WO2018008682A1 - リチウムイオン二次電池及びその製造方法 - Google Patents

リチウムイオン二次電池及びその製造方法 Download PDF

Info

Publication number
WO2018008682A1
WO2018008682A1 PCT/JP2017/024648 JP2017024648W WO2018008682A1 WO 2018008682 A1 WO2018008682 A1 WO 2018008682A1 JP 2017024648 W JP2017024648 W JP 2017024648W WO 2018008682 A1 WO2018008682 A1 WO 2018008682A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
material layer
tab
electrolyte
secondary battery
Prior art date
Application number
PCT/JP2017/024648
Other languages
English (en)
French (fr)
Inventor
和司 松島
智輝 國川
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to EP17824285.5A priority Critical patent/EP3483975A4/en
Priority to CN201780035879.5A priority patent/CN109314282A/zh
Publication of WO2018008682A1 publication Critical patent/WO2018008682A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/571Methods or arrangements for affording protection against corrosion; Selection of materials therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium ion secondary battery and a method for manufacturing the same.
  • This application claims priority based on Japanese Patent Application No. 2016-133464 for which it applied to Japan on July 5, 2016, and uses the content here.
  • a lithium ion secondary battery includes a positive electrode plate in which a positive electrode active material is applied to a positive electrode current collector and a negative electrode plate in which a negative electrode active material is applied to a negative electrode current collector. It is manufactured by interposing a separator that forms a layer (for example, see Patent Document 1).
  • the active material layer is not applied to the end of the current collector in the longitudinal direction extending in one direction. It is known that a terminal tab is provided and a terminal tab is welded to the active material layer non-coated portion so as to protrude from the current collector (see, for example, Patent Document 2).
  • the present invention has been made in view of the above-described problems, and by preventing the electrolyte from adhering to the mounting portion of the terminal tab, it is possible to suppress a decrease in the adhesive strength of the terminal tab. It is an object of the present invention to provide a lithium ion secondary battery and a method for manufacturing the same, in which the tab can be securely attached.
  • a lithium ion secondary battery according to an aspect of the present invention is a lithium ion secondary battery having an electrode laminate in which a positive electrode and a negative electrode are laminated via an electrolyte layer and a tab for a terminal, the positive electrode And one of the negative electrodes has an active material active material layer coating part, a layer non-coating part, and an active material layer non-coating part on at least one surface of the current collector.
  • the terminal portion is attached to the coating portion, and the active material layer non-coating portion is provided on one end side in a first direction extending in one direction of the current collector,
  • the active material layer non-coated portion has at least one extending along a second direction orthogonal to the first direction in a plan view between the tab attachment portion to which the terminal tab is attached and the electrode active material layer. It is characterized by an electrolyte leakage prevention band that is a ridge or a groove That.
  • an electrolyte leakage prevention band extending along the second direction is formed between the tab attachment portion and the electrode active material layer in the non-coated portion of the active material layer of the current collector.
  • the movement of the electrolyte protruding from the coating part is regulated by the electrolyte leakage prevention zone.
  • the electrolyte leakage prevention band is a ridge
  • the protrusion can serve as a weir to prevent the electrolyte from leaking over the electrolyte leakage prevention band to the tab mounting portion side.
  • the electrolyte leakage prevention band is a concave strip
  • a groove-shaped portion is formed between the electrolyte layer and the tab mounting portion, and the electrolyte protruding from the coating portion flows into the concave portion. It can prevent leaking to the side. For this reason, it is possible to prevent the tab mounting portion after lamination from being attached to the electrolyte protruding from the coating portion, and the terminal tab can be securely mounted based on predetermined mounting conditions. As a result, it is possible to suppress a decrease in the adhesive strength of the terminal tab, and to prevent the mounting portion of the terminal tab from shifting or coming off due to external vibration or impact, thereby preventing disconnection or the like. And the fall of the reliability of conduction
  • the electrolyte leakage prevention zone may be provided over the entire second direction of the active material layer non-coated portion.
  • the electrolyte coating portion and the tab mounting portion of the current collector non-coated portion of the current collector can be completely separated without gaps by the electrolyte leakage prevention band, so that the electrolyte at the time of stacking is a tab. It is possible to prevent the protrusion to the attachment portion side more reliably.
  • the electrolyte leakage prevention zone is formed to protrude from a surface of the current collector on which the electrode active material layer is applied. It may be.
  • a method of manufacturing a lithium ion secondary battery according to another aspect of the present invention is a method of manufacturing a lithium ion secondary battery having an electrode laminate in which a positive electrode and a negative electrode are stacked via an electrolyte layer and a terminal tab.
  • One of the positive electrode and the negative electrode has an active material layer coated portion and an active material layer non-coated portion on at least one surface of the current collector.
  • Laminating over the quality layers is characterized by having the steps of attaching so as to protrude the tab terminal to the tab attaching portion of the active material layer uncoated portion from the current collector.
  • the electrolyte leakage prevention band may be bent by pressing.
  • the adhesion of the terminal tab can be reduced by preventing the electrolyte from adhering to the mounting portion of the terminal tab. Therefore, the terminal tab can be securely attached.
  • FIG. 1 is a longitudinal sectional view schematically showing a configuration of a lithium ion secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing a part of an electrode of the lithium ion secondary battery shown in FIG.
  • FIG. 3 is a sectional side view of the electrode shown in FIG. 4 is a side sectional view of an electrode of a lithium ion secondary battery according to a modification, and corresponds to FIG.
  • FIG. 5A is a sectional side view of an electrode of a lithium ion secondary battery according to a modification, and corresponds to FIG.
  • FIG. 5B is a side sectional view of an electrode of a lithium ion secondary battery according to a modification, and corresponds to FIG.
  • a lithium ion secondary battery 1 includes a positive electrode 2, a negative electrode 3, and a separator 4 that is interposed between the positive electrode 2 and the negative electrode 3 to form an electrolyte layer.
  • Each has a plurality.
  • the illustrated lithium ion secondary battery 1 includes an electrode stack including a plurality of electrode units in which a negative electrode 3 having a rectangular shape in plan view, a separator 4, and a positive electrode 2 are sequentially stacked. Furthermore, on the outer side of the electrode laminate, a negative electrode 3 having a lithium metal foil disposed on one side is laminated via a separator 4 so that the negative electrode 3 is the outermost layer.
