WO2018008151A1 - チタン板及びその製造方法 - Google Patents

チタン板及びその製造方法 Download PDF

Info

Publication number
WO2018008151A1
WO2018008151A1 PCT/JP2016/070303 JP2016070303W WO2018008151A1 WO 2018008151 A1 WO2018008151 A1 WO 2018008151A1 JP 2016070303 W JP2016070303 W JP 2016070303W WO 2018008151 A1 WO2018008151 A1 WO 2018008151A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
titanium plate
less
carbon
oxide film
Prior art date
Application number
PCT/JP2016/070303
Other languages
English (en)
French (fr)
Inventor
浩史 滿田
一浩 ▲高▼橋
英人 瀬戸
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to DK16908195.7T priority Critical patent/DK3467139T3/da
Priority to JP2016562609A priority patent/JP6119927B1/ja
Priority to KR1020197001460A priority patent/KR102142898B1/ko
Priority to CN201680087323.6A priority patent/CN109415794B/zh
Priority to EP16908195.7A priority patent/EP3467139B1/en
Priority to US16/306,998 priority patent/US10900109B2/en
Priority to PCT/JP2016/070303 priority patent/WO2018008151A1/ja
Publication of WO2018008151A1 publication Critical patent/WO2018008151A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon

Definitions

  • Patent Literature 4 pickling is performed after atmospheric annealing, and the difference in surface Vickers hardness at a load of 0.098N and Vickers hardness at a measurement load of 4.9N is 45 or less, thereby improving the formability.
  • a titanium plate is disclosed.
  • oil retention is improved by adjusting the surface shape of the titanium plate by a skin pass after pickling, thereby improving seizure resistance.
  • Patent Document 5 relates to a titanium material for a fuel cell separator, and an annealed titanium original sheet is cold-rolled using an organic rolling oil and heat-treated, so that a compound of O, C, N, etc. and Ti is mixed.
  • a technique for reducing the contact resistance by forming a surface layer is disclosed.
  • Patent Document 6 discloses a technique for suppressing seizure between a titanium plate and a rolling roll by forming an oxide film on the surface of the titanium plate prior to cold rolling of the titanium plate.
  • Patent Document 1 discloses a technique for forming high-density irregularities on the surface, but does not disclose a relationship with formability.
  • Patent Document 2 is inferior in convenience because it is necessary to control the oxygen partial pressure during annealing. During the vacuum annealing, it is extremely difficult to keep the oxygen partial pressure constant by releasing the gas from the furnace material.
  • Patent Document 3 requires mechanical or chemical removal of residual oil on the surface during cold working, and is inferior in productivity and yield.
  • Patent Document 4 it is necessary to remove the surface by about 10 ⁇ m or more on one side in order to make the difference in hardness between the surface and the base material 45 or less, resulting in poor yield. Further, since pickling is essential, there is no oxide film or hard layer on the surface, and the seizure resistance of the material itself is poor.
  • Patent Document 5 when viewed from the outermost surface, a hard layer is locally distributed to a depth of 10 ⁇ m or more, and a carbon concentrated layer becomes 10 ⁇ m or more. Therefore, it has been difficult to achieve high moldability.
  • An object of the present invention is to provide a titanium plate exhibiting excellent formability by generating a large number of minute cracks in the substrate and thereby relieving stress concentration during forming.
  • titanium plate of the present invention For the production of the titanium plate of the present invention, industrial pure titanium JIS1, JIS2 used for molding, ASTM Gr.1, Gr. 2 etc. are used suitably. Also, ASTM Gr.16, Gr. 17, Gr30, Gr. 7 (corrosion resistant titanium alloy of Ti-0.05Pd, Ti-0.06Pd, Ti-0.05Pd-0.3CoTi-0.15Pd) can also be used for the titanium plate of the present invention.
  • a relatively simple Erichsen test is generally used for evaluating the formability of a plate material.
  • the Eriksen test is usually performed using a solid or liquid lubricant as a lubricant. There are many examples in which evaluation is performed under these lubrication conditions. However, since the direction of deformation differs depending on the mold in the actual molding such as pressing, there is a possibility that the press formability of the material cannot be evaluated in the formability evaluation close to biaxial deformation such as Eriksen test. .
  • the most severe deformation of a titanium plate is plane strain deformation. Therefore, the present inventors evaluated the formability by a ball head overhang test using a test piece shape that can simulate the plane strain deformation in order to evaluate the formability in the plane strain deformation, which is the most severe deformation. As a result, it was possible to evaluate the formability at the most severe deformation of the material, and the formability evaluation closer to that of the actual press was achieved.
  • the present inventors considered that the press formability of the titanium plate is greatly related to the surface characteristics such as the surface hardness and the surface shape in addition to the metal structure.
  • the surface Vickers hardness measurement can change the indentation depth of the Vickers indenter by changing the load. Since the indentation depth of the Vickers indenter is shallow at an extremely low load such as 0.245N, the hardness of the surface layer portion of the titanium plate can be evaluated. Conversely, at a high load of 9.8N, the indentation depth is It becomes deeper and can evaluate the hardness of the material. Further, regarding the surface state of the titanium plate, the surface unevenness after the molding test and the state of cracks on the surface were observed in detail.
  • the present inventors have found that the moldability is improved by the occurrence of many small surface cracks on the surface during the molding process. Specifically, in the stretch forming process simulating the above-described plane strain deformation, the average interval of cracks generated on the surface when a strain of 25% is applied in the rolling direction is less than 50 ⁇ m, and the crack depth is 1 ⁇ m. As described above, it has been found that the moldability is improved when the thickness is less than 10 ⁇ m.
  • the inventors further conducted intensive research on a production method for obtaining the above-described surface hardness and carbon-enriched layer uniformly and stably.
  • a production method for obtaining the above-described surface hardness and carbon-enriched layer uniformly and stably.
  • the present invention has been made based on such knowledge, and the gist thereof is as follows.
  • a thin and hard carbon enriched layer can be uniformly formed on the surface of the titanium plate.
  • Titanium plate (1-1) Surface microcrack The average interval of cracks generated on the surface when a strain of 25% is applied in the rolling direction is less than 50 ⁇ m, and the depth of the crack is 1 ⁇ m or more and less than 10 ⁇ m :
  • the average interval of cracks generated on the surface when a 25% strain is applied in the rolling direction in the stretch forming process that becomes a plane strain deformation is less than 50 ⁇ m, and the depth is 1 ⁇ m or more and less than 10 ⁇ m. is there.
  • the stress concentration at the crack tip at the time of molding can be alleviated and the local constriction of the material can be prevented from progressing.
  • the moldability is improved.
  • a microcrack does not occur, when molding proceeds, a low-frequency coarse crack is generated, stress concentration occurs in the coarse crack, causing local constriction, and formability is reduced.
  • the average crack interval in the present application is measured after measuring the surface profile in a direction parallel to the rolling direction with a laser microscope of Keyence Co., Ltd .: Model No. VK9700, and measuring the number of irregularities with a depth of 1 ⁇ m or more. , Defined by the value obtained from the following equation (1).
  • FIG. 1 shows the relationship between the crystal grain size, which is a metal structure characteristic that greatly affects the formability, and the overhang height in the above-described ball head overhang test.
  • the crystal grain size is a characteristic that contributes to the ductility of titanium, and 15 to 80 ⁇ m is more excellent in formability.
  • HV 0.025 is 200 or more, HV 0.05 is lower than HV 0.025 , the difference is 30 or more, and HV 1 is 150 or less:
  • the titanium plate according to the present invention has a Vickers hardness HV 0.025 at a load of 0.245 N on the surface of 200 or more, and a Vickers hardness HV 0.05 at a load of 0.49 N on the surface from HV 0.025 .
  • the difference is 30 or more. That is, a hard layer is formed only on the surface layer.
  • Vickers hardness HV 1 at a high load 9.8N is 150 or less.
  • HV 0.025 and HV 0.05 When the difference between HV 0.025 and HV 0.05 is less than 30, that is, when the hard layer is formed deeply, the generated surface cracks are deep, resulting in coarse cracks, which adversely affects the moldability. Effect. Further, when HV 0.025 is lower than 200, surface cracks during molding are suppressed, but when molding proceeds, low-frequency surface cracks are generated, and stress concentration on the crack portion can be alleviated. Therefore, good moldability cannot be obtained. When HV 1 exceeds 150, reduces the ductility of the material itself, it can not be obtained good moldability.
  • Carbon concentrated layer thickness Depth d satisfying C d / C b > 1.5 is 1.0 ⁇ m or more and less than 10.0 ⁇ m: In the titanium plate according to the present invention, C d / C b > 1.5 when the carbon concentration of the base material is C b (mass%) and the carbon concentration at a depth d ⁇ m from the surface is C d (mass%).
  • the depth d (hereinafter referred to as “carbon thickened layer thickness”) d needs to be 1.0 ⁇ m or more and less than 10.0 ⁇ m.
  • the surface Vickers hardness is adjusted by concentrating carbon on the surface layer of the titanium plate. If the carbon concentrated layer thickness is 1.0 ⁇ m or more and less than 10.0 ⁇ m, the above surface Vickers hardness can be obtained. When the carbon-concentrated layer thickness is 10.0 ⁇ m or more, HV 0.05 becomes high, and the difference from HV 0.025 cannot be made 30 or more. As a result, desired micro cracks are generated. Cannot be produced, and coarse cracks are generated on the surface, which deteriorates the formability of the titanium plate. When the carbon concentrated layer thickness is less than 1.0 ⁇ m, HV 0.025 cannot be set to 200 or more.
  • the titanium plate according to the present invention preferably has an average crystal grain size of ⁇ phase of 15 to 80 ⁇ m.
  • the ⁇ crystal grain size is less than 15 ⁇ m, the ductility of the material is lowered, and the moldability tends to deteriorate.
