WO2018008738A1 - 回転電機及び回転電機の製造方法 - Google Patents

回転電機及び回転電機の製造方法 Download PDF

Info

Publication number
WO2018008738A1
WO2018008738A1 PCT/JP2017/024925 JP2017024925W WO2018008738A1 WO 2018008738 A1 WO2018008738 A1 WO 2018008738A1 JP 2017024925 W JP2017024925 W JP 2017024925W WO 2018008738 A1 WO2018008738 A1 WO 2018008738A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixture
slot
layer
magnetic
rotating electrical
Prior art date
Application number
PCT/JP2017/024925
Other languages
English (en)
French (fr)
Inventor
源三 岩城
和雄 西濱
雄也 平田
敦 阿部
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to EP17824341.6A priority Critical patent/EP3484022A4/en
Priority to JP2018526451A priority patent/JP6738421B2/ja
Priority to US16/314,582 priority patent/US11183898B2/en
Priority to CN201780039165.1A priority patent/CN109417327B/zh
Publication of WO2018008738A1 publication Critical patent/WO2018008738A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/48Fastening of windings on the stator or rotor structure in slots
    • H02K3/487Slot-closing devices
    • H02K3/493Slot-closing devices magnetic
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0018Applying slot closure means in the core; Manufacture of slot closure means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines

