WO2018008176A1 - 磁気センサおよびそれを備えた電流センサ - Google Patents

磁気センサおよびそれを備えた電流センサ Download PDF

Info

Publication number
WO2018008176A1
WO2018008176A1 PCT/JP2017/003558 JP2017003558W WO2018008176A1 WO 2018008176 A1 WO2018008176 A1 WO 2018008176A1 JP 2017003558 W JP2017003558 W JP 2017003558W WO 2018008176 A1 WO2018008176 A1 WO 2018008176A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
magnetic
magnetic field
measured
magnetic sensor
Prior art date
Application number
PCT/JP2017/003558
Other languages
English (en)
French (fr)
Inventor
清水 康弘
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201780038845.1A priority Critical patent/CN109328307B/zh
Priority to JP2018525925A priority patent/JP6555421B2/ja
Priority to DE112017003404.3T priority patent/DE112017003404T5/de
Publication of WO2018008176A1 publication Critical patent/WO2018008176A1/ja
Priority to US16/152,589 priority patent/US10884029B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/205Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using magneto-resistance devices, e.g. field plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/091Constructional adaptation of the sensor to specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the present invention relates to a magnetic sensor and a current sensor including the magnetic sensor.
  • Patent Document 1 JP-A-2013-242301 is a prior art document that discloses a current sensor including a sensor substrate having a magnetoelectric conversion element formed on a semiconductor substrate and a bias magnet.
  • the sensor substrate is mounted on the front surface of the mounting substrate, and the bias magnet is mounted on the back surface of the mounting substrate.
  • the present invention has been made in view of the above-described problems, and ensures a stable magnetic characteristic of a permanent magnet that is a bias magnet, and a magnetic sensor in which a decrease in detection accuracy is suppressed, and a current provided therewith
  • An object is to provide a sensor.
  • the magnetic sensor according to the first aspect of the present invention is a magnetic sensor that measures the strength of a magnetic field to be measured.
  • the magnetic sensor includes at least one permanent magnet and at least one magnetosensitive body that detects a measured magnetic field in a state where a bias magnetic field is applied from the permanent magnet.
  • the permanent magnet has a shape in which the value of the permeance coefficient with the application direction of the magnetic field to be measured as the magnetization direction is 1.5 times or less than the value of the permeance coefficient in the magnetization direction of the permanent magnet.
  • the permanent magnet has a shape in which the value of the permeance coefficient with the application direction of the magnetic field to be measured as the magnetization direction is equal to or less than the value of the permeance coefficient in the magnetization direction of the permanent magnet.
  • the permanent magnet has a shape in which the value of the permeance coefficient with the application direction of the magnetic field to be measured as the magnetization direction is 0.6 times or less the value of the permeance coefficient in the magnetization direction of the permanent magnet.
  • the permanent magnet has a shape in which the value of the permeance coefficient in the magnetization direction of the permanent magnet is greater than 2.
  • the permanent magnet has a shape in which the value of the permeance coefficient in the magnetization direction of the permanent magnet is equal to or greater than the value of the permeance coefficient in the magnetization direction that is the maximum energy product of the demagnetization curve of the permanent magnet.
  • At least one permanent magnet is composed of a plurality of permanent magnets.
  • the magnetic field applied from some permanent magnets of the plurality of permanent magnets is applied to the remaining permanent magnets of the plurality of permanent magnets in the magnetization direction of the remaining permanent magnets.
  • the magnetic field applied from the remaining permanent magnet is applied to the magnetization direction of the partial permanent magnet with respect to the partial permanent magnet.
  • a current sensor includes a conductor having a measured current flowing in a longitudinal direction and the above-described magnetic sensor for detecting a measured magnetic field generated by the measured current flowing through the conductor.
  • the magnetization direction of the permanent magnet is different from the direction perpendicular to the longitudinal direction.
  • the magnetization direction of the permanent magnet is along the longitudinal direction.
  • the present invention it is possible to secure the stability of the magnetic characteristics of the permanent magnet that is a bias magnet, and to suppress a decrease in detection accuracy of the magnetic sensor and the current sensor including the same.
  • FIG. 1 is a plan view showing the configuration of the magnetic sensor according to Embodiment 1 of the present invention.
  • FIG. 2 is a front view of the magnetic sensor of FIG. 1 as viewed from the direction of arrow II.
  • the magnetic sensor 100 includes at least one permanent magnet 110 and at least one magnetic field to be measured in a state where a bias magnetic field is applied from the permanent magnet 110.
  • Two magnetic sensitive bodies 120 In the present embodiment, one magnetic sensitive body 120 is provided on one permanent magnet 110.
  • the positional relationship between the magnetic sensitive body 120 and the permanent magnet 110 is not limited to this. Further, a plurality of at least one of the magnetic sensitive body 120 and the permanent magnet 110 may be provided.
  • the permanent magnet 110 and the magnetic sensitive body 120 are joined to each other with an adhesive. After the permanent magnet 110 and the magnetic sensitive body 120 are bonded together with an adhesive or an adhesive sheet, the magnetic sensor 100 may be separated into pieces by cutting with a dicer or the like.
  • the magnetic sensor 100 may be packaged with a resin, or may be potted with a silicone resin or an epoxy resin.
  • the driving method of the magnetic sensor 100 can be selected as appropriate, such as constant current driving or pulse driving.
  • the magnetic sensitive body 120 has a Wheatstone bridge type bridge circuit including four AMR (Anisotropic Magneto Resistance) elements.
  • the magnetic sensitive body 120 may have a half-bridge circuit composed of two magnetoresistive elements.
  • the magnetosensitive body 120 may have only one magnetoresistive element, and the plurality of magnetosensitive bodies 120 may be electrically connected to form a bridge circuit.
  • the magnetosensitive body 120 may include magnetoresistive elements such as GMR (Giant Magneto Resistance), TMR (Tunnel Magneto Resistance), BMR (Ballistic Magneto Resistance), CMR (Colossal Magneto Resistance) instead of the AMR element. Good.
  • the AMR element has an odd function input / output characteristic by including a barber pole type electrode.
  • the magnetoresistive element included in the magnetosensitive body 120 includes a barber pole electrode so that a current flows in a direction that forms a predetermined angle with respect to the magnetization direction of the magnetoresistive film in the magnetoresistive element. Has been.
  • the magnetoresistive film is made of a magnetic material such as permalloy.
  • the magnetoresistive film is formed using a sputtering device or a vapor deposition device.
  • the magnetization direction of the magnetoresistive film is determined by at least one of the application direction of the bias magnetic field applied from the permanent magnet 110 disposed in the vicinity of the magnetoresistive film and the shape anisotropy of the magnetoresistive film. For example, when the aspect ratio of the planar shape of the magnetoresistive film is small, the influence of the shape anisotropy of the magnetoresistive film is small, and the magnetization of the magnetoresistive film is mainly due to the application direction of the bias magnetic field applied from the permanent magnet 110. The direction is determined. When the shape anisotropy of the magnetoresistive film is large, the influence of the shape anisotropy of the magnetoresistive film on the magnetization direction of the magnetoresistive film becomes large.
  • FIG. 3 is a perspective view showing the shape of a permanent magnet included in the magnetic sensor according to Embodiment 1 of the present invention.
  • the permanent magnet 110 has a rectangular parallelepiped outer shape having a length D, a width W, and a thickness H.
  • the permanent magnet 110 isotropic ferrite, anisotropic ferrite, samarium cobalt, alnico or neodymium can be used.
  • anisotropic ferrite, samarium cobalt, or neodymium is used as the material of the permanent magnet 110, the coercive force of the permanent magnet 110 can be increased, so that the stability of the magnetic characteristics of the permanent magnet 110 can be improved.
  • the permanent magnet 110 may be composed of a sintered magnet or a bonded magnet.
  • the magnetization direction 1 of the permanent magnet 110 is along the length direction of the permanent magnet 110.
  • a bias magnetic field is applied to the magnetic sensitive body 120 in a direction along the magnetization direction 1 of the permanent magnet 110.
  • the application direction of the measured magnetic field 2 to the magnetic sensitive body 120 is along the width direction of the permanent magnet 110 and is orthogonal to the magnetization direction 1 of the permanent magnet 110.
  • the application direction of the magnetic field 2 to be measured with respect to the magnetic sensitive body 120 and the magnetization direction 1 of the permanent magnet 110 need only be different from each other. , They may intersect at an angle other than 90 °.
  • a magnetic field to be measured 2 having a direction different from the magnetization direction 1 is applied to the permanent magnet 110.
  • the detection accuracy of the magnetic sensor 100 decreases. That is, when at least one of the magnetization direction and the magnetization amount of the permanent magnet 110 is changed by applying the magnetic field 2 to be measured, at least one of the application direction and the magnetization amount of the bias magnetic field to the magnetic body 120 is changed. The detection accuracy of the magnetic field to be measured decreases.
  • the permanent magnet 110 has a permeance coefficient value in which the direction of application of the magnetic field 2 to be measured is the magnetization direction, which is less than or equal to the value of the permeance coefficient in the magnetization direction 1 of the permanent magnet 110. It has the shape which becomes.
  • the permanent magnet 110 preferably has a shape in which the value of the permeance coefficient in the magnetization direction 1 of the permanent magnet 110 is greater than 2.
  • the relationship between the value of the permeance coefficient with the application direction of the magnetic field 2 to be measured as the magnetization direction and the value of the permeance coefficient in the magnetization direction 1 of the permanent magnet 110 is easy to change the magnetization direction of the permanent magnet 110.
  • An example of an experiment that verified the effect on the environment will be described.
  • Table 1 summarizes the shapes and permeance coefficients of Samples 1 to 4 in this experimental example.
  • W 1.0 mm
  • H 0.5 mm
  • W 1.6 mm
  • H 0.5 mm
  • W 2.4 mm
  • H 0.5 mm
  • W 3.0 mm
  • H 0.5 mm.
  • the permeance coefficient P1 in the magnetization direction 1 of the permanent magnet along the length direction of the permanent magnet is 12.29 for sample 1, 8.83 for sample 2, 6.66 for sample 3, 4 is 5.71
