缘层和散热器远离金属氧化物基板的表面的导电图案和/或热扩散层,该导电图案和/或热扩散层可以增大散热电路板的散热面积,使得散热电路板具有进一步增强的散热性能。
更优选地,步骤⑺中,树脂绝缘层在其远离金属氧化物基板的表面形成有金属箔。这样的好处是,步骤⑻中可以较为容易地在树脂绝缘层和散热器远离金属氧化物基板的表面制备厚度均匀且易于控制的导电图案和/或用于增大散热器的散热面积的热扩散层。
需要说明的是,本发明中的“导电图案”和“导电层”意指其具有导电功能但不排除其具有其他功能(例如散热),且在实际应用中导电图案和导电层的部分区域中并不一定有电流经过。也就是说,导电图案和导电层中的部分区域在实际应用中可能是没有电流经过的,且导电图案和导电层中的部分区域在实际应用中不仅用于传输电流,而且还可以用于作为导热路径而实现热量的传递。
为了更清楚地阐述本发明的目的、技术方案及优点,下面结合附图和具体实施方式对本发明做进一步的详细说明。
附图说明
图1-4是表示本发明散热电路板实施例1的制备流程的示意图;
图5是本发明散热电路板实施例1的结构示意图;
图6是本发明散热电路板实施例2的结构示意图;
图7-8是表示本发明散热电路板实施例3中金属氧化物基板制备工艺的 示意图;
图9是本发明散热电路板实施例3的结构示意图;
图10-13是表示本发明散热电路板实施例4的制备流程的示意图;
图14是本发明散热电路板实施例4的结构示意图;
图15是本发明功率模块实施例的结构示意图。
具体实施方式
散热电路板及其制备方法实施例1
图5是本发明散热电路板实施例1的结构示意图。如图5所示,本实施例的散热电路板包括金属氧化物基板10、第一导电图案21和第二导电图案22。其中,金属氧化物基板10具有相对设置的第一表面11和第二表面12;第一导电图案21包括在金属氧化物基板10的厚度方向上自第一表面11朝向第二表面12延伸的第一内导电层211以及自第一表面11远离第二表面12延伸的第一外导电层212;第二导电图案22形成在金属氧化物基板10的第一表面11上,并且其厚度基本上等于第一外导电层212的厚度。
图1-4示出散热电路板实施例1的制备流程。如图1所示,首先,提供可阳极氧化的金属基板1(例如铝基板),并在其第一表面11上形成具有与第一内导电层211的图案相适应的图案化阳极氧化保护层100B,在其第二表面12上形成完整地覆盖第二表面12的阳极氧化保护层100A。其中,金属基板1的厚度可以为50微米至300微米,优选为100微米至200微米。
然后如图2所示,对形成有保护层100A和100B的金属基板1进行选择性阳极氧化。该氧化过程首先从金属基板1的第一表面11发生,使得未被保护层100B所覆盖的部分被氧化至预定厚度,形成氧化区域1A和非氧化区域1B。
接着如图3所示,去除第二表面12的保护层100A但保留第一表面的保护层100B,以从第二表面12对金属基板1进行氧化处理,使得金属基板1转变为嵌入有内导电图案211(或第一内导电层211)的金属氧化物基板10。其中,内导电图案211(或第一内导电层211)在金属氧化物基板10的厚度方向上自第一表面11朝向第二表面12延伸,但并未贯穿金属氧化物基板10。
然后如图4所示,在金属氧化物基板10的第一表面11形成金属层20,其中,可以通过如下步骤形成金属层20:首先在金属氧化物基板10的第一表面11通过PVD工艺形成例如钛、铬或钴的中间金属层,该中间金属层的厚度可以为20纳米至200纳米,优选为50纳米至150纳米;而后在该中间金属层上通过PVD工艺形成底铜层,该底铜层的厚度可以为0.2微米至2微米,优选为0.5微米至1.5微米;最后通过电镀方式在该底铜层上形成预定厚度的加厚铜层,该加厚铜层的厚度可以为35微米至350微米,例如大约210微米。