  • the average crystal grain size of the ⁇ phase is larger than 80 ⁇ m, rough skin may occur due to press working or the like. The unevenness of the surface caused by the rough skin increases in depth and interval as the crystal grain size increases.
  • the crystal grain size exceeds 80 ⁇ m the depth of cracks generated on the surface is 10 ⁇ m or more, or the average interval between cracks Becomes 50 ⁇ m or more, and the moldability deteriorates.
  • the titanium plate according to the present invention is manufactured by performing a melting step, a lump and forging step, a hot rolling step, a cold rolling step, a vacuum or Ar gas atmosphere annealing step, After rolling and descaling, it is important to form an oxide film having a thickness of 20 to 200 nm and to optimize the conditions of the cold rolling process and the vacuum or Ar gas atmosphere annealing process.
  • the melting process, splitting and forging process, and hot rolling process are not particularly limited and can be performed under normal conditions. Further, after the hot rolling process, scale removal is performed by pickling.
  • the thickness of the titanium plate after the hot rolling step is preferably 4.0 to 4.5 mm in consideration of the post-processing.
  • an oxide film having a thickness of 20 to 200 nm is formed. “Skin-like skin roughness (with fine dents and coverings)” due to seizure phenomenon that occurs between the roll and the titanium plate during cold rolling by the 20-200 nm thick oxide film formed before cold rolling Suppress. This peel-like rough skin is noticeable on the titanium plate.
  • a natural oxide film is formed on the surface subjected to the pickling treatment after the hot rolling step, and the thickness thereof is, for example, about 5 to 10 nm.
  • the thickness of the oxide film can be adjusted by the heating temperature and time.
  • the heat treatment temperature is preferably 350 to 650 ° C.
  • the heat treatment temperature is lower than 350 ° C., it takes a long time to form an oxide film.
  • the heat treatment temperature exceeds 650 ° C., the denseness of the oxide film formed on the surface of the titanium plate decreases, and the oxide film may be partially worn or peeled off during the cold rolling.
  • an oxide film is formed by applying a voltage of 20 to 130 V with a titanium plate as an anode in a conductive liquid such as an aqueous phosphoric acid solution.
  • a conductive liquid such as an aqueous phosphoric acid solution.
  • an oxide film can be formed using an electrolytic cleaning or electrolytic pickling line.
  • the friction coefficient measured under the condition where no lubricating oil is used in a pin-on-disk test machine a pin made of tool steel SKD11 was used as the test machine pin. 0.12 to 0.18 in some cases, and 0.15 to 0.20 in cases where industrial titanium JIS Class 1 pins are used.
  • 0.30 to 0.40 is obtained when using a tool steel SKD11 pin, and 0.34 to 0.00 when using an industrial titanium JIS class 1 pin. 44. That is, the titanium plate having the above-described oxide film formed on the surface has a friction coefficient of about one-half that of a pure titanium plate having no oxide film.
  • the measurement of the coefficient of friction under the condition where no lubricant is used is, for example, a measurement assuming that the lubricant film is locally interrupted during rolling, so in the titanium plate on which the above oxide film is formed on the surface. Since the friction coefficient with respect to SKD11 equivalent to steel which is a roll material is low, peeling-like roughening is remarkably suppressed.
  • titanium wear powder is mixed in the lubricating oil.
  • the present inventors have obtained a new finding that if this wear powder adheres to the surface of the titanium plate, the lubricity due to the oxide film is impaired, and the occurrence of peeling skin roughness is induced. In order to suppress the occurrence of such rough skin, it is necessary to reduce the friction against the titanium plate. However, if an oxide film having a thickness of 20 to 200 nm is formed on the surface of the titanium plate, it is stable. It is possible to obtain a low coefficient of friction.
  • the cold rolled oil used for lubrication is, for example, a surface on which an oxide film having a contact angle of about 15 ° and a thickness of 20 to 200 nm is formed on an acid-washed surface on which no oxide film is formed. It is preferable to use a material having a contact angle of 5 to 10 °. Thereby, wettability increases, the uniformity of the surface skin increases, and the effect of suppressing peeling skin roughness is improved.
  • a high load cold rolling is first performed in the cold rolling step. Specifically, rolling up to a rolling rate of 70% in cold rolling is performed at a rolling reduction rate of 15% or more for each pass. In each pass, when the rolling rate is less than 70% after the end of the reduction of one pass and the rolling rate exceeds 70% in the next pass, the rolling rate is reduced for the first time by reduction. In a pass exceeding 70%, the rolling reduction need not be 15% or more. That is, for rolling up to a rolling rate of 70%, the rolling reduction rate for each pass up to the pass immediately before the pass where the rolling rate exceeds 70% for the first time after the rolling reduction may be 15% or more.
  • the rolling reduction per pass until the rolling rate reaches 70% is performed at less than 15%, that is, when rolling is performed at a low load, TiC is not sufficiently formed on the surface, and the subsequent vacuum or Ar gas The carbon enriched layer is not formed by annealing in the atmosphere. From the viewpoint of forming a sufficient amount of TiC on the surface more stably, the rolling reduction per pass until the rolling rate reaches 70% is preferably 20% or more.
  • the rolling reduction of each pass is appropriately set until the desired rolling reduction is reached, and cold rolling is continued, but at least the rolling reduction of 5% or less in the final pass. That is, cold rolling is performed at a rolling reduction of more than 0% to 5%.
  • mineral oil which is lubricating oil during rolling remains as a carbon source. This is the so-called attached oil content.
  • the rolling reduction in the final pass exceeds 5%
  • the work hardening of the titanium plate proceeds by cold rolling, and slip occurs between the hard titanium plate surface and the rolling roll, and the titanium plate surface is rubbed significantly. May wear out.
  • a portion having a non-uniform amount of residual carbon is locally formed on the surface of the titanium plate, and the carbon concentrated layer according to the present invention may not be obtained after annealing described later.
  • the distribution of the rolling rate is not particularly limited except for the rolling rate up to 70% as described above and the rolling rate in the final pass. For example, if the rolling reduction rate of each pass until the rolling rate reaches 70% is 15% or more, the rolling reduction rate for each pass may be different. Further, if the rolling reduction of the final pass is 5% or less, the rolling reduction in rolling passes other than the final pass among the rolling passes after the rolling rate reaches 70% may exceed 5%. In addition, after the rolling rate exceeds 70%, from the viewpoint of maintaining the flatness of the rolled sheet, the rolling reduction rate of each pass is decreased stepwise by less than 15%, and the rolling reduction rate is reduced in the final pass. A pass schedule that allocates the rolling reduction so as to be 5% or less is suitable.
  • lubricating oil is used during cold rolling.
  • mineral oil is used as the lubricating oil.
  • carbon and titanium contained in the mineral oil react to form TiC on the surface, and the carbon in the TiC on the surface moves inwardly in the titanium plate during vacuum or Ar gas atmosphere annealing. It can be diffused to form a carbon enriched layer, and the titanium plate according to the present invention can be obtained.
  • the reason why the mineral oil is used as the lubricating oil is that the main component of the mineral oil is a hydrocarbon system, and the carbon component in the mineral oil serves as a supply source of carbon to the carbon concentrated layer.
  • a rolling oil that does not contain carbon or has a low carbon content such as emulsion oil or silicon oil, is used as the lubricating oil, TiC does not remain on the surface, and even if annealing in a vacuum or Ar gas atmosphere described later is performed. The predetermined carbon enriched layer is not formed.
  • a titanium plate manufactured through a scale removal process such as hot rolling and pickling has formed a dent or covering with a depth of several ⁇ m on the surface by cold rolling.
  • a dent or covering covering several ⁇ m is called “peeling rough surface”.
  • lubricating oil enters and remains inside the whiply rough surface.
  • carbon is further diffused into the interior during annealing after cold rolling because a large amount of lubricating oil serving as a carbon source is locally distributed under the surface of several ⁇ m directly below the surface (in the dent and covering).
  • a hard layer is locally distributed to a depth of 10 ⁇ m or more, and the carbon concentrated layer becomes 10 ⁇ m or more.
  • the oxide film having a thickness of 20 to 200 nm formed before the cold rolling increases the wettability of the lubricating oil, and the oxide film acts as a barrier between the roll and the metal titanium. Severe seizure that causes rough skin is remarkably suppressed. As a result, after annealing, a titanium plate having the predetermined surface carbon concentration and the predetermined surface hardness defined above can be obtained.
  • the thickness of the oxide film formed before cold rolling is less than 20 nm, the above effect is insufficient because the oxide film is thin, and when it is thicker than 200 nm, the amount of TiC formed by the reaction between the lubricating oil and metal titanium. And HV 0.025 of 200 or more cannot be obtained.
  • the thickness of the oxide film formed before cold rolling is 30 to 100 nm.
  • annealing is performed in a vacuum or Ar gas atmosphere at a temperature range of 750 to 810 ° C. for 0.5 to 5 minutes.
  • the washing process by an alkali aqueous solution which has sodium hydroxide as a main component
  • the surface of the titanium plate after cold rolling is inevitably attached with lubricating oil that can be easily removed by wiping with a waste cloth, but this lubricating oil accumulates in a non-flat corrugated portion on the surface of the titanium plate. There is a case.
  • lubricating oil aqueous solution which has sodium hydroxide as a main component
  • the carbon concentrated layer can be set to a predetermined thickness, and as a result, the surface Vickers hardness can be set to a predetermined value.
  • the surface of the titanium plate is formed by performing the cold rolling step as described above and the annealing step in a vacuum or Ar atmosphere at a high temperature for a short time.