  • the permeance coefficient P2 with the direction of application of the magnetic field 2 to be measured along the width direction of the permanent magnet as the magnetization direction is 2.95 for sample 1, 5.55 for sample 2, and sample 3 Is 9.75 and sample 4 is 13.37. Therefore, P2 / P1 is 0.24 for sample 1, 0.63 for sample 2, 1.46 for sample 3, and 2.34 for sample 4.
  • Table 2 summarizes the magnetic moment and the strength of magnetization after magnetizing samples 1 to 4 of this experimental example.
  • VSM vibrating sample magnetometer
  • the measured value of the magnetic moment of the permanent magnet magnetized in the magnetization direction 1 with a vibrating sample magnetometer (VSM) is 0.35 emu for sample 1 and 2 for sample 2 0.56 emu
  • sample 3 is 0.82 emu
  • sample 4 is 0.99 emu
  • the magnetization intensity of the permanent magnet in the magnetization direction 1 is 30.0 emu / cm 3 for sample 1 and 346.mu. for sample 2. It was 9 emu / cm 3
  • Sample 3 was 339.6 emu / cm 3
  • Sample 4 was 330.0 emu / cm 3 .
  • the measured value of the magnetic moment of the permanent magnet in the direction in which the magnetic field 2 to be measured is measured by VSM is 0.005 emu for sample 1, 0.025 emu, sample 3 is 0.040 emu, sample 4 is 0.055 emu, the magnetization strength of the permanent magnet in the direction of application of the magnetic field 2 to be measured is 5.00 emu / cm 3 for sample 1, and sample 2 is 15.63 emu / cm 3 , Sample 3 was 16.67 emu / cm 3 , and Sample 4 was 18.33 emu / cm 3 .
  • the ratio of the magnetization intensity of the permanent magnet in the application direction of the magnetic field to be measured 2 to the magnetization intensity of the permanent magnet in the magnetization direction 1 is 1.4% for the sample 1, 4.5% for the sample 2, and the sample 3 was 4.9% and Sample 4 was 5.6%.
  • FIG. 4 is a graph showing the relationship between P2 / P1 and the strength of magnetization of the permanent magnet in the direction of application of the magnetic field to be measured.
  • FIG. 5 is a graph showing the relationship between P2 / P1 and the ratio of the magnetization strength of the permanent magnet in the application direction of the magnetic field to be measured to the magnetization strength of the permanent magnet in the magnetization direction.
  • the vertical axis indicates the magnetization intensity (emu / cm 3 ) of the permanent magnet in the direction of applying the magnetic field to be measured
  • the horizontal axis indicates P2 / P1.
  • the vertical axis represents the ratio (%) of the magnetization strength of the permanent magnet in the application direction of the magnetic field to be measured to the magnetization strength of the permanent magnet in the magnetization direction
  • the horizontal axis represents P2 / P1.
  • the permanent magnet 110 has a shape in which the value of the permeance coefficient with the application direction of the magnetic field 2 to be measured as the magnetization direction is 1.5 times or less the value of the permeance coefficient in the magnetization direction 1 of the permanent magnet 110. Preferably it is.
  • the value of the permeance coefficient P2 with the direction of application of the magnetic field 2 to be measured as the magnetization direction is 0.6 times the value of the permeance coefficient P1 in the magnetization direction 1 of the permanent magnet.
  • the rate of increase of the magnetization strength of the permanent magnet in the direction of application of the magnetic field to be measured 2 and the magnetization of the permanent magnet in the direction of application of the magnetic field to be measured 2 relative to the strength of magnetization of the permanent magnet in the magnetization direction 1 will be described.
  • the rate of increase in the strength ratio was rapidly decreasing. When this condition was satisfied, it was confirmed that the permanent magnet was not easily magnetized in the application direction of the magnetic field 2 to be measured, and the stability of the magnetic characteristics of the permanent magnet could be further ensured.
  • the permanent magnet 110 has a shape in which the value of the permeance coefficient with the application direction of the magnetic field 2 to be measured as the magnetization direction is not more than 0.6 times the value of the permeance coefficient in the magnetization direction 1 of the permanent magnet 110. More preferably.
  • FIG. 6 is a graph showing a demagnetization curve and permeance line of a permanent magnet.
  • the vertical axis represents the magnetic flux density B and the horizontal axis represents the magnetic field strength H.
  • the strength of the magnetic field is Hd, and the magnetic flux density at this time is Bd.
  • the permeance coefficient is represented by Bd / Hd.
  • a straight line passing through the origin of the demagnetization curve 3 and the operating point 5 is called a permeance line 4.
  • the permanent magnet 110 has a shape with a permeance coefficient in the magnetization direction 1 that is the maximum energy product (BHmax) of the demagnetization curve 3 of the permanent magnet 110, a bias magnetic field can be effectively applied to the magnetic sensitive body 120.
  • BHmax maximum energy product
  • the permanent magnet 110 has a shape in which the value of the permeance coefficient in the magnetization direction 1 of the permanent magnet 110 is equal to or greater than the value of the permeance coefficient in the magnetization direction 1 that is the maximum energy product (BHmax) of the demagnetization curve 3 of the permanent magnet 110.
  • BHmax maximum energy product
  • Embodiment 2 a magnetic sensor according to Embodiment 2 of the present invention will be described.
  • the magnetic sensor 200 according to the second embodiment is different from the magnetic sensor 100 according to the first embodiment only in the arrangement of the permanent magnet and the magnetic sensitive body, and therefore the same reference is made to the configuration that is the same as the magnetic sensor 100 according to the first embodiment. The description will not be repeated with reference numerals.
  • FIG. 7 is a plan view showing the configuration of the magnetic sensor according to the second embodiment of the present invention.
  • FIG. 8 is a front view of the magnetic sensor of FIG. 7 as viewed from the direction of arrow VIII.
  • the magnetic sensor 200 As shown in FIGS. 7 and 8, the magnetic sensor 200 according to the second embodiment of the present invention generates the measured magnetic field 2 in a state where a bias magnetic field is applied from each of the two permanent magnets 110 and the two permanent magnets 110.
  • One magnetic sensor 120 to be detected is provided.
  • the two permanent magnets 110 are arranged along the application direction of the magnetic field 2 to be measured.
  • the magnetization directions 1 of the two permanent magnets 110 are in the same direction.
  • the magnetic sensitive body 120 is provided between the two permanent magnets 110.
  • Each of the two permanent magnets 110 and the magnetic sensitive body 120 is mounted on a substrate (not shown).
  • the substrate is a printed wiring board, and is composed of a base material such as glass epoxy or alumina and a wiring formed by patterning a metal foil such as copper provided on the surface of the base material.
  • Each of the two permanent magnets 110 has a shape in which the value of the permeance coefficient with the application direction of the measured magnetic field 2 as the magnetization direction is equal to or less than the value of the permeance coefficient in the magnetization direction 1 of the permanent magnet 110. This makes it difficult for the two permanent magnets 110 to be magnetized in the direction in which the measured magnetic field 2 is applied, and the stability of the magnetic characteristics of the two permanent magnets 110 can be ensured.
  • the magnetic sensor 300 according to the third embodiment is the same as the magnetic sensor 200 according to the second embodiment because only the magnetization direction of one of the two permanent magnets is different from the magnetic sensor 200 according to the second embodiment.
  • the same referential mark is attached
  • FIG. 9 is a plan view showing the configuration of the magnetic sensor according to Embodiment 3 of the present invention.
  • FIG. 10 is a front view of the magnetic sensor of FIG. 9 as viewed from the direction of the arrow X.
  • the magnetic sensor 300 As shown in FIGS. 9 and 10, the magnetic sensor 300 according to the third embodiment of the present invention generates the measured magnetic field 2 in a state where a bias magnetic field is applied from each of the two permanent magnets 110 and the two permanent magnets 110.
  • One magnetic sensor 120 to be detected is provided.
  • the two permanent magnets 110 are arranged along the application direction of the magnetic field 2 to be measured.
  • the magnetization directions 1 of the two permanent magnets 110 are opposite to each other.
  • the magnetic sensitive body 120 is provided between the two permanent magnets 110.
  • Each of the two permanent magnets 110 and the magnetic sensitive body 120 is mounted on a substrate (not shown).
  • a magnetic field applied from one of the two permanent magnets 110 is applied to the other permanent magnet in the magnetization direction of the other permanent magnet 110. Is done.
  • the magnetic field applied from the other permanent magnet of the two permanent magnets 110 is applied to one permanent magnet of the two permanent magnets 110 in the magnetization direction of the one permanent magnet.
  • the magnetic sensor including the two permanent magnets 110 has been described. However, in order to ensure the stability of the magnetic characteristics of the permanent magnet, each of the one permanent magnet and the other permanent magnet is applied. Applied to the magnetization direction of the one permanent magnet to the one permanent magnet and the other permanent magnet to the other permanent magnet.
  • the magnetic sensor may further include another permanent magnet that applies a magnetic field in the magnetization direction. As a result, the magnetic sensor may include three or more permanent magnets.
  • Embodiment 4 a magnetic sensor according to Embodiment 4 of the present invention will be described.
  • the magnetic sensor 400 according to the fourth embodiment is different from the magnetic sensor 100 according to the first embodiment only in the arrangement of the permanent magnet and the magnetic sensitive body, and therefore the same reference is made to the configuration that is the same as the magnetic sensor 100 according to the first embodiment. The description will not be repeated with reference numerals.
  • FIG. 11 is a plan view showing the configuration of the magnetic sensor according to Embodiment 4 of the present invention.
  • FIG. 12 is a front view of the magnetic sensor of FIG. 11 viewed from the direction of arrow XII.
  • the magnetic sensor 400 detects the measured magnetic field 2 in a state where a bias magnetic field is applied from one permanent magnet 110 and one permanent magnet 110.
  • Two magnetic sensitive bodies 120 are provided.
  • the two magnetic sensitive bodies 120 are arranged along the application direction of the measured magnetic field 2.
  • the permanent magnet 110 is provided between the two magnetic sensitive bodies 120.
  • Each of the permanent magnet 110 and the two magnetic sensitive bodies 120 is mounted on a substrate (not shown).
  • the permanent magnet 110 is shared by the two magnetic sensitive bodies 120, it is more important to ensure the stability of the magnetic characteristics of the permanent magnet 110.