Definitions

  • the present invention relates to a rotating electrical machine and a method for manufacturing the rotating electrical machine.
  • rotating electrical machines are required to increase operating efficiency by reducing loss and reduce electric energy consumption.
  • a rotating electrical machine whose stator core slot shape is an open type (open slot type) or a semi-closed type (semi-open slot type)
  • harmonic magnetic flux is generated due to gap magnetic flux density fluctuation in the gap between the stator and rotor. It is known to do.
  • the stray load loss due to this harmonic magnetic flux accounts for a relatively high proportion of the total loss.
  • the harmonic magnetic flux in the rotating electric machine is generated when the magnetic flux density fluctuates locally, with the magnetic flux density being low at the slot opening portion and the magnetic flux density being high at the teeth portion of the stator core.
  • the harmonic magnetic flux not only increases stray load loss, but also decreases power factor and torque characteristics, and increases rotor iron loss.
  • Patent Document 1 a kneaded product obtained by kneading iron powder and synthetic resin is mixed with a fibrous material to form a filler, and the filler is used as a stator core of a rotating electrical machine.
  • a technique is disclosed in which the opening of the formed slot is filled and cured to form a magnetic wedge, and this magnetic wedge reduces the gap harmonic magnetic flux.
  • An object of the present invention is to provide a rotating electrical machine that has low loss and can obtain high motor efficiency.
  • a plurality of slots having openings formed on the rotor side are formed in the circumferential direction, and the stator core is disposed so as to face the circumferential surface of the rotor; And a mixture of soft magnetic powder and resin material is formed in the opening of the slot, and the mixture has a relative magnetic permeability of 5 to 35.
  • a plurality of slots having openings formed on the rotor side are formed in the circumferential direction, and are arranged facing the circumferential surface of the rotor.
  • a rotating electrical machine comprising a stator core and a coil inserted into the slot, wherein a resin material and a soft magnetic powder are mixed to form a mixture, and the mixture is solidified, A mixture of the resin material and the soft magnetic powder and having a relative magnetic permeability of 5 to 35 is formed in the opening.
  • a stator core having a plurality of teeth extending from the radially outer side to the inner side, a slot formed between the teeth, and a coil disposed in the slot
  • a rotating electric machine having The slot includes a storage portion that stores the coil, and a slot opening portion that is positioned on an inner diameter side of the storage portion, A magnetic member is in contact with an inner wall of the slot opening to an inner wall of at least a part of the storage portion.
  • FIG. 1 is a cross-sectional view of a rotating electrical machine according to a first embodiment.
  • FIG. 4 is an enlarged view showing the vicinity of a slot opening of a stator core before a soft magnetic powder / resin mixture is formed. It is a figure which shows the state by which the soft-magnetic-material powder / resin mixture was formed in the slot opening part of the stator core shown in FIG. It is a figure which shows typically the internal structure of a soft magnetic body powder / resin mixture. It is a graph which shows the relationship between the relative magnetic permeability of a soft magnetic substance powder / resin mixture, and the motor efficiency of a rotary electric machine.
  • surface which shows the soft magnetic substance powder volume ratio and the motor efficiency in each measurement point of the relative permeability in the graph shown in FIG. 3 is a graph showing the relationship between the Si content per unit weight and the magnetic permeability in an Fe—Si alloy. It is a graph which shows the relationship between the density of a soft magnetic body powder / resin mixture, and a relative magnetic permeability. It is a figure which shows the magnetization curve about the soft-magnetic-material powder / resin mixture used by verification of FIG. It is a figure which shows the structure where the spherical particle was closely packed. It is a schematic diagram explaining the method of a bending test.
  • FIG. 6 is an enlarged view showing the vicinity of a slot opening of a stator core according to Example 3.
  • FIG. 6 is a perspective view of a stator core according to Embodiment 4.
  • FIG. 10 is a perspective view of a magnetic wedge according to Embodiment 5.
  • FIG. 6 is a cross-sectional view showing a layer structure of a magnetic wedge according to Embodiment 5.
  • FIG. 6 is a cross-sectional view showing a layer structure of a magnetic wedge according to Embodiment 5.
  • FIG. 10 is an enlarged view showing the vicinity of a slot opening of a stator core according to Example 6.
  • FIG. 10 is an enlarged view showing the vicinity of a slot opening of a stator core according to Example 7.
  • the rotating electrical machine 100 includes a rotor 12 fixed to a rotating shaft (hereinafter also referred to as a shaft) 11 and a stator 13 installed outside the rotor 12. .
  • the rotor 12 includes a rotor core 121 that is a laminated core obtained by laminating electromagnetic steel sheets punched into a predetermined shape, and a secondary conductor 122 that is inserted into a slot of the rotor core 121.
  • the rotor core 121 is fixed to the rotating shaft 11, and the rotor 12 is also rotatably provided as the rotating shaft 11 rotates.
  • the stator 13 includes a stator core 131 that is a laminated core obtained by laminating soft magnetic thin plates such as electromagnetic steel sheets punched into a predetermined shape, and a coil 133 that is inserted into a slot 132 of the stator core 131.
  • the stator core 131 is disposed to face the circumferential surface of the rotor 12.
  • the laminated core constituting the stator core 131 may be a laminated core in which foil bodies are laminated.
  • the slots 132 are formed between teeth (teeth) 134 extending radially in the radial direction of the rotor 12 from an annular back core provided on the outer peripheral side of the stator core 131, and a plurality of slots 132 are formed in the circumferential direction of the stator core 131. Yes.
  • the slot 132 is formed with a slot opening 135 that opens to the rotor 12 side.
  • the slot opening 135 is formed in a semi-closed type (semi-open slot type) in which the end of the tooth 134 on the rotor 12 side has a protrusion 136 protruding in the circumferential direction of the stator core 131.
  • slot liners 14 and 15 formed of, for example, a PET (polyethylene terephthalate) sheet are installed.
  • the slot liner 14 is installed on the inner wall of the slot 132 with the rotor 12 side opened.
  • the slot liner 15 is installed on the inner wall of the slot liner 14 so as to cover the opening of the slot liner 14.
  • the coil 133 is housed in a space surrounded by the slot liners 14 and 15.
  • the coil 133 is made of, for example, a metal wire in which an insulating material such as enamel is coated on copper, aluminum, or the like. In the example shown in FIG. 2, the coil 133 is arranged by concentric winding. After the coil 133 and the slot liners 14 and 15 installed in the slot 132 are assembled in the slot 132, the coil core connection and coil end processing are performed, and the stator core 131 is fixed to the stator core 131 by a fixing varnish such as an unsaturated polyester varnish. It is fixed. Although illustration is omitted, the fixing varnish may be used by interposing between each member, or may be used by coating so that the surface of each member is thinly coated.
  • FIG. 3 shows a state in which a soft magnetic powder / resin mixture 17 (hereinafter also referred to as “mixture”) is formed in the slot opening 135 of the stator core 131 shown in FIG.
  • the mixture 17 is formed in the gap portion 137 of the slot 132 existing on the rotor 12 side of the slot opening 135 and the slot liner 15 of the stator core 131.
  • the mixture 17 is a cured body of a mixture of soft magnetic powder and resin material, and the formation method thereof will be described later.
  • FIG. 4 is a diagram schematically showing the internal structure of the mixture 17.
  • the mixture 17 is formed by dispersing a substantially spherical atomized iron powder 18 in, for example, a silicone resin 19 as a binder. Silicone resin 19 is present between the atomized iron powders 18, and an insulator such as a resin is present between the atomized iron powders 18 (the atomized iron powders 18 may not be metallically bonded to each other).
  • the mixture 17 is formed.
  • the relative permeability of the mixture 17 is 5 to 35.
  • Fe-3 wt% Si alloy powder (hereinafter, Fe—Si alloy powder is referred to as “alloy iron powder”) was used as the soft magnetic powder.
  • the volume ratio of the alloy iron powder in the soft magnetic powder / resin mixture after curing the resin component of the alloy iron powder and the room temperature curable silicone resin as the resin material is the value shown in FIG.
  • a mixture of iron alloy powder and resin material was kneaded using a kneader.
  • the alloy iron powder Fe-3 wt% Si alloy powder
  • a gas atomized powder was used, and a coarse powder having a particle size exceeding 150 ⁇ m was removed and used.
  • FIG. 5 is a graph plotting motor efficiency for each relative permeability when a rotating electrical machine having the same basic structure as the rotating electrical machine 100 (three-phase induction motor) shown in FIG. 1 is operated at 200 V / 50 Hz.
  • the horizontal axis represents relative permeability
  • the vertical axis represents motor efficiency
  • the horizontal axis represents logarithmic display.
  • FIG. 6 shows the volume ratio of the alloy iron powder in each soft magnetic powder / resin mixture plotted in the graph of FIG. 5 together with the motor efficiency of the rotating electrical machine 100.
  • the stator 13 having the mixture 17 having each relative permeability shown in FIG. 6 formed as the mixture 17 in the slot opening 135 is prepared, and the stator 13 is mounted on the rotor 12.
  • the motor efficiency (output / input power) during operation of the rotating electrical machine 100 was measured. Based on this measurement result, the relationship between the relative permeability of the mixture 17 and the motor efficiency was evaluated. Note that the motor efficiency was measured by replacing all the stators 13 with the same rotor 12.
  • the rotor 12 used was a rotor bar formed in a slot by die-casting aluminum and slot skew corresponding to one slot was applied.
  • FIG. 5 the motor efficiency of the rotating electrical machine 100 when the stator 13 that does not form the mixture 17 is attached to the slot opening 135 is shown as 100.
  • an output 2.2 kW, four-pole three-phase squirrel-cage induction motor (hereinafter simply referred to as an induction motor) was used as the rotating electrical machine 100.
  • the stator core 131 and the rotor core 121 are both 0.5 mm thick electromagnetic steel plates, and the stack thickness is 104 mm.
  • the stator core 131 had an outer diameter of 175 mm / inner diameter of 110 mm, and the rotor core 121 had an outer diameter of 109.4 mm / inner diameter (shaft hole diameter) of 32 mm.
  • the number of slots of the stator core 131 was 36, and the number of slots of the rotor core 121 was 28.
  • the width of the teeth 134 of the stator core 131 was 5.5 mm, and the depth of the entire slot 132 was 17.8 mm.
  • the dimensions of the region surrounded by the protrusion 136 of the tooth 134 were 3.2 mm in width and 0.8 mm in depth.
  • the coil 133 was composed of 152 enameled wires having an outer diameter including an insulating layer of 0.72 mm.
  • the rotating electrical machine 100 in which the mixture 17 is formed in the slot opening 135 has higher motor efficiency than the rotating electrical machine 100 in which the mixture 17 is not filled in the slot opening 135. Obtained.
  • the data of the rotating electrical machine not filled with the mixture 17 is data having a relative permeability of 1 in FIG. When the relative permeability of the mixture 17 is 5 or more, a high improvement effect is obtained with respect to the motor efficiency as compared to when the relative permeability is less than 5. In other words, when the relative magnetic permeability of the mixture 17 is less than 5, the degree of improvement in motor efficiency is small, and an efficiency improvement effect sufficient for the cost of forming the mixture 17 cannot be obtained.
  • the relative permeability of the mixture 17 exceeds 35, the magnetic flux (hereinafter referred to as “leakage magnetic flux”) flowing between the teeth 134 of the adjacent stator core 131 through the mixture 17 increases, and the primary copper. Since the loss increases, the motor efficiency decreases.
  • the relative permeability of the mixture 17 exceeds 40, the ratio of the soft magnetic powder in the mixture 17 becomes excessive and most of the soft magnetic powder is metallicly bonded. Data with the permeability increased to about 38 is used.
  • the state in which the molded body of the silicone resin alone that does not contain the soft magnetic powder is formed in the slot opening 135 is magnetically equivalent to the state in which the slot opening 135 is left as a gap.
  • the graph shown in FIG. 5 shows the case where the blending amount of the soft magnetic powder is 0, that is, the case where the relative magnetic permeability is 1.
  • the mixture 17 of each said volume ratio used by verification of FIG. 5 is equalization
  • a silicone resin having an initial viscosity of 20 Pa ⁇ s is used, and the volume ratio of the soft magnetic powder is 72 volume%.
  • a silicone resin having an initial viscosity of 1 Pa ⁇ s was used.
  • the soft magnetic powder having fluidity before the resin material is hardened in the gap portion 137 of the slot 132 present on the rotor 12 side of the slot opening 135 and the slot liner 15 of the stator core 131. / Fill the resin mixture.
  • the resin material contained in the soft magnetic powder / resin mixture is cured to form the mixture 17 having a relative magnetic permeability of 5 to 35 in the gap portion 137 of the slot opening 135 and the slot 132.
  • a soft magnetic powder / resin mixture obtained by mixing a soft magnetic powder in a silicone resin is filled into the slot opening 135 and the gap 137 of the slot 132 before the silicone resin is cured.
  • the surface of the soft magnetic powder / resin mixture is pressed by Teflon (registered trademark) having the same curvature as the inner peripheral surface of the stator core 131. Touch the mold. At this time, excess soft magnetic powder / resin mixture is discharged from the end of the slot 132.
  • the soft magnetic powder / resin mixture is allowed to stand at room temperature for a predetermined time to cure the silicone resin to form the mixture 17, and then the Teflon pressing mold is removed from the surface of the mixture 17.
  • the stator 13 in which the mixture 17 is formed in the gap of the slot 132 can be obtained.
  • the magnetic permeability of the mixture 17 can be adjusted by the volume ratio occupied by the soft magnetic powder in the mixture.
  • the point that the magnetic properties of the mixture 17 do not depend on the type of the soft magnetic powder but on the volume ratio of the soft magnetic powder will be described with reference to FIGS.
  • FIG. 7 is a graph showing the relationship between the Si content per unit weight and the magnetic permeability (DC maximum relative magnetic permeability) in the Fe—Si alloy.
  • the permeability (direct current maximum relative permeability) of an Fe-6.5 wt% Si alloy is about three times the permeability (direct current maximum relative permeability) of an Fe-3 wt% Si alloy. is there. Therefore, the magnetic permeability of the Fe—Si alloy itself depends on the alloy composition.
  • the relationship between the relative magnetic permeability and the density of the soft magnetic powder / resin mixture obtained by mixing the above-described Fe-3 wt% Si alloy and Fe-6.5 wt% Si alloy with the resin material was verified.
  • the verification result is shown in FIG. In FIG. 8, the density of the soft magnetic powder / resin mixture is changed by changing the volume fraction of the soft magnetic powder in the soft magnetic powder / resin mixture.