  • a carbon concentrated layer can be formed uniformly and stably. Thereby, many micro cracks can be generated on the surface in the subsequent molding process. As a result, it is possible to uniformly relieve stress concentration during forming, and the formability of the titanium plate can be improved.
  • the average crystal grain size of the ⁇ phase is determined by the annealing temperature and the holding time.
  • the annealing temperature specified in the present invention the average crystal grain size of the ⁇ phase can be within the above-mentioned preferable range by setting the holding time to about 0.5 to 5 minutes.
  • test material a titanium JIS-1 type ingot melted by electron beam was subjected to ingot rolling, hot rolling, and then pickling treatment using nitric hydrofluoric acid. Titanium plate was used. The titanium plate was subjected to the following steps a1) to a4) in order to produce a test titanium plate as a material of the present invention (test materials No. A1 to A14).
  • each test material was oxidized at 500 ° C. for 3 minutes in the air.
  • the thickness of the oxide film formed at that time was 72 nm.
  • the oxygen concentration distribution in the depth direction of the titanium plate on the surface of the titanium plate is measured using a glow discharge optical emission spectrometer (GDS), and the oxygen concentration that decreases along the depth direction is stable from the concentration distribution.
  • GDS glow discharge optical emission spectrometer
  • the depth at which the value (the oxygen concentration of the base material) was half of the maximum value of the oxygen concentration in the vicinity of the surface was determined, and the depth was defined as the thickness of the oxide film.
  • a2) Cold rolling after rolling at a reduction rate of 15% or more for each pass until the rolling rate reaches 70%, and then rolling until the rolling rate reaches 89% with a reduction rate of 5% or less in at least the final pass Rolling step
  • the rolling reduction per pass from 70% after the rolling rate to one pass before the final pass was set to less than 15%.
  • a3) Cleaning step performed with an alkali (in an aqueous solution containing sodium hydroxide as a main component) a4) Vacuum or Ar gas atmosphere annealing step for 0.5 to 5 minutes in a temperature range of 750 to 810 ° C.
  • Comparative material I Test titanium plate (test material Nos. A15 to A22) subjected to the annealing shown in step a4) after cold rolling at a rolling reduction rate of less than 15% for each pass up to 70%.
  • Comparative material II Titanium test plate (test materials No. A23 to A28) subjected to annealing in the vacuum at a temperature range of 600 to 700 ° C. for 240 minutes after the above steps a1), a2) and a3)
  • Comparative material III Test titanium plate (test material Nos. A29 to A30) subjected to the annealing shown in the above step a3) after cold rolling with a rolling reduction exceeding 5% in the final pass
  • the average crystal grain size, formability, surface state after the molding test, surface Vickers hardness, and carbon concentrated layer thickness of each test material were evaluated under the following conditions.
  • -Formability Made by Tokyo Test Machine Co., Ltd .: Using a ball head punch with a diameter of 40 mm in a deep drawing tester of model number SAS-350D, a titanium plate is processed into a 70 mm x 95 mm shape so as to have a plane strain deformation. A head overhang test was performed. The test piece was processed so that the rolling direction was 95 mm.
  • the overhanging process is performed by applying high viscosity oil (# 660) manufactured by Nippon Tool Oil Co., Ltd. and placing a polysheet on it to prevent direct contact between the punch and the titanium plate, and the overhang height when the specimen breaks. It was evaluated by comparing the thickness.
  • a test material having an overhang height of 20.5 mm or more in the ball head overhang test was determined to be a titanium plate exhibiting excellent formability.
  • the carbon concentration of the base material is C b (mass%) and the carbon concentration at a depth d ⁇ m from the surface is C d (mass%), the depth satisfies C d / C b > 1.5.
  • d was defined as the carbon thickened layer thickness.
  • FIG. A4 and (b) have no.
  • the surface profile measurement result after the ball head overhang test of A24 is shown.
  • FIG. 3A the test material No. A4 and (b) have no.
  • the surface SEM image after the ball head overhang test of A24 is shown.
  • Test material No. corresponding to the present invention All of A1 to A14 showed excellent moldability with an overhang height of 20.5 mm or more because microcracks were generated on the surface during the molding process and stress concentration during molding was relaxed.
  • steps b1) to b4) are sequentially performed on a 4.5 mm-thick titanium plate produced by pickling with nitric hydrofluoric acid to produce a test titanium plate as a material of the present invention. (Test materials Nos. B1 to B9).
  • Step of forming an oxide film having a thickness of 20 to 200 nm after pickling treatment in this step, two types of oxide films such as heat treatment in the atmosphere and anodization treatment using an aqueous phosphoric acid solution are used. A forming process was performed. In the heat treatment in the atmosphere, the oxide film thickness was adjusted in the temperature range of 350 to 650 ° C., and in the anodic oxidation, the oxide film thickness was adjusted in the voltage range of 20 to 130V. The oxide film thickness was measured using the same glow discharge optical emission spectrometer (GDS) as described above.
  • GDS glow discharge optical emission spectrometer
  • Comparative material IV For a test in which a titanium plate having an oxide film thickness of less than 20 nm or more than 200 nm was subjected to cold rolling, alkali cleaning, and annealing under the conditions shown in the above steps b2), b3), and b4) Titanium plate (test materials No. B10 to B14).
  • Comparative material V For a titanium plate on which a natural oxide film was formed without passing through the step of forming an oxide film after pickling treatment, or on a titanium plate on which an oxide film was formed under the conditions shown in step b1) Test titanium plates (test materials Nos. B15 to B17) subjected to cold rolling and alkali cleaning under the conditions shown in steps b2) and b3) and then annealed in vacuum at a temperature of 630 ° C. for 240 minutes .
  • Condition A an annealing process for holding at a temperature of 800 ° C. for 1 minute in a vacuum atmosphere
  • an annealing process for holding at a temperature of 630 ° C. for 240 minutes in a vacuum atmosphere is described as Condition B.
  • the crystal grain size after the annealing conditions A and B are both equal to about 26 ⁇ m.
  • the average crystal grain size, formability, surface condition after the molding test, surface Vickers hardness, and carbon concentrated layer thickness of each test material were evaluated under the same conditions as described above.
  • B1 to B9 are cold-rolled in a state where an oxide film having a thickness of 20 to 200 nm is formed, and a predetermined carbon enriched layer is formed after annealing. As a result, microcracks were generated on the surface during the molding process, and the stress concentration during molding was alleviated, so that the overhang height was 20.5 mm or more and excellent moldability was exhibited.
  • the oxide film before cold rolling was as thin as less than 20 nm. Further, the carbon concentrated layer thickness is 10.0 ⁇ m or more, and the difference between HV 0.025 and HV 0.05 is small and less than 30. Therefore, coarse cracks are generated on the surface during molding, stress concentration is not relaxed, and moldability is inferior. Moreover, No. which is comparative material IV. In B12 and B14, since the oxide film before cold rolling is thicker than 200 nm, a carbon concentrated layer is not formed, and HV 0.025 is thereby reduced. Therefore, microcracks are not generated on the surface during the molding process, stress concentrates on low-frequency cracks that occur when molding progresses, and the moldability is poor.
  • Comparative material V No. In B15 to B17, since the holding time during annealing is long, the thickness of the carbon concentrated layer is 10.0 ⁇ m or more, and the difference between HV 0.025 and HV 0.05 is small and less than 30 Yes. Therefore, coarse cracks are generated on the surface during molding, stress concentration is not relaxed, and moldability is inferior.
  • steps c1) to c4) are sequentially performed on a 4.5 mm-thick titanium plate produced by pickling with nitric hydrofluoric acid to produce a test titanium plate as a material of the present invention. (Test materials Nos. C1 to C3 and C7 to C9).
  • c1) Step of forming an oxide film having a thickness of 20 to 200 nm after pickling treatment
  • two types of oxide films such as heat treatment in the atmosphere and anodization treatment using an aqueous phosphoric acid solution are used.
  • a forming process was performed.
  • the oxide film thickness was adjusted in the temperature range of 350 to 650 ° C.
  • the oxide film thickness was adjusted in the voltage range of 20 to 130V.
  • the oxide film thickness was measured using the same glow discharge optical emission spectrometer (GDS) as described above.
  • GDS glow discharge optical emission spectrometer
  • An annealing process performed in a vacuum atmosphere held for 1 minute at
  • Comparative material VI A titanium plate on which an oxide film was formed under the conditions shown in the above step c1) was subjected to cold rolling according to the cold rolling pass schedule shown in P4 to P6 of Table 3 below, and then the above step c3 ), Titanium plate for test subjected to alkali cleaning and annealing under the conditions shown in c4) (test materials No. C4 to C6, C10 to C12).
  • Nos. C4 to C6 and C10 to C12 which are comparative materials VI are the cold rolling conditions according to the present invention. “The rolling reduction ratio for each pass up to a rolling rate of 70% is 15% or more, and at least the subsequent rolling. Cold rolling is performed under a condition that does not satisfy at least one of the rolling reduction of 5% or less in the final pass. As a result, a carbon-enriched layer is not formed, micro-cracks are not generated on the surface during the molding process, stress is concentrated on low-frequency cracks generated when molding proceeds, and the moldability is poor.
  • a thin and hard layer uniformly on the surface by forming a thin and hard layer uniformly on the surface, a large number of micro cracks can be generated on the surface during the molding process, thereby reducing stress concentration during molding, which is excellent.
  • a titanium plate exhibiting excellent formability can be provided. Since this titanium plate is excellent in formability, it is particularly useful as a material for heat exchangers such as chemical plants, electric power plants, and food production plants.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