  • Embodiment 5 a magnetic sensor according to Embodiment 5 of the present invention will be described.
  • the magnetic sensor 500 according to the fifth embodiment is different from the magnetic sensor 200 according to the second embodiment only in the arrangement of the permanent magnet and the magnetic sensitive body, and therefore the same reference is made to the configuration similar to the magnetic sensor 200 according to the second embodiment. The description will not be repeated with reference numerals.
  • FIG. 13 is a plan view showing the configuration of the magnetic sensor according to the fifth embodiment of the present invention.
  • FIG. 14 is a front view of the magnetic sensor of FIG. 13 viewed from the direction of arrow XIV.
  • the magnetic sensor 500 As shown in FIGS. 13 and 14, the magnetic sensor 500 according to the fifth embodiment of the present invention generates the measured magnetic field 2 in a state where a bias magnetic field is applied from each of the two permanent magnets 110 and the two permanent magnets 110.
  • One magnetic sensor 120 to be detected is provided.
  • the two permanent magnets 110 are arranged along the magnetization direction 1 of the permanent magnet 110. That is, the two permanent magnets 110 are arranged in a direction orthogonal to the application direction of the magnetic field 2 to be measured.
  • the magnetization directions 1 of the two permanent magnets 110 are in the same direction.
  • the magnetic sensitive body 120 is provided between the two permanent magnets 110.
  • Each of the two permanent magnets 110 and the magnetic sensitive body 120 is mounted on a substrate (not shown).
  • a magnetic field applied from one of the two permanent magnets 110 is applied to the other permanent magnet in the magnetization direction of the other permanent magnet 110. Is done.
  • the magnetic field applied from the other permanent magnet of the two permanent magnets 110 is applied to one permanent magnet of the two permanent magnets 110 in the magnetization direction of the one permanent magnet.
  • the magnetic sensor 600 according to the sixth embodiment is the same as the magnetic sensor 200 according to the second embodiment because the magnetic sensor 600 according to the sixth embodiment is different from the magnetic sensor 200 according to the second embodiment only in the direction of the permanent magnet and the magnetic sensitive body with respect to the application direction of the measured magnetic field.
  • the same referential mark is attached
  • FIG. 15 is a plan view showing a configuration of a magnetic sensor according to Embodiment 6 of the present invention.
  • FIG. 16 is a front view of the magnetic sensor of FIG. 15 as viewed from the direction of the arrow XVI.
  • the magnetic sensor 600 As shown in FIGS. 15 and 16, the magnetic sensor 600 according to the sixth embodiment of the present invention generates the measured magnetic field 2 in a state where a bias magnetic field is applied from each of the two permanent magnets 110 and the two permanent magnets 110.
  • One magnetic sensor 120 to be detected is provided.
  • the two permanent magnets 110 are arranged in an oblique direction with respect to the application direction of the magnetic field 2 to be measured.
  • the magnetization directions 1 of the two permanent magnets 110 are in the same direction.
  • the magnetic sensitive body 120 is provided between the two permanent magnets 110.
  • Each of the two permanent magnets 110 and the magnetic sensitive body 120 is mounted on a substrate (not shown).
  • Each of the two permanent magnets 110 has a shape in which the value of the permeance coefficient with the application direction of the measured magnetic field 2 as the magnetization direction is equal to or less than the value of the permeance coefficient in the magnetization direction 1 of the permanent magnet 110. This makes it difficult for the two permanent magnets 110 to be magnetized in the direction in which the measured magnetic field 2 is applied, and the stability of the magnetic characteristics of the two permanent magnets 110 can be ensured.
  • the magnetic sensor 700 according to the seventh embodiment is the magnetic sensor according to the first embodiment only in that the arrangement of the permanent magnet and the magnetic sensitive body and the magnetic sensitive body has a half-bridge circuit composed of two magnetoresistive elements. Therefore, the same reference numerals are assigned to the same components as those of the magnetic sensor 100 according to the first embodiment, and the description thereof will not be repeated.
  • FIG. 17 is a plan view showing the configuration of the magnetic sensor according to the seventh embodiment of the present invention.
  • FIG. 18 is a front view of the magnetic sensor of FIG. 17 as viewed from the direction of the arrow XVIII.
  • a magnetic sensor 700 includes a permanent magnet 110, and a magnetic sensitive body 720 that detects a measured magnetic field 2 in a state where a bias magnetic field is applied from the permanent magnet 110. Is provided.
  • the permanent magnet 110 and the magnetic sensitive body 720 are arranged along the direction in which the measured magnetic field 2 is applied.
  • Each of the permanent magnet 110 and the magnetic sensitive body 720 is mounted on a substrate (not shown).
  • the magnetic sensitive body 720 includes a first magnetoresistive element 721 and a second magnetoresistive element 722.
  • the first magnetoresistive element 721 and the second magnetoresistive element 722 are arranged in the direction in which the measured magnetic field 2 is applied.
  • the first magnetoresistive element 721 and the second magnetoresistive element 722 are electrically connected to each other and constitute a half bridge circuit.
  • the permanent magnet 110 is shared by the first magnetoresistive element 721 and the second magnetoresistive element 722, it is possible to ensure the stability of the magnetic characteristics of the permanent magnet 110. More important.
  • Embodiment 8 The current sensor according to Embodiment 8 of the present invention will be described below. Since the current sensor 800 according to the eighth embodiment includes the magnetic sensor 400 according to the fourth embodiment, the same reference numerals are given to the same components as those of the magnetic sensor 400 according to the fourth embodiment, and the description thereof is repeated. Absent.
  • FIG. 19 is an exploded perspective view showing the configuration of the current sensor according to Embodiment 8 of the present invention.
  • the longitudinal direction of a conductor 860 described later is illustrated as an X-axis direction
  • the width direction of the conductor 860 is defined as a Y-axis direction
  • the thickness direction of the conductor 860 is illustrated as a Z-axis direction.
  • a current to be measured flows, a flat conductor 860 having a longitudinal direction (X-axis direction), and a current to be measured flows through the conductor 860.
  • a magnetic sensor for detecting a magnetic field to be measured.
  • the magnetization direction 1 of the permanent magnet 110 provided in the magnetic sensor is different from the direction orthogonal to the longitudinal direction (X-axis direction).
  • the permanent magnet 110 is arranged such that its length direction is along the longitudinal direction (X-axis direction) of the conductor 860, and the magnetization direction 1 of the permanent magnet 110 is the longitudinal direction (X-axis direction).
  • the application direction of the magnetic field to be measured to the permanent magnet 110 is orthogonal to the direction along the longitudinal direction (X-axis direction) of the conductor 860 and is directed to the width direction (Y-axis direction) of the conductor 860.
  • the application direction of the magnetic field to be measured is perpendicular to the magnetization direction 1 of the permanent magnet 110.
  • the conductor 860 is made of copper.
  • the material of the conductor 860 is not limited to this, and may be a metal such as silver or aluminum or an alloy containing these metals.
  • the conductor 860 may be subjected to a surface treatment.
  • a surface treatment For example, at least one plating layer made of a metal such as nickel, tin, silver, copper, or an alloy containing these metals may be provided on the surface of the conductor 860.
  • the magnetic sensor included in the current sensor 800 further includes a lead frame 830 on which the permanent magnet 110 and the two magnetic sensitive bodies 120 are mounted, a plurality of leads 840, and a sealing resin 850.
  • the current sensor 800 calculates the detected value of one of the two magnetic sensitive bodies 120 and the detected value of the other magnetic sensitive body 120 of the two magnetic sensitive bodies 120 to calculate the measured current flowing through the conductor 860.
  • a calculation unit (not shown) that calculates a current value is further provided.
  • the calculation unit is a differential amplifier.
  • the electronic components constituting the calculation unit may be provided on the lead frame 830 or may be provided on a substrate separate from the magnetic sensor. When the electronic component that constitutes the calculation unit is provided on the lead frame 830, it is possible to suppress a decrease in detection accuracy of the magnetic sensor due to variation in the position of the component.
  • the phase of the detected value of the magnetic field to be measured of one of the two magnetic bodies 120 and the phase of the detected value of the magnetic field to be measured of the other magnetic body of the two magnetic bodies 120. Is in reverse phase.
  • the phase of the detected value of the external magnetic field of one magnetic sensor and the phase of the detected value of the external magnetic field of the other magnetic sensor are in phase.
  • the magnetoelectric conversion gain of each magnetic sensor is set. It is preferable to arrange them. Further, it is preferable to provide resistance adjusting means such as a trimming resistor in each magnetosensitive body and adjust the resistance value of each magnetoresistive element to make the characteristics of each magnetoresistive element uniform.
  • the magnetic flux of the magnetic field to be measured By preventing the magnetic flux of the magnetic field to be measured from entering perpendicularly to the circuit pattern provided on the lead frame 830, the occurrence of signal delay due to the induced electromotive force is suppressed, and the response characteristics of the magnetic sensor are kept high. can do.
  • the magnetic sensor may be housed in a housing.
  • the housing is formed of an engineering plastic such as PPS (polyphenylene sulfide). Since PPS has high heat resistance, it is preferable as a material for the housing in consideration of heat generation of the conductor 860.
  • the housing may be configured integrally with the conductor 860, or may be configured to be attachable to and detachable from the conductor 860.
  • the magnetic sensor may be covered with a magnetic shield.
  • the magnetic shield is made of a magnetic material such as silicon steel, ferrite or permalloy, for example.
  • the magnetic shield may be integrally formed by insert molding with the housing.
  • the current sensor 800 according to the present embodiment may be applied to, for example, a three-phase three-wire wiring such as an inverter. In this case, space can be saved by using a single substrate and casing for the magnetic sensor.
  • the stability of the magnetic characteristics of the permanent magnet 110 of the magnetic sensor can be secured, so that a decrease in detection accuracy of the current sensor 800 can be suppressed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