  • the positive electrode 2 and the negative electrode 3 are configured such that the terminal tabs 14 protrude from the respective end portions.
  • the lithium ion secondary battery 1 includes a terminal tab 14 connected to the positive electrode 2 and a multilayer (here, two layers) electrode laminate packaged by an exterior body made of, for example, an aluminum material or a polymer film.
  • the outer peripheral portion of the exterior body is sealed with the terminal tab 14 connected to the negative electrode 3 protruding outward.
  • 2 and 3 show only one of the positive electrode 2 and the negative electrode 3 described above (hereinafter referred to as an electrode plate 10 as necessary).
  • the electrode plate 10 composed of the positive electrode 2 and the negative electrode 3 is, for example, a current collector 11 made of a copper foil formed in a rectangular shape in plan view.
  • the electrode active material layer 12 is formed by coating the active material on both surfaces excluding the region of one end portion in the first direction). That is, one end of the current collector 11 in the longitudinal direction X1 is an active material layer non-coated portion 11A, and a part of the active material layer non-coated portion 11A is a tab welded portion 11a where the terminal tab 14 is welded. (Tab mounting portion).
  • a direction orthogonal to the longitudinal direction X1 in plan view is referred to as a width direction X2 (second direction).
  • a conductive metal foil is used as the current collector 11 (positive electrode current collector) of the positive electrode 2.
  • a conductive metal foil is used as the current collector 11 (negative electrode current collector) of the negative electrode 3.
  • a conductive metal foil is used as the current collector 11 (negative electrode current collector) of the negative electrode 3.
  • copper, stainless steel, nickel, titanium, or an alloy thereof is acted on.
  • the positive electrode active material layer for example, a positive electrode slurry obtained by dispersing a positive electrode active material, a conductive additive, and a binder serving as a binder in a solvent is applied to the positive electrode current collector.
  • a positive electrode active material is not particularly limited, and for example, a metal acid lithium compound represented by the general formula LiMxOy (where M is a metal and x and y are composition ratios of the metal M and oxygen O) is used. be able to.
  • lithium cobalt phosphate lithium nickel oxide, lithium manganate, ternary system (nickel / manganese / cobalt system), lithium iron phosphate, or the like is used.
  • the conductive additive in the positive electrode active material layer for example, acetylene black, carbon nanofiber or the like is used, and as the binder, for example, polyvinylidene fluoride or the like is used.
  • the negative electrode active material layer is, for example, a negative electrode active material, a binder serving as a binder, and a negative electrode slurry obtained by dispersing a conductive additive added as necessary in a solvent.
  • a negative electrode active material is not particularly limited, and for example, a carbon material made of carbon powder or graphite powder, or a metal oxide such as lithium titanate can be used. From the standpoint of realization, it is preferable to use a silicon-based active material.
  • polyvinylidene fluoride or the like can be used as the binder, and acetylene black, carbon nanotube, or the like can be used as the conductive auxiliary agent.
  • the terminal tabs 14 provided on the current collectors 11 of the positive electrode 2 and the negative electrode 3 are joined to the active material layer non-coated portion 11A of the current collector 11 so as to protrude outward in the longitudinal direction X1. Is provided.
  • the terminal tab 14 of the positive electrode 2 is formed of, for example, an aluminum plate.
  • the terminal tab 14 of the negative electrode 3 is formed of, for example, a nickel-plated copper plate or the like.
  • the electrolyte layer is formed, for example, by applying a liquid or semi-solid (gel-like) electrolyte 4A on the plate surface of the strip-shaped negative electrode 3, or by laminating the solid electrolyte 4A.
  • the electrolyte layer may be provided on either surface of the belt-like positive electrode 2 or the negative electrode 3, but may be provided on both plate surfaces of the positive electrode plate 2 and the negative electrode plate 3, for example.
  • the electrolyte layer has a separator function as in the present embodiment, and for example, the electrolyte 4A may be impregnated in the voids of the insulating porous body.
  • electrolyte 4A exists also in the space
  • heating or pressurization is performed.
  • heating or pressurization is performed, there is a high possibility that the electrolyte 4A protrudes. Therefore, at least one ridge or groove is provided between the tab weld portion 11a to which the terminal tab 14 is attached and the electrode active material layer 12.
  • a certain electrolyte leakage prevention zone is preferably arranged.
  • the electrolyte layer is formed from a semi-fixed gel electrolyte, for example, it is composed of a polymer matrix and a non-aqueous electrolyte solution (that is, a non-aqueous solvent and an electrolyte salt), and is gelled to cause stickiness on the surface.
  • An electrolyte layer can be formed by coating a thing on an electrode plate.
  • a gel electrolyte that is made of a polymer matrix and a non-aqueous solvent and becomes a solid electrolyte by solidifying after coating.
  • either a semi-fixed or fixed electrolyte 4A may be used.
  • an adhesive is applied when applied to the positive electrode 2 or the negative electrode 3. It is preferable to use a material that forms a self-supporting film that does not separate from the plate surface of the positive electrode 2 or the negative electrode 3.
  • polymer matrix examples include polyvinylidene fluoride (PVDF), hexafluoropropylene copolymer (PVDF-HFP), polyacrylonitrile, alkylene ethers such as polyethylene oxide and polypropylene oxide, polyester, polyamine, polyphosphazene, Polysiloxane or the like can be used.
  • PVDF polyvinylidene fluoride
  • PVDF-HFP hexafluoropropylene copolymer
  • alkylene ethers such as polyethylene oxide and polypropylene oxide
  • polyester polyamine, polyphosphazene, Polysiloxane or the like
  • polyamine polyphosphazene
  • Polysiloxane or the like can be used.
  • non-aqueous solvent examples include lactone compounds such as ⁇ -butyrolactone; carbonate ester compounds such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate; carboxylic acids such as methyl formate, methyl acetate, and methyl propionate.
  • lactone compounds such as ⁇ -butyrolactone
  • carbonate ester compounds such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate
  • carboxylic acids such as methyl formate, methyl acetate, and methyl propionate.
  • Ester compounds; ether compounds such as tetrahydrofuran and dimethoxyethane; ether compounds such as tetrahydrofuran and dimethoxyethane; nitrile compounds such as acetonitrile; sulfone compounds such as sulfolane; amide compounds such as
  • the gel electrolyte 4A after coating to form a solid electrolyte layer.
  • a nitrile compound such as acetonitrile
  • Ether compound A compound prepared by mixing amide compounds such as dimethylformamide alone or in combination of two or more kinds can be used.