之后,对金属层20进行图案化的蚀刻处理,以形成包括第一外导电层212和第二导电图案22的外导电图案,从而得到如图5所示的散热电路板实施例1。其中,第一外导电层212形成为与第一内导电层211相适应的图案,并完全覆盖第一内导电层211(或内导电图案211)。
散热电路板实施例2
图6是散热电路板实施例2的结构示意图。如图6所示,本实施例的散热电路板包括具有相对设置的第一表面111和第二表面112的金属氧化物基板110,第一导电图案121包括在金属氧化物基板110的厚度方向上自第一表面111延伸至第二表面112(即贯穿金属氧化物基板110)的第一内导电层1211以及自第一表面111远离第二表面112延伸的第一外导电层1212;第二导电图案122形成在金属氧化物基板10的第一表面111上。其中,第 一外导电层1212完全覆盖第一内导电层1211,且具有与第二导电图案122基本上相等的厚度。
另外,在该实施例中,第一内导电层1211构成内导电图案,第一外导电层1212和第二导电图案122构成外导电图案。
散热电路板实施例3
图9是散热电路板实施例3的结构示意图。如图9所示,本实施例的散热电路板包括具有相对设置的第一表面201和第二表面202的金属氧化物基板200,第一导电图案221包括在金属氧化物基板200的厚度方向上自第一表面201延伸至第二表面202(即贯穿金属氧化物基板200)的第一内导电层2211以及自第一表面201远离第二表面202延伸的第一外导电层2212;第二导电图案222包括在金属氧化物基板200的厚度方向上自第一表面201朝向第二表面202延伸的第二内导电层2221以及自第一表面201远离第二表面202延伸的第二外导电层2222。其中,第二内导电层2221的厚度小于第一内导电层2211的厚度,第二外导电层2222的厚度等于第一外导电层2212的厚度。
另外,在该实施例中,第一内导电层(第一内导电图案)2211和第二内导电层(第二内导电图案)2221构成内导电图案,第一外导电层2212和第二外导电层2222构成外导电图案。
图7-8是表示散热电路板实施例3中金属氧化物基板200制备工艺的示意图。参见图7所示,首先,提供可阳极氧化的金属基板1(例如铝基板),并在其第一表面201上形成具有与第一内导电层2211和第二内导电层2221的图案相适应的图案化阳极氧化保护层100B,在其第二表面202上形成完整地覆盖第二表面202的阳极氧化保护层100A;然后,对形成有保护层100A和100B的金属基板1进行选择性阳极氧化,该氧化过程首先从第一 表面201进行,使得未被保护层100B所覆盖的部分被氧化至预定厚度。
接着如图8所示,使得第二表面202的保护层100A形成与第一内导电层2211的图案相适应的保护图案100A’,并从第二表面202对金属基板1进行氧化处理,使得金属基板1转变为嵌入有包括第一内导电图案2211(或第一内导电层2211)和第二内导电图案2221(或第二内导电层2221)的内导电图案的金属氧化物基板200。
然后,参照如图4所示的步骤,在金属氧化物基板200的第一表面201形成金属层,并对该金属层进行图案化的蚀刻处理,以形成包括第一外导电层2212和第二外导电层2222的外导电图案,从而得到如图9所示的散热电路板实施例3。其中,第一外导电层2212完全覆盖第一内导电层2211,第二外导电层2222完全覆盖第二内导电层2221。
散热电路板实施例4