電流センサは、少なくとも1つの永久磁石(110)と、永久磁石(110)からバイアス磁界を印加された状態で被測定磁界(2)を検出する少なくとも1つの感磁体とを備える。永久磁石(110)は、被測定磁界(2)の印加方向を磁化方向としたパーミアンス係数の値が、その永久磁石(110)の磁化方向(1)のパーミアンス係数の値の1.5倍以下となる形状を有する。

Description

磁気センサおよびそれを備えた電流センサ
 本発明は、磁気センサおよびそれを備えた電流センサに関する。
 半導体基板に磁電変換素子が形成されたセンサ基板とバイアス磁石とを備えた電流センサを開示した先行文献として、特開2013-242301号公報(特許文献1)がある。特許文献1に記載された電流センサにおいては、センサ基板が搭載基板の表面に実装されており、バイアス磁石が搭載基板の裏面に搭載されている。
特開2013-242301号公報
 バイアス磁石である永久磁石から磁電変換素子に印加されるバイアス磁界の印加方向および強度が変動した場合、磁気センサの出力が変動し、被測定電流の検出精度が低下する。
 本発明は上記の問題点に鑑みてなされたものであって、バイアス磁石である永久磁石の磁気特性の安定性を確保して、検出精度の低下が抑制された磁気センサおよびそれを備えた電流センサを提供することを目的とする。
 本発明の第1局面に基づく磁気センサは、被測定磁界の強度を測定する磁気センサである。磁気センサは、少なくとも1つの永久磁石と、永久磁石からバイアス磁界を印加された状態で被測定磁界を検出する少なくとも1つの感磁体とを備える。永久磁石は、被測定磁界の印加方向を磁化方向としたパーミアンス係数の値が、その永久磁石の磁化方向のパーミアンス係数の値の1.5倍以下となる形状を有する。
 本発明の一形態においては、永久磁石は、被測定磁界の印加方向を磁化方向としたパーミアンス係数の値が、その永久磁石の磁化方向のパーミアンス係数の値以下となる形状を有する。
 本発明の一形態においては、永久磁石は、被測定磁界の印加方向を磁化方向としたパーミアンス係数の値が、その永久磁石の磁化方向のパーミアンス係数の値の0.6倍以下となる形状を有する。
 本発明の一形態においては、永久磁石は、その永久磁石の磁化方向のパーミアンス係数の値が2より大きくなる形状を有する。
 本発明の一形態においては、永久磁石は、その永久磁石の磁化方向のパーミアンス係数の値が、その永久磁石の減磁曲線の最大エネルギー積となる磁化方向のパーミアンス係数の値以上となる、形状を有する。
 本発明の一形態においては、少なくとも1つの永久磁石は、複数の永久磁石で構成されている。複数の永久磁石のうちの一部の永久磁石から印加された磁界は、複数の永久磁石のうちの残部の永久磁石に対して、残部の永久磁石の磁化方向に印加される。残部の永久磁石から印加された磁界は、上記一部の永久磁石に対して、上記一部の永久磁石の磁化方向に印加される。
 本発明の第2局面に基づく電流センサは、被測定電流が流れ、長手方向を有する導体と、導体を被測定電流が流れることにより生ずる被測定磁界を検出する上記の磁気センサとを備える。永久磁石の磁化方向は、上記長手方向に直交する方向とは異なっている。
 本発明の一形態においては、永久磁石の磁化方向は、上記長手方向に沿っている。
 本発明によれば、バイアス磁石である永久磁石の磁気特性の安定性を確保して、磁気センサおよびそれを備えた電流センサの検出精度の低下を抑制できる。
本発明の実施形態1に係る磁気センサの構成を示す平面図である。 図1の磁気センサを矢印II方向から見た正面図である。 本発明の実施形態1に係る磁気センサが備える永久磁石の形状を示す斜視図である。 P2/P1と、被測定磁界の印加方向における永久磁石の磁化の強さとの関係を示すグラフである。 P2/P1と、磁化方向における永久磁石の磁化の強さに対する被測定磁界の印加方向における永久磁石の磁化の強さの比率との関係を示すグラフである。 永久磁石の減磁曲線およびパーミアンス線を示すグラフである。 本発明の実施形態2に係る磁気センサの構成を示す平面図である。 図7の磁気センサを矢印VIII方向から見た正面図である。 本発明の実施形態3に係る磁気センサの構成を示す平面図である。 図9の磁気センサを矢印X方向から見た正面図である。 本発明の実施形態4に係る磁気センサの構成を示す平面図である。 図11の磁気センサを矢印XII方向から見た正面図である。 本発明の実施形態5に係る磁気センサの構成を示す平面図である。 図13の磁気センサを矢印XIV方向から見た正面図である。 本発明の実施形態6に係る磁気センサの構成を示す平面図である。 図15の磁気センサを矢印XVI方向から見た正面図である。 本発明の実施形態7に係る磁気センサの構成を示す平面図である。 図17の磁気センサを矢印XVIII方向から見た正面図である。 本発明の実施形態8に係る電流センサの構成を示す分解斜視図である。
 以下、本発明の各実施形態に係る磁気センサおよびそれを備えた電流センサについて図を参照して説明する。以下の実施形態の説明においては、図中の同一または相当部分には同一符号を付して、その説明は繰り返さない。
 (実施形態1)
 図1は、本発明の実施形態1に係る磁気センサの構成を示す平面図である。図2は、図1の磁気センサを矢印II方向から見た正面図である。
 図1,2に示すように、本発明の実施形態1に係る磁気センサ100は、少なくとも1つの永久磁石110と、永久磁石110からバイアス磁界を印加された状態で被測定磁界を検出する少なくとも1つの感磁体120とを備える。本実施形態においては、1つの感磁体120は、1つの永久磁石110上に設けられている。ただし、感磁体120と永久磁石110との位置関係は、これに限られない。また、感磁体120および永久磁石110の少なくとも一方が、複数設けられていてもよい。
 永久磁石110と感磁体120とは、接着剤で互いに接合されている。永久磁石110と感磁体120とを、接着剤または接着シートなどで貼り合わせた後、ダイサーなどで切断することにより、磁気センサ100を個片化してもよい。
 磁気センサ100は、樹脂パッケージされていてもよく、または、シリコーン樹脂若しくはエポキシ樹脂などでポッティングされていてもよい。磁気センサ100の駆動方法としては、定電流駆動またはパルス駆動など、適宜選択することができる。
 本実施形態においては、感磁体120は、4つのAMR(Anisotropic Magneto Resistance)素子からなるホイートストンブリッジ型のブリッジ回路を有している。なお、感磁体120が、2つの磁気抵抗素子からなるハーフブリッジ回路を有していてもよい。もしくは、感磁体120が1つの磁気抵抗素子のみを有し、複数の感磁体120が電気的に接続されることによって、ブリッジ回路が構成されていてもよい。また、感磁体120が、AMR素子に代えて、GMR(Giant Magneto Resistance)、TMR(Tunnel Magneto Resistance)、BMR(Ballistic Magneto Resistance)、CMR(Colossal Magneto Resistance)などの磁気抵抗素子を含んでいてもよい。
 本実施形態においては、AMR素子は、バーバーポール型電極を含むことによって、奇関数入出力特性を有している。具体的には、感磁体120が有する磁気抵抗素子は、バーバーポール型電極を含むことにより、磁気抵抗素子における磁気抵抗膜の磁化方向に対して所定の角度をなす方向に電流が流れるようにバイアスされている。
 磁気抵抗膜は、パーマロイなどの磁性体で構成されている。磁気抵抗膜は、スパッタ装置または蒸着装置などを用いて形成されている。磁気抵抗膜の磁化方向は、磁気抵抗膜の近傍に配置された永久磁石110から印加されるバイアス磁界の印加方向、および、磁気抵抗膜の形状異方性、の少なくとも一方によって決まる。たとえば、磁気抵抗膜の平面形状のアスペクト比が小さい場合、磁気抵抗膜の形状異方性の影響が小さく、永久磁石110から印加されるバイアス磁界の印加方向が主因となって磁気抵抗膜の磁化方向が決まる。磁気抵抗膜の形状異方性が大きい場合は、磁気抵抗膜の磁化方向に対する、磁気抵抗膜の形状異方性の影響が大きくなる。