  • the electrolyte salt is not particularly limited, and lithium salts such as lithium hexafluorophosphate, lithium perchlorate, and lithium tetrafluoroborate can be used.
  • the material in particular is not limited for the separator 4,
  • what consists of olefin-type polyethylene, a polypropylene, and a cellulose-type material can be used.
  • the nonwoven fabric etc. which consist of these materials can be employ
  • the active material layer non-coated portion 11 ⁇ / b> A is provided along the width direction X ⁇ b> 2 between the tab weld portion 11 a to which the terminal tab 14 is welded and the electrode active material layer 12.
  • An extending ridge 13 (electrolyte leakage prevention band) is formed.
  • the ridge portion 13 is provided over the entire width direction X2, and is formed in a shape that is folded into a mountain fold along the parallel fold lines 13a, 13b, and 13c along the width direction X2. That is, the ridge 13 is formed to protrude from the surface of the current collector 11 on which the electrode active material layer 12 is applied.
  • the protruding amount of the protruding portion 13 from the current collector 11 is not particularly limited and can be arbitrarily set. At least the electrolyte 4A applied to the electrode plate 10 at the time of manufacture is the protruding portion. It is set to a height that exceeds 13 and does not immerse in the active material layer non-coated portion 11A.
  • line part 13 is made into 1 item
  • the active material layer is not applied to the surface of one end side of the current collector 11 in the longitudinal direction X ⁇ b> 1.
  • the active material is applied in a state where the portion 11A is left, and the electrode active material layer 12 is provided.
  • the protruding portion 13 extending along the width direction X2 is formed in the active material layer non-coated portion 11A between the tab weld portion 11a to which the terminal tab 14 is welded and the electrode active material layer 12.
  • the protrusion 13 at this time can employ
  • the plurality of electrodes on which the ridges 13 are formed are stacked via the separator 4.
  • the positive electrode 2, the negative electrode 3, and the separator 4 shown in FIG. 1 formed in a strip shape are previously cut into cell units, and then the negative electrode 3, the separator 4, and the positive electrode 2 are stacked in this order.
  • a method may be employed in which the belt-like positive electrode 2, the negative electrode 3, and the separator 4 are continuously drawn out from a roll around which the belts are wound and sequentially laminated, and then the laminated body is divided into cell units.
  • the electrolyte 4A spreads in the surface direction of the current collector 11, but the ridge 13 is formed on the active material layer non-coated portion 11A before lamination. Therefore, since the protruding line portion 13 has a function of a weir, the electrolyte 4A is prevented from getting wet beyond the protruding line portion 13 and the tab welded portion 11a.
  • the terminal tab 14 is welded to the tab welded portion 11a in the active material layer non-coated portion 11A by a welding means or the like in a state of protruding from the current collector 11.
  • welding electrodes (not shown) are arranged above and below the electrode laminate, and welding is performed by sandwiching the terminal tab 14 and the active material layer non-coated portion 11A of the electrode plate 10 with the welding electrodes from above and below. Can be done.
  • the ridge portion 13 in the case of the ridge portion 13 as in the present embodiment, it is possible to prevent the ridge portion 13 from becoming a weir and the electrolyte 4A from leaking to the tab welded portion 11a side beyond the ridge portion 13. Therefore, it is possible to prevent the laminated tab welded portion 11a from adhering to the electrolyte 4A protruding from the coated portion, and the terminal tab 14 can be reliably welded based on predetermined welding conditions. As a result, a decrease in the welding force of the terminal tab 14 can be suppressed, and the welded portion of the terminal tab 14 can be prevented from shifting or coming off due to external vibrations or impacts. It is possible to prevent the deterioration of the reliability of conduction as a secondary battery.
  • the active material layer non-coated portion 11A is folded by pressing before and after the step of applying the active material while leaving the active material layer non-coated portion 11A on the current collector 11.
  • the ridge 13 can be easily formed.
  • the terminal tab 14 is welded by preventing the electrolyte 4A from adhering to the tab welded portion 11a to which the terminal tab 14 is welded.
  • the reduction in force can be suppressed, and the terminal tab 14 can be securely attached.
  • the manufacturing method of the lithium ion secondary battery by this invention was described, this invention is not limited to said embodiment, It can change suitably in the range which does not deviate from the meaning.
  • the protruding strip portion 13 is formed so as to protrude from the surface of the current collector 11 on which the electrode active material layer 12 is applied and bent into a mountain fold.
  • the configuration is not limited.
  • the electrolyte leakage prevention band is a concave strip 15 that is bent into a valley fold with respect to the surface of the current collector 11 on which the electrode active material layer 12 is applied. Also good.
  • a groove-like portion is formed between the separator 4 (electrolyte layer) and the tab weld portion 11a, and the electrolyte 4A protruding from the coating portion flows into the recess, so that the tab weld portion 11a side. Leakage can be prevented.
  • a protruding strip portion 16 having a top surface 16a may be used as another shape of the electrolyte leakage prevention band.
  • a protruding strip portion 16 having a top surface 16a may be used as another shape of the electrolyte leakage prevention band.
  • a protruding strip portion 16 having a top surface 16a may be used as shown in FIG. 5A.
  • a protruding strip portion 16 having a top surface 16a may be used.
  • an electrolyte leakage prevention band having both ridges and recesses may of course be used.
  • line part 13 is continuously arrange
  • the active material layer non-coating part 11A after the process of applying an active material to the surface of the end of the elongate direction X1 of the electrical power collector 11, the active material layer non-coating part 11A
  • an electrolyte leakage prevention zone may be formed on the current collector when the electrodes are stacked, that is, at the stage where the electrolyte 4A protrudes from the coating portion.
  • the configuration such as the number of stacked electrodes, the shape and size of the terminal tab 14, and the area of the active material layer non-coated portion 11 ⁇ / b> A is not limited to the above-described embodiment, and is appropriately set. Is possible.
  • the active material is applied to one surface of the current collector 11 leaving the active material layer non-coated portion 11 ⁇ / b> A, but at least one surface of the current collector 11 is applied. It suffices that the active material is coated, and the active material may be coated only on both surfaces of the current collector 11 or only on the other surface (the surface opposite to the one surface).
  • the lithium ion secondary battery and the manufacturing method thereof of the present invention it is possible to suppress a decrease in the adhesive strength of the terminal tab by preventing the electrolyte from adhering to the mounting portion of the terminal tab.
  • the tab can be securely attached.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