成形性に優れるチタン板及びその製造方法を提供する。母材の炭素濃度をC(質量%)、表面からの深さdμmの炭素濃度をC(質量%)としたときに、C/C>1.5を満たす深さd(炭素濃化層厚み)が1.0μm以上10.0μm未満であり、表面における荷重0.245Nでのビッカース硬さHV0.025が200以上であり、表面における荷重0.49Nでのビッカース硬さHV0.05がHV0.025より低く、かつ、HV0.025とHV0.05との差が30以上であり、表面における荷重9.8Nでのビッカース硬さHVが150以下であり、張出し成形過程で圧延方向に25%のひずみを付与した際に表面に発生するクラックの平均間隔が50μm未満であり、深さが1μm以上10μm未満であることを特徴とするチタン板。

Description

チタン板及びその製造方法
 本発明は、チタン板及びその製造方法に関する。特に、成形性に優れたチタン板及びその製造方法に関する。
 チタン板は、耐食性に優れていることから、化学プラント、電力プラント、食品製造プラントなど、様々なプラントにおける熱交換器の素材として使用されている。その中でもプレート式熱交換器は、プレス成形によりチタン板に凹凸を付けて表面積を増加させることにより熱交換効率を高めるものであり、優れた成形性が要求される。
 特許文献1には、酸化雰囲気又は窒化雰囲気で加熱することにより、酸化膜及び窒化膜を形成した後、曲げ又は引っ張りを加え、これらの皮膜に微細な割れを導入して金属チタンを露呈させ、その後、可溶な酸水溶液中で溶削することによって、密度が高く、深度の深い凹凸を形成させたチタン材が開示されている。特許文献1によれば、従来よりも平均粗さが大きく平均間隔の小さい凹凸を形成することにより潤滑油の担保性が高まり、チタン材の潤滑性が良くなる。また、酸化膜及び窒化膜を表面に残存させるか、又は、形成することよって、さらに潤滑性が良くなる。
 特許文献2には、冷間圧延されたチタン板を所定の範囲の酸素分圧に制御した雰囲気下で焼鈍することにより、荷重4.9Nでのビッカース硬さを180以下にし、0.098Nでのビッカース硬さを4.9Nでの測定値の差が20以上であるチタン板が開示されている。これにより、チタン板自体の成形性が低下するのを防ぎ、表層のみを硬質にすることでプレス時の焼付きを防止し、チタン板の成形性が向上する。
 特許文献3には、化学的又は機械的にチタン薄板の表面から0.2μmの部位を除去することにより、冷間加工時に表面に焼き付いた残留油分を排除し、その後に真空焼鈍を行うことにより、荷重200gf(1.96N)での表面硬さを170以下とし、かつ酸化皮膜の厚さを150Å以上にした、成形性に優れたチタン薄板が開示されている。特許文献3の方法によれば、チタン薄板の表層に硬化層が形成されないので、素材の成形性を損なうことがなく、成形時の金型及び工具との潤滑性が維持され、チタン薄板の成形性が向上する。
 特許文献4には、大気焼鈍後に酸洗を行い、荷重0.098Nでの表面ビッカース硬さと、測定荷重4.9Nでのビッカース硬さの差を45以下とすることで、成形性が向上したチタン板が開示されている。また、酸洗後のスキンパスによってチタン板の表面形状を調整することで保油性が向上し、それにより耐焼付き性が向上することが開示されている。
 特許文献5には、燃料電池セパレータ用チタン材に関し、焼鈍されたチタン原板を有機系圧延油を用いて冷間圧延し、熱処理することにより、O、C、N等とTiとの化合物が混在する表面層を形成して、接触抵抗を下げる技術が開示されている。
 特許文献6には、チタン板の冷間圧延に先立ち、チタン板の表面に酸化皮膜を形成することで、チタン板と圧延ロールとの焼き付きを抑える技術が開示されている。
特開2005-298930号公報 特開2002-3968号公報 特開2002-194591号公報 特開2010-255085号公報 国際公開第2014/156673号 特公昭60-44041号公報
 特許文献1は、表面に密度の高い凹凸を形成させる技術が開示しているが、成形性との関係について開示していない。
 特許文献2の技術は、焼鈍時の酸素分圧を制御する必要があり簡便性に劣る。真空焼鈍時に、炉材などからのガスの放出により酸素分圧を一定に保つことは極めて困難である。
 特許文献3の技術は、冷間加工時の表面残留油分を機械的、又は化学的に除去する必要があり、生産性、歩留まりに劣る。
 特許文献4の技術は、表面と母材の硬さ差を45以下とするために表面を片面約10μm以上除去する必要があり、歩留まりが悪くなる。また、酸洗を必須とするため表面に酸化皮膜や硬質層が存在せず、材料自体の耐焼付き性に劣る。
 特許文献3~4はチタン板の成形性を向上させるために、表面を軟質化しており、成形時のクラックの発生は抑制されるが、成形が進むにつれて発生する低頻度のクラックに応力集中が生じて局部くびれを促進させる。
 特許文献5の技術は、最表面からみた場合、局所的に深さ10μm以上まで硬い層が分布してしまい、炭素濃化層が10μm以上になってしまう。そのため、高い成形性を達成することが困難であった。
 特許文献6の技術は、チタン板と圧延ロールとの焼き付きを防ぐことに着目しているため、チタン板の成形性については考慮されていない。当然のことながら、チタン板の成形性を向上させる手段に関して技術的な示唆はない。
 本発明は、このような従来技術の問題を解決するためになされたものであり、複雑な工程を有することなく、表面に薄く硬質な層を均一に安定して形成することにより成形過程で表面に微小のクラックを多数発生させ、それにより成形時の応力集中を緩和することで、優れた成形性を示すチタン板を提供することを目的とする。
 本発明のチタン板の製造には、成形用に用いられる工業用純チタンJIS1、JIS2、これらに相当するASTM Gr.1、Gr.2等が好適に用いられる。また、ASTM Gr.16、Gr.17、Gr30、Gr.7(Ti-0.05Pd,Ti-0.06Pd,Ti-0.05Pd-0.3CoTi-0.15Pdの耐食チタン合金)も、本発明のチタン板に用いることができる。
 板材の成形性の評価には、比較的簡便なエリクセン試験が用いられるのが一般的である。エリクセン試験は、通常、固形又は液体の潤滑油を潤滑材として行われる。これらの潤滑条件の元で評価を行っている例は多数存在する。しかし、実際のプレス加工等の成形では金型によって変形する方向が異なるため、エリクセン試験のような等二軸変形に近い成形性評価では、素材のプレス成形性を評価できていない可能性がある。
 一般的に、チタン板の最も厳しい変形は平面歪変形である。そこで、本発明者らは、最も厳しい変形である平面歪変形での成形性を評価するため、平面歪変形を模擬できる試験片形状を用いた球頭張出し試験によって成形性を評価した。これにより、素材の最も厳しい変形での成形性を評価することが可能となり、実際のプレスでの成形により近い成形性評価となった。
 本発明者らは、チタン板のプレス成形性には金属組織に加え、表面特性、たとえば表面硬さと表面形状が大きく関係していると考えた。
 そこで、チタン板の最表層の硬さの情報を正確に得るために、荷重を0.245N(25gf)から9.8N(1000gf)の間で変化させた表面ビッカース硬さの測定を試みた。ビッカース硬さ測定は荷重を変化させることでビッカース圧子の押し込み深さを変えることができる。0.245Nのような極低荷重ではビッカース圧子の押し込み深さが浅いため、チタン板の再表層部の硬さを評価することができ、逆に9.8Nと高荷重では、押込み深さが深くなり、素材の硬さを評価することができる。また、チタン板の表面状態について、成形試験後の表面凹凸や表面のクラックの状態を詳細観察した。
 本発明者らは優れた成形性を示す表面特性について鋭意研究を重ねた結果、成形過程で表面に微小の表面クラックが多数発生することで成形性が向上することを突き止めた。具体的には、上記の平面歪変形を模擬した張出し成形過程において、圧延方向にひずみが25%付与されたときに表面に発生したクラックの平均間隔が50μm未満であり、クラックの深さが1μm以上、10μm未満の場合に成形性が向上することを突き止めた。
 そして、このようなクラックを得るためには、チタン板の表面のビッカース硬さを適切な値とする必要があり、それは、表面に炭素を濃化させた炭素濃化層を形成することで実現可能であることを見出した。そのような適切な硬さを有する炭素濃化層に成形過程で微小なクラックが多数生じることにより、チタン板表面における応力集中箇所が分散する効果が生じる。
 本発明者らは、さらに、上記の表面硬さ及び炭素濃化層を均一に安定して得るための製造方法について鋭意研究を行った。その結果、上記の表面硬さ及び炭素濃化層を得るためには、冷間圧延工程の条件及び焼鈍工程の条件を適正にすることが重要であることを見出した。
 本発明は、このような知見に基づいてなされたものであり、その要旨は以下のとおりである。
 (1)母材の炭素濃度をC(質量%)、表面からの深さdμmの炭素濃度をC(質量%)としたときに、C/C>1.5を満たす深さd(炭素濃化層厚み)が1.0μm以上10.0μm未満であり、表面における荷重0.245Nでのビッカース硬さHV0.025が200以上であり、表面における荷重0.49Nでのビッカース硬さHV0.05がHV0.025より低く、かつ、HV0.025とHV0.05との差が30以上であり、表面における荷重9.8Nでのビッカース硬さHVが150以下であり、張出し成形過程で圧延方向に25%のひずみを付与した際に表面に発生するクラックの平均間隔が50μm未満であり、深さが1μm以上10μm未満である、チタン板。
 (2)前記(1)のチタン板の製造方法であって、熱間圧延および脱スケールした後、厚さ20~200nmの酸化皮膜を形成したチタン板に、潤滑油として鉱油を用い、圧延率70%までの圧下率を各パスあたり15%以上として冷間圧延を施した後、少なくとも最終パスにおいて圧下率が5%以下の冷間圧延を施し、冷間圧延されたチタン板に、真空、又はArガス雰囲気で、750~810℃の温度域で0.5~5分間保持する焼鈍を施す、チタン板の製造方法。