 図3は、本発明の実施形態1に係る磁気センサが備える永久磁石の形状を示す斜視図である。図3に示すように、本実施形態においては、永久磁石110は、長さがD、幅がW、厚さがHである直方体状の外形を有している。
 永久磁石110の材料として、等方性フェライト、異方性フェライト、サマリウムコバルト、アルニコまたはネオジムなどを用いることができる。永久磁石110の材料として、異方性フェライト、サマリウムコバルトまたはネオジムを用いた場合、永久磁石110の保磁力を大きくできるため、永久磁石110の磁気特性の安定性を高めることができる。永久磁石110は、焼結磁石またはボンド磁石で構成されていてもよい。
 図1,3に示すように、永久磁石110の磁化方向1は、永久磁石110の長さ方向に沿っている。このため、本実施形態においては、感磁体120は、永久磁石110の磁化方向1に沿う方向にバイアス磁界が印加される。本実施形態においては、感磁体120に対する被測定磁界2の印加方向は、永久磁石110の幅方向に沿っており、永久磁石110の磁化方向1と直交している。ただし、感磁体120に対する被測定磁界2の印加方向と永久磁石110の磁化方向1とが異なっていればよく、感磁体120に対する被測定磁界2の印加方向と永久磁石110の磁化方向1とが、90°以外の角度で交差していてもよい。
 磁気センサ100が上記のように配置されることにより、永久磁石110には、磁化方向1とは異なる方向の被測定磁界2が印加されることになる。これにより、永久磁石110の磁気特性が変動した場合、磁気センサ100の検出精度が低下する。すなわち、被測定磁界2が印加されることによって永久磁石110の磁化方向および磁化量の少なくとも一方が変化した場合、感磁体120へのバイアス磁界の印加方向および磁化量の少なくとも一方が変化するため、被測定磁界の検出精度が低下する。
 そこで、本実施形態に係る磁気センサ100においては、永久磁石110は、被測定磁界2の印加方向を磁化方向としたパーミアンス係数の値が、永久磁石110の磁化方向1のパーミアンス係数の値以下となる形状を有している。
 パーミアンス係数の値が高いほど、永久磁石110は磁化されやすくなる。永久磁石110は、永久磁石110の磁化方向1のパーミアンス係数の値が2より大きくなる形状を有していることが好ましい。
 ここで、被測定磁界2の印加方向を磁化方向としたパーミアンス係数の値と、永久磁石110の磁化方向1のパーミアンス係数の値との関係が、永久磁石110の磁化方向の変化のしやすさに及ぼす影響を検証した実験例について説明する。
 本実験例においては、4種類の永久磁石のサンプルについて実験を行なった。サンプル1~4の永久磁石の材料は、異方性フェライトにした。
Figure JPOXMLDOC01-appb-T000001
 表1は、本実験例のサンプル1~4の形状およびパーミアンス係数をまとめたものである。表1に示すように、永久磁石の外形寸法(長さD,幅W,厚さH)については、サンプル1はD=2.0mm,W=1.0mm,H=0.5mm、サンプル2はD=2.0mm,W=1.6mm,H=0.5mm、サンプル3はD=2.0mm,W=2.4mm,H=0.5mm、サンプル4はD=2.0mm,W=3.0mm,H=0.5mmとした。
 上記の外形寸法により、永久磁石の長さ方向に沿っている永久磁石の磁化方向1のパーミアンス係数P1は、サンプル1は12.29、サンプル2は8.83、サンプル3は6.66、サンプル4は5.71であり、永久磁石の幅方向に沿っている被測定磁界2の印加方向を磁化方向としたパーミアンス係数P2は、サンプル1は2.95、サンプル2は5.55、サンプル3は9.75、サンプル4は13.37である。よって、P2/P1は、サンプル1は0.24、サンプル2は0.63、サンプル3は1.46、サンプル4は2.34である。
Figure JPOXMLDOC01-appb-T000002
 表2は、本実験例のサンプル1~4を磁化させた後の磁気モーメントおよび磁化の強さをまとめたものである。表2に示すように、磁化方向1に着磁後の永久磁石の磁気モーメントを振動試料型磁力計(VSM:Vibrating Sample Magnetometer)で測定した測定値は、サンプル1は0.35emu、サンプル2は、0.56emu、サンプル3は0.82emu、サンプル4は0.99emuであり、磁化方向1における永久磁石の磁化の強さは、サンプル1は350.0emu/cm3、サンプル2は、346.9emu/cm3、サンプル3は339.6emu/cm3、サンプル4は330.0emu/cm3であった。
 被測定磁界2として600mTの磁界を永久磁石に印加した後、被測定磁界2の印加方向における永久磁石の磁気モーメントをVSMで測定した測定値は、サンプル1は0.005emu、サンプル2は、0.025emu、サンプル3は0.040emu、サンプル4は0.055emuであり、被測定磁界2の印加方向における永久磁石の磁化の強さは、サンプル1は5.00emu/cm3、サンプル2は、15.63emu/cm3、サンプル3は16.67emu/cm3、サンプル4は18.33emu/cm3であった。
 磁化方向1における永久磁石の磁化の強さに対する被測定磁界2の印加方向における永久磁石の磁化の強さの比率は、サンプル1は1.4%、サンプル2は、4.5%、サンプル3は4.9%、サンプル4は5.6%であった。
 図4は、P2/P1と、被測定磁界の印加方向における永久磁石の磁化の強さとの関係を示すグラフである。図5は、P2/P1と、磁化方向における永久磁石の磁化の強さに対する被測定磁界の印加方向における永久磁石の磁化の強さの比率との関係を示すグラフである。図4においては、縦軸に被測定磁界の印加方向における永久磁石の磁化の強さ(emu/cm3)、横軸にP2/P1を示している。図5においては、縦軸に磁化方向における永久磁石の磁化の強さに対する被測定磁界の印加方向における永久磁石の磁化の強さの比率(%)、横軸にP2/P1を示している。
 表2および図4,5に示すように、被測定磁界2の印加方向を磁化方向としたパーミアンス係数P2の値が、永久磁石の磁化方向1のパーミアンス係数P1の値の1.5倍以下においては、被測定磁界2の印加方向おける永久磁石の磁化の強さの増加率、および、磁化方向1における永久磁石の磁化の強さに対する被測定磁界2の印加方向における永久磁石の磁化の強さの比率の増加率、が低くなっていた。この条件を満たす場合、永久磁石が被測定磁界2の印加方向に磁化されにくくなり、永久磁石の磁気特性の安定性を確保できることが確認できた。
 よって、永久磁石110は、被測定磁界2の印加方向を磁化方向としたパーミアンス係数の値が、永久磁石110の磁化方向1のパーミアンス係数の値の1.5倍以下となる形状を有していることが好ましい。
 さらに、表2および図4,5に示すように、被測定磁界2の印加方向を磁化方向としたパーミアンス係数P2の値が、永久磁石の磁化方向1のパーミアンス係数P1の値の0.6倍以下においては、被測定磁界2の印加方向おける永久磁石の磁化の強さの増加率、および、磁化方向1における永久磁石の磁化の強さに対する被測定磁界2の印加方向における永久磁石の磁化の強さの比率の増加率、が急激に低くなっていた。この条件を満たす場合、永久磁石が被測定磁界2の印加方向にさらに磁化されにくくなり、永久磁石の磁気特性の安定性をより確保できることが確認できた。
 よって、永久磁石110は、被測定磁界2の印加方向を磁化方向としたパーミアンス係数の値が、永久磁石110の磁化方向1のパーミアンス係数の値の0.6倍以下となる形状を有していることがより好ましい。
 図6は、永久磁石の減磁曲線およびパーミアンス線を示すグラフである。図6においては、縦軸に磁束密度B、横軸に磁界の強度Hを示している。
 図6に示すように、減磁曲線3上の動作点5においては、磁場の強度はHdであり、このときの磁束密度はBdである。パーミアンス係数は、Bd/Hdで表される。減磁曲線3の原点と動作点5とを通過する直線は、パーミアンス線4と呼ばれる。