图14是散热电路板实施例4的结构示意图。如图14所示,本实施例的散热电路板在散热电路板实施例3的基础上进一步包括:树脂绝缘层40和52,形成在金属氧化物基板200的第二表面侧;多个陶瓷散热体31,分别与第一内导电层2211中对应于功率元件安装位2210的区域热连接并贯穿树脂绝缘层40和52、以及与邻近功率元件安装位2210的第一内导电层2211热连接;第三导电图案61,形成在树脂绝缘层52远离金属氧化物基板200的表面;用于增大陶瓷散热体31散热面积的热扩散层62,附接至陶瓷散热体31和树脂绝缘层52远离金属氧化物基板200的表面。
相应地,按照实施例3中所描述的方法制备如图10所示的金属氧化物基板200,并提供散热器30,散热器30包括陶瓷散热体31以及分别形成在陶瓷散热体31两相对表面的金属层32。
接着参见图11,通过焊接材料33将形成在陶瓷散热体31两相对表面 中的一个表面上的金属层32焊接至第一内导电层2211,使得多个散热器30分别与第一内导电层2211中对应于功率元件安装位2210的区域以及与邻近功率元件安装位2210的第一内导电层2211热连接。另外,如图11所示,提供具有通孔41的半固化片40和具有通孔51的FR4板50,FR4板50包括位于内侧的树脂介质层52和位于外侧的铜箔层53,通孔41和通孔51分别容许散热器30穿过。其中,半固化片40的数量根据需要可以为一层或多层。
然后,层叠并热压金属氧化物基板200、半固化片40和FR4板50,并通过例如研磨工艺去除热压过程至溢流至铜箔层53和金属层32表面的固化树脂,并使得二者的表面基本上平齐,从而得到如图12所示的散热电路板。在本发明的其他实施例中,还可以通过模具注塑的方法在金属氧化物基板200的第二表面侧形成树脂绝缘层,并通过例如研磨工艺研磨该树脂绝缘层,以使得该树脂绝缘层和散热器远离金属氧化物基板的表面基本上平齐。
接着参见图13所示,在散热电路板的第一表面侧形成金属层220,第二表面侧形成金属层60。其中,金属层220和金属层60可以具有相同或者不同的厚度,且可以按照散热电路板制备方法实施例1中制备金属层20的方法来制备金属层220。另外,可以按照如下步骤来制备金属层60:首先,在散热电路板的第二表面侧通过化学沉铜的方法制备底铜层,该底铜层的厚度可以为0.2微米至2微米,优选为0.5微米至1.5微米;然后通过电镀方式在该底铜层上形成预定厚度的加厚铜层,从而得到金属层60。
之后,对金属层220进行图像化蚀刻处理,以得到覆盖第一内导电层2211的第一外导电层2212,覆盖第二内导电层2221的第二外导电层2222;对金属层60、铜箔层53(和远离金属氧化物基板200的金属层32)进行图形化蚀刻处理,以得到第三导电图案61和热扩散层62。本实施例中,可以 通过本领域技术人员习知的方式(例如通过导电过孔)将第三导电图案61与第一导电图案221或第二导电图案222电连接。通过上述步骤,得到图14所示的散热电路板实施例4。
功率模块实施例
图15是本发明功率模块实施例的结构示意图。如图15所示,该功率模块为一IGBT模块,包括上述的散热电路板实施例4、设置在该散热电路板的功率元件安装位2210上的两个IGBT芯片71、与第二导电图案222电连接的第一电子组件72和第二电子组件73,第一电子组件例如为电容或电阻,第二电子组件例如为IC(集成电路)组件。
虽然本发明以较佳实施例揭露如上,但上述较佳实施例并非用以限定本发明实施的范围。任何本领域的普通技术人员,在不脱离本发明的发明范围内,当可作些许的改进,即凡是依照本发明所做的同等改进,应为本发明的范围所涵盖。