  • the relative permeability increases with the increase in the density of the mixture when using either the Fe-3 wt% Si alloy or the Fe-6.5 wt% Si alloy.
  • the difference in relative permeability between the two mixtures at each density is small. Therefore, the difference in magnetization characteristics between the two alloys shown in FIG. 7 is hardly reflected in the mixture 17.
  • the magnetization characteristics of the mixture 17 do not depend on the type of the soft magnetic powder, but depend on the volume ratio of the soft magnetic powder in the mixture. Therefore, the magnetic body to be mixed with the resin material may be any material that exhibits soft magnetism, and other soft magnetic bodies other than the Fe—Si alloy can be applied. A mixture of a plurality of types of soft magnetic powders may be used by mixing with a resin material.
  • FIG. 9 shows the magnetization curve for the mixture 17 containing 72% by volume of soft magnetic powder among the mixture 17 used in the verification of FIG.
  • the magnetization curve in FIG. 9 shows the magnetization curve at 1 kHz for a ring core in which the above-described mixture 17 is formed to have an outer diameter of 30 mm, an inner diameter of 20 mm, and a thickness of 5 mm.
  • the BH curve of the mixture 17 in which the volume fraction of the soft magnetic powder is 72% by volume is substantially linear, and the magnetization characteristics of the mixture 17 are inherent to the soft magnetic substance. It can be confirmed that the influence of the magnetization characteristics of the film is small.
  • the resin material which is a non-magnetic material is interposed between the soft magnetic bodies of the mixture 17 (see FIG. 4), the influence of the magnetization characteristics unique to the soft magnetic powder in the mixture 17 is It is reduced by the resin material.
  • the magnetization characteristic as the mixture 17 depends on the distance between the soft magnetic powders separated by the resin material, that is, the volume ratio of the soft magnetic powder in the mixture 17. Therefore, also from the above points, it is understood that the magnetization characteristics of the mixture 17 do not depend on the type of the soft magnetic powder but depend on the volume ratio of the soft magnetic powder in the mixture 17.
  • the volume ratio of the soft magnetic powder in the mixture 17 is preferably 50% by volume or more and 85% by volume or less.
  • volume ratio of the soft magnetic powder in the mixture 17 By setting the volume ratio of the soft magnetic powder in the mixture 17 to 50% by volume or more, a high degree of improvement in motor efficiency can be obtained, and high efficiency improvement just commensurate with the installation cost of installing the mixture 17. An effect can be obtained. Further, by setting the volume ratio of the soft magnetic powder in the mixture 17 to 85% by volume or less, the soft magnetic powder can be dispersed in the resin material without being metallicly bonded to each other. . Thereby, increase of the leakage magnetic flux which flows through the adjacent teeth 134 via the mixture 17 and the increase of the primary copper loss accompanying this can be suppressed.
  • the filling rate is approximately 74% by volume. is there.
  • the spherical particles 21 shown in FIG. 10 are filled with spherical particles having a particle size smaller than that of the spherical particles 21, so that compression for the purpose of joining between soft magnetic powders is performed.
  • the maximum filling rate of the spherical particles is approximately 85% by volume.
  • the volume ratio of the soft magnetic powder in the mixture 17 is preferably 55% by volume or more and 80% by volume or less.
  • Example 1 since the mixture of the soft magnetic powder and the resin material is solidified after filling the slot opening 135, the mixture 17 is obtained without applying a compressive force to the mixture. Can be formed. For this reason, the mixture 17 in which the soft magnetic powder is dispersed in the resin material can be easily obtained without the soft magnetic powder being joined metallically. In this case, the mixture 17 exhibits electrical insulation in principle.
  • the bending test was conducted by a three-point bending test as shown in FIG. Specifically, the test body 33 is placed on the fulcrum 32 of the support 31, and a bending load is applied to the center with the tip of the indenter 34 as a weighting point. was measured.
  • a support having a distance between the fulcrums 32 of 20 mm and a height of the fulcrum 32 of 6 mm was used.
  • the support body 31 and the indenter 34 the fulcrum 32 and the tip of the indenter 34 each having an arc shape with a radius of 4 mm were used.
  • the test body 33 a predetermined amount of the mixture 17 was put into a Teflon split mold and cured to form a rectangular parallelepiped having a width of 6 mm, a thickness of 10 mm, and a length of 30 mm.
  • the bending test was performed by setting the maximum displacement of the indenter 34 to 6 mm so that the test body 33 does not contact the surface between the fulcrums 32 of the support 31.
  • the reference point (zero point) of displacement is the application start point of the bending load.
  • FIG. 12 is a graph showing the relationship between the displacement of the tip of the indenter 34 and the relative permeability at the time of occurrence of a crack in the specimen 33 in the bending test.
  • the mixture 17 having a relative magnetic permeability of less than 6 no crack was generated even when the indenter 34 was displaced by a distance (6 mm) corresponding to the height of the fulcrum 32.
  • the displacement value of the indenter 34 at the time of crack generation decreases as the relative permeability increases, and as the relative permeability increases, It was confirmed that the ductility was lowered.
  • FIG. 13 is a graph showing the relationship between the bending load and the relative permeability when a crack occurs in the specimen 33 in the bending test performed in FIG. As described with reference to FIG. 12, no bending crack is generated in the mixture 17 having a relative permeability of less than 6. For this reason, in FIG. 13, the bending load of each plot when the relative permeability is less than 6 shows the value when the indenter 34 is displaced by 6 mm.
  • the reason why the mechanical strength of the mixture 17 having a relative magnetic permeability of 38 is decreased is that the amount of the soft magnetic powder mixed with the resin material is excessive, and therefore there is a region where the resin material is not filled between the soft magnetic powder. It is presumed that a large number of voids were formed and were the starting points of bending cracks.
  • the mixture 17 having a relative permeability of 38 or more has low mechanical strength and is brittle. Therefore, when the rotating electrical machine is operated for a long time, the mixture 17 is lost. It was confirmed that it was easy and difficult to put to practical use. From the above results, in the mixture 17, the relative permeability of the mixture 17 is preferably 5 or more and 35 or less from the viewpoint of efficiency and mechanical strength.
  • the soft magnetic powder for example, gas atomized powder can be suitably used.
  • the gas atomized powder is a substantially spherical powder, and is excellent in the ease of kneading and mixing with the resin material and the uniformity of the mixture.
  • the soft magnetic powder does not necessarily have a substantially spherical shape, and may be, for example, reduced powder or crushed powder. In this case, it can be applied by adjusting the kneading conditions and stirring conditions according to the shape of the soft magnetic powder.
  • the alloy iron powder is not subjected to surface treatment.
  • the surface of the soft magnetic powder is appropriately treated with a surface treatment agent such as a silane coupling agent according to the type of the resin material or soft magnetic powder. You may make it process.
  • a surface treatment agent such as a silane coupling agent according to the type of the resin material or soft magnetic powder. You may make it process.
  • the rotating electrical machine according to the second embodiment the mixture of the soft magnetic powder and the resin material is solidified in advance to obtain the rigid mixture 17 and then mounted in the slot opening 135.
  • the rotating electric machine applied in the second embodiment is the same as the rotating electric machine 100 applied in the first embodiment, except that the shape and installation form of the slot liner are different as will be described later.
  • the soft magnetic powder and the resin material are mixed, and the mixture is formed into a shape that can be fitted into the slot opening 135, and then the resin material contained in the mixture is solidified to form the mixture 17.
  • the coil 133 is inserted into the slot 132 and the end of the slot liner 20 on the rotor 12 side is bent toward the center of the slot 132 while being pushed toward the bottom of the slot 132 (see FIG. 14A).
  • the mixture 17 is inserted into the gap 138 formed between the slot opening 135 and the coil 133.
  • the mixture 17 is pushed up toward the slot opening 135 by the spring back at the end of the slot liner 20 and lightly pressed against the protrusion 136 of the teeth 134 of the stator core 131 (see FIG. 14B). .
  • coil end compression processing is performed on the coil 133 inserted into the slot 132.
  • the coil 133 pressed against the bottom of the slot 132 moves toward the slot opening 135, and the mixture 17 is fitted into the slot opening 135 (see FIG. 14C).
  • the coil 133 and the slot liner 20 are fixed to the stator core 131 using the unsaturated polyester varnish, and at the same time, the mixture 17 is fixed to the stator core 131.
  • the mixture 17 can be mounted in the slot opening 135 of the stator core 131 with the gap that affects the magnetic characteristics being minimized.
  • the mixture 17 was prepared by mixing and curing an Fe-3 wt% Si alloy gas atomized powder as a soft magnetic powder and an epoxy resin as a resin material.
  • Example 2 first, the mixture 17 was formed into a shape capable of filling the slot opening 135 including the region surrounded by the tapered portion of the protrusion 136 of the teeth 134 of the stator core 131. As a result, the mixture 17 can be positioned in the slot opening 135. Specifically, a stainless steel jig having a curvature equal to the inner circumferential surface of the stator core 131 after filling a soft mold powder / resin mixture into a stainless steel mold (split mold) in which a groove having a length of 104 mm is formed. Thus, the open surface of the groove was closed, and the resin in the soft magnetic powder / resin mixture was cured to form a mixture 17.
  • a silicone resin release agent was applied in advance to the contact surface with the filler and the split surface of the mold (split mold), and then the mixture after defoaming was poured into the mold.
  • the mixture 17 after curing the epoxy resin can be easily taken out from the stainless steel mold.
  • the mixture 17 was formed such that its cross section was slightly smaller than the cross sectional area of the slot 132 region to be mounted. Specifically, in the rotating electrical machine used for the verification, the width of the slot opening 135 of the stator 13 was 3.2 mm. Therefore, the groove width of the portion corresponding to the slot opening 135 of the stainless steel mold (split type) was An insertion gap of 0.05 mm on one side was formed between the resulting mixture 17 and the slot opening 135 as 3.1 mm. This prevented the mixture 17 from being damaged when fitted into the slot opening 135.
  • the mixture 17 was formed by mixing Fe-3 wt% Si alloy gas atomized powder and epoxy resin so that the volume ratio of the soft magnetic powder was 72% by volume.
  • the epoxy resin a two-component resin having a viscosity at room temperature of 0.6 Pa ⁇ s was used and mixed with the soft magnetic powder using a stirrer. After mixing with a stirrer, the mixture was degassed in a vacuum chamber using a rotary pump. The mixture after the defoaming treatment was poured into the above-described stainless steel mold and heated at 100 ° C. for 2 hours and then at 175 ° C. for 4 hours to cure the epoxy resin in the mixture.
  • the magnetic wedge is inserted into the slot 132 of the stator 13 in the axial direction of the rotary shaft 11, it is mounted to some extent between the magnetic wedge and the slot 132. A gap of the size of is required.
  • the mixture 17 is mounted in the slot opening 135 by moving in the radial direction of the stator 13. Therefore, it is possible to mount the mixture 17 in the slot 132 with a short movement distance, compared to when the magnetic wedge is mounted in the large rotating electric machine described above. For this reason, compared with the time of mounting
  • the stator 13 having the mixture 17 can be easily and efficiently manufactured.
  • the rotary electric machine using the stator 13 obtained by the manufacturing method of Example 2 although motor efficiency is not measured, about the rotary electric machine using the stator 13 obtained by the manufacturing method of Example 2.
  • the rotating electrical machine using the stator 13 obtained by the manufacturing method of Example 1 when the volume ratio of the soft magnetic powder in the mixture 17 is set to 72% by volume, a motor efficiency improvement effect substantially equivalent to that obtained can be obtained. It is guessed.
  • the previously solidified mixture 17 is mounted in the slot opening 135. For this reason, the mixture 17 can be installed without installing the slot liner 15 (see FIG. 2) on the slot opening 135 side installed in the first embodiment (see FIG. 14).
  • the slot liner 15 has a function of ensuring insulation between the coil 133 and the stator core 131.
  • the mixture 17 also functions to ensure insulation between the coil 133 and the stator core 131.
  • the mixture 17, which is a kind of the mixture 17, does not show an increase in hysteresis due to an eddy current even when an alternating magnetic field of 1 kHz is applied. For this reason, it is possible to ensure electrical insulation between the coil 133 and the stator core 131 by the mixture 17.
  • an insulating resin sheet is attached to the bottom surface of the mixture 132 or mixed.
  • An insulating resin sheet may be inserted between the body 17 and the coil 133.
  • any material other than the above-described silicone resin and epoxy resin can be used as long as it penetrates between the soft magnetic powders and can hold the soft magnetic powders in the mixture 17 and has electrical insulation. It is also possible to use one. However, it is preferable to select a resin material in consideration of heat generation due to loss during operation of the motor and heat resistance against temperature rise of the stator core 131 and the coil 133 accompanying this.
  • the epoxy resin used as the resin material is a thermosetting resin, and is known to cause a significant decrease in viscosity during the thermosetting process.
  • the resin material having the reduced viscosity may flow into the joining interface of the stainless steel mold (split type) during the thermosetting process.
  • the mixing ratio of the soft magnetic powder / resin mixture in the mold may vary, and it may not be possible to obtain a soft magnetic powder / resin mixture having desired magnetic properties.
  • the soft magnetic powder / resin mixture In order to suppress the loss of the resin component, if necessary, fine ceramic powder such as alumina and silica is mixed with the resin material as appropriate, and the resin material is used in a state where the space between the powder particles is minimized by the ceramic powder. It may be filled and cured.
  • FIG. 15 shows an enlarged view of the vicinity of the slot opening of the status core.
  • the slot liner 14 that is an insulator, the winding 133, and the slot liner (or sashiki) 15 that is an insulator are inserted and stored from the outer peripheral side. ing.
  • the slot liner 14 on the outer peripheral side insulates between the winding 133 and the teeth 134.
  • the slot liner 15 on the inner peripheral side has a role of preventing the winding 133 from projecting from the end of the slot opening 135 toward the rotor core in addition to the role of insulation.
  • the winding 133 is a coil in which a conductor such as enameled copper wire is wound around the teeth 134.