 本発明によれば、チタン板の表面に薄く硬質な炭素濃化層を均一に形成することができる。これにより、成形過程で表面に微小のクラックが多数発生して成形時の応力集中が緩和されることで優れた成形性を示すチタン板を提供することができる。このチタン板は、成形性に優れているため、たとえば、化学プラント、電力プラント、食品製造プラントなどの熱交換器の素材として特に有用である。
結晶粒径と球頭出し試験での張出し高さの関係を示す図である。 実施例における球頭張出し試験後の表面プロファイル測定結果の一例であり、(a)は本発明例、(b)は比較例である。 実施例における球頭張り出し試験後の表面SEM画像一例であり、(a)は本発明例、(b)は比較例である。
 以下、本発明の実施形態について説明する。
 (1)チタン板
 (1-1)表面微小クラック:圧延方向にひずみが25%付与されたときに表面に発生したクラックの平均間隔が50μm未満であり、クラックの深さが1μm以上、10μm未満:
 本発明に係るチタン板は、平面歪変形となる張出し成形過程において、圧延方向に25%ひずみを付与した際に表面に発生したクラックの平均間隔が50μm未満であり、深さ1μm以上10μm未満である。これにより、成形時のクラック先端部への応力集中が緩和され、素材の局部くびれの進行を防止することができ、その結果、成形性が向上する。このような微小クラックが発生しない場合、成形が進んだ際に、低頻度の粗大なクラックが発生し、この粗大なクラックに応力集中が生じ、局部くびれの要因となり成形性が低下する。
 なお、本願における平均クラック間隔は、(株)キーエンス製:型番VK9700のレーザー顕微鏡を用いて、表面プロファイルを圧延方向に平行な方向に200μm測定し、深さ1μm以上の凹凸の個数を計測した後、下記(1)式より得られる値で定義する。
 l=L/N…(1)
 l:平均クラック間隔 L:測定長さ N:深さ1μm以上の凹凸の個数
 以下、この平均間隔が50μm未満であり、深さ1μm以上10μm未満である表面クラックを「微小クラック」という。図1に成形性に大きく影響する金属組織特性である結晶粒径と、上記の球頭張出し試験における張出し高さの関係を示す。図1に示すように、同じ結晶粒径であっても、成形後の表面の微小クラックの発生有無により成形性が大きく変化する。なお、結晶粒径はチタンの延性に寄与する特性であり、15~80μmが成形性により優れている。
 (1-2)表面ビッカース硬さ:HV0.025が200以上かつ、HV0.05がHV0.025より低く、その差が30以上であり、HVが150以下:
 本発明に係るチタン板は、表面における荷重0.245Nでのビッカース硬さHV0.025が200以上であり、表面における荷重0.49Nでのビッカース硬さHV0.05がHV0.025より低く、その差が30以上である。すなわち、ごく表層のみに硬い層が形成されている。このような表面ビッカース硬さを満たすことで、圧延方向に25%のひずみを付与した際に、チタン板の表面に上記の微小クラックを発生させることができる。また、素材の成形性を確保するために、高荷重である9.8Nでのビッカース硬さHVが150以下である必要がある。
 HV0.025とHV0.05の差が30未満の場合、すなわち硬い層が深くまで形成されている場合は、発生する表面クラックの深さが深いために粗大なクラックとなり、成形性に悪影響を及ぼす。また、HV0.025が200より低い場合、成形時の表面クラックは抑制されるが、成形が進んだ際に低頻度の表面クラックが発生し、クラック部への応力集中を緩和することができず、良好な成形性は得られない。HVが150を超えると、素材そのものの延性が低下し、良好な成形性は得られない。
 (1-3)炭素濃化層厚み:C/C>1.5を満足する深さdが1.0μm以上10.0μm未満:
 本発明に係るチタン板は母材の炭素濃度をC(質量%)、表面からの深さdμmの炭素濃度をC(質量%)としたときに、C/C>1.5を満たす深さ(以下「炭素濃化層厚み」という)dが1.0μm以上、10.0μm未満である必要がある。
 本発明は、チタン板の表層に炭素を濃化させることにより、表面ビッカース硬さを調整している。炭素濃化層厚みが1.0μm以上、10.0μm未満であれば、上記の表面ビッカース硬さを得ることができる。炭素濃化層厚みが10.0μm以上である場合、HV0.05が高くなり、HV0.025との差を30以上とすることができず、その結果、所望の微小クラックを発生させることができず、表面に粗大なクラックが発生し、チタン板の成形性が悪化する。炭素濃化層厚みが1.0μm未満の場合、HV0.025を200以上とすることができない。
 (1-4)金属組織:α相の平均結晶粒径:
 本発明に係るチタン板は、α相の平均結晶粒径が15~80μmであることが好ましい。α結晶粒径が15μm未満となると、素材の延性が低下し成形性が悪化しやすくなる。α相の平均結晶粒径が80μmより大きくなるとプレス加工等により肌荒れが生じる懸念がある。この肌荒れに起因して生じる表面の凹凸は、結晶粒径が大きいほど深さや間隔が大きくなり、結晶粒径が80μmを超えると、表面に発生したクラックの深さが10μm以上或いはクラックの平均間隔が50μm以上になり、成形性を劣化させてしまう。
 (2)製造方法
 本発明に係るチタン板は、溶解工程、分塊及び鍛造工程、熱間圧延工程、冷間圧延工程、真空又はArガス雰囲気焼鈍工程を実施することによって製造するに際し、熱間圧延および脱スケールした後、厚さ20~200nmの酸化皮膜を形成するとともに、冷間圧延工程と真空又はArガス雰囲気焼鈍工程の条件を適正化することが重要である。
 (2-1)溶解工程、分塊及び鍛造工程、熱間圧延工程
 溶解工程、分塊及び鍛造工程、熱間圧延工程には特に制約がなく、通常の条件で行うことができる。また、熱延工程後には酸洗処理によるスケールの除去を行う。熱間圧延工程後のチタン板の板厚は、後工程の加工を考慮し、4.0~4.5mmであることが好ましい。
 熱延工程後に酸洗処理によってスケールの除去を行った後、厚さ20~200nmの酸化皮膜を形成する。冷間圧延前に形成した厚さ20~200nmの酸化皮膜によって、冷間圧延時のロールとチタン板との間で生じる焼付き現象による「むしれ状の肌荒れ(微細な凹みや被さりあり)」を抑制する。このむしれ状の肌荒れはチタン板で顕著にみられる。なお、熱延工程後に酸洗処理を施した表面には自然酸化皮膜が形成されており、その厚さは例えば5~10nm程度である。
 このように厚さ20~200nmの酸化皮膜を形成する方法としては、例えば大気中での加熱処理や陽極酸化処理がある。大気中の加熱処理では、加熱する温度と時間によって酸化皮膜の厚さを調整することができる。加熱処理温度は350~650℃が好適である。加熱処理温度が350℃よりも低いと、酸化皮膜が形成される時間が長時間となる。一方、加熱処理温度が650℃を超えると、チタン板の表面に形成される酸化皮膜の緻密性が低下し、酸化皮膜が冷間圧延の過程で部分的に摩耗や剥離する場合がある。陽極酸化処理では、りん酸水溶液などの導電性がある液中においてチタン板を陽極にして電圧を20~130V印加することで酸化皮膜が形成される。工業的には電解洗浄や電解酸洗のラインを用いて酸化皮膜を形成することができる。
 表面にこのような酸化皮膜が形成されたチタン板の場合、ピンオンディスク試験機で潤滑油を使用しない条件下において測定された摩擦係数は、試験機のピンとして工具鋼SKD11製ピンを用いた場合で0.12~0.18、工業用チタンJIS1種製ピンを用いた場合で0.15~0.20である。一方、酸化皮膜が形成されていない純チタン板では、工具鋼SKD11製ピンを用いた場合で0.30~0.40、工業用チタンJIS1種製ピンを用いた場合で0.34~0.44である。即ち、表面に上記のような酸化皮膜が形成されたチタン板は、酸化被膜が形成されていない純チタン板と比較して約二分の一の摩擦係数となる。潤滑油を使用しない条件下における摩擦係数の測定は、例えば圧延中に潤滑油膜が局所的に途切れた場合を想定した測定であることから、表面に上記の酸化皮膜が形成されているチタン板においては、ロール材質である鋼に相当するSKD11に対する摩擦係数が低いために、むしれ状肌荒れが顕著に抑制される。
 一方、冷間圧延時にはチタン板の表面が若干摩耗するため、潤滑油中にチタンの摩耗粉が混在する。本発明者らは、この摩耗粉がチタン板表面にこびりついてしまうと、酸化皮膜による潤滑性が損なわれ、むしれ状肌荒れの発生を誘発してしまうといった新たな知見を得た。このようなむしれ状肌荒れの発生を抑制するためには、チタン板に対する摩擦が小さくなることが必要であるところ、チタン板の表面に厚さ20~200nmの酸化皮膜が形成されていれば、安定した低い摩擦係数を得ることが可能となる。なお、潤滑のために用いる冷間圧延油として、例えば酸化皮膜が形成されていない酸洗したままの表面において接触角が約15°、かつ、厚さ20~200nmの酸化皮膜が形成された表面において接触角が5~10°となるようなものを使用することが好ましい。これにより、濡れ性が高まり、表面肌の均一性が高まるとともに、むしれ状肌荒れを抑制する効果が向上する。
 (2-2)冷間圧延工程、真空又はArガス雰囲気焼鈍工程
 本発明に係るチタン板の製造においては、冷間圧延工程で、まず高荷重の冷間圧延を行う。具体的には、冷間圧延における圧延率70%までの圧延を、各パス当たり15%以上の圧下率で行う。なお、各パスの圧下において、あるパスの圧下終了後に圧延率が70%未満であり、かつ、次のパスの圧下で圧延率が70%を超えるような場合には、圧下により圧延率が初めて70%を超えるパスでは圧下率を15%以上としなくても良い。即ち、圧延率70%までの圧延は、圧下終了後に圧延率が初めて70%を超えるパスの直前のパスまでの各パスあたりの圧下率が15%以上であれば良い。