Claims (15)

  1. 一种散热电路板,包括:
    金属氧化物基板,具有相对设置的第一表面和第二表面;
    第一导电图案,包括在所述基板的厚度方向上自所述第一表面朝向所述第二表面延伸的第一内导电层以及自所述第一表面远离所述第二表面延伸的第一外导电层;
    第二导电图案,形成在所述基板的第一表面侧;
    其中,所述第一导电图案的厚度大于所述第二导电图案的厚度。
  2. 如权利要求1所述的散热电路板,其中,所述金属为可阳极氧化金属,尤其是铝或铝合金。
  3. 如权利要求1所述的散热电路板,其中,所述金属氧化物基板通过对可阳极氧化的金属基板进行选择性阳极氧化处理而制备得到,所述金属基板未被氧化的部分形成所述第一内导电层。
  4. 如权利要求1所述的散热电路板,其中,所述第一外导电层完全覆盖所述第一内导电层。
  5. 如权利要求1所述的散热电路板,其中,所述第二导电图案包括在所述基板的厚度方向上自所述第一表面朝向所述第二表面延伸的第二内导电层以及自所述第一表面远离所述第二表面延伸的第二外导电层;并且其中,所述第二内导电层的厚度小于所述第一内导电层的厚度,所述第二外导电层的厚度等于所述第一外导电层的厚度。
  6. 如权利要求1所述的散热电路板,其中,所述第一导电图案和所述第二导电图案的外表面基本上平齐。
  7. 如权利要求1所述的散热电路板,其中,所述第一内导电层中对应于功率元件安装位的区域至少部分地贯穿所述金属氧化物基板。
  8. 如权利要求7所述的散热电路板,进一步包括:
    树脂绝缘层,形成在所述金属氧化物基板的第二表面侧;
    陶瓷散热体,贯穿所述树脂绝缘层,并与对应所述功率元件安装位的第一内导电层中贯穿所述金属氧化物基板的部分热连接;
    第三导电图案和/或用于增大陶瓷散热体散热面积的热扩散层,形成在所述树脂绝缘层和所述陶瓷散热体远离所述金属氧化物基板的表面侧。
  9. 一种功率模块,包括如权利要求1至8任一项所述的散热电路板以及设置在所述散热电路板上的功率元件。
  10. 一种制备散热电路板的方法,包括如下步骤:
    ⑴提供可阳极氧化的金属基板,所述金属基板具有相对设置的第一表面和第二表面;
    ⑵对所述金属基板进行选择性的阳极氧化处理,以得到其中嵌入有内导电图案的金属氧化物基板;其中,所述内导电图案自所述第一表面向所述第二表面延伸;
    ⑶在所述金属氧化物基板的第一表面形成至少覆盖所述内导电图案的金属层;
    ⑷对所述金属层进行图形化蚀刻处理,以得到形成在所述第一表面上并覆盖所述内导电图案的外导电图案。
  11. 如权利要求10所述的方法,其中,所述金属基板为铝或铝合金基板。
  12. 如权利要求10所述的方法,其中,所述内导电图案包括第一内导 电图案和第二内导电图案,且所述第一内导电图案的厚度大于所述第二内导电图案的厚度。
  13. 如权利要求10所述的方法,其中,所述内导电图案中对应于功率元件安装位的区域至少部分地贯穿所述金属氧化物基板。
  14. 如权利要求13所述的方法,其进一步包括如下步骤:
    ⑸提供散热器,所述散热器包括陶瓷散热体以及分别形成在所述陶瓷散热体两相对表面的金属层;
    ⑹使形成在所述陶瓷散热体两相对表面中的一个表面上的金属层热连接至对应所述功率元件安装位的内导电图案中贯穿所述金属氧化物基板的部分;
    ⑺在所述金属氧化物基板的第二表面侧形成树脂绝缘层,并使得所述树脂绝缘层和散热器远离所述金属氧化物基板的表面基本上平齐;
    ⑻在所述树脂绝缘层和散热器远离所述金属氧化物基板的表面制备导电图案和/或用于增大所述散热器散热面积的热扩散层。
  15. 如权利要求14所述的方法,其中,所述树脂绝缘层在其远离所述金属氧化物基板的表面形成有金属箔。
PCT/CN2016/090102 2016-07-15 2016-07-15 散热电路板、功率模块及制备散热电路板的方法 WO2018010159A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/090102 WO2018010159A1 (zh) 2016-07-15 2016-07-15 散热电路板、功率模块及制备散热电路板的方法
CN201680004437.XA CN109863593B (zh) 2016-07-15 2016-07-15 散热电路板、功率模块及制备散热电路板的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/090102 WO2018010159A1 (zh) 2016-07-15 2016-07-15 散热电路板、功率模块及制备散热电路板的方法