 永久磁石110の減磁曲線3の最大エネルギー積(BHmax)となる磁化方向1のパーミアンス係数となる形状を永久磁石110が有する場合、感磁体120に効果的にバイアス磁界を印加することができる。
 永久磁石110の磁化方向1のパーミアンス係数の値が、永久磁石110の減磁曲線3の最大エネルギー積(BHmax)となる磁化方向1のパーミアンス係数の値以上となる、形状を永久磁石110が有する場合、初期減磁と呼ばれる永久磁石110の磁気特性が不可逆温度変化を起こすことを抑制できる。
 (実施形態2)
 以下、本発明の実施形態2に係る磁気センサについて説明する。なお、実施形態2に係る磁気センサ200は、永久磁石と感磁体との配置のみ実施形態1に係る磁気センサ100と異なるため、実施形態1に係る磁気センサ100と同様である構成については同じ参照符号を付してその説明を繰り返さない。
 図7は、本発明の実施形態2に係る磁気センサの構成を示す平面図である。図8は、図7の磁気センサを矢印VIII方向から見た正面図である。
 図7,8に示すように、本発明の実施形態2に係る磁気センサ200は、2つの永久磁石110と、2つの永久磁石110の各々からバイアス磁界を印加された状態で被測定磁界2を検出する1つの感磁体120とを備える。本実施形態においては、2つの永久磁石110は、被測定磁界2の印加方向に沿って並んでいる。2つの永久磁石110の磁化方向1は、互いに同じ向きである。感磁体120は、2つの永久磁石110の間に設けられている。2つの永久磁石110および感磁体120の各々は、図示しない基板に実装されている。
 基板は、プリント配線板であり、ガラスエポキシまたはアルミナなどの基材と、基材の表面上に設けられた銅などの金属箔がパターニングされて形成された配線とから構成されている。
 2つの永久磁石110の各々は、被測定磁界2の印加方向を磁化方向としたパーミアンス係数の値が、永久磁石110の磁化方向1のパーミアンス係数の値以下となる形状を有している。これにより、2つの永久磁石110が被測定磁界2の印加方向に磁化されにくくなり、2つの永久磁石110の磁気特性の安定性を確保できる。
 (実施形態3)
 以下、本発明の実施形態3に係る磁気センサについて説明する。なお、実施形態3に係る磁気センサ300は、2つの永久磁石のうちの一方の永久磁石の磁化方向のみ実施形態2に係る磁気センサ200と異なるため、実施形態2に係る磁気センサ200と同様である構成については同じ参照符号を付してその説明を繰り返さない。
 図9は、本発明の実施形態3に係る磁気センサの構成を示す平面図である。図10は、図9の磁気センサを矢印X方向から見た正面図である。
 図9,10に示すように、本発明の実施形態3に係る磁気センサ300は、2つの永久磁石110と、2つの永久磁石110の各々からバイアス磁界を印加された状態で被測定磁界2を検出する1つの感磁体120とを備える。本実施形態においては、2つの永久磁石110は、被測定磁界2の印加方向に沿って並んでいる。2つの永久磁石110の磁化方向1は、互いに反対向きである。感磁体120は、2つの永久磁石110の間に設けられている。2つの永久磁石110および感磁体120の各々は、図示しない基板に実装されている。
 本実施形態においては、2つの永久磁石110のうちの一方の永久磁石から印加された磁界が、2つの永久磁石110のうちの他方の永久磁石に対して、他方の永久磁石の磁化方向に印加される。同様に、2つの永久磁石110のうちの他方の永久磁石から印加された磁界が、2つの永久磁石110のうちの一方の永久磁石に対して、一方の永久磁石の磁化方向に印加される。これにより、2つの永久磁石110の各々を、被測定磁界2の印加方向に磁化されにくくすることができ、永久磁石の磁気特性の安定性が確保しやすくなる。
 なお、本実施形態においては、2つの永久磁石110を備える磁気センサについて説明したが、永久磁石の磁気特性の安定性を確保するため、上記一方の永久磁石および上記他方の永久磁石の各々から印加される磁界が、自らの磁化方向に印加され、かつ、上記一方の永久磁石に対して上記一方の永久磁石の磁化方向に磁界を印加し、上記他方の永久磁石に対して上記他方の永久磁石の磁化方向に磁界を印加する、他の永久磁石を磁気センサがさらに備えていてもよい。その結果、磁気センサが、3つ以上の永久磁石を備えていてもよい。
 (実施形態4)
 以下、本発明の実施形態4に係る磁気センサについて説明する。なお、実施形態4に係る磁気センサ400は、永久磁石と感磁体との配置のみ実施形態1に係る磁気センサ100と異なるため、実施形態1に係る磁気センサ100と同様である構成については同じ参照符号を付してその説明を繰り返さない。
 図11は、本発明の実施形態4に係る磁気センサの構成を示す平面図である。図12は、図11の磁気センサを矢印XII方向から見た正面図である。
 図11,12に示すように、本発明の実施形態4に係る磁気センサ400は、1つの永久磁石110と、1つの永久磁石110からバイアス磁界を印加された状態で被測定磁界2を検出する2つの感磁体120とを備える。本実施形態においては、2つの感磁体120は、被測定磁界2の印加方向に沿って並んでいる。永久磁石110は、2つの感磁体120の間に設けられている。永久磁石110および2つの感磁体120の各々は、図示しない基板に実装されている。
 本実施形態に係る磁気センサ400においては、永久磁石110を2つの感磁体120で共用しているため、永久磁石110の磁気特性の安定性を確保することが、より重要である。
 (実施形態5)
 以下、本発明の実施形態5に係る磁気センサについて説明する。なお、実施形態5に係る磁気センサ500は、永久磁石と感磁体との配置のみ実施形態2に係る磁気センサ200と異なるため、実施形態2に係る磁気センサ200と同様である構成については同じ参照符号を付してその説明を繰り返さない。
 図13は、本発明の実施形態5に係る磁気センサの構成を示す平面図である。図14は、図13の磁気センサを矢印XIV方向から見た正面図である。
 図13,14に示すように、本発明の実施形態5に係る磁気センサ500は、2つの永久磁石110と、2つの永久磁石110の各々からバイアス磁界を印加された状態で被測定磁界2を検出する1つの感磁体120とを備える。本実施形態においては、2つの永久磁石110は、永久磁石110の磁化方向1に沿って並んでいる。すなわち、2つの永久磁石110は、被測定磁界2の印加方向に直交する方向に並んでいる。2つの永久磁石110の磁化方向1は、互いに同じ向きである。感磁体120は、2つの永久磁石110の間に設けられている。2つの永久磁石110および感磁体120の各々は、図示しない基板に実装されている。
 本実施形態においては、2つの永久磁石110のうちの一方の永久磁石から印加された磁界が、2つの永久磁石110のうちの他方の永久磁石に対して、他方の永久磁石の磁化方向に印加される。同様に、2つの永久磁石110のうちの他方の永久磁石から印加された磁界が、2つの永久磁石110のうちの一方の永久磁石に対して、一方の永久磁石の磁化方向に印加される。これにより、2つの永久磁石110の各々を、被測定磁界2の印加方向に磁化されにくくすることができ、永久磁石の磁気特性の安定性が確保しやすくなる。
 (実施形態6)
 以下、本発明の実施形態6に係る磁気センサについて説明する。なお、実施形態6に係る磁気センサ600は、被測定磁界の印加方向に対する永久磁石および感磁体の向きのみ実施形態2に係る磁気センサ200と異なるため、実施形態2に係る磁気センサ200と同様である構成については同じ参照符号を付してその説明を繰り返さない。
 図15は、本発明の実施形態6に係る磁気センサの構成を示す平面図である。図16は、図15の磁気センサを矢印XVI方向から見た正面図である。