  • the shape of the slot 132 of the status core 131 having the slot opening 135 along the inner diameter of the status core is mainly a full-open (open) slot for large-sized rotating electrical machines, and a semi-opened (semi-closed) slot for medium-sized and small-sized rotating electrical machines. It is used. Further, a tooth 134 exists between the slots of the status core. In these open-type slot shapes, the density of magnetic flux density (slot ripple) occurs due to the difference between the magnetic permeability of the electrical steel sheet of the tooth 134 and the magnetic permeability of the status core slot opening 135.
  • the magnetic wedge 171 is filled from the slot opening 135 to the upper part 1321 of the storage part 139 in the slot 132.
  • the inner peripheral surface of the magnetic wedge 171 is filled up to a location that coincides with the inner peripheral surface of the status core 131.
  • the magnetic wedge 171 is filled up to a location where the axial end of the magnetic wedge 171 also coincides with the end of the status core.
  • the magnetic wedge 171 is also in contact with the side wall of the storage unit 139 (in the illustrated example, the slot liners 14 on both sides) whose angle is different from that of the slot opening 135.
  • the magnetic wedge 171 exists up to the storage portion 139 wider in the circumferential direction than the slot opening 135, so that the magnetic wedge 171 is formed in the storage portion 139 when the magnetic wedge 171 is pulled toward the inner diameter side by the magnetic attractive force. Since the portion is caught, the magnetic wedge 171 has a structure that prevents the magnetic wedge 171 from being lost due to the magnetic attractive force applied from the rotor core to the inner diameter side of the status core.
  • the magnetic wedge 171 is a magnetic member similar to the mixture 17 in the first embodiment, and the magnetic wedge 171 is molded by filling a material obtained by kneading a magnetic powder such as iron and a resin and curing it by heat.
  • the magnetic powder mainly plays a role of improving the magnetic properties, and the resin material functions as a binder for bonding the magnetic powders together. By mixing the resin material, the strength of the magnetic wedge is secured.
  • Magnetic characteristics can be further enhanced by the presence of the radial end surface of the magnetic wedge 171 at the location where it matches the inner peripheral surface of the status core 131. As described above, this is the effect of shortening the equivalent gap length. Further, by filling the magnetic wedge 171 so as to be in contact with the entire side wall of the slot opening 135, it is possible to prevent a gap from being generated between the magnetic wedge 171 and the electromagnetic steel sheet, thereby improving the magnetic characteristics. Further, a magnetic wedge having a higher effect can be realized by matching the radial thickness of the slot opening 135 with the radial thickness of the magnetic wedge 171.
  • the magnetic wedge 171 is formed using a thermosetting material, but a material having a property of being cured when cooled may be used. A material that causes an irreversible change does not return to a liquid state when the rotating electrical machine is driven, and thus can be used as a magnetic wedge.
  • the present embodiment can be applied to a half-open slot or a full-open slot.
  • the current physique is maintained by eliminating the density of magnetic flux density resulting from the difference in permeability between the teeth of the status core and the opening as is widely known.
  • more efficient rotary electricity can be provided.
  • the slot opening 135 can be realized without forming a special groove or a special opening shape, the manufacturing becomes easy.
  • FIG. 16 is a perspective view of the stator core, and also shows a cross section of the storage portion 139 of the slot 132.
  • the fourth embodiment will explain the feature of the structure in the axial direction (Z direction in FIG. 16) in the slot opening 135 of the stator core 131.
  • a plurality of magnetic members 161 are arranged at predetermined intervals in the axial direction Z of the slot opening 135, and the magnetic members 161 are filled with a magnetic material 172 kneaded with magnetic powder and resin.
  • the magnetic material 172 is a magnetic member similar to the magnetic wedge described above.
  • the magnetic member 161 is a solid material that has been hardened in advance according to the shape of the slot opening 135, and serves as a guide member or a support member for filling the kneaded magnetic material 172.
  • the magnetic member 161 may be called a jig from the viewpoint of the work process.
  • FIG. 16 shows a state in which a plurality of magnetic members 161 are loaded in the slot opening 135 but the magnetic material 172 is not yet filled.
  • Example 4 is an example in which the magnetic wedge is composed of a plurality of layers of magnetic members in the axial direction Z.
  • the resin is heated by heat when the magnetic material is heated and cured.
  • an epoxy resin having high strength has a risk of causing a change in state when the glass transition temperature is exceeded and a decrease in hardness.
  • the slot liner 15 existing on the inner diameter side of the slot 132 may bend in the axial direction Z and protrude into the slot opening 135.
  • the magnetic wedge with a structure that cannot be restrained is joined only by the side wall of the slot opening 135, and the adhesive strength with the side wall is required, so that the strength sufficient to withstand the magnetic attractive force from the rotor core cannot be secured. is there. As a result, there is a problem that the magnetic wedge is missing from the slot and the reliability of the product cannot be ensured.
  • solid magnetic members 161 are arranged at predetermined intervals in a plurality of locations including the axial end A in the slot opening 135 in the axial direction Z, and then a magnetic material 172 for forming a magnetic wedge is provided. Fill. Thereby, the magnetic material 172 before hardening prevents the leakage from the axial end portion A. Furthermore, since the slot liner 15 pushed out to the slot opening 135 by the tension of the winding 133 in the storage portion 139 can be pressed to the storage portion 139 side by the magnetic member 161, compared with the first embodiment, It becomes easy to fill a magnetic wedge (indicated by 172 ′ for convenience) formed by the magnetic material 172 up to the slot liner 15 of the slot 132.
  • the magnetic material 172 is filled with the magnetic material 172 even after the magnetic wedge 172 ′ is cured.
  • the magnetic member 161 as a used jig can be left in the slot opening 135 without being removed.
  • Embodiment 5 will be described with reference to FIGS. 17 to 19.
  • a magnetic wedge 173 having a plurality of layer structures manufactured by kneading, molding, and curing magnetic powder and a resin is inserted into the slot opening 135 and the storage portion 139 from the end in the axial direction.
  • a status core similar to that of the first embodiment is configured.
  • the stator core is manufactured by inserting the molded magnetic wedge 173 into the slot opening 135 and the storage portion 139 in the same manner as shown in FIG.
  • a stator core is manufactured using a molded magnetic wedge
  • work efficiency is improved when it is applied to a status core having a long axial dimension, which is troublesome in the method of filling the liquid magnetic material 33.
  • Can do by using a magnetic wedge having a plurality of layer structures, high magnetic properties can be imparted to portions that require magnetic properties, and high mechanical strengths can be imparted to locations that require mechanical strength.
  • the magnetic wedge 173 manufactured by previously kneading magnetic powder and resin and molding and curing in advance has a two-layer structure of a first layer 1731 and a second layer 1732 in the radial direction Y. It is made.
  • the first layer 1731 located on the inner diameter side is a layer having a soft magnetic powder density higher than the resin density
  • the second layer 1732 on the outer diameter side is a layer having a resin density higher than the soft magnetic powder density.
  • Increasing the density of the magnetic powder increases the magnetic permeability, but on the other hand, the bonding strength between the magnetic powders is weakened, so the mechanical strength is reduced.
  • the density of the magnetic powder is different between the first layer and the second layer, which have a plurality of structures in the radial direction, so that high magnetic characteristics can be obtained in parts where the magnetic characteristics are required.
  • a magnetic wedge having a high mechanical strength can be provided at a place where a high mechanical strength is required.
  • the protrusion 180 is provided in order to increase the adhesive strength of the adhesive surface (boundary surface) between the first layer 1731 and the second layer 1732.
  • the protrusions 180 for example, a rectangular protrusion as shown in FIG. 8 (a), a conical protrusion as shown in FIG. 8 (b), and a spherical protrusion as shown in FIG. 8 (c). be able to.
  • the boundary surfaces shown in FIGS. 8 (a) and 8 (b) are formed by extending protrusions 180 from the second layer 1732 toward the first layer 1731, but in FIG. And a protrusion protruding from the first layer 1731 toward the second layer 1732. In either case, the same effect can be obtained.
  • the number and the number of the protrusions 180 are not limited, but the adhesive strength between the first layer and the second layer is more improved by providing a plurality of positions in the axial direction or a plurality of positions in the circumferential direction than forming the protrusion at only one position. It is desirable from the viewpoint of enhancing.
  • FIG. 9 shows another example of the bonding structure of the first layer 1731 and the second layer 1732.
  • the example of FIG. 9 is formed so that the second layer 1732 covers the lower part of the first layer 1731 laminated in the radial direction, and the two layers are engaged with each other by a protrusion 181 protruding from the circumferential direction X on the bonding surface of both.
  • It is configured as follows. 9A and 9B, protrusions 181 are formed from the first layer 1731 to the second layer 1732, and conversely, in FIG. 9C, protrusions 181 are formed from the second layer 1732 to the first layer 1731. Yes.
  • the material of the magnetic wedges 1731 and 1732 is a kneaded product of resin and magnetic powder, it can be molded using a technique used for plastic molding such as compression molding or transfer molding.
  • the magnetic wedge 173 having a plurality of layer structures can be molded by a filling process without being molded and cured in advance.
  • the magnetic powder and resin kneaded material forming the second layer 1732 is filled in the slot opening 135 and cured, and then the first layer is formed on the second layer 1732. It is possible to form a plurality of layers of magnetic wedges 173 during the manufacturing process by filling and curing the magnetic powder and resin kneaded material.
  • a similar magnetic wedge 173 can be formed.
  • the examples shown in FIGS. 17 to 19 are examples in which the magnetic wedge 173 is realized with a two-layer structure, but the layer structure is not limited to two layers, and may be a layer structure of three or more layers.
  • the effect of the slot liner 15 can be achieved by using only the resin on the outermost side. Thereby, the insulation between the winding 133 and the magnetic wedge 173 can be enhanced while reducing the number of parts.
  • the same effect as the outermost layer (slot liner function) having the three-layer structure described above can be expected by forming the second layer 1732 with an insulating resin.
  • a magnetic wedge is formed in the slot opening 135.
  • n is 3 or more
  • a large number of n layers (n is 3 or more) structure is formed by repeatedly filling and curing a kneaded mixture of magnetic powder and resin forming each layer from the nth layer to the first layer.
  • the magnetic wedge can be formed.
  • magnetic wedges obtained by collectively curing the n-th layer to the m-th layer (m is (n ⁇ 1) to 2) are loaded into the slot opening 135, and the remaining (m ⁇ 1) -th layers are loaded.
  • the magnetic wedge 173 described above has a multi-layer structure laminated in the radial direction Y, but the direction of the layer structure is not limited to the radial direction, and is any direction of the axial direction or the circumferential direction. Is also possible.
  • Example 6 is an example of a magnetic wedge 173 having a plurality of layer structures in the circumferential direction X of the stator core 131.
  • the magnetic wedge 173 has a structure having a first layer 1731 that contacts both side walls of the slot opening 135 and a second layer 17322 formed at both lower portions of the first layer 1731.
  • the first layer and the second layer form a layer concept in the circumferential direction X.
  • the lower part of the first layer 1731 is in contact with the slot liner 15, and the second layer 1732 is in contact with the slot liner 14 and the first layer 1731 loaded on both sides of the storage part 139.
  • the first layer and the second layer are made of a kneaded product of magnetic powder and resin, and the density of the magnetic powder of the first layer is larger than the density of the magnetic powder of the second layer 1732. Further, by forming a projection 181 similar to that of the fifth embodiment at the boundary between the first layer and the second layer, it is possible to increase the adhesive strength between the two.
  • the second layer 1732 may be a magnetic material having a reduced magnetic powder density and a kneaded material.
  • the second layer 1732 may be an insulating material such as resin or varnish that does not include a magnetic material.
  • Example 7 will be described with reference to FIG.
  • Example 7 is an example of a magnetic wedge having a plurality of layers, and may be considered as another example of Example 6.
  • the magnetic wedge 173 includes a first layer 1731 and a second layer 1732, and the first layer 1731 extends in the radial direction Y (downward in FIG. 21) along the side wall of the slot opening 135. The bottom part is in contact with the slot liner 15. Further, as the first layer 1731 extends in the radial direction Y (downward), the width of the first layer in the circumferential direction X increases, and both ends thereof contact the slot liners 14 disposed on both sides of the storage portion 139. ing.
  • the kneaded product of the magnetic powder and the resin forming the first layer and the second layer is the same as in Example 6. With such a structure, a situation where the first layer 1731 is lost due to the magnetic attractive force from the rotor core 121 can be reduced.
  • the shape of the lower part of the 1st layer 1731 is curvilinearly wide, the shape is not restricted to a curve, You may expand width linearly.
  • the shape of the second layer 1732 is not limited to a curved line, and may be a straight line.
  • the first layer 1731 containing a large amount of soft magnetic powder in the circumferential direction X is sandwiched by the second layer 1732 having a high proportion of highly insulating resin, whereby the second layer 1732 is formed. It becomes difficult for the current to pass, and eddy currents generated in the status core 131 can be suppressed. Furthermore, since magnetic flux easily flows to the rotor core side, it is possible to reduce the loss.
  • an electric motor (motor) is described as an example.
  • the rotating electrical machine of the present invention can be applied as an electric motor (motor) or a generator (generator). It is.
  • SYMBOLS 100 Rotary electric machine, 11 ... Rotating shaft, 12 ... Rotor, 121 ... Rotor core, 13 ... Stator, 131 ... Stator core, 132 ... Slot, 133 ... Coil, 134 ... Teeth, 135 ... Slot opening part, 136 ... Projection part, 137 DESCRIPTION OF SYMBOLS 138 ... Gaps, 14, 15 ... Slot liner, 17 ... Soft magnetic powder / resin mixture, 18 ... Atomized iron powder, 19 ... Silicone resin, 20 ... Slot liner, 21 ... Spherical particles, 31 ... Support, 32 ... fulcrum, 33 ... test body, 34 ... indenter, 173 ... magnetic wedge, 1731 ... first layer, 1732 ... second layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