正極及び負極のうち一方は、その集電体(11)の少なくとも一方の表面に活物質層塗工部分と活物質層非塗工部分(11A)とを有し、活物質層非塗工部分(11A)には、端子用タブ(14)が取り付けられており、活物質層非塗工部分(11A)は、集電体(11)の長尺方向(X1)の一端側に設けられ、集電体(11)の活物質層非塗工部分(11A)には、端子用タブ(14)が取り付けられるタブ取付部(11a)と電極活物質層(12)との間に、幅方向(X2)に沿って延びる少なくとも1つの凸条又は凹条である電解質漏出防止帯(13)が設けられた構成となっている。

Description

リチウムイオン二次電池及びその製造方法
 本発明は、リチウムイオン二次電池及びその製造方法に関する。
本願は、2016年7月5日に日本に出願された特願2016-133464号に基づき優先権を主張し、その内容をここに援用する。
 リチウムイオン二次電池は、通常、正極活物質が正極集電体に塗工された正極板と、負極活物質が負極集電体に塗工された負極板とを、これらの間に電解質層を形成するセパレータを介装させて積層することにより製造されている(例えば、特許文献1参照)。
 このようなリチウムイオン二次電池では、正極および負極の電極から電気を取り出すために、集電体の一方向に延びる長尺方向の一端に活物質が塗工されていない活物質層非塗工部を設け、この活物質層非塗工部に端子用タブを集電体から突出させるようにして溶着させていることが知られている(例えば、特許文献2参照)。
日本国特開2015-88394号公報 日本国特開2012-54029号公報
 しかしながら、上記したような従来の積層型構造のリチウムイオン二次電池の製造方法において、端子用タブを溶着する前に、端子用タブが溶着される部分(タブ溶着部)に電解質等の汚れが付着する場合があり、溶着力が低下するといった問題がある。そのため、溶着力の低下により端子用タブがずれたり、外れ易くなったりするおそれがあり、電池内の内部抵抗が増大し、二次電池としての導通の信頼性が低下する虞がある。
 本発明は、上述する問題点に鑑みてなされたもので、端子用タブの取付部に電解質が付着することを防止することで、端子用タブの接着力の低下を抑えることができ、端子用タブの取り付けを確実に行うことができるリチウムイオン二次電池及びその製造方法を提供することを目的とする。
 本発明は、上記課題を解決して係る目的を達成するために、以下の態様を採用した。
(1)本発明の一態様に係るリチウムイオン二次電池は、正極と負極とが電解質層を介して積層された電極積層体と端子用タブを有するリチウムイオン二次電池であって、前記正極及び前記負極のうち一方は、その集電体の少なくとも一方の表面に活物質活物質層塗工部分と層非塗工部分と活物質層非塗工部分とを有し、前記活物質層非塗工部分には、前記端子用タブが取り付けられており、前記活物質層非塗工部分は、前記集電体の一方向に延びる第1方向の一端側に設けられ、前記集電体の活物質層非塗工部分には、前記端子用タブが取り付けられるタブ取付部と電極活物質層との間に、平面視で前記第1方向に直交する第2方向に沿って延びる少なくとも1つの凸条又は凹条である電解質漏出防止帯が設けられていることを特徴としている。
 この場合、集電体の活物質層非塗工部分におけるタブ取付部と電極活物質層との間に、第2方向に沿って延びる電解質漏出防止帯が形成されているので、電極の積層時に塗工部からはみ出された電解質の移動が電解質漏出防止帯によって規制される。例えば電解質漏出防止帯が凸条の場合には、凸条が堰となって電解質が電解質漏出防止帯を超えてタブ取付部側に漏出することを防止できる。また、電解質漏出防止帯が凹条の場合には、電解質層とタブ取付部との間に溝状部分が形成され、この凹部内に塗工部からはみ出した電解質が流入するため、タブ取付部側に漏出することを防ぐことができる。そのため、積層後のタブ取付部が塗工部からはみ出した電解質が付着した状態になることを防止でき、端子用タブの取付けを所定の取付け条件に基づいて確実に行うことができる。
 これにより、端子用タブの接着力の低下を抑えることができ、外部からの振動や衝撃によって端子用タブの取付部がずれたり、外れたりすることを抑制することができ、断線等を防止でき、二次電池としての導通の信頼性の低下を抑えることができる。
(2)上記(1)に記載の、リチウムイオン二次電池において、前記電解質漏出防止帯は、前記活物質層非塗工部分の前記第2方向の全体にわたって設けられていてもよい。
 この場合には、電解質の塗工部と集電体の活物質層非塗工部分のタブ取付部とを電解質漏出防止帯によって隙間なく完全に分断することができるので、積層時における電解質がタブ取付部側にはみ出すことをより確実に防ぐことが可能となる。
(3)上記(1)又は(2)に記載の、リチウムイオン二次電池において、前記電解質漏出防止帯は、前記集電体における前記電極活物質層が塗工される表面から突出して形成されていてもよい。
 この場合には、凸条が堰となって電解質が電解質漏出防止帯を超えてタブ取付部側に漏出することを防止することができる。
(4)本発明の他の態様に係るリチウムイオン二次電池の製造方法は、正極と負極とが電解質層を介して積層された電極積層体と端子用タブを有するリチウムイオン二次電池の製造方法であって、前記正極及び前記負極のうち一方は、その集電体の少なくとも一方の表面に活物質層塗工部分と活物質層非塗工部分とを有し、前記集電体の一方向に延びる第1方向の一端側の表面に、活物質層非塗工部分を残した状態で活物質を塗工する工程と、前記端子用タブが取り付けられるタブ取付部と電極活物質層との間の前記活物質層非塗工部分に、平面視で前記第1方向に直交する第2方向に沿って延びる少なくとも1つからなる凸条又は凹条である電解質漏出防止帯を形成する工程と、前記電解質漏出防止帯が形成された複数の前記電極を前記電解質層を介して積層する工程と、前記活物質層非塗工部分における前記タブ取付部に前記端子用タブを前記集電体から突出させるように取り付ける工程と、を有することを特徴としている。