 図15,16に示すように、本発明の実施形態6に係る磁気センサ600は、2つの永久磁石110と、2つの永久磁石110の各々からバイアス磁界を印加された状態で被測定磁界2を検出する1つの感磁体120とを備える。本実施形態においては、2つの永久磁石110は、被測定磁界2の印加方向に対して斜め方向に並んでいる。2つの永久磁石110の磁化方向1は、互いに同じ向きである。感磁体120は、2つの永久磁石110の間に設けられている。2つの永久磁石110および感磁体120の各々は、図示しない基板に実装されている。
 2つの永久磁石110の各々は、被測定磁界2の印加方向を磁化方向としたパーミアンス係数の値が、永久磁石110の磁化方向1のパーミアンス係数の値以下となる形状を有している。これにより、2つの永久磁石110が被測定磁界2の印加方向に磁化されにくくなり、2つの永久磁石110の磁気特性の安定性を確保できる。
 (実施形態7)
 以下、本発明の実施形態7に係る磁気センサについて説明する。なお、実施形態7に係る磁気センサ700は、永久磁石と感磁体との配置、および、感磁体が2つの磁気抵抗素子からなるハーフブリッジ回路を有している点のみ実施形態1に係る磁気センサ100と異なるため、実施形態1に係る磁気センサ100と同様である構成については同じ参照符号を付してその説明を繰り返さない。
 図17は、本発明の実施形態7に係る磁気センサの構成を示す平面図である。図18は、図17の磁気センサを矢印XVIII方向から見た正面図である。
 図17,18に示すように、本発明の実施形態7に係る磁気センサ700は、永久磁石110と、永久磁石110からバイアス磁界を印加された状態で被測定磁界2を検出する感磁体720とを備える。本実施形態においては、永久磁石110と感磁体720とは、被測定磁界2の印加方向に沿って並んでいる。永久磁石110および感磁体720の各々は、図示しない基板に実装されている。
 感磁体720は、第1磁気抵抗素子721および第2磁気抵抗素子722を有している。第1磁気抵抗素子721および第2磁気抵抗素子722は、被測定磁界2の印加方向に並んでいる。第1磁気抵抗素子721と第2磁気抵抗素子722とは、互いに電気的に接続されており、ハーフブリッジ回路を構成している。
 本実施形態に係る磁気センサ700においては、永久磁石110を第1磁気抵抗素子721および第2磁気抵抗素子722で共用しているため、永久磁石110の磁気特性の安定性を確保することが、より重要である。
 (実施形態8)
 以下、本発明の実施形態8に係る電流センサについて説明する。なお、実施形態8に係る電流センサ800は、実施形態4に係る磁気センサ400を含むため、実施形態4に係る磁気センサ400と同様である構成については同じ参照符号を付してその説明を繰り返さない。
 図19は、本発明の実施形態8に係る電流センサの構成を示す分解斜視図である。図19においては、後述する導体860の長手方向をX軸方向、導体860の幅方向をY軸方向、導体860の厚さ方向をZ軸方向として、図示している。
 図19に示すように、本発明の実施形態8に係る電流センサ800は、被測定電流が流れ、長手方向(X軸方向)を有する平板状の導体860と、導体860を被測定電流が流れることにより生ずる被測定磁界を検出する磁気センサとを備える。磁気センサが備える永久磁石110の磁化方向1は、長手方向(X軸方向)に直交する方向とは異なっている。本実施形態においては、永久磁石110は、その長さ方向が導体860の長手方向(X軸方向)に沿うように配置されており、永久磁石110の磁化方向1は、長手方向(X軸方向)に沿っている。
 導体860の長手方向(X軸方向)に沿って被測定電流が流れることにより、いわゆる右ねじの法則により、導体860の周囲を右回りに周回する被測定磁界が発生する。これにより、永久磁石110に対する被測定磁界の印加方向は、導体860の長手方向(X軸方向)に沿う方向と直交しており、導体860の幅方向(Y軸方向)に向いている。その結果、被測定磁界の印加方向は、永久磁石110の磁化方向1に対して直交方向となる。
 本実施形態においては、導体860は、銅で構成されている。ただし、導体860の材料はこれに限られず、銀、アルミニウムなどの金属またはこれらの金属を含む合金でもよい。
 導体860は、表面処理が施されていてもよい。たとえば、ニッケル、錫、銀、銅などの金属またはこれらの金属を含む合金からなる、少なくとも1層のめっき層が、導体860の表面に設けられていてもよい。
 電流センサ800が備える磁気センサは、永久磁石110および2つの感磁体120が実装されたリードフレーム830と、複数のリード840と、封止樹脂850とをさらに備えている。
 電流センサ800は、2つの感磁体120のうちの一方の感磁体の検出値と、2つの感磁体120のうちの他方の感磁体の検出値とを、演算することにより導体860を流れる被測定電流の値を算出する図示しない算出部をさらに備えている。本実施形態においては、算出部は、差動増幅器である。算出部を構成する電子部品は、リードフレーム830上に設けられていてもよいし、磁気センサとは別体の基板上に設けられていてもよい。算出部を構成する電子部品がリードフレーム830上に設けられている場合、構成部品の位置のばらつきによる磁気センサの検出精度の低下を抑制できる。
 本実施形態においては、2つの感磁体120のうちの一方の感磁体の被測定磁界の検出値の位相と、2つの感磁体120のうちの他方の感磁体の被測定磁界の検出値の位相とは、逆相である。一方、一方の感磁体の外部磁界の検出値の位相と、他方の感磁体の外部磁界の検出値の位相とは、同相である。これにより、外部磁界の影響を低減しつつ、磁気センサの被測定磁界の検出感度を高めることができる。
 外部磁界の磁気ノイズを効果的に抑制するためには、算出部にて一方の感磁体の検出値と他方の感磁体の検出値とを演算する前に、各々の感磁体の磁電変換利得を揃えておくことが好ましい。また、各々の感磁体にトリミング抵抗などの抵抗調整手段を設けておき、各々の磁気抵抗素子の抵抗値を調整することにより、各々の磁気抵抗素子の特性を揃えておくことが好ましい。
 被測定磁界の磁束が、リードフレーム830に設けられている回路パターンに対して垂直に入射しないようにすることにより、誘導起電力による信号遅延の発生を抑制し、磁気センサの応答特性を高く維持することができる。
 磁気センサは、筐体に収容されていてもよい。たとえば、筐体は、PPS(ポリフェニレンサルファイド)などのエンジニアリングプラスチックで形成されている。PPSは、耐熱性が高いため、導体860の発熱を考慮した場合、筐体の材料として好ましい。
 磁気センサの基板と筐体とを固定する方法としては、螺子による締結、樹脂による熱溶着、または、接着剤による接合などを用いることができる。螺子を用いて基板と筐体とを締結する場合には、磁界の乱れが生じないように、非磁性の螺子を用いることが好ましい。筐体は、導体860と一体に構成されていてもよいし、導体860に対して付け外し可能に構成されていてもよい。
 磁気センサは、磁気シールドに覆われていてもよい。磁気シールドは、たとえば、珪素鋼、フェライトまたはパーマロイなどの磁性体で構成されている。磁気シールドは筐体とインサート成形されて、一体で構成されていてもよい。
 本実施形態に係る電流センサ800を、たとえば、インバータなどの3相3線式の配線に適用してもよい。この場合、磁気センサの基板および筐体を1つにして共通化することにより、省スペース化することができる。
 本実施形態に係る電流センサ800においては、磁気センサの永久磁石110の磁気特性の安定性を確保できることにより、電流センサ800の検出精度の低下を抑制できる。
 上述した実施形態の説明において、組み合わせ可能な構成を相互に組み合わせてもよい。
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 磁化方向、2 被測定磁界、3 減磁曲線、4 パーミアンス線、5 動作点、100,200,300,400,500,600,700 磁気センサ、110 永久磁石、120,720 感磁体、721 第1磁気抵抗素子、722 第2磁気抵抗素子、800 電流センサ、830 リードフレーム、840 リード、850 封止樹脂、860 導体。