損失が少なく、高いモータ効率を得られる回転電機を提供する。 ロータ12側に開口する開口部135が形成されたスロット132が周方向に複数形成され、ロータ12の円周面に対向して配置されたステータコア131と、スロット132に挿入されたコイル133とを備え、スロット132の開口部135には、軟磁性体粉末と樹脂材料との混合体17が形成され、混合体17の比透磁率が5~35である。

Description

回転電機及び回転電機の製造方法
 本発明は、回転電機及び回転電機の製造方法に関する。
 省エネの推進の観点から、回転電機には、損失低減により運転効率を高効率化し、電気エネルギー消費量を低減することが求められている。ステータコアのスロット形状が開放型(オープン・スロット型)又は半閉型(セミオープン・スロット型)の回転電機では、ステータとロータとの間のギャップにおけるギャップ磁束密度変動に伴って高調波磁束が発生することが知られている。この高調波磁束に起因する漂遊負荷損が全損失の中で比較的高い割合を占めている。
 回転電機における高調波磁束は、スロット開放部では磁束密度が低く、ステータコアのティース部では磁束密度が高くなり、磁束密度が局部的に激しく変動することで発生する。高調波磁束は、漂遊負荷損の増大だけでなく、力率やトルク特性の低下、ロータ鉄損の増大の要因ともなるため、その低減が求められている。
 大型回転電機では、一般に開放型(オープン・スロット型)が採用されており、ステータ内のコイルを固定するクサビとして磁性体を配合した磁性クサビを適用することで、ギャップ磁束密度変動を低減している。一方、半閉型(セミオープン・スロット型)が採用される、中型・小型回転電機では、クサビの打ち込み装着が困難であるため、大型回転電機で適用される磁性クサビの適用は、実用上困難である。
 この問題を解決する手段として、例えば特許文献1には、鉄粉と合成樹脂とを混練した混練物を繊維状の材料と混合して充填材を形成し、その充填材を回転電機のステータコアに形成されたスロットの開口部に充填して硬化させて磁性楔を形成し、この磁性楔によりギャップ高調波磁束を低減する技術が開示されている。
特開2002-281709号公報
 しかしながら、特許文献1の技術では、高調波磁束を低減させる効果を必ずしも十分に得られないことがあり、浮遊負荷損失を確実に防止できるものではなかった。
 本発明の目的は、損失が少なく、高いモータ効率を得られる回転電機を提供することである。
 本発明に係る回転電機の好ましい実施形態としては、ロータ側に開口する開口部が形成されたスロットが周方向に複数形成され、前記ロータの円周面に対向して配置されたステータコアと、前記スロットに挿入されたコイルとを備え、前記スロットの開口部には、軟磁性体粉末と樹脂材料との混合体が形成され、前記混合体の比透磁率が5~35である。
 本発明に係る回転電機の製造方法の製造方法の好ましい実施形態としては、ロータ側に開口する開口部が形成されたスロットが周方向に複数形成され、前記ロータの円周面に対向して配置されたステータコアと、前記スロットに挿入されたコイルと、を備えた回転電機の製造方法であって、樹脂材料と軟磁性体粉末とを混合して混合物を形成し、前記混合物を固形化して、前記樹脂材料と前記軟磁性体粉末との混合体であって、比透磁率が5~35である混合体を、前記開口部に形成する。
 本発明に係る回転電機の好ましい実施形態としては、径方向外側から内側へ延伸する複数のティースと、前記ティースの間に形成されるスロットとを有するステータコアと、前記スロットに配置されたコイルとを有する回転電機であって、
前記スロットは、前記コイルを収納する格納部と、前記格納部よりも内径側に位置するスロット開口部とを有し、
前記スロット開口部の内壁から前記格納部の少なくとも一部の内壁まで磁性部材が接触している。
 本発明によれば、損失が少なく、高いモータ効率を得られる回転電機を実現することができる。
実施例1に係る回転電機の断面図である。 軟磁性体粉/樹脂混合体が形成される前のステータコアのスロット開口部近傍を示す拡大図である。 図2に示すステータコアのスロット開口部に、軟磁性体粉/樹脂混合体が形成された状態を示す図である。 軟磁性体粉/樹脂混合体の内部組織を模式的に示す図である。 軟磁性体粉/樹脂混合体の比透磁率と、回転電機のモータ効率との関係を示すグラフである。 図5に示すグラフにおける比透磁率の各計測点における軟磁性体粉体積率及びモータ効率を示す表である。 Fe-Si合金における単位重量当たりのSi含有量と透磁率との関係を示すグラフである。 軟磁性体粉/樹脂混合体の密度と比透磁率の関係を示すグラフである。 図5の検証で使用した軟磁性体粉/樹脂混合体についての磁化曲線を示す図である。 球状粒子が細密充填された構造を示す図である。 曲げ試験の方法を説明する模式図である。 曲げ試験における軟磁性体粉/樹脂混合体のクラック発生時点での、圧子先端の変位と、比透磁率との関係を示すグラフである。 図12において行った曲げ試験における、軟磁性体粉/樹脂混合体のクラック発生時における曲げ荷重と、比透磁率との関係を示すグラフである。 実施例2に係る軟磁性体粉/樹脂混合体の形成過程を説明する図である。 実施例3に係るステータコアのスロット開口部近傍を示す拡大図である。 実施例4に係るステータコアの斜視図である。 実施例5に係る磁性楔の斜視図である。 実施例5に係る磁性楔の層構造を示す断面図である。 実施例5に係る磁性楔の層構造を示す断面図である。 実施例6に係るステータコアのスロット開口部近傍を示す拡大図である。 実施例7に係るステータコアのスロット開口部近傍を示す拡大図である。
 以下、図1~図13を用いて、実施例1について説明する。図1及び図2に示すように、回転電機100は、回転軸(以下、シャフトともいう。)11に固定されたロータ12と、ロータ12の外側に設置されたステータ13とを有している。
 ロータ12は、所定の形状に打ち抜いた電磁鋼板を積層した積層コアであるロータコア121と、ロータコア121のスロット内に挿入された二次導体122と、を有している。ロータコア121は、回転軸11に固定されており、回転軸11の回転に伴い、ロータ12も回転可能に設けられている。
 ステータ13は、所定の形状に打抜いた電磁鋼板等の軟磁性薄板を積層した積層コアであるステータコア131と、ステータコア131のスロット132内に挿入されたコイル133とを有している。ステータコア131は、ロータ12の円周面に対向して配置されている。なお、ステータコア131を構成する積層コアは、箔体を積層した積層コアであってもよい。
 スロット132は、ステータコア131の外周側に設けられた円環状のバックコアからロータ12の径方向に放射状に延びるティース(歯)134間に形成されており、ステータコア131の周方向に複数形成されている。スロット132には、ロータ12側に開口するスロット開口部135が形成されている。スロット開口部135は、ティース134のロータ12側端部がステータコア131の周方向に突出した突起部136を有する、半閉型に形成されている(セミオープン・スロット型)。
 スロット132内には、例えばPET(ポリエチレンテレフタレート)シートにより形成されるスロットライナー14、15が設置されている。スロットライナー14は、スロット132の内壁に、ロータ12側を開口させて設置されている。スロットライナー15は、スロットライナー14の内壁に、スロットライナー14の開口部を覆うように設置されている。コイル133は、スロットライナー14、15で囲まれた空間内に収納されている。
 コイル133は、例えば銅やアルミ等にエナメル等の絶縁材が被覆された金属線からなり、図2に示す例では、コイル133は同心巻により配置されている。スロット132内に設置されるコイル133、スロットライナー14、15は、スロット132内に組み込まれた後、コイル結線、コイルエンド加工を経て、例えば不飽和ポリエステル系ワニス等の固着ワニスにより、ステータコア131に固着される。図示は省略するが、固着ワニスは各部材間に介在させて用いてもよく、各部材の表面を薄く被覆するように塗布して用いてもよい。
 図3に、図2に示すステータコア131のスロット開口部135に、軟磁性体粉/樹脂混合体17(以下、「混合体」ともいう)が形成された状態を示す。図3に示すように、混合体17は、ステータコア131のスロット開口部135及びスロットライナー15よりもロータ12側に存在するスロット132の空隙部137に形成されている。混合体17は、軟磁性体粉と樹脂材料との混合物の硬化体であり、その形成方法は後述する。
 図4は、混合体17の内部組織を模式的に示す図である。図4に示すように、混合体17は、例えばバインダーであるシリコーン樹脂19中に、概球状のアトマイズ鉄粉末18が分散されて形成されている。アトマイズ鉄粉末18間にはシリコーン樹脂19が存在しており、アトマイズ鉄粉末18同士の間に樹脂等の絶縁物が存在している状態(アトマイズ鉄粉末18同士が互いに金属的に接合しない状態ともいう)で、混合体17を形成している。
 混合体17の比透磁率は、5~35とする。比透磁率が5~35の範囲にある混合体17を、スロット開口部135に形成することで、高調波磁束の発生による損失が低減され、モータ効率について、高い効率改善効果を得ることができる。
 混合体17の比透磁率と、回転電機100のモータ効率との関係を検証した。評価結果を図5及び図6に示す。図5に示す検証には、軟磁性体粉として、Fe-3wt%Si合金粉(以下、Fe-Si合金粉を「合金鉄粉」と示す。)を使用した。具体的には、合金鉄粉と、樹脂材料である室温硬化型のシリコーン樹脂とを、それぞれ、樹脂成分硬化後の軟磁性体粉/樹脂混合体における合金鉄粉の体積率が図6の値となるように秤量し、合金鉄粉と樹脂材料との混合物を、混練機を用いて混練して作成した。合金鉄粉(Fe-3wt%Si合金粉)としては、ガスアトマイズ粉を使用し、粒径が150μmを超える粗大粉を取り除いて使用した。
 図5は、図1に示す回転電機100(3相誘導電動機)と同様の基本構造を有する回転電機を200V/50Hzで稼働したときのモータ効率を、比透磁率毎にプロットしたグラフである。図5に示すグラフは、横軸が比透磁率であり、縦軸がモータ効率であり、横軸は対数表示で示している。図6には、図5のグラフにプロットした各軟磁性体粉/樹脂混合体における合金鉄粉の体積率を、回転電機100のモータ効率と併せて示している。
 具体的には、スロット開口部135に、混合体17として、図6に示す各比透磁率を示す混合体17を形成したステータ13をそれぞれ用意し、これらのステータ13をロータ12に装着して、回転電機100稼働時のモータ効率(出力/入力電力)を測定した。この測定結果に基づき、混合体17の比透磁率とモータ効率との関係を評価した。なお、モータ効率の測定は、いずれのステータ13も、同一のロータ12に差し替えて行った。ロータ12は、アルミニウムのダイキャスト成形により、スロットにロータバーが形成され、1スロット分のスロットスキューが施されたものを使用した。なお、図5では、スロット開口部135に混合体17を形成していないステータ13を装着したときの回転電機100のモータ効率を、100として示している。
 図5に示すグラフの検証には、回転電機100として、出力2.2kW、4極の三相かご型誘導モータ(以下、単に誘導モータと略す)を用いた。ステータコア131、ロータコア121は、いずれも厚さ0.5mmの電磁鋼板を用い、積厚は、いずれも104mmとした。ステータコア131の寸法は、外径175mm/内径110mmとし、ロータコア121の寸法は、外径109.4mm/内径(シャフト穴径)32mmとした。ステータコア131のスロット数は36とし、ロータコア121のスロット数は28とした。ステータコア131のティース134の幅は5.5mmとし、スロット132全体の深さは17.8mmとした。ティース134の突起部136で囲まれた領域の寸法は、幅3.2mm、深さ0.8mmとした。
 コイル133は、絶縁層込み外径が0.72mmであるエナメル線を152本用いて構成した。スロットライナー14、15としては、いずれも、厚さ0.21mmのPET(ポリエチレンテレフタレート)シートを使用した。
 図5に示すように、スロット開口部135に混合体17を形成した回転電機100は、混合体17をスロット開口部135に充填していない回転電機100と比較して、いずれも高いモータ効率を得られた。混合体17を充填していない回転電機のデータは図5における比透磁率が1のデータである。混合体17の比透磁率が5以上のときには、比透磁率が5未満のときと比較して、モータ効率について高い改善効果を得られている。換言すれば、混合体17の比透磁率が5未満の場合には、モータ効率の向上度合が小さく、混合体17を形成するコストに見合うだけの、効率改善効果を得られない。
 一方、混合体17の比透磁率が35を超えると、混合体17を介して、隣接するステータコア131のティース134間を流れる磁束(以下、「漏れ磁束」と示す。)が増大し、一次銅損が増大するため、モータ効率が低下する。混合体17の比透磁率を35以下とすることで、漏れ磁束の増大が抑制され、モータ効率改善について、高い効果を得ることができる。なお、比透磁率40を超えると、混合体17中の軟磁性体粉の割合が過多となり軟磁性体粉の大部分が金属的に接合してしまうため、本実施例では混合体17の比透磁率は約38まで上昇させたデータを用いる。
 なお、軟磁性体粉を含有していない、シリコーン樹脂単独の成形体をスロット開口部135に形成した状態は、磁気的には、スロット開口部135を空隙のままとした状態と等価である。このため、図5に示すグラフでは、軟磁性体粉の配合量が0である場合すなわち比透磁率が1の場合として示している。
 なお、図5の検証で使用した、上記各体積率の混合体17は、軟磁性体粉と樹脂材料との混合時における、樹脂材料中での軟磁性体粉分布の均一化や、混合作業の容易性を考慮して、樹脂材料として、その初期粘度を、軟磁性体粉の体積率に応じて異ならせて使用した。具体的には、軟磁性体粉の体積率が40体積%及び48体積%の軟磁性体粉/樹脂混合体を作成する場合には、初期粘度70Pa・sのシリコーン樹脂を使用し、軟磁性体粉の体積率が54~66体積%の軟磁性体粉/樹脂混合体を作成する場合には、初期粘度20Pa・sのシリコーン樹脂を使用し、軟磁性体粉の体積率が72体積%以上の軟磁性体粉/樹脂混合体を作成する場合には、初期粘度1Pa・sのシリコーン樹脂を使用した。
 実施例1では、例えば、ステータコア131のスロット開口部135及びスロットライナー15よりもロータ12側に存在するスロット132の空隙部137に、樹脂材料が硬化する前の、流動性を有する軟磁性体粉/樹脂混合物を充填する。次いで、軟磁性体粉末/樹脂混合物に含まれる樹脂材料を硬化させることで、スロット開口部135及びスロット132の空隙部137に、比透磁率が5~35である混合体17を形成する。
 具体的には、例えばシリコーン樹脂に軟磁性体粉を混合した軟磁性体粉/樹脂混合物を、シリコーン樹脂が硬化する前に、スロット開口部135及びスロット132の空隙部137に充填する。次いで、軟磁性体粉/樹脂混合物のロータ12側へのはみ出し防止のため、軟磁性体粉/樹脂混合物の表面に、ステータコア131の内周面と等しい曲率を有するテフロン(登録商標)製の押圧型を接触させる。このとき、余剰な軟磁性体粉/樹脂混合物は、スロット132の端部から排出される。
 この状態で、軟磁性体粉/樹脂混合物を室温にて所定時間放置し、シリコーン樹脂を硬化させて混合体17を形成した後、混合体17の表面から、テフロン製の押圧型を取り外す。以上の手順により、スロット132の空隙に、混合体17が形成された、ステータ13を得ることができる。
 混合体17の透磁率は、軟磁性体粉が混合体中に占める体積率により調整することができる。以下に、混合体17の磁気特性が、軟磁性体粉の種類に依存せず、軟磁性体粉の体積率に依存する点について、図7~図9を用いて説明する。
 図7は、Fe-Si合金における、単位重量当たりのSi含有量と、透磁率(直流最大比透磁率)との関係を示すグラフである。図7に示すように、例えばFe-6.5wt%Si合金の透磁率(直流最大比透磁率)は、Fe-3wt%Si合金の透磁率(直流最大比透磁率)の約3倍程度である。従って、Fe-Si合金自体の透磁率は、合金組成に依存する。