(5)上記(4)に記載の、リチウムイオン二次電池の製造方法において、前記電解質漏出防止帯は、プレス加工により折り曲げられてもよい。
 この場合には、集電体に活物質層非塗工部分を残した状態で活物質を塗工する工程の前後においてプレス加工により活物質層非塗工部分を折り曲げことで簡単に電解質漏出防止帯を形成することができる。プレス加工を採用することで、その後の電解質漏出防止帯が形成された複数の電極を電解質層を介して積層する工程を連続的にかつ効率よく行うことができる。
 また、本発明の各態様に係る、リチウムイオン二次電池及びその製造方法によれば、端子用タブの取付部に電解質が付着することを防止することで、端子用タブの接着力の低下を抑えることができ、端子用タブの取り付けを確実に行うことができる。
図1は本発明の実施の形態によるリチウムイオン二次電池の構成を模式的に示した縦断面図である。 図2は図1に示すリチウムイオン二次電池の電極の一部を示す平面図である。 図3は図2に示す電極の側断面図である。 図4は変形例によるリチウムイオン二次電池の電極の側断面図であって、図3に対応する図である。 図5Aは変形例によるリチウムイオン二次電池の電極の側断面図であって、図3に対応する図である。 図5Bは変形例によるリチウムイオン二次電池の電極の側断面図であって、図3に対応する図である。
 以下、本発明の実施の形態によるリチウムイオン二次電池及びその製造方法について、図面に基づいて説明する。
 図1に示すように、本実施の形態によるリチウムイオン二次電池1は、正極2と、負極3と、正極2と負極3との間に介挿され電解質層を形成するセパレータ4と、をそれぞれ複数備えている。また、図示例のリチウムイオン二次電池1は、平面視矩形状の負極3、セパレータ4、正極2が順次積層されてなる電極ユニットを複数で有する電極積層体が備えられている。さらに、電極積層体の外部寄りには、セパレータ4を介して、片面にリチウム金属箔が配置された負極3が、該負極3が最外層となるように積層されている。
 正極2および負極3は、それぞれの端部から端子用タブ14を突出させた構成となっている。
 リチウムイオン二次電池1は、多層(ここでは2層)の電極積層体が、例えば、アルミニウム材料やポリマーフィルム等からなる外装体によって包装されるとともに、正極2に接続された端子用タブ14及び負極3に接続された端子用タブ14を外部に突出させた状態で外装体の外周部が封止されて構成されている。なお、図2及び図3は、上述した正極2および負極3のうちいずれか一方(以下、必要に応じて電極板10という)のみを示している。
 正極2及び負極3からなる電極板10は、図2及び図3に示すように、例えば平面視で長方形状に形成された銅箔からなる集電体11において、その長尺方向X1(一方向に延びる第1方向)の一端部の領域を除いた両面に活物質が塗工されてなる電極活物質層12が形成されたものである。すなわち、集電体11の長尺方向X1における一端部が活物質層非塗工部分11Aとなり、その活物質層非塗工部分11Aの一部が端子用タブ14が溶着されるタブ溶着部11a(タブ取付部)とされる。
 ここで、平面視で長尺方向X1に直交する方向を幅方向X2(第2方向)という。
 正極2の集電体11(正極集電体)としては、導電性金属箔が用いられ、例えばアルミニウム、ステンレス鋼、ニッケル、チタンまたはこれらの合金などが採用される。
 負極3の集電体11(負極集電体)としては、導電性金属箔が用いられ、例えば銅、ステンレス鋼、ニッケル、チタンまたはこれらの合金が作用される。
 正極活物質層(電極活物質層12)は、例えば、正極活物質、導電助剤、及び、バインダーとなる結着剤を溶媒に分散させてなる正極用スラリーを正極集電体に塗工することで形成されるものであり、例えば集電体11の幅方向X2の両端部間の領域において、一方の表面に塗工される。
 正極活物質としては、特に制限されず、例えば、一般式LiMxOy(ただし、Mは金属であり、x及びyは金属Mと酸素Oの組成比である)で表される金属酸リチウム化合物を用いることができる。具体的には、金属酸リチウム化合物としては、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウムや、これらの三元系(ニッケル・マンガン・コバルト系)の他、リン酸鉄リチウム等が用いられる。
 正極活物質層における導電助剤としては、例えばアセチレンブラック、カーボンナノファイバー等が用いられ、結着剤としては、例えばポリフッ化ビニリデン等が用いられる。
 負極活物質層(電極活物質層12)は、例えば、負極活物質、バインダーとなる結着剤、及び、必要に応じて加えられた導電助剤を溶媒に分散させてなる負極用スラリーを集電体11に塗工することで形成されるものであり、例えば集電体11の幅方向X2の両端部間の領域において、一方の表面に塗工される。
 負極活物質としては、特に制限されず、例えば、炭素粉末や黒鉛粉末等からなる炭素材料やチタン酸リチウム等の金属酸化物を用いることができるが、より高容量のリチウムイオン二次電池1が実現できる観点から、シリコン系活物質を用いることが好ましい。
 結着材としては、例えば、ポリフッ化ビニリデン等を用いることができ、導電助剤としては、例えば、アセチレンブラック、カーボンナノチューブ等を用いることができる。
 正極2及び負極3のそれぞれの集電体11に設けられる端子用タブ14は、集電体11の活物質層非塗工部分11Aに接合されて長尺方向X1で外方に突出するように設けられている。正極2の端子用タブ14は、例えば、アルミニウム板等により形成されている。
また、負極3の端子用タブ14は、例えば、ニッケルめっきを施した銅板等により形成される。