Publications (1)

Publication Number Publication Date
WO2018010159A1 true WO2018010159A1 (zh) 2018-01-18

Family

ID=60951599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/090102 WO2018010159A1 (zh) 2016-07-15 2016-07-15 散热电路板、功率模块及制备散热电路板的方法

Country Status (2)

Country Link
CN (1) CN109863593B (zh)
WO (1) WO2018010159A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110859022A (zh) * 2018-08-24 2020-03-03 三赢科技(深圳)有限公司 电路板及应用该电路板的电子装置
CN113597124A (zh) * 2021-07-28 2021-11-02 恒赫鼎富(苏州)电子有限公司 一种适用于厚铜的超精细fpc线路制作工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010584A (ja) * 2006-06-28 2008-01-17 Ngk Spark Plug Co Ltd 複合基板
CN101170873A (zh) * 2006-10-27 2008-04-30 阿奇公司 电路板单元及其制造方法
CN103416109A (zh) * 2010-12-24 2013-11-27 Lg伊诺特有限公司 印刷电路板及其制造方法
CN104039070A (zh) * 2013-03-07 2014-09-10 钰桥半导体股份有限公司 具有内建散热座及增层电路的散热增益型线路板
CN104125710A (zh) * 2014-08-12 2014-10-29 上海航天电子通讯设备研究所 一种基于铝阳极氧化技术的基板及其制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101167427B1 (ko) * 2010-09-29 2012-07-19 삼성전기주식회사 양극산화 방열기판 및 그 제조방법
CN204680693U (zh) * 2015-06-10 2015-09-30 乐健科技(珠海)有限公司 高导热金属基板及led模组
CN205491419U (zh) * 2015-09-22 2016-08-17 乐健集团有限公司 印刷电路板及led光源模组
CN105489747B (zh) * 2015-12-31 2017-12-26 乐健科技(珠海)有限公司 高导热金属基板及其制作方法、led模组及其制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010584A (ja) * 2006-06-28 2008-01-17 Ngk Spark Plug Co Ltd 複合基板
CN101170873A (zh) * 2006-10-27 2008-04-30 阿奇公司 电路板单元及其制造方法
CN103416109A (zh) * 2010-12-24 2013-11-27 Lg伊诺特有限公司 印刷电路板及其制造方法
CN104039070A (zh) * 2013-03-07 2014-09-10 钰桥半导体股份有限公司 具有内建散热座及增层电路的散热增益型线路板
CN104125710A (zh) * 2014-08-12 2014-10-29 上海航天电子通讯设备研究所 一种基于铝阳极氧化技术的基板及其制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110859022A (zh) * 2018-08-24 2020-03-03 三赢科技(深圳)有限公司 电路板及应用该电路板的电子装置
CN113597124A (zh) * 2021-07-28 2021-11-02 恒赫鼎富(苏州)电子有限公司 一种适用于厚铜的超精细fpc线路制作工艺

Also Published As

Publication number Publication date
CN109863593A (zh) 2019-06-07
CN109863593B (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
CN108133915B (zh) 功率器件内置且双面散热的功率模组及其制备方法
US7846779B2 (en) Power device package and method of fabricating the same
US8334593B2 (en) Semiconductor device package
US9230889B2 (en) Chip arrangement with low temperature co-fired ceramic and a method for forming a chip arrangement with low temperature co-fired ceramic
CN106255308B (zh) 印刷基板和电子装置
US20210143103A1 (en) Power module and method for manufacturing power module
US20170171978A1 (en) Power module and manufacturing method thereof
US9093277B2 (en) Semiconductor device and method of manufacturing the same
US20160105958A1 (en) Multi-layer substrate, electronic device using multi-layer substrate, manufacturing method for multilayer substrate, substrate, and electronic device using substrate
WO2018010159A1 (zh) 散热电路板、功率模块及制备散热电路板的方法
US20180040562A1 (en) Elektronisches modul und verfahren zu seiner herstellung
US8315056B2 (en) Heat-radiating substrate and method of manufacturing the same
JP6031642B2 (ja) パワーモジュールとその製造方法
KR101095100B1 (ko) 방열기판 및 그 제조방법
JP3935381B2 (ja) 両面電極半導体素子を有する電子回路装置及び該電子回路装置の製造方法
JP2016111117A (ja) 回路基板、回路基板の放熱構造、回路基板の製造方法
CN114566473A (zh) 包括具有嵌入的封装式半导体芯片的引线框的印刷电路板
WO2014181509A1 (ja) 多層基板およびこれを用いた電子装置、電子装置の製造方法
US11791254B2 (en) Electrically power assembly with thick electrically conductive layers
WO2018137556A1 (zh) 一种功率模块及其制造方法
US20240014142A1 (en) Component Carrier With Electronic Components and Thermally Conductive Blocks on Both Sides
CN117219585A (zh) 用于功率半导体器件的双侧冷却嵌入式管芯封装
CN117425267A (zh) 一种高功率电路板结构及制备方法
JP2020167232A (ja) モジュールおよびその製造方法
JP2015130421A (ja) 多層基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16908484

Country of ref document: EP

Kind code of ref document: A1