 次に、上記したFe-3wt%Si合金及びFe-6.5wt%Si合金を、それぞれ樹脂材料と混合した軟磁性体粉/樹脂混合体の密度に対する比透磁率の関係を検証した。検証結果を図8に示す。なお、図8は、軟磁性体粉/樹脂混合体における、軟磁性体粉の体積率を変化させることで、軟磁性体粉/樹脂混合体の密度を変化させたものである。
 図8に示すように、Fe-3wt%Si合金、Fe-6.5wt%Si合金のいずれを用いた場合にも、混合体の密度増大に伴って、比透磁率が増大しているが、各密度における両混合体の比透磁率の差は小さい。従って、図7に示される、両合金間における磁化特性の差は、混合体17においては殆ど反映されていない。
 従って、混合体17としての磁化特性は、軟磁性体粉の種類には依存せず、混合体における軟磁性体粉の体積率に依存する。このため、樹脂材料と混合する磁性体としては、軟磁性を示すものであればよく、Fe-Si合金以外の他の軟磁性体を適用することが可能である。また、複数種の軟磁性体粉の混合物を、樹脂材料と混合して用いてもよい。
 次に、軟磁性体粉/樹脂混合体の磁化特性について検証した。図9に、図5の検証で使用した混合体17のうち、軟磁性体粉を72体積%含む混合体17についての磁化曲線を示す。なお、図9の磁化曲線は、上記した混合体17を、外径30mm、内径20mm、厚さ5mmに成形したリングコアについての、1kHzでの磁化曲線を示したものである。
 図9に示すように、軟磁性体粉の体積率が72体積%である混合体17のB-H曲線は、ほぼ直線状となっており、混合体17の磁化特性における、軟磁性体固有の磁化特性の影響が小さいことが確認できる。
 つまり、混合体17の軟磁性体間には、非磁性体である樹脂材料が介在しているため(図4参照)、混合体17においては、軟磁性体粉固有の磁化特性の影響が、樹脂材料により低減されている。このため、混合体17としての磁化特性は、樹脂材料により分離された軟磁性体粉間の距離、即ち、混合体17に占める軟磁性体粉の体積率に依存する。従って、以上の点からも、混合体17としての磁化特性は、軟磁性体粉の種類には依存せず、混合体17における、軟磁性体粉の体積率に依存することが把握される。
 混合体17の設置により、高い効率改善効果を得る観点からは、混合体17における軟磁性体粉の体積率を、50体積%以上85体積%以下とすることが好ましい。
 混合体17における軟磁性体粉の体積率を、50体積%以上とすることで、モータ効率について高い向上度合を得ることができ、混合体17を設置する設置コストに見合うだけの、高い効率改善効果を得ることができる。また、混合体17における軟磁性体粉の体積率を、85体積%以下とすることで、軟磁性体粉が互いに金属的に接合することなく、樹脂材料中に分散した状態とすることができる。これにより、混合体17を介して、隣接するティース134を流れる漏れ磁束の増大や、これに伴う一次銅損の増大を抑制することができる。
 つまり、図10に示すように、軟磁性体粉間の接合を目的とする圧縮力を作用させずに形成した、同一径の球形粒子21の細密充填状態では、充填率は概ね74体積%である。球形粒子が粒度分布を有する場合には、図10に示す球形粒子21の空隙に、球形粒子21より小粒径の球形粒子が充填されるため、軟磁性体粉間の接合を目的とする圧縮力を作用させない場合、球形粒子の充填率の最大値は、概ね85体積%である。従って、混合体17における軟磁性体粉の体積率を、85体積%以下とすることで、軟磁性体粉が互いに金属的に接合することなく、樹脂材料中に分散した状態とすることができる。効率改善効果をより高く得る観点からは、混合体17における軟磁性体粉の体積率は、55体積%以上80体積%以下とすることが好ましいとも言える。
 実施例1では、上記したように、軟磁性体粉と樹脂材料との混合物を、スロット開口部135に充填した後に固形化するため、混合物に圧縮力を作用させなくても、混合体17を形成することができる。このため、軟磁性体粉同士が金属的に接合することなく、樹脂材料中に軟磁性体粉が分散した状態の混合体17を、容易に得ることができる。この場合、混合体17は、原理的には、電気絶縁性を示す。
 回転電機を長期間運転した場合、混合体17の機械的強度が不足していると、ロータ12からの吸引力や、ロータ12の回転に伴う流体摩擦力等の作用により、混合体17の欠落や、これに伴う製品事故が発生することがある。このため、回転電機に装着された混合体17における、欠落等の機械的損傷に対する耐性を、以下に曲げ試験により評価した。
 曲げ試験は、図11に示すように、3点曲げ試験により行った。具体的には、支持体31の支点32上に試験体33を置き、その中央に、圧子34の先端を加重点として曲げ荷重を印加して、時間変化に伴う曲げ変位及び曲げ荷重の大きさを測定した。
 支持体31としては、支点32間距離が20mm、支点32高さが6mmのものを使用した。また、支持体31及び圧子34としては、支点32及び圧子34の先端が、それぞれ半径4mmの円弧形状を有するものを使用した。試験体33としては、テフロン製の分割モールドに所定量の混合体17を投入し、硬化させて、幅6mm、厚さ10mm、長さ30mmの直方体に成形した。曲げ試験の過程において、試験体33が、支持体31の支点32間の面に接触しないように、圧子34の最大変位を6mmとして曲げ試験を行った。変位の基準点(ゼロ点)は、曲げ荷重の印加開始点である。
 図12は、曲げ試験における試験体33のクラック発生時点での、圧子34先端の変位と、比透磁率との関係を示すグラフである。図12に示すように、比透磁率が6未満の混合体17では、支点32の高さに相当する距離(6mm)だけ圧子34を変位させても、クラックが発生しなかった。また、比透磁率が6以上の混合体17では、比透磁率の増大に伴って、クラック発生時における圧子34の変位値が低下しており、比透磁率の増大に伴い、混合体17の延性が低下していることが確認できた。
 また、比透磁率が7.3~31の領域での圧子34の曲げクラック発生変位の推移と比較すると、比透磁率が31から38に変化するときの、圧子34の曲げクラック発生変位の低下度が大きく、その違いは顕著であった。このため、比透磁率が38の混合体17は、比透磁率が31の状態から大幅に脆化し、曲げ変形の開始直後の段階でクラックが発生していることが確認できた。なお、図12のプロット上部に示す上矢印は、クラック発生時の変位量が6mm以上であることを示している。
 図13は、図12において行った曲げ試験における、試験体33のクラック発生時における曲げ荷重と、比透磁率との関係を示すグラフである。図12において説明したように、比透磁率が6未満である混合体17では、曲げクラックが発生していない。このため、図13において、比透磁率が6未満のときの各プロットの曲げ荷重は、圧子34が6mm変位した時点での値を示している。
 図13に示すように、比透磁率の増大に伴い、クラック発生時における曲げ荷重は増大したが、比透磁率が38の混合体17では、曲げ荷重が急激に低下し、機械的強度が大幅に低下することが確認できた。
 比透磁率が38の混合体17の機械的強度が低下した理由は、樹脂材料に対する軟磁性体粉の混合量が過大であるため、軟磁性体粉間に樹脂材料が充填されていない領域が形成され、曲げクラックの起点となるボイドが多数発生したためと推察される。
 以上の曲げ試験の結果から、比透磁率が38以上である混合体17では、機械的強度が低く、かつ脆いため、回転電機を長期間運転した場合には、混合体17の欠落が発生し易く、実用に供することが困難であることが確認された。以上の結果から、混合体17において、効率の観点および機械的強度の観点から、混合体17の比透磁率は、5以上35以下とするのが好ましい。
 軟磁性体粉としては、例えば、ガスアトマイズ粉を好適に用いることができる。ガスアトマイズ粉は、概略球状粉であり、樹脂材料との混練や混合の容易性や、混合物の均一性に優れている。ただし、軟磁性体粉は、必ずしも概略球状である必要はなく、例えば還元粉や破砕粉等であってもよい。この場合には、軟磁性体粉の形状に応じて、混練条件や攪拌条件を調整することで、適用することが可能である。
 なお、図5に示すグラフの測定に用いた混合体17では、シリコーン樹脂の合金鉄粉に対する接着性が高いため、合金鉄粉には表面処理を施していない。ただし、軟磁性体粉と樹脂材料との接着性の改善を目的として、樹脂材料や軟磁性体粉の種類に応じて、シランカップリング剤等の表面処理剤により、軟磁性体粉を適宜表面処理するようにしてもよい。軟磁性体粉に表面処理を施して、樹脂材料との接着性を改善することで、混合体の機械的特性を向上させることができる。
 以下に、実施例2に係る回転電機の製造方法について、図14を用いて説明する。実施例2は、軟磁性体粉と樹脂材料との混合物を予め固形化して、剛性を有する混合体17とした後、スロット開口部135に装着する形態である。なお、実施例2で適用する回転電機は、後述するように、スロットライナーの形状及び設置形態が異なる点を除いて、その構成は、実施例1で適用する回転電機100と同じである。
 まず、軟磁性体粉と樹脂材料とを混合し、これらの混合物を、スロット開口部135に嵌合可能な形状に成形した後、混合物に含まれる樹脂材料を固形化して、混合体17を形成する。次いで、コイル133をスロット132内に挿入し、スロット132の底部側に押し込みつつ、スロットライナー20のロータ12側端部をスロット132の中心側に湾曲させる(図14(a)参照)。
 次に、スロット開口部135とコイル133との間に形成された空隙部138に、混合体17を挿入する。混合体17は、スロットライナー20端部のスプリングバックにより、スロット開口部135側に押し上げられ、ステータコア131のティース134の突起部136に軽く押し付けられて固定される(図14(b)参照。)。
 次いで、スロット132内に挿入されたコイル133について、コイルエンド圧縮処理を行う。このとき、スロット132の底部に押し付けられたコイル133がスロット開口部135側に移動し、混合体17が、スロット開口部135に嵌合される(図14(c)参照。)。
 最後に、不飽和ポリエステル系のワニスを用いて、コイル133及びスロットライナー20をステータコア131に固着させると同時に、混合体17を、ステータコア131に固着させる。これにより、ステータコア131のスロット開口部135において、磁気特性に影響する隙間を極力小さくした状態で、混合体17を装着することができる。
 以下に、実施例2に係る回転電機の製造方法について具体的に説明する。以下の説明では、混合体17として、軟磁性体粉であるFe-3wt%Si合金ガスアトマイズ粉末と、樹脂材料であるエポキシ樹脂とを混合して硬化させた、混合体17を使用した。
 実施例2では、まず、混合体17を、ステータコア131のティース134の突起部136のテーパ部で囲まれた領域を含む、スロット開口部135を充填できる形状に形成した。これにより、混合体17の、スロット開口部135への位置決めが可能となる。具体的には、長さ104mmの溝が形成されたステンレス製モールド(分割型)に、軟磁性体粉/樹脂混合物を充填した後、ステータコア131の内周面と等しい曲率を有するステンレス製治具により溝の開放面を閉じ、軟磁性体粉/樹脂混合物中の樹脂を硬化させて、混合体17を形成した。
 ステンレス製モールドには、充填物との接触面及びモールド(分割型)の分割面に、シリコーン樹脂系の離型剤を予め塗布した後、脱泡処理後の混合物を流し入れた。これにより、エポキシ樹脂硬化後の混合体17を、ステンレス製モールドから容易に取り出せるようにした。
 混合体17は、その断面が、装着されるスロット132領域の断面積より若干小さくなるように形成した。具体的には、検証に使用した回転電機における、ステータ13のスロット開口部135の幅は3.2mmであったため、ステンレス製モールド(分割型)のスロット開口部135に該当する部分の溝幅を3.1mmとして、得られる混合体17とスロット開口部135との間に、片側0.05mmの挿入ギャップを形成した。これにより、スロット開口部135への嵌合時における混合体17の損壊を防止した。
 混合体17は、Fe-3wt%Si合金ガスアトマイズ粉末とエポキシ樹脂とを、軟磁性体粉の体積率が72体積%となるように混合して形成した。エポキシ樹脂としては、室温での粘度が0.6Pa・sの二液性樹脂を使用し、撹拌機を用いて軟磁性体粉と混合した。撹拌機による混合後、ロータリーポンプによる減圧チャンバー内で、混合物の脱泡処理を行った。脱泡処理後の混合物を、上述したステンレス製モールドに流し込み、100℃で2時間、次いで175℃で4時間の条件で加熱して、混合物中のエポキシ樹脂を硬化させた。
 なお、例えば大型回転電機の打ち込み磁性クサビでは、ステータ13のスロット132に対して、回転軸11の軸方向に磁性クサビを挿入して装着するため、磁性クサビとスロット132との間には、ある程度の大きさのギャップが必要である。これに対し、実施例2の回転電機の製造方法では、混合体17を、ステータ13の径方向に移動させることで、スロット開口部135に装着する。従って、上記した大型回転電機における磁性クサビの装着時と比較して、混合体17を、短い移動距離でスロット132に装着することが可能となる。このため、大型回転電機への磁性クサビの装着時と比較して、挿入ギャップを大幅に低減することができ、混合体17の磁気的効果の損失を低減することができる。
 実施例2によれば、混合体17を有するステータ13を、簡易にかつ効率的に製造することができる。なお、実施例2の製造方法により得られたステータ13を用いた回転電機については、モータ効率の測定を行っていないが、実施例2の製造方法により得られたステータ13を用いた回転電機についても、実施例1の製法により得られたステータ13を用いた回転電機において、混合体17における軟磁性体粉の体積率を72体積%としたときと、ほぼ同等のモータ効率改善効果が得られると推察される。
 実施例2の回転電機の製造方法では、予め固形化した混合体17を、スロット開口部135に装着する。このため、実施例1で設置した、スロット開口部135側のスロットライナー15(図2参照)を設置せずに、混合体17を設置することができる(図14参照)。
 なお、図2に示す例では、スロットライナー15が、コイル133とステータコア131との間の絶縁性を確保する機能を有している。図14(c)に示すように、ロータ12側のスロットライナー15を設置しない場合には、混合体17が、コイル133とステータコア131との間の絶縁性を確保する機能を兼ねる。
 図9で説明したように、混合体17の一種である混合体17は、1kHzの交番磁界を加えても、渦電流によるヒステリシス増大が認められず、ほぼ絶縁体であることが認められる。このため、混合体17により、コイル133とステータコア131との間の電気絶縁性を確保することが可能である。
 但し、混合体17における軟磁性体粉末の含有率が高く、混合体としての電気絶縁性が低い場合には、混合体17の、スロット132底部側の面に絶縁樹脂シートを貼り付けたり、混合体17とコイル133との間に絶縁樹脂シートを挿入したりしてもよい。
 樹脂材料としては、軟磁性体粉間に浸透して、混合体17において軟磁性体粉を保持することができ、かつ電気絶縁性を有するものであれば、上記したシリコーン樹脂やエポキシ樹脂以外のものを用いることも可能である。ただし、モータ稼働時の損失による発熱や、これに伴うステータコア131やコイル133の温度上昇に対する耐熱性を考慮して、樹脂材料を選択することがよい。
 実施例2において、樹脂材料として使用したエポキシ樹脂は、熱硬化樹脂であり、熱硬化処理過程において大幅な粘度低下を生じることが知られている。樹脂材料の低粘度化が顕著であると、低粘度化した樹脂材料が、熱硬化処理時にステンレス製モールド(分割型)の接合界面に流入することがある。この場合、モールド内の軟磁性体粉/樹脂混合物の混合比が変動し、所望の磁気特性を有する軟磁性体粉/樹脂混合物を得られないことがある。このため、熱硬化性の樹脂や低粘度樹脂を用いた場合や、軟磁性体粉の混合割合の低い軟磁性体粉/樹脂混合物を成形する場合には、軟磁性体粉/樹脂混合物からの樹脂成分の流失を抑制するため、必要に応じて、アルミナ、シリカ等の微細なセラミックス粉を樹脂材料に適宜混合し、セラミックス粉により粉体粒子間の空間を最小化した状態で、樹脂材料を充填して硬化させるようにしてもよい。
 図15には、ステータスコアのスロット開口部近傍の拡大図を示す。