電解質層は、例えば、帯状の負極3の板面上に、液状、半固体(ゲル状)の電解質4Aが塗工されて形成されるか、或いは固体状の電解質4Aが積層されてなる。この電解質層としては、帯状の正極2又は負極3の何れかの面に設けられていればよいが、例えば、正極板2及び負極板3の両板面に設けられていてもよい。
また、電解質層は、本実施の形態のようにセパレータ機能を有し、例えば、絶縁性多孔質体の空隙に電解質4Aが含浸されている構成とすることができる。なお、電解質4Aは、電解質層以外に、正極2および負極3の電極活物質層12の空隙にも存在することが好ましい。
ここで、上述のように、絶縁性多孔質体の空隙に電解質4Aを含浸させたり、正極2および負極3の電極活物質層12の空隙に存在させる際に、加熱や加圧を行って、時間を短縮する方法がある。加熱や加圧を行うと、電解質4Aがはみ出す可能性が高くなるため、端子用タブ14が取り付けられるタブ溶着部11aと電極活物質層12との間に、少なくとも1つの凸条又は凹条である電解質漏出防止帯が配置されるのが好ましい。
電解質層を半固定であるゲル状電解質から形成する場合には、例えば、高分子マトリックス及び非水電解質液(即ち、非水溶媒及び電解質塩)からなり、ゲル化されて表面に粘着性を生じるものを電極板上に塗工することで電解質層を形成できる。あるいは、後述するように、ゲル状電解質として、高分子マトリックス及び非水溶媒からなり、塗工後に固体化することで固体電解質となるものを用いることも可能である。
なお、本実施の形態においては、半固定又は固定の何れの電解質4Aを用いてもよいが、半固定のゲル状電解質を用いる場合には、正極2又は負極3に塗工された際に粘着性を有するものが用いられ、また、正極2又は負極3の板面から分離しない自立膜を形成するものを用いることが好ましい。
高分子マトリックスとしては、例えば、ポリフッ化ビニリデン(PVDF)、ヘキサフルオロプロピレン共重合体(PVDF-HFP)、ポリアクリロニトリル、ポリエチレンオキシドやポリプロピレンオキシド等のアルキレンエーテルをはじめ、ポリエステル、ポリアミン、ポリフォスファゼン、ポリシロキサン等を用いることができる。
非水溶媒としては、例えば、γ-ブチロラクトン等のラクトン化合物;エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等の炭酸エステル化合物;ギ酸メチル、酢酸メチル、プロピオン酸メチル等のカルボン酸エステル化合物;テトラヒドロフラン、ジメトキシエタン等のエーテル化合物;テトラヒドロフラン、ジメトキシエタン等のエーテル化合物;アセトニトリル等のニトリル化合物;スルホラン等のスルホン化合物、ジメチルホルムアミド等のアミド化合物等を、単独または2種類以上を混合して調製されたものを用いることができる。
なお、ゲル状の電解質4Aを塗工後に固体化させ、固体電解質層として形成することも可能であり、この場合には、ゲル状の電解質4Aとして、例えば、アセトニトリル等のニトリル化合物;テトラヒドロフラン等のエーテル化合物:ジメチルホルムアミド等のアミド系化合物を単独または2種類以上を混合して調製されたものを用いることができる。
電解質塩としては、特に限定されないが、六フッ化リン酸リチウム、過塩素酸リチウム、四フッ化ホウ酸リチウム等のリチウム塩等を使用することができる。
セパレータ4は、特に材質は限定されないが、例えば、オレフィン系のポリエチレン、ポリプロピレンやセルロース系の材料からなるものを用いることができる。そして、これらの材料からなる不織布等をセパレータ4に採用することができる。
図1及び図2に示すように、活物質層非塗工部分11Aには、端子用タブ14が溶着されるタブ溶着部11aと電極活物質層12との間に、幅方向X2に沿って延びる凸条部13(電解質漏出防止帯)が形成されている。この凸条部13は、幅方向X2の全体にわたって設けられ、幅方向X2に沿う平行な折れ線13a、13b、13cに沿って山折りに折り曲げられた形状で形成されている。つまり、凸条部13は、集電体11における電極活物質層12が塗工される表面から突出して形成されている。凸条部13の集電体11からの突出量は、とくに制限されることはなく、任意に設定することができるが、少なくとも製造時において電極板10に塗工される電解質4Aが凸条部13を超えて活物質層非塗工部分11Aに浸漬しない高さに設定される。
なお、本実施の形態では、凸条部13が1条(山が1つ)としているが、凸条部13が複数条で設ける構成であってもよい。
次に、図2及び図3に示すように、上述したリチウムイオン二次電池1の製造方法としては、先ず、集電体11の長尺方向X1の一端側の表面に活物質層非塗工部分11Aを残した状態で活物質を塗工して電極活物質層12を設ける。
その後、端子用タブ14が溶着されるタブ溶着部11aと電極活物質層12との間の活物質層非塗工部分11Aにおいて幅方向X2に沿って延びる凸条部13を形成する。このときの凸条部13は、適宜な加工を採用することができるが、例えばプレスにより折り曲げることにより加工される。
次いで、凸条部13が形成された複数の電極をセパレータ4を介して積層する。具体的には、例えば帯状に形成された図1に示す正極2、負極3、及びセパレータ4を予めセル単位に切断した後に、これらを負極3、セパレータ4及び正極2の順で積層する。或いは帯状の正極2、負極3及びセパレータ4を、これらを巻き回したロールから連続的に繰り出して順次積層させた後に、この積層体をセル単位に分割する方法を採用してもよい。
このとき、セパレータ4の電解質層を積層させる際には、電解質4Aが集電体11の面方向に広がるが、積層前に活物質層非塗工部分11Aに凸条部13が形成されているので、その凸条部13が堰の機能を有するため、電解質4Aが凸条部13を超えてタブ溶着部11aが濡らされることが防止される。