Claims (8)

  1.  被測定磁界の強度を測定する磁気センサであって、
     少なくとも1つの永久磁石と、
     前記永久磁石からバイアス磁界を印加された状態で前記被測定磁界を検出する少なくとも1つの感磁体とを備え、
     前記永久磁石は、前記被測定磁界の印加方向を磁化方向としたパーミアンス係数の値が、該永久磁石の磁化方向のパーミアンス係数の値の1.5倍以下となる形状を有する、磁気センサ。
  2.  前記永久磁石は、前記被測定磁界の印加方向を磁化方向としたパーミアンス係数の値が、該永久磁石の磁化方向のパーミアンス係数の値以下となる形状を有する、請求項1に記載の磁気センサ。
  3.  前記永久磁石は、前記被測定磁界の印加方向を磁化方向としたパーミアンス係数の値が、該永久磁石の磁化方向のパーミアンス係数の値の0.6倍以下となる形状を有する、請求項2に記載の磁気センサ。
  4.  前記永久磁石は、該永久磁石の磁化方向のパーミアンス係数の値が2より大きくなる形状を有する、請求項1から請求項3のいずれか1項に記載の磁気センサ。
  5.  前記永久磁石は、該永久磁石の磁化方向のパーミアンス係数の値が、該永久磁石の減磁曲線の最大エネルギー積となる磁化方向のパーミアンス係数の値以上となる、形状を有する、請求項1から請求項4のいずれか1項に記載の磁気センサ。
  6.  前記少なくとも1つの永久磁石は、複数の永久磁石で構成されており、
     前記複数の永久磁石のうちの一部の永久磁石から印加された磁界は、前記複数の永久磁石のうちの残部の永久磁石に対して、該残部の永久磁石の磁化方向に印加され、
     前記残部の永久磁石から印加された磁界は、前記一部の永久磁石に対して、該一部の永久磁石の磁化方向に印加される、請求項1から請求項5のいずれか1項に記載の磁気センサ。
  7.  被測定電流が流れ、長手方向を有する導体と、
     前記導体を前記被測定電流が流れることにより生ずる前記被測定磁界を検出する請求項1から請求項6のいずれか1項に記載の磁気センサとを備え、
     前記永久磁石の磁化方向は、前記長手方向に直交する方向とは異なっている、電流センサ。
  8.  前記永久磁石の磁化方向は、前記長手方向に沿っている、請求項7に記載の電流センサ。
PCT/JP2017/003558 2016-07-06 2017-02-01 磁気センサおよびそれを備えた電流センサ WO2018008176A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780038845.1A CN109328307B (zh) 2016-07-06 2017-02-01 磁传感器以及具备该磁传感器的电流传感器
JP2018525925A JP6555421B2 (ja) 2016-07-06 2017-02-01 磁気センサおよびそれを備えた電流センサ
DE112017003404.3T DE112017003404T5 (de) 2016-07-06 2017-02-01 Magnetsensor und elektrischer stomsensor, der denselben umfasst
US16/152,589 US10884029B2 (en) 2016-07-06 2018-10-05 Magnetic sensor and electric current sensor including same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016134136 2016-07-06
JP2016-134136 2016-07-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/152,589 Continuation US10884029B2 (en) 2016-07-06 2018-10-05 Magnetic sensor and electric current sensor including same

Publications (1)

Publication Number Publication Date
WO2018008176A1 true WO2018008176A1 (ja) 2018-01-11

Family

ID=60901657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003558 WO2018008176A1 (ja) 2016-07-06 2017-02-01 磁気センサおよびそれを備えた電流センサ

Country Status (5)

Country Link
US (1) US10884029B2 (ja)
JP (1) JP6555421B2 (ja)
CN (1) CN109328307B (ja)
DE (1) DE112017003404T5 (ja)
WO (1) WO2018008176A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7058630B2 (ja) * 2019-10-01 2022-04-22 Tdk株式会社 磁気センサ装置
JP7172939B2 (ja) * 2019-10-01 2022-11-16 Tdk株式会社 磁気センサ装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5241523A (en) * 1975-09-29 1977-03-31 Toshiba Corp Electroacoustic converter
JP2004264205A (ja) * 2003-03-03 2004-09-24 Denso Corp 磁気センサ及びその製造方法
JP2005183614A (ja) * 2003-12-18 2005-07-07 Yamaha Corp 磁気センサ
JP2015049184A (ja) * 2013-09-03 2015-03-16 Tdk株式会社 インバータ装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07249807A (ja) * 1994-03-10 1995-09-26 Murata Mfg Co Ltd 磁気抵抗効果素子
JPH07297464A (ja) * 1994-04-28 1995-11-10 Murata Mfg Co Ltd 差動型磁気抵抗効果素子
EP0738896A3 (en) * 1995-04-19 1998-10-28 Eastman Kodak Company Exchange coupled barber pole magnetoresistive sensor
US7394086B2 (en) 2003-07-18 2008-07-01 Yamaha Corporation Magnetic sensor and manufacturing method therefor
US7977935B2 (en) * 2009-06-04 2011-07-12 Key Safety Systems, Inc. Temperature tolerant magnetic linear displacement sensor
DE102011110074A1 (de) * 2010-08-14 2012-03-22 Micro-Epsilon Messtechnik Gmbh & Co. Kg Verfahren und Vorrichtung zur Erfassung von Magnetfeldern
CN102162839B (zh) * 2011-03-18 2012-12-05 武汉大学 三维脉冲磁场波形重构方法及三维磁场传感器
JP2013217914A (ja) * 2012-03-12 2013-10-24 Ferrotec Corp 電流センサ、センサ素子および制御装置
JP2013242301A (ja) 2012-04-23 2013-12-05 Denso Corp 電流センサ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5241523A (en) * 1975-09-29 1977-03-31 Toshiba Corp Electroacoustic converter
JP2004264205A (ja) * 2003-03-03 2004-09-24 Denso Corp 磁気センサ及びその製造方法
JP2005183614A (ja) * 2003-12-18 2005-07-07 Yamaha Corp 磁気センサ
JP2015049184A (ja) * 2013-09-03 2015-03-16 Tdk株式会社 インバータ装置

Also Published As

Publication number Publication date
DE112017003404T5 (de) 2019-03-21
CN109328307A (zh) 2019-02-12
JP6555421B2 (ja) 2019-08-07
CN109328307B (zh) 2020-10-09
JPWO2018008176A1 (ja) 2019-01-24
US20190041432A1 (en) 2019-02-07
US10884029B2 (en) 2021-01-05

Similar Documents

Publication Publication Date Title
JP6414641B2 (ja) 電流センサ
WO2012157558A1 (ja) 磁気センサ装置
US10955443B2 (en) Current sensor and current sensor module
KR100800279B1 (ko) 스핀 밸브형 거대 자기 저항 효과 소자를 가진 방위계
WO2016194633A1 (ja) 電流センサ
JP6377882B1 (ja) 磁気抵抗効果素子デバイスおよび磁気抵抗効果素子装置
JP2013190345A (ja) 磁気センサ
JP6384677B2 (ja) 電流センサ
JP6540802B2 (ja) 電流センサ
JP6316429B2 (ja) 磁気センサ装置
US10267825B2 (en) Current sensor including a housing surrounded by bent portions of primary conductors
JP7070532B2 (ja) 磁気センサ
JP6555421B2 (ja) 磁気センサおよびそれを備えた電流センサ
JP2012063203A (ja) 磁気センサ
JP2014089088A (ja) 磁気抵抗効果素子
WO2017010210A1 (ja) 電流センサ
JP2013047610A (ja) 磁気平衡式電流センサ
JP2018044788A (ja) 電流センサ
JP4773066B2 (ja) 歯車センサ
JP2015031647A (ja) 電流センサおよびその製造方法
JP2015194389A (ja) 磁界検出装置および多面取り基板
WO2019049414A1 (ja) 磁気センサおよびそれを備える電流センサ
JP2018179775A (ja) 薄膜磁気センサモジュール
JP2017026573A (ja) 電流センサ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018525925

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17823785

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17823785

Country of ref document: EP

Kind code of ref document: A1