ステータスコア131のスロット132の格納部139内には、絶縁物であるスロットライナー14と、巻線133と、絶縁物であるスロットライナー(またはサシキ)15とが、外周側より挿入されて収納されている。外周側のスロットライナー14は巻線133とティース134との間を絶縁する。また、内周側のスロットライナー15は絶縁の役割に加え、巻線133がスロット開口部135の端部よりロータコア側へ突出するのを防ぐ役割を持つ。巻線133は例えばエナメル被服銅線のような導体がティース134に巻回されたコイルである。
 ステータスコア内径に沿ってスロット開口部135を有するステータスコア131のスロット132の形状は、大型回転電機ではおもに全開口型(オープン)スロット、中型・小型回転電機では半開口型(セミクローズ)スロットが用いられている。また、ステータスコアのスロットとスロットとの間にはティース134が存在する。これらの開口型のスロット形状ではティース134の電磁鋼板の透磁率とステータスコアスロット開口部135の透磁率との違いから磁束密度の疎密(スロットリップル)が生じてしまう。このスロットリップルによりスロット開口部135において高調波磁束が発生し、ロータコア121のステータスコア側表面に近い箇所で鉄損や銅損を生じる。この高調波磁束を抑制するためにはステータスコアとロータコア間の等価ギャップ長の短縮が必要となる。等価ギャップ長を短縮することでカータ係数が小さくなる。その結果として、高調波磁束の低減に寄与する。
 そこで本実施例では、その特徴として、図15のように、スロット132のうちスロット開口部135から格納部139の上部1321まで磁性楔171を充填する構造を成している。磁性楔171の内周面はステータスコア131の内周面と一致する箇所まで充填されている。図示しないが、磁性楔171は、磁性楔171の軸方向端部もステータスコアの端部と一致する箇所まで充填されている。また、磁性楔171はスロット開口部135の側壁に加え、スロット開口部135の側壁とは角度が変わる格納部139の側壁(図示の例では両側のスロットライナー14)にも接触している。このようにスロット開口部135よりも周方向幅の広い格納部139まで磁性楔171が存在することで、磁性楔171が磁気吸引力により内径側に引っ張られる際に格納部139内に形成される部分がひっかかるため、磁性楔171がロータコアからステータスコア内径側にかかる磁気吸引力による欠落を防止する構造となっている。
 磁性楔171は、実施例1における混合体17と同様な磁性部材であり、磁性楔171は鉄等の磁性粉末と樹脂とを混練させたものを充填し熱によって硬化させることで成型する。磁性粉末は主に磁気特性向上の役割を担い、樹脂材は磁性粉末同士を接着させるバインダーとして機能する。樹脂材を混入することにより、磁性楔の強度を確保している。
 磁性楔171の径方向端面がステータスコア131の内周面と一致する箇所に存在することで磁気特性をより高めることが出来る。これは上述したように、等価ギャップ長の短縮による効果である。さらにスロット開口部135の側壁全体に接触するように磁性楔171を充填することで、磁性楔171と電磁鋼板の間に空隙を生じることが防止できるため磁気特性が高まる。また、スロット開口部135の径方向厚みと磁性楔171の径方向厚みを一致させることでより効果の高い磁性楔を実現できる。
 なお、本実施例では熱硬化性の材料を用いて磁性楔171を形成しているが、逆に冷却すると硬化する性質を有する材料を用いても構わない。不可逆変化を起こす材料であれば回転電機の駆動時に液状に戻ることもないため、磁性楔として使用することが可能である。また、本実施例は半開口型スロットであっても全開口型スロットであっても適用することができる。
 本実施例の磁性楔171を用いることで、幅広く知られているようにステータスコアのティースと開口部での透磁率の違いから生じる磁束密度の疎密を解消することで、現状の体格を維持しながら、更に高効率な回転電気を提供できる。また、スロット開口部135に特別な溝や特殊な開口部形状などを形成せずに実現できるので、製作が容易となる。
 また、励磁電流を低減する効果もあるため、高効率化要素であるコイル占有率の増加や導体断面積の増加によって発生する始動電流の悪化や力率の低下といった特性悪化も抑制できる。さらに、磁束密度の疎密を解消することで磁気騒音を防止することができ、またトルクリップルを防止することができる。
 図16を参照して、実施例4を説明する。図16は、ステータコアの斜視図であり、併せてスロット132の格納部139の断面も示している。
実施例4は、ステータコア131のスロット開口部135における軸方向(図16のZ方向)の構造の特徴を説明するものである。スロット開口部135の軸方向Zに、所定間隔で、複数の磁性部材161が配置され、それら磁性部材161の間に、磁性粉末と樹脂とを混練した磁性材172を充填して構成される。磁性材172は上述の磁性楔と同様の磁性部材である。ここで、磁性部材161はスロット開口部135の形状に合わせて予め硬化させた固体物であり、混練した磁性材172を充填するための案内部材或いは支持部材となる。磁性部材161は作業工程の観点から治具と呼んでもよいであろう。なお、図16は、スロット開口部135に複数の磁性部材161が装填しているが、磁性材172が未だ充填していない状態を示している。なお、後述する実施例5や実施例6との関係で言えば、実施例4は、磁性楔が軸方向Zに複数層の磁性部材から構成される例である。
 実施例1で説明した、磁性体と樹脂とを混練した磁性体材料を開口部135に充填して磁性楔171を成形する方法では、磁性体材料を加熱硬化する際に樹脂が熱により通常の室温での粘度よりも低くなることで、軸方向端部Aまたはスロット開口部135の端部Bより漏出する虞がある。特に高強度を有するエポキシ樹脂に関してはガラス転移温度を超えると状態変化を生じ、硬度が下がるなどの危険性を生じる。
 また、スロット132内径側に存在するスロットライナー15は軸方向Zに曲がりを生じて、スロット開口部135へ突出することがある。絶縁物であるスロットライナー15のスロット開口部135への突出により、スロットライナー15が格納部139までの磁性材の進入を防ぎ、格納部139の側壁での抑えが効かない構造の磁性楔が形成される虞がある。抑えが効かない構造の磁性楔はスロット開口部135の側壁のみで接合された構造で、側壁との接着強度が必要になるためロータコアからの磁気吸引力に耐えられるだけの強度が確保できないことがある。その結果、磁性楔のスロットからの欠落を生じ、製品の信頼性を確保できないといった課題が挙げられる。
 そこで本実施例では、軸方向Zのスロット開口部135に、軸方向端部Aを含む複数個所に所定間隔で固体物の磁性部材161を配置し、その後に磁性楔を形成する磁性材172を充填する。これにより、硬化前の磁性材172が軸方向端部Aからの漏出を防止する。さらに、格納部139内の巻線133の張力によってスロット開口部135まで押しだされるスロットライナー15を、磁性部材161によって格納部139側へ押さえることができるため、実施例1と比較して、磁性材172によって形成される磁性楔(便宜上172´で示す)をスロット132のスロットライナー15まで充填することが容易となる。
 また磁性部材161の材料として、磁性楔172´と同一材料あるいは同程度の透磁率を有する材量を用いることで、磁性楔172´を硬化させた後も、磁性材172の充填の作業過程で使用した治具としての磁性部材161は除去することなく、スロット開口部135内に残しておくことができる。
 図17乃至図19を参照して、実施例5を説明する。
実施例5は、磁性粉末と樹脂を混練し成形・硬化して製作した、複数の層構造から成る磁性楔173を、スロット開口部135及び格納部139に軸方向端部から挿入することで、実施例1と同様なステータスコアを構成する。
 図14に示す方法と同様にして、成形済みの磁性楔173をスロット開口部135及び格納部139に挿入してステータコアを製作する。成形済みの磁性楔を用いてステータコアを製作することにより、液状の磁性材料33を充填する方式では手間がかかるような、軸方向の寸法が長いステータスコアに実施する場合、作業効率を向上させることができる。かつ、複数の層構造の磁性楔を用いることで、磁気特性が必要な部分には高磁気特性を付与し、機械的強度が必要な箇所には高機械強度を付与することができる。
 以下、詳細に説明する。
図17及び図18を参照するに、予め磁性粉末と樹脂を混練しあらかじめ成形・硬化して製作した磁性楔173は、径方向Yに、第1層1731と第2層1732の2層構造を成している。内径側に位置する第1層1731は樹脂密度よりも軟磁性体粉密度が高い層であり、外径側にある第2層1732は軟磁性体粉密度よりも樹脂密度が高い層である。磁性粉末の密度を高くすることによって透磁率が高くなるが、他方では磁性粉末同士の結合強度が弱くなるため機械的強度が低下する。機械的強度低下を防止するために磁性粉末密度を低くすることにより、磁性粉末同士を接着させる力が強まり樹脂の曲げ強さ等の機械的強度を向上させることが出来る。そこで、本実施例においては、径方向に複数構造を成す、第1層と第2層で磁性粉末の密度を異ならせることによって、磁気特性が必要な部分においては高磁気特性を有し、機械的強度が必要な箇所では高機械強度を有する磁性楔を提供することができる。
 本実施例では、第1層1731と第2層1732の接着面(境界面)の接着強度を強くために突起180を設けている。突起180の形状は種々あり、例えば、図8(a)のような四角い突起、図8(b)のような円錐状の突起、図8(c)のような球状の突起、の形状とすることができる。ここで、図8(a)(b)に示す境界面は、いずれも第2層1732から第1層1731に向かって突起180が延伸して形成しているが、図8(c)では反対に第1層1731から第2層1732へ向かって突出した突起である。いずれも同様の効果を得ることができる。突起180を形成する箇所および個数は問わないが、1箇所のみに突起を形成するよりも、軸方向に複数箇所あるいは周方向に複数個所設ける方が第1層と第2層の接着強度をより高める観点から望ましい。
 図9は、第1層1731と第2層1732の接合構造の他の例を示す。
図9の例は、径方向に積層された第1層1731の下部を第2層1732が覆うように形成され、両者の接着面では周方向Xから突出する突起181によって両者の層を噛み合わせるように構成している。図9(a)及び(b)は、第1層1731から第2層1732へ突起181が形成され、(c)は反対に、第2層1732から第1層1731へ突起181が形成されている。このように構成することで、径方向内側にかかる磁気吸引力に耐えられる構造となる。
なお、磁性楔1731、1732の材料は樹脂と磁性粉末の混錬物であるため、例えば圧縮成型やトランスファー成型などプラスチックの成型に用いられている手法を用いた成型が可能である。
 次に、実施例5における変形例や他の例について説明する。
複数の層構造から成る磁性楔173の成型は予め成形・硬化しなくても、充填方式による製造プロセスでも実現できる。例えば、最初に第2層1732を形成する磁性粉末と樹脂の混練物をスロット開口部135内に充填して硬化させ、その後、第2層1732の上に、第1層を形成する高磁気特性の磁性粉末と樹脂の混練物を充填して硬化させることによって、製造プロセス中において複数層の磁性楔173を形成することが可能となる。また、他の例として、既に成型された絶縁層(第2層対応)を予めスロット開口部内に挿入した後、高磁気特性の混練物(第1層対応)を充填して硬化させることにより、同様の磁性楔173を形成することができる。
 なお、図17乃至図19に示す例は、磁性楔173を2層構造で実現する例であるが、層構造は2層に限らず、3層以上の層構造としてもよい。3相以上の層構造とすることで、高絶縁特性が必要なステータスコアの場合、最も外径側の層を樹脂のみとすることでスロットライナー15の作用効果を兼ねることができる。これにより部品点数を削減しつつ巻線133と磁性楔173間の絶縁性を高めることが出来る。なお、2層構造の磁性楔でも第2層1732を絶縁性のある樹脂で形成することで、上述した3層構造の最外層(スロットライナー機能)と同等の作用効果を期待できる。
 3相以上の層構造の磁性楔を実現する手段としては、予め硬化して製作した磁性楔をスロット開口部135内に装填する例の他に、上記のように、スロット開口部135内に磁性楔を形成するプロセスにおいて、第n層から第1層までの各層を形成する磁性粉末と樹脂の混練物を順次充填して硬化させることを繰り返すことで、多数n層(nは3以上)構造の磁性楔を形成することができる。また、第n層から第m層(mは(n-1)から2)までを、一括して硬化し製作した磁性楔をスロット開口部135内に装填し、残りの第(m-1)層から第1層までを磁性粉末と樹脂の混練物を順次充填して硬化させることで形成することも可能である。
更に他の変形例として、上述した磁性楔173は複数層構造が径方向Yに積層されたものであるが、層構造の方向は、径方向に限らず、軸方向或いは周方向のいずれの方向においても可能である。
 図20を参照して、実施例6を説明する。
実施例6は、ステータコア131の周方向Xに複数の層構造を有する磁性楔173の例である。図示のように、磁性楔173は、スロット開口部135の両側壁に接触する第1層1731と、第1層1731の両側下部に形成された第2層17322とを有する構造である。第1層と第2層は、周方向Xに層構想を形成している。第1層1731の下部はスロットライナー15に接し、第2層1732は格納部139の両側に装填されたスロットライナー14と第1層1731とにそれぞれ接触している。
 ここで、第1層及び第2層は、磁性粉末と樹脂の混練物により構成されるが、第1層の磁性粉末の密度は、第2層1732の磁性粉末の密度よりも大である。また、第1層と第2層との境界には、実施例5と同様の突起181を形成することで、両者の接着強度を高めることも可能である。
なお、他の例として、第2層1732は、実施例5の変形例で説明したように、磁性粉末密度を下げた磁性材料と趣旨の混練物でもよい。更に他の例によれば、第2層1732は、磁性材料を含まない、樹脂やワニスなどの絶縁材料でも構わない。
 図21を参照して、実施例7を説明する。
実施例7は、複数層を有する磁性楔の例であり、実施例6の他の例と考えてよい。
図示のように、磁性楔173は、第1層1731と第2層1732から構成されて、第1層1731は、スロット開口部135の側壁に沿って径方向Y(図21の下方)に延伸している形状であり、その底部はスロットライナー15に接触している。更に、第1層1731は径方向Y(下方)に延伸するにしたがって第1層の周方向Xにおける幅が広くなり、その両端は、格納部139の両側に配置されたスロットライナー14に接触している。第1層及び第2層を形成する磁性粉末と樹脂の混練物は実施例6と同様である。
このような構造とすることで、ロータコア121からの磁気吸引力によって第1層1731が欠落する事態を低減することができる。なお、第1層1731の下部の形状は曲線的に幅が広くなっているが、その形状は曲線に限らず直線的に幅を広げても構わない。また、第2層1732の形状も曲線に限らず、直線としてもよい。
 このように、周方向Xに、軟磁性体粉を多く含有した第1層1731を、絶縁性の高い樹脂が占める割合が大きい第2層1732が挟んで構成することにより、第2層1732を電流が通りにくくなり、ステータスコア131に発生する渦電流を抑制することができる。さらにロータコア側に磁束が流れやすくなるため、低損失化を図ることが出来る。
 なお、これまで説明した実施例では電動機(モータ)を例に挙げて説明しているが、本発明の回転電機は、電動機(モータ)としても発電機(ジェネレータ)としても適用することができるものである。
100…回転電機、11…回転軸、12…ロータ、121…ロータコア、13…ステータ、131…ステータコア、132…スロット、133…コイル、134…ティース、135…スロット開口部、136…突起部、137、138…空隙部、14、15…スロットライナー、17…軟磁性体粉/樹脂混合体、18…アトマイズ鉄粉末、19…シリコーン樹脂、20…スロットライナー、21…球形粒子、31…支持体、32…支点、33…試験体、34…圧子、173…磁性楔、1731…第1層、1732…第2層