さらにその後、活物質層非塗工部分11Aにおけるタブ溶着部11aに端子用タブ14を集電体11から突出させた状態で溶接等の接合手段により溶着する。具体的には、不図示の溶接電極を電極積層体の上下に配置し、端子用タブ14と電極板10の活物質層非塗工部分11Aとを上下から溶接電極で狭持して溶接を行なうことができる。
次に、上述したリチウムイオン二次電池1及びその製造方法の作用について図面を用いて詳細に説明する。
図2及び図3に示すように、本実施の形態では、集電体11の活物質層非塗工部分11Aにおけるタブ溶着部11aと電極活物質層12との間に、幅方向X2に沿って延びる凸条部13が形成されているので、電極の積層時に塗工部からはみ出された電解質4Aの移動が凸条部13によって規制される。つまり、本実施の形態のように凸条部13の場合には、凸条部13が堰となって電解質4Aが凸条部13を超えてタブ溶着部11a側に漏出することを防止できる。そのため、積層後のタブ溶着部11aが塗工部からはみ出した電解質4Aが付着した状態になることを防止でき、端子用タブ14の溶着を所定の溶着条件に基づいて確実に行うことができる。
これにより、端子用タブ14の溶着力の低下を抑えることができ、外部からの振動や衝撃によって端子用タブ14の溶着部がずれたり、外れたりすることを抑制することができ、断線等を防止でき、二次電池としての導通の信頼性の低下を抑えることができる。
また、本実施の形態では、凸条部13が活物質層非塗工部分11Aの幅方向X2の全体にわたって設けられているので、電解質4Aの塗工部と集電体11の活物質層非塗工部分11Aのタブ溶着部11aとを凸条部13によって隙間なく完全に分断することができるので、積層時における電解質4Aがタブ溶着部11a側にはみ出すことをより確実に防ぐことが可能となる。
また、本実施の形態では、集電体11に活物質層非塗工部分11Aを残した状態で活物質を塗工する工程の前後において、プレス加工により活物質層非塗工部分11Aを折り曲げことで簡単に凸条部13を形成することができる。プレス加工を採用することで、その後の凸条部13が形成された複数の電極を電解質層を介して積層する工程を連続的にかつ効率よく行うことができる。
上述のように本実施の形態によるリチウムイオン二次電池の製造方法では、端子用タブ14が溶着されるタブ溶着部11aに電解質4Aが付着することを防止することで、端子用タブ14の溶着力の低下を抑えることができ、端子用タブ14の取り付けを確実に行うことができる。
以上、本発明によるリチウムイオン二次電池の製造方法の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
例えば、本実施の形態では、集電体11における電極活物質層12が塗工される表面から突出し、山折りに折り曲げられた形状の凸条部13を形成したものとしているが、このような構成に限定されることはない。
例えば、図4に示す変形例のように電解質漏出防止帯が集電体11における電極活物質層12が塗工される表面に対して、谷折りに折り曲げられた形状の凹条15であってもよい。
この場合には、セパレータ4(電解質層)とタブ溶着部11aとの間に溝状部分が形成され、この凹部内に塗工部からはみ出した電解質4Aが流入するため、タブ溶着部11a側に漏出することを防ぐことができる。
また、電解質漏出防止帯の他の形状として、図5Aに示すように、天面16aを有するような凸条部16であってもよい。あるいは、図5Bに示すように、凸形状が側面視で全体的に湾曲した凸条部17を採用することも可能である。
さらに、凸条と凹状の両方を有する電解質漏出防止帯であっても勿論かまわない。
さらにまた、本実施の形態では、凸条部13が集電体11の活物質層非塗工部分11Aにおいて、幅方向X2の全体にわたって連続して配置されているが、これに制限されることはなく、電解質漏出防止帯の幅方向X2に沿う配置領域が部分的とすることも可能である。要は、電極の積層時において、電解質4Aがタブ溶着部11aの範囲まではみ出して濡らすことが防止されれば良く、タブ溶着部11aを避けて電解質4Aが漏出するように電解質漏出防止帯が配置されていれば良いのである。
また、本実施の形態によるリチウムイオン二次電池1の製造方法では、集電体11の長尺方向X1の一端の表面に活物質を塗工する工程の後に、活物質層非塗工部分11Aに凸条部13を形成する工程を行う順序の方法としているが、この製造工程を逆にして、凸条部13を形成した後に活物質層を設ける工程とすることも可能である。要は、電極の積層時、すなわち電解質4Aが塗工部からはみ出す段階で、集電体に電解質漏出防止帯が形成されていれば良いのである。
さらに、電極の積層数、端子用タブ14の形状、大きさ、活物質層非塗工部分11Aの面積などの構成についても上述した実施の形態に限定されることはなく、適宜、設定することが可能である。
例えば、本実施の形態では、集電体11の一方の表面に活物質層非塗工部分11Aを残して活物質が塗工された形態としているが、集電体11の少なくとも一方の表面に活物質が塗工されていればよく、集電体11の両面、あるいは他方の表面(一方の表面の反対の面)のみに活物質が塗工された形態であってもよい。
その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能である。
 本発明のリチウムイオン二次電池及びその製造方法によれば、端子用タブの取付部に電解質が付着することを防止することで、端子用タブの接着力の低下を抑えることができ、端子用タブの取り付けを確実に行うことができる。
 1 リチウムイオン二次電池
 2 正極
 3 負極
 4 セパレータ(電解質層)
 4A 電解質
 10 電極板
 11 集電体
 11A 活物質層非塗工部分
 11a タブ溶着部(タブ取付部)
 12 電極活物質層
 13、16、17 凸条部(電解質漏出防止帯)
 15 凹条部(電解質漏出防止帯)
 14 端子用タブ
 X1 長尺方向(第1方向)
 X2 幅方向(第2方向)