 圧延率が70%に達するまでの各パス当たりの圧下率を15%未満で行った場合、すなわち低荷重で圧延を行った場合、表面にTiCが十分に形成されず、その後の真空又はArガス雰囲気での焼鈍で炭素濃化層が形成されない。十分な量のTiCをより安定して表面に形成するという観点からは、圧延率が70%に達するまでの各パス当たりの圧下率は20%以上とすることが好ましい。
 チタン板の圧延率が70%に達した後は、所望の圧延率となるまで各パスの圧下率が適宜設定されて冷間圧延が続けられるが、少なくとも最終パスにおいては5%以下の圧下率、即ち、0%超~5%の圧下率で冷間圧延を行う。ここで圧延されるチタン板の表面には、それまでの圧延によって形成されたTiCの他に炭素源として圧延時の潤滑油である鉱油が残留している。いわゆる付着油分である。このような付着油分に対して最終パスで圧下率が5%以下の冷間圧延を行うことで、付着油分がチタン板表面に行き渡り、炭素源となる付着油分の分布がチタン板表面において均一化する。
 一方、最終パスにおける圧下率が5%を超えると、冷間圧延によりチタン板の加工硬化が進行し、硬いチタン板表面と圧延ロールとの間でスリップが発生してチタン板表面が擦れて顕著に摩耗してしまう場合がある。この場合、チタン板表面において残留炭素量が不均一な部位が局所的に形成されてしまい、後述の焼鈍後に本発明に係る炭素濃化層が得られない場合がある。また、チタン板表面に痕が形成されるおそれもある。このため、冷間圧延工程の最終パスに行う圧延は圧下率を5%以下とする必要がある。なお、圧延率の分配(パススケジュール)に関しては、上記のような圧延率70%までの圧下率や最終パスにおける圧下率以外に特に制約はない。例えば、圧延率が70%に達するまでの各パスの圧下率が15%以上であれば、パスごとの圧下率はそれぞれ異なっていても良い。また、最終パスの圧下率が5%以下であれば、圧延率が70%に達した以降の圧延パスのうち、最終パス以外の圧延パスにおける圧下率は5%を超えていても良い。なお、圧延率が70%を超えた以降は、被圧延板の平坦度の維持などの観点から、各パスの圧下率を15%未満で段階的に減少させて行き、最終パスで圧下率が5%以下になるように圧下率を配分するパススケジュールが好適である。
 一般的に冷間圧延時には潤滑油が用いられる。本発明に係るチタン板の製造方法においては、潤滑油として鉱油を用いる。上記の冷間圧延を行うことで、鉱油中に含まれる炭素とチタンが反応して表面にTiCが形成され、この表面のTiC中の炭素が真空又はArガス雰囲気焼鈍中にチタン板内方へ拡散し、炭素濃化層を形成することができ、本発明に係るチタン板を得ることができる。
 潤滑油として鉱油を用いる理由は、鉱油の主成分は炭化水素系であり、この鉱油中の炭素成分が炭素濃化層への炭素の供給源となるためである。潤滑油として、たとえばエマルジョン油、シリコン油などの炭素を含まない又は炭素含有量の少ない圧延油を用いると、TiCが表面に残存せず、後述する真空又はArガス雰囲気での焼鈍を行っても、所定の炭素濃化層が形成されない。
 通常、熱間圧延および酸洗などのスケール除去工程を経て製造されたチタン板は、冷間圧延により表面に深さ数μmに及ぶ凹みや被さりを成しており(このように、表面に深さ数μmに及ぶ凹みや被さりを「むしれ状肌荒れ」と呼ぶ。)、冷間圧延時には、このむしれ状肌荒れの内部に潤滑油が侵入して残存することとなる。つまり、局所的に表面直下の数μm下部(凹みや被さりの中)に炭素源となる潤滑油が多量に分布していることによって、冷間圧延後の焼鈍時に、炭素が更に内部へ拡散して、最表面からみた場合、深さ10μm以上まで局所的に硬い層が分布してしまい、炭素濃化層が10μm以上になってしまう。従来製法では、このように局所的に10μm以上になる部位が点在するため、成形時に比較的大きいクラックが発生して、そこの応力集中が発生するため、高い成形性を達成することができなかった。なお、むしれ状肌荒れの内部に侵入した潤滑油は、非常に狭いすき間に侵入しているため、冷間圧延後のアルカリなどを用いた洗浄工程でも、すき間内部に潤滑油が残存してしまう。このように残存する潤滑油は酸洗により除去することは可能であるが、表面のTiCや残留油分の低下を引き起こし、所望の炭素濃化層を得ることが困難になる。
 本発明によれば、冷間圧延前に形成した厚さ20~200nmの酸化皮膜によって、潤滑油の濡れ性が高まり、且つ、その酸化皮膜はロールと金属チタンのバリアとして作用して、むしれ状肌荒れに達するような激しい焼付きが顕著に抑制される。その結果、焼鈍後において、上記で規定した所定の表面炭素濃度および所定の表面硬さを有するチタン板を得ることができる。冷間圧延前に形成される酸化皮膜厚さが20nm未満では酸化皮膜が薄いために上記効果が不十分であり、200nmより厚いと、潤滑油と金属チタンが反応して形成されるTiCの量が少なくなり、200以上のHV0.025が得られなくなる。なお、好ましくは、冷間圧延前に形成する酸化皮膜の厚さは30~100nmである。
 上記の冷間圧延を行った後に、真空又はArガス雰囲気で750~810℃の温度域で0.5~5分間保持する焼鈍を行う。なお、冷間圧延工程と、焼鈍工程の間にはアルカリ(水酸化ナトリウムを主成分とする水溶液)による洗浄工程を備える。冷間圧延後のチタン板の表面には、不可避的に、ウエスで拭くと容易に除去できるような潤滑油が付着するが、この潤滑油はチタン板表面の平坦でない波形状部にたまっている場合がある。このような潤滑油に対してアルカリによる洗浄工程を行うことで、不可避的に残存している潤滑油を除去することができる。その結果、過剰な炭素源が存在することによって所定の炭素濃度を超えた炭素濃化層が局所的に形成されることを抑制することができる。即ち、洗浄工程を行うことで、炭素濃化層を所定の厚さとすることでき、その結果、表面ビッカース硬さを所定の値とすることができる。
 焼鈍時の温度が750℃より低い場合、成形性に適した金属組織(結晶粒径)を得るために、長い時間保持する必要があり、その場合炭素濃化厚みが大きくなり、本発明に係るチタン板が得られない。焼鈍時の温度が810℃より高い場合、チタン中に第二相であるβ相が析出し、金属組織の制御が困難となる。
 また、大気中で焼鈍を行った場合、表面に酸化スケールが生成するため、その後の酸洗工程が必須となり、その結果、表面の炭素濃化層が除去される。
 したがって、本発明に係るチタン板の製造方法においては、前述のような冷間圧延工程と、高温かつ短時間保持の条件で真空又はAr雰囲気での焼鈍工程を行うことにより、チタン板の表面に均一に安定して炭素濃化層を形成することができる。これにより、その後の成形工程において表面に微小のクラックを多数発生させることができる。その結果、成形時の応力集中を均一に緩和することが可能となり、チタン板の成形性を向上させることができる。
 なお、冷間圧延板を焼鈍する場合、α相の平均結晶粒径は、焼鈍温度と保持時間によって決まる。本発明で規定する焼鈍温度であれば、保持時間を0.5~5分程度とすることにより、α相の平均結晶粒径を上記の好ましい範囲とすることができる。
 以下、実施例にて本発明のチタン板の効果を説明する。供試材として、電子ビーム溶解されたチタンJIS-1種のインゴットを分塊圧延、熱間圧延し、その後、硝ふっ酸を用いて酸洗処理を行って作製された、厚さ4.5mmのチタン板を用いた。このチタン板に下記のa1)~a4)の工程を順に施し、本発明材としての試験用チタン板を作製した(試験材No.A1~A14)
 a1)酸洗処理後に、厚さ20~200nmの酸化皮膜を形成する工程
 本工程では各試験材に対して大気中で500℃、3分の酸化処理を施した。その際に形成された酸化皮膜の厚さは72nmであった。また、グロー放電発光分光分析装置(GDS)を用いてチタン板表面におけるチタン板の深さ方向の酸素濃度の分布を測定し、その濃度分布から、深さ方向に沿って低下する酸素濃度が安定したときの値(母材の酸素濃度)が表面近傍における酸素濃度の最大値の二分の一になる時の深さを求め、その深さを酸化皮膜の厚さとした。
 a2)圧延率が70%に達するまで各パス当たり15%以上の圧下率で圧延を実施した後、少なくとも最終パスの圧下率を5%以下として圧延率が89%に達するまで圧延を行う冷間圧延工程
 なお、本実施例では、圧延率70%以降から最終パスの1パス前までの各パス当たりの圧下率を15%未満とした。
 a3)アルカリ(水酸化ナトリウムを主成分とする水溶液中)で行う洗浄工程
 a4)750~810℃の温度域で0.5~5分保持する真空、あるいはArガス雰囲気焼鈍工程
 本発明における試験材に加え、下記の比較材を作製した。
 比較材I:圧延率70%までの各パス当たりの圧下率を15%未満で冷間圧延した後に、上記工程a4)に示す焼鈍を実施した試験用チタン板(試験材No.A15~A22)
 比較材II:上記工程a1)、a2)、a3)を行った後に真空中で600~700℃の温度域で240分保持する焼鈍を実施した試験用チタン板(試験材No.A23~A28)
 比較材III:最終パスの圧下率が5%を超える冷間圧延をした後に、上記工程a3)に示す焼鈍を実施した試験用チタン板(試験材No.A29~A30)
 各試験材の平均結晶粒径、成形性、成形試験後の表面状態、表面ビッカース硬さ、炭素濃化層厚みを以下に示す条件で評価した。
・平均結晶粒径
 光学顕微鏡により撮影した組織写真において、JIS
G 0551(2005)に準拠した切断法によりα相の平均結晶粒径を算出した。
・成形性
 (株)東京試験機製:型番SAS-350Dの深絞り試験機にてφ40mmの球頭ポンチを用いて、平面歪変形となるようにチタン板を70mm×95mmの形状に加工して球頭張出し試験を行った。なお、試験片は圧延方向が95mmとなるように加工を行った。
 張出し成形は、日本工作油(株)製高粘性油(#660)を塗布し、この上にポリシートを乗せ、ポンチとチタン板が直接触れないようにし、試験片が破断した時の張出し高さを比較することで評価した。球頭張出し試験での張出し高さが20.5mm以上の試験材を、優れた成形性を示すチタン板と判定とした。
・成形試験後の表面状態