Claims (15)

  1.  ロータ側に開口する開口部が形成されたスロットが周方向に複数形成され、前記ロータの円周面に対向して配置されたステータコアと、前記スロットに挿入されたコイルと、を備え、
     前記スロットの開口部には、軟磁性体粉末と、樹脂材料による混合体が形成され、前記混合体の比透磁率が、5~35である回転電機。
  2.  前記混合体における、前記軟磁性体粉末の混合割合が、50体積%以上85体積%以下である請求項1に記載の回転電機。
  3.  前記軟磁性体粉末と樹脂材料との混合体は、前記軟磁性体粉末間に前記樹脂材料が介在して形成されている請求項1に記載の回転電機。
  4.  前記軟磁性体は、鉄-シリコン(Fe-Si)合金である請求項1に記載の回転電機。
  5.  前記ステータコアのスロットは、半閉型スロットである請求項1に記載の回転電機。
  6.  ロータ側に開口する開口部が形成されたスロットが周方向に複数形成され、前記ロータの円周面に対向して配置されたステータコアと、前記スロットに挿入されたコイルと、を備えた回転電機の製造方法であって、
     樹脂材料と軟磁性体粉末とを混合して混合物を形成し、
     前記混合物を固形化して、前記樹脂材料と前記軟磁性体粉末との混合体であって、比透磁率が5~35である混合体を、前記開口部に形成する回転電機の製造方法。
  7.  前記開口部に前記混合物を充填し、
     前記開口部に充填された前記混合物に含まれる前記樹脂材料を固形化して、前記混合体を形成する請求項6に記載の回転電機の製造方法。
  8.  前記混合物に含まれる前記樹脂材料を固形化して前記混合体を形成し、
     前記混合体を、前記開口部に嵌合させる請求項6に記載の回転電機の製造方法。
  9.  径方向外側から内側へ延伸する複数のティースと、前記ティースの間に形成されるスロットとを有するステータコアと、前記スロットに配置されたコイルとを有する回転電機であって、
     前記スロットが、前記コイルを収納する格納部と、前記格納部よりも内径側に位置し前記格納部よりも幅の狭いスロット開口部とを有し、
     前記スロット開口部の内壁から前記格納部の少なくとも一部の内壁まで磁性部材が接触している回転電機。
  10.  前記磁性部材は、ステータの径方向又は周方向に複数の層を有する請求項9に記載の回転電機。
  11.  複数の層を有する前記磁性部材は、ステータの内径側に位置する第1層の透磁率が、ステータの外径側に位置する第2層の透磁率よりも高い請求項10に記載の回転電機。
  12.  前記磁性部材は、前記スロット開口部の両側壁に接触する第1層と、前記第1層の両側に位置して前記格納部の側壁の一部に接して形成された第2層とを有し、
     前記第1層は前記第2層よりも透磁率が高い請求項10又は11に記載の回転電機。
  13.  前記第1層は、径方向外側へ向かうに従って、その幅が広くなる請求項12に記載の回転電機。
  14.  前記磁性部材を形成する前記第1層と前記第2層との境界には、いずれか一方の層から他方の層へ伸びる突起を有する請求項12に記載の回転電機。
  15.  前記磁性部材は、磁性粉末と樹脂材料との混合体である請求項9に記載の回転電機。
PCT/JP2017/024925 2016-07-08 2017-07-07 回転電機及び回転電機の製造方法 WO2018008738A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17824341.6A EP3484022A4 (en) 2016-07-08 2017-07-07 ROTATING ELECTRIC MACHINE AND METHOD FOR MANUFACTURING ROTATING ELECTRIC MACHINE
JP2018526451A JP6738421B2 (ja) 2016-07-08 2017-07-07 回転電機及び回転電機の製造方法
US16/314,582 US11183898B2 (en) 2016-07-08 2017-07-07 Rotary electric machine and manufacturing method for rotary electric machine
CN201780039165.1A CN109417327B (zh) 2016-07-08 2017-07-07 旋转电机和旋转电机的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016135810 2016-07-08
JP2016-135810 2016-07-08

Publications (1)

Publication Number Publication Date
WO2018008738A1 true WO2018008738A1 (ja) 2018-01-11

Family

ID=60912773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024925 WO2018008738A1 (ja) 2016-07-08 2017-07-07 回転電機及び回転電機の製造方法

Country Status (5)

Country Link
US (1) US11183898B2 (ja)
EP (1) EP3484022A4 (ja)
JP (1) JP6738421B2 (ja)
CN (1) CN109417327B (ja)
WO (1) WO2018008738A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110277856A (zh) * 2018-03-15 2019-09-24 本田技研工业株式会社 旋转电机的定子
EP3567702A1 (de) * 2018-05-09 2019-11-13 Siemens Aktiengesellschaft Elektrische maschine
JP2020036444A (ja) * 2018-08-29 2020-03-05 国立大学法人信州大学 モータ
WO2020121555A1 (ja) * 2018-12-13 2020-06-18 株式会社日立産機システム 回転電機のステータの製造方法及び回転電機
CN111555573A (zh) * 2019-02-11 2020-08-18 保时捷股份公司 用于优化凹槽底部绝缘层的方法和定子
WO2021033567A1 (ja) 2019-08-20 2021-02-25 日立金属株式会社 磁性楔、回転電機、および磁性楔の製造方法
JP2022126604A (ja) * 2021-02-18 2022-08-30 日立金属株式会社 磁性楔の製造方法、磁性楔、回転電機用固定子及び回転電機
JP2022540323A (ja) * 2019-07-11 2022-09-15 エルジー・ケム・リミテッド 樹脂充填物体及びその製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111771317B (zh) * 2018-02-21 2022-08-05 三菱电机株式会社 定子、电动机、压缩机以及空调装置
CN113710451A (zh) * 2019-04-19 2021-11-26 住友电木株式会社 磁性部件形成用树脂组合物和磁性部件的制造方法
CN110266152B (zh) * 2019-07-19 2022-07-26 绵阳西磁磁电有限公司 一种定子上涂附复合软磁材料的方法及其高速永磁电机
JP2021058035A (ja) * 2019-10-01 2021-04-08 株式会社日立産機システム 固定子及び回転電機
CN114123687B (zh) 2020-08-28 2023-05-26 台达电子工业股份有限公司 旋转电机的定子排线方法
TWI755042B (zh) * 2020-08-28 2022-02-11 台達電子工業股份有限公司 旋轉電機的定子排線方法
US11722021B2 (en) * 2020-11-05 2023-08-08 In Motion US, LLC Generator for driving a predefined load
CN116633059B (zh) * 2023-05-15 2024-05-14 浙江大学 一种电机成型绕组结构及其加工方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339408A (en) * 1976-09-24 1978-04-11 Mitsubishi Electric Corp Slot wedge
JPS5763459U (ja) * 1980-10-02 1982-04-15
JPS6110937A (ja) * 1984-06-26 1986-01-18 Toshiba Corp 磁性楔
JPS6126453A (ja) * 1984-07-13 1986-02-05 Toshiba Corp 磁性楔の成形法
JP2000261998A (ja) * 1999-03-08 2000-09-22 Toshiba Corp 電動機およびそれに使用される磁性楔の製造方法
JP2002281709A (ja) 2001-03-23 2002-09-27 Mitsubishi Electric Corp 回転電機の磁性楔及びその製造方法
WO2012077215A1 (ja) * 2010-12-09 2012-06-14 株式会社 日立製作所 車両用交流発電機

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5736467Y2 (ja) * 1974-02-15 1982-08-11
JPS59220039A (ja) * 1983-05-27 1984-12-11 Toshiba Corp 磁性楔
JPS61121733A (ja) * 1984-11-14 1986-06-09 Hitachi Ltd 回転電機のコイル固定用楔
US4857788A (en) * 1987-06-17 1989-08-15 Magnetek, Inc. Magnetic top wedge
JPH03207231A (ja) * 1990-01-08 1991-09-10 Hitachi Ltd 回転電機の固定子
JPH05276706A (ja) * 1992-03-25 1993-10-22 Toshiba Corp 回転電機のスロット用磁性楔
FI970943A (fi) * 1997-03-05 1998-09-06 Jarmo Alamaeki Menetelmä ja laite magneettivuon muokkaamiseksi
JP2000166156A (ja) * 1998-11-24 2000-06-16 Hitachi Ltd 回転電機及び回転電機に使用する磁性楔の製造方法
US6787948B2 (en) * 2001-06-29 2004-09-07 Bae Systems Controls Inc. Stator construction for high performance rotating machines
NO324241B1 (no) * 2006-02-28 2007-09-17 Smartmotor As Anordning ved elektrisk maskin
US20080284555A1 (en) * 2007-05-18 2008-11-20 Levit Mikhail R Process for refurbishing an electrical device component comprising a laminate electrical insulation part and electrical device component comprising said part
CN201118306Y (zh) * 2007-11-06 2008-09-17 上海南洋电机有限公司 电机用防脱落磁性槽楔
US8575814B2 (en) * 2011-03-18 2013-11-05 Remy Technologies, Llc Conductor insulation arrangement for electric machine winding
JP6049566B2 (ja) * 2013-08-08 2016-12-21 日立オートモティブシステムズ株式会社 回転電機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339408A (en) * 1976-09-24 1978-04-11 Mitsubishi Electric Corp Slot wedge
JPS5763459U (ja) * 1980-10-02 1982-04-15
JPS6110937A (ja) * 1984-06-26 1986-01-18 Toshiba Corp 磁性楔
JPS6126453A (ja) * 1984-07-13 1986-02-05 Toshiba Corp 磁性楔の成形法
JP2000261998A (ja) * 1999-03-08 2000-09-22 Toshiba Corp 電動機およびそれに使用される磁性楔の製造方法
JP2002281709A (ja) 2001-03-23 2002-09-27 Mitsubishi Electric Corp 回転電機の磁性楔及びその製造方法
WO2012077215A1 (ja) * 2010-12-09 2012-06-14 株式会社 日立製作所 車両用交流発電機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3484022A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110277856A (zh) * 2018-03-15 2019-09-24 本田技研工业株式会社 旋转电机的定子
EP3567702A1 (de) * 2018-05-09 2019-11-13 Siemens Aktiengesellschaft Elektrische maschine
JP2020036444A (ja) * 2018-08-29 2020-03-05 国立大学法人信州大学 モータ
TWI739145B (zh) * 2018-12-13 2021-09-11 日商日立產機系統股份有限公司 旋轉電機之定子之製造方法及旋轉電機
JP2020096468A (ja) * 2018-12-13 2020-06-18 株式会社日立産機システム 回転電機のステータの製造方法及び回転電機
CN112840540A (zh) * 2018-12-13 2021-05-25 株式会社日立产机系统 旋转电机的定子的制造方法和旋转电机
WO2020121555A1 (ja) * 2018-12-13 2020-06-18 株式会社日立産機システム 回転電機のステータの製造方法及び回転電機
JP7057745B2 (ja) 2018-12-13 2022-04-20 株式会社日立産機システム 回転電機のステータの製造方法及び回転電機
JP7057745B6 (ja) 2018-12-13 2022-05-16 株式会社日立産機システム 回転電機のステータの製造方法及び回転電機
CN111555573A (zh) * 2019-02-11 2020-08-18 保时捷股份公司 用于优化凹槽底部绝缘层的方法和定子
US11611257B2 (en) * 2019-02-11 2023-03-21 Dr. Ing. H. C. F. Porsche Ag Method and stator for optimized slot base insulation
JP2022540323A (ja) * 2019-07-11 2022-09-15 エルジー・ケム・リミテッド 樹脂充填物体及びその製造方法
WO2021033567A1 (ja) 2019-08-20 2021-02-25 日立金属株式会社 磁性楔、回転電機、および磁性楔の製造方法
KR20220034870A (ko) 2019-08-20 2022-03-18 히다찌긴조꾸가부시끼가이사 자성 쐐기, 회전 전기 및 자성 쐐기의 제조 방법
JP2022126604A (ja) * 2021-02-18 2022-08-30 日立金属株式会社 磁性楔の製造方法、磁性楔、回転電機用固定子及び回転電機
JP7255719B2 (ja) 2021-02-18 2023-04-11 株式会社プロテリアル 磁性楔の製造方法、磁性楔、回転電機用固定子及び回転電機

Also Published As

Publication number Publication date
US20190207460A1 (en) 2019-07-04
US11183898B2 (en) 2021-11-23
EP3484022A1 (en) 2019-05-15
CN109417327B (zh) 2021-05-04
JPWO2018008738A1 (ja) 2019-03-07
JP6738421B2 (ja) 2020-08-12
CN109417327A (zh) 2019-03-01
EP3484022A4 (en) 2020-01-15

Similar Documents

Publication Publication Date Title
WO2018008738A1 (ja) 回転電機及び回転電機の製造方法
JP5341306B2 (ja) リアクトル
JP7418350B2 (ja) ステータ用接着積層コアおよび回転電機
JP5617461B2 (ja) リアクトル、およびリアクトルの製造方法
KR102573664B1 (ko) 적층 코어, 코어 블록, 회전 전기 기기 및 코어 블록의 제조 방법
WO2011013394A1 (ja) リアクトル
JP6418454B2 (ja) リアクトル
JP5120690B2 (ja) リアクトル用コア
US5793138A (en) Fabrication of induction motors
WO2020137549A1 (ja) コア、ステータ、及び回転電機
JP2012209333A (ja) リアクトル、およびリアクトルの製造方法
WO2013137019A1 (ja) リアクトル、コンバータ、および電力変換装置
US11888351B2 (en) Core, stator, and rotary electric machine
WO2007141489A2 (en) Magnetic core of an electric machine having anisotropic material embedded in isotropic material
WO2010086997A1 (ja) ステータおよびモータ
WO2013118524A1 (ja) リアクトル、コンバータ及び電力変換装置、並びにリアクトル用コア材料
JP5658485B2 (ja) 磁性素子
JP2015050397A (ja) リアクトルの製造方法、およびリアクトル
JP2015050298A (ja) リアクトル、コンバータ、及び電力変換装置
JP5194784B2 (ja) ステータおよびモータ
JP2018133462A (ja) リアクトル
JP5305118B2 (ja) リアクトル、及び昇圧コンバータ
JP2012142601A (ja) リアクトル、及びコンバータ
JP5398636B2 (ja) 磁性素子
JP6120022B2 (ja) リアクトル

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018526451

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17824341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017824341

Country of ref document: EP

Effective date: 20190208