Claims (5)

  1.  正極と負極とが電解質層を介して積層された電極積層体と端子用タブを有するリチウムイオン二次電池であって、
     前記正極及び前記負極のうち一方は、その集電体の少なくとも一方の表面に活物質層塗工部分と活物質層非塗工部分とを有し、
     前記活物質層非塗工部分には、前記端子用タブが取り付けられており、
     前記活物質層非塗工部分は、前記集電体の一方向に延びる第1方向の一端側に設けられ、
     前記集電体の活物質層非塗工部分には、前記端子用タブが取り付けられるタブ取付部と電極活物質層との間に、平面視で前記第1方向に直交する第2方向に沿って延びる少なくとも1つの凸条又は凹条である電解質漏出防止帯が設けられていることを特徴とする、リチウムイオン二次電池。
  2.  前記電解質漏出防止帯は、前記活物質層非塗工部分の前記第2方向の全体にわたって設けられていることを特徴とする、請求項1に記載のリチウムイオン二次電池。
  3.  前記電解質漏出防止帯は、前記集電体における前記電極活物質層が塗工される表面から突出して形成されていることを特徴とする、請求項1又は2に記載のリチウムイオン二次電池。
  4.  正極と負極とが電解質層を介して積層された電極積層体と端子用タブを有するリチウムイオン二次電池の製造方法であって、
    前記正極及び前記負極のうち一方は、その集電体の少なくとも一方の表面に活物質層塗工部分と活物質層非塗工部分とを有し、
     前記集電体の一方向に延びる第1方向の一端側の表面に、活物質層非塗工部分を残した状態で活物質を塗工する工程と、
     前記端子用タブが取り付けられるタブ取付部と電極活物質層との間の前記活物質層非塗工部分に、平面視で前記第1方向に直交する第2方向に沿って延びる少なくとも1つからなる凸条又は凹条である電解質漏出防止帯を形成する工程と、
     前記電解質漏出防止帯が形成された複数の前記電極を前記電解質層を介して積層する工程と、
     前記活物質層非塗工部分における前記タブ取付部に前記端子用タブを前記集電体から突出させるように取り付ける工程と、
     を有することを特徴とする、リチウムイオン二次電池の製造方法。
  5.  前記電解質漏出防止帯は、プレス加工により折り曲げられることを特徴とする、請求項4に記載のリチウムイオン二次電池の製造方法。
PCT/JP2017/024648 2016-07-05 2017-07-05 リチウムイオン二次電池及びその製造方法 WO2018008682A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17824285.5A EP3483975A4 (en) 2016-07-05 2017-07-05 LITHIUM-ION SECONDARY BATTERY AND METHOD FOR MANUFACTURING THE LITHIUM-ION SECONDARY BATTERY
CN201780035879.5A CN109314282A (zh) 2016-07-05 2017-07-05 锂离子二次电池及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-133464 2016-07-05
JP2016133464A JP6450349B2 (ja) 2016-07-05 2016-07-05 リチウムイオン二次電池の製造方法

Publications (1)

Publication Number Publication Date
WO2018008682A1 true WO2018008682A1 (ja) 2018-01-11

Family

ID=60912182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024648 WO2018008682A1 (ja) 2016-07-05 2017-07-05 リチウムイオン二次電池及びその製造方法

Country Status (5)

Country Link
EP (1) EP3483975A4 (ja)
JP (1) JP6450349B2 (ja)
CN (1) CN109314282A (ja)
TW (1) TW201817066A (ja)
WO (1) WO2018008682A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3799179A1 (en) 2019-09-26 2021-03-31 Manuel Torres Martinez Pressurized electrochemical battery and process for manufacturing the same
US11211634B2 (en) 2018-08-28 2021-12-28 Manuel Torres Martinez Pressurized electrochemical battery and process for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113066955B (zh) * 2021-03-11 2024-02-13 珠海冠宇电池股份有限公司 一种电极片及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129393A (ja) * 2003-10-24 2005-05-19 Nissan Motor Co Ltd 二次電池
JP2010157510A (ja) * 2008-12-31 2010-07-15 Samsung Sdi Co Ltd 二次電池
JP2016027544A (ja) * 2013-10-22 2016-02-18 株式会社半導体エネルギー研究所 電子機器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4762353B1 (ja) * 2010-03-31 2011-08-31 ナミックス株式会社 リチウムイオン二次電池及びその製造方法
US20150140396A1 (en) * 2013-11-15 2015-05-21 Semiconductor Energy Laboratory Co., Ltd. Power storage unit and electronic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129393A (ja) * 2003-10-24 2005-05-19 Nissan Motor Co Ltd 二次電池
JP2010157510A (ja) * 2008-12-31 2010-07-15 Samsung Sdi Co Ltd 二次電池
JP2016027544A (ja) * 2013-10-22 2016-02-18 株式会社半導体エネルギー研究所 電子機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3483975A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11211634B2 (en) 2018-08-28 2021-12-28 Manuel Torres Martinez Pressurized electrochemical battery and process for manufacturing the same
US11309577B2 (en) 2018-08-28 2022-04-19 Manuel Torres Martinez Pressurized electrochemical battery and process for manufacturing the same
EP3799179A1 (en) 2019-09-26 2021-03-31 Manuel Torres Martinez Pressurized electrochemical battery and process for manufacturing the same

Also Published As

Publication number Publication date
CN109314282A (zh) 2019-02-05
TW201817066A (zh) 2018-05-01
JP2018006206A (ja) 2018-01-11
EP3483975A4 (en) 2019-12-04
EP3483975A1 (en) 2019-05-15
JP6450349B2 (ja) 2019-01-09

Similar Documents

Publication Publication Date Title
US10297867B2 (en) Sheet-laminated lithium ion secondary battery and production method for sheet-laminated lithium ion secondary battery
JP6859059B2 (ja) リチウムイオン二次電池及びその製造方法
JP5157244B2 (ja) 電気化学デバイス及びその製造方法
JP6735445B2 (ja) 捲回型電池
JP6381045B2 (ja) 二次電池
JP4623039B2 (ja) 電気化学素子
JP6572204B2 (ja) 二次電池とその製造方法
JP5787750B2 (ja) 多層の膜電極接合体の製造方法
WO2016121734A1 (ja) 二次電池
JP2013012405A (ja) 非水系二次電池
CN107851768B (zh) 电化学器件的制造方法
JP7289072B2 (ja) リチウム二次電池
WO2018008682A1 (ja) リチウムイオン二次電池及びその製造方法
JP2010161249A (ja) リチウムイオンキャパシタ
JP2011129446A (ja) ラミネート形電池
JP2017059538A (ja) 積層型電池
JP6619594B2 (ja) リチウムイオン二次電池及びその製造方法
EP3595075B1 (en) Secondary battery
JP7194940B2 (ja) リチウム二次電池
CN111213277B (zh) 非水电解液二次电池
JP7113226B2 (ja) リチウム二次電池
JP2018147602A (ja) 二次電池
CN116995187A (zh) 电极、电极组件及其制造方法
JP2012129024A (ja) ラミネート形電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17824285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017824285

Country of ref document: EP

Effective date: 20190205