 球頭張出し試験後の試験片の表面について、(株)キーエンス製:型番VK9700のレーザー顕微鏡を用いて、表面プロファイルを圧延方向に平行な方向に200μm測定し、深さ1μm以上の凹凸の個数を計測した後、前述の(1)式より平均クラック間隔を計測した。また、(株)キーエンス製:型番VHX-D510のSEMを用いて成形試験後の表面観察を行った。
・表面ビッカース硬さ
 明石製作所製:型番MVK-Eのマイクロビッカース硬さ試験機にて、荷重0.245N(25gf)、0.49N(50gf)、9.8N(1000gf)で、チタン板の表面ビッカース硬さを測定した。
・炭素濃化層厚み
 (株)理学電機工業製:型番GDA 750Aのグロー放電発光分析装置を用いて、表面から深さ方向の炭素濃度分布を測定した。なお、それ以上深さが深くなっても一定の炭素濃度となった時の濃度値を母材の炭素濃度とした。ここで、母材の炭素濃度をC(質量%)、表面からの深さdμmの炭素濃度をC(質量%)としたときに、C/C>1.5を満たす深さdを炭素濃化層厚みとした。
 これらの評価結果を、製造条件とともに表1に示す。また、表面の微小クラックの一例として、図2(a)には試験材No.A4、(b)にはNo.A24の球頭張出し試験後の表面プロファイル測定結果を示す。また図3(a)には試験材No.A4、(b)にはNo.A24の球頭張り出し試験後の表面SEM画像を示す。
Figure JPOXMLDOC01-appb-T000001
 図2(a)及び図3(a)に示すように、本発明材であるNo.A4は、成形過程で表面に微小クラックが多数発生している。一方、比較材であるNo.A24は表面に微小クラックが発生しておらず、粗大なクラックが発生している。
 本発明に該当する試験材No.A1~A14は、いずれも成形過程で表面に微小クラックが発生しており、成形時の応力集中が緩和されたため、張出し高さが20.5mm以上と優れた成形性を示した。
 比較材IであるNo.A15~A22は、圧延率70%までの各パス当たりの圧下率が15%未満と小さかったため、炭素濃化層が形成されず、それによりHV0.025が小さくなっている。そのため、成形過程で表面に微小クラックが発生せず、成形が進んだときに発生した低頻度のクラックに応力が集中し、成形性が劣っている。
 比較材IIであるNo.A23~A28は、結晶粒径は満足しているものの、焼鈍時の保持時間が長時間になっているため、炭素濃化層厚みが10.0μm以上となり、HV0.025とHV0.05の差が30未満、又はHV0.025よりもHV0.05の方が大きくなっている。そのため、成形時に表面に粗大なクラックが発生し、応力集中が緩和されず、成形性が劣っている。
 比較材IIIであるNo.A29~A30は、冷間圧延工程における最終パスの圧下率が5%を超えていたため、チタン板表面で圧延ロールがスリップしたことにより擦れ痕が形成された。また、HV0.025とHV0.05の差が30未満となり、所定の炭素濃化層が形成されていない。そのため、成形過程においてチタン板表面に微小クラックが発生せず、成形が進んだ際に発生した低頻度のクラックに応力が集中し、成形性が劣っている。
 次に、酸洗処理後の酸化皮膜を形成する工程の酸化皮膜形成条件の違いによる酸化皮膜厚さへの影響について評価した。まず、硝ふっ酸を用いて酸洗処理を行って作製された厚さ4.5mmのチタン板に下記のb1)~b4)の工程を順に施し、本発明材としての試験用チタン板を作製した(試験材No.B1~B9)。
 b1)酸洗処理後に、厚さ20~200nmの酸化皮膜を形成する工程
 本実施例では、この工程で大気中での加熱処理と、りん酸水溶液を用いた陽極酸化処理といった2種類の酸化皮膜形成処理を実施した。大気中での加熱処理では350~650℃の温度域で酸化皮膜厚さを調整し、陽極酸化では20~130Vの電圧域によって酸化皮膜厚さを調整した。なお、酸化皮膜厚さは、上述と同じグロー放電発光分光分析装置(GDS)を用いて測定した。
 b2)圧延率が70%に達するまで各パス当たり15%以上の圧下率で圧延を実施した後、少なくとも最終パスの圧下率を5%以下として圧延率が89%に達するまで圧延を行う冷間圧延工程
 なお、本実施例では、圧延率70%以降から最終パスの1パス前までの各パス当たりの圧下率を15%未満とした。
 b3)アルカリ(水酸化ナトリウムを主成分とする水溶液中)で行う洗浄工程
 b4)800℃の温度で1分保持する真空雰囲気で行う焼鈍工程
 本発明における試験材に加え、下記の比較材を作製した。
 比較材IV:酸化皮膜の厚さが20nm未満か、200nmの超えるチタン板に対して、上記工程b2)、b3)、b4)に示す条件で冷間圧延、アルカリ洗浄、焼鈍を施した試験用チタン板(試験材No.B10~B14)。
 比較材V:酸洗処理後に酸化皮膜を形成する工程を経ることなく自然酸化皮膜が形成されたチタン板、あるいは上記工程b1)に示す条件で酸化皮膜が形成されたチタン板に対して、上記工程b2)、b3)に示す条件で冷間圧延、アルカリ洗浄を施した後、真空中で630℃の温度で240分保持する焼鈍を施した試験用チタン板(試験材No.B15~B17)。
 以下に示す表2では、真空雰囲気で800℃の温度で1分保持する焼鈍工程を条件A、真空雰囲気で630℃の温度で240分保持する焼鈍工程を条件Bとして記載する。焼鈍条件A,Bを実施した後の結晶粒径はいずれも約26μmと同等である。
 なお、各試験材の平均結晶粒径、成形性、成形試験後の表面状態、表面ビッカース硬さ、炭素濃化層厚みは上述と同じ条件で評価した。
Figure JPOXMLDOC01-appb-T000002
 本発明に該当する試験材No.B1~B9は、厚さ20~200nmの酸化皮膜が形成された状態で冷間圧延されており、焼鈍後には所定の炭素濃化層が形成されている。その結果、いずれも成形過程で表面に微小クラックが発生しており、成形時の応力集中が緩和されたため、張出し高さが20.5mm以上と優れた成形性を示した。
 比較材IVであるNo.B10,B11,B13は、冷間圧延前の酸化皮膜が20nm未満と薄いために冷間圧延後の試験材表面にむしれ状肌荒れが散在していた。さらに炭素濃化層厚みが10.0μm以上となり、HV0.025とHV0.05の差が小さく、30未満となっている。そのため、成形時において表面に粗大なクラックが発生し、応力集中が緩和されず、成形性が劣っている。また、比較材IVであるNo.B12、B14は、冷間圧延前の酸化皮膜が200nmを超えて厚いために、炭素濃化層が形成されず、それによりHV0.025が小さくなっている。そのため、成形過程で表面に微小クラックが発生せず、成形が進んだときに発生した低頻度のクラックに応力が集中し、成形性が劣っている。
 比較材VであるNo.B15~B17は、焼鈍時の保持時間が長時間になっているため、炭素濃化層厚みが10.0μm以上となり、HV0.025とHV0.05の差が小さく、30未満となっている。そのため、成形時に表面に粗大なクラックが発生し、応力集中が緩和されず、成形性が劣っている。
 次に、冷間圧延のパススケジュールの効果について詳細な実施例を示す。まず、硝ふっ酸を用いて酸洗処理を行って作製された厚さ4.5mmのチタン板に下記のc1)~c4)の工程を順に施し、本発明材としての試験用チタン板を作製した(試験材No.C1~C3,C7~C9)。
 c1)酸洗処理後に、厚さ20~200nmの酸化皮膜を形成する工程
 本実施例では、この工程で大気中での加熱処理と、りん酸水溶液を用いた陽極酸化処理といった2種類の酸化皮膜形成処理を実施した。大気中での加熱処理では350~650℃の温度域で酸化皮膜厚さを調整し、陽極酸化では20~130Vの電圧域によって酸化皮膜厚さを調整した。なお、酸化皮膜厚さは、上述と同じグロー放電発光分光分析装置(GDS)を用いて測定した。
 c2)下記表3のP1~P3に示す冷間圧延パススケジュールに基づいて圧延する冷間圧延工程
 c3)アルカリ(水酸化ナトリウムを主成分とする水溶液中)で行う洗浄工程
 c4)800℃の温度で1分保持する真空雰囲気で行う焼鈍工程
 本発明における試験材に加え、下記の比較材を作製した。
 比較材VI:上記工程c1)に示す条件で酸化皮膜が形成されたチタン板に対して、下記表3のP4~P6に示す冷間圧延パススケジュールで冷間圧延を施し、その後、上記工程c3)、c4)に示す条件でアルカリ洗浄、焼鈍を施した試験用チタン板(試験材No.C4~C6,C10~C12)。
Figure JPOXMLDOC01-appb-T000003
 各試験用チタン板の特性について評価した結果を下記表4に示す。なお、各試験材の平均結晶粒径、成形性、成形試験後の表面状態、表面ビッカース硬さ、炭素濃化層厚みは上述と同じ条件で評価した。
Figure JPOXMLDOC01-appb-T000004
 本発明に該当する試験材No.C1~C3,C7~C9は、圧延率が70%に達するまで各パスあたりの圧下率が15%以上であり、その後の圧延の少なくとも最終パスにおいては5%以下の圧下率で冷間圧延されている。その結果、いずれも成形過程で表面に微小クラックが発生しており、成形時の応力集中が緩和されたため、張出し高さが20.5mm以上と優れた成形性を示した。
 比較材VIであるNo.C4~C6,C10~C12は、本発明に係る冷延条件である“圧延率70%までの各パスあたりの圧下率が15%以上、かつ、その後の圧延の少なくとも最終パスで圧下率が5%以下”の少なくともいずれか一方を満たさない条件で冷間圧延されている。その結果、炭素濃化層が形成されず、成形過程で表面に微小クラックが発生せず、成形が進んだときに発生した低頻度のクラックに応力が集中し、成形性が劣っている。
 本発明によれば、表面に薄く硬質な層を均一に形成することで、成形過程で表面に微小のクラックを多数発生させることができ、それにより成形時の応力集中が緩和されるので、優れた成形性を示すチタン板を提供することができる。このチタン板は、成形性に優れているため、たとえば、化学プラント、電力プラント、食品製造プラントなどの熱交換器の素材として特に有用である。

Claims (2)

  1.  母材の炭素濃度をC(質量%)、表面からの深さdμmの炭素濃度をC(質量%)としたときに、C/C>1.5を満たす深さd(炭素濃化層厚み)が1.0μm以上10.0μm未満であり、
     表面における荷重0.245Nでのビッカース硬さHV0.025が200以上であり、表面における荷重0.49Nでのビッカース硬さHV0.05がHV0.025より低く、かつ、HV0.025とHV0.05との差が30以上であり、
     表面における荷重9.8Nでのビッカース硬さHVが150以下であり、
     張出し成形過程で圧延方向に25%のひずみを付与した際に表面に発生するクラックの平均間隔が50μm未満であり、深さが1μm以上10μm未満である、チタン板。
  2.  請求項1に記載のチタン板の製造方法であって、
     熱間圧延および脱スケールした後、厚さ20~200nmの酸化皮膜を形成したチタン板に、潤滑油として鉱油を用い、圧延率70%までの圧下率を各パスあたり15%以上として冷間圧延を施した後、少なくとも最終パスにおいて圧下率が5%以下の冷間圧延を施し、
     冷間圧延されたチタン板に、真空、又はArガス雰囲気で、750~810℃の温度域で0.5~5分間保持する焼鈍を施す、チタン板の製造方法。
PCT/JP2016/070303 2016-07-08 2016-07-08 チタン板及びその製造方法 WO2018008151A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DK16908195.7T DK3467139T3 (da) 2016-07-08 2016-07-08 Titaniumplade og fremgangsmåde til fremstilling af denne
JP2016562609A JP6119927B1 (ja) 2016-07-08 2016-07-08 チタン板及びその製造方法
KR1020197001460A KR102142898B1 (ko) 2016-07-08 2016-07-08 티타늄판 및 그 제조 방법
CN201680087323.6A CN109415794B (zh) 2016-07-08 2016-07-08 钛板及其制造方法
EP16908195.7A EP3467139B1 (en) 2016-07-08 2016-07-08 Titanium sheet and production method therefor
US16/306,998 US10900109B2 (en) 2016-07-08 2016-07-08 Titanium sheet and method for manufacturing the same
PCT/JP2016/070303 WO2018008151A1 (ja) 2016-07-08 2016-07-08 チタン板及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/070303 WO2018008151A1 (ja) 2016-07-08 2016-07-08 チタン板及びその製造方法

Publications (1)

Publication Number Publication Date
WO2018008151A1 true WO2018008151A1 (ja) 2018-01-11

Family

ID=58666578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070303 WO2018008151A1 (ja) 2016-07-08 2016-07-08 チタン板及びその製造方法

Country Status (7)

Country Link
US (1) US10900109B2 (ja)
EP (1) EP3467139B1 (ja)
JP (1) JP6119927B1 (ja)
KR (1) KR102142898B1 (ja)
CN (1) CN109415794B (ja)
DK (1) DK3467139T3 (ja)
WO (1) WO2018008151A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111902222A (zh) * 2018-04-03 2020-11-06 日本制铁株式会社 钛板

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488858A (en) * 1977-12-26 1979-07-14 Kobe Steel Ltd Cold rolling method for titanium sheet
JPS6044041A (ja) 1983-08-15 1985-03-08 モビル オイル コ−ポレ−シヨン 触媒の処理法
JPH01201452A (ja) * 1988-02-08 1989-08-14 Kobe Steel Ltd Ti薄板の製造方法
JP2001303223A (ja) * 2000-04-24 2001-10-31 Sumitomo Metal Ind Ltd 成形性に優れたチタン板の製造方法
JP2002003968A (ja) 2000-06-21 2002-01-09 Sumitomo Metal Ind Ltd 成形性に優れたチタン板とその製造方法
JP2002194591A (ja) 2000-12-21 2002-07-10 Nippon Steel Corp チタン薄板とその製造方法
JP2005298930A (ja) 2004-04-14 2005-10-27 Nippon Steel Corp 表面凹凸を有するチタン材およびその製造方法
WO2010126051A1 (ja) * 2009-04-28 2010-11-04 株式会社神戸製鋼所 チタン板及びチタン板の製造方法
JP2013010115A (ja) * 2011-06-29 2013-01-17 Nippon Steel & Sumitomo Metal Corp チタン板、およびその製造方法
US20140156673A1 (en) 2012-11-30 2014-06-05 International Business Machines Corporation Measuring and altering topic influence on edited and unedited media

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4543519B2 (ja) * 2000-08-18 2010-09-15 住友金属工業株式会社 チタン冷延板の製造方法
JP3600792B2 (ja) * 2000-12-15 2004-12-15 新日本製鐵株式会社 工業用純チタン薄板とその製造方法
US8865612B2 (en) * 2009-06-01 2014-10-21 Nippon Steel & Sumitomo Metal Corporation Titanium-based material having visible light response and excellent in photocatalytic activity and method of production of same
JP4681663B2 (ja) * 2009-07-15 2011-05-11 株式会社神戸製鋼所 チタン板及びチタン板の製造方法
CN103484805B (zh) * 2012-06-07 2015-09-09 株式会社神户制钢所 钛板及其制造方法
JP5639216B2 (ja) * 2013-03-27 2014-12-10 株式会社神戸製鋼所 燃料電池セパレータ用チタン板材およびその製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488858A (en) * 1977-12-26 1979-07-14 Kobe Steel Ltd Cold rolling method for titanium sheet
JPS6044041A (ja) 1983-08-15 1985-03-08 モビル オイル コ−ポレ−シヨン 触媒の処理法
JPH01201452A (ja) * 1988-02-08 1989-08-14 Kobe Steel Ltd Ti薄板の製造方法
JP2001303223A (ja) * 2000-04-24 2001-10-31 Sumitomo Metal Ind Ltd 成形性に優れたチタン板の製造方法
JP2002003968A (ja) 2000-06-21 2002-01-09 Sumitomo Metal Ind Ltd 成形性に優れたチタン板とその製造方法
JP2002194591A (ja) 2000-12-21 2002-07-10 Nippon Steel Corp チタン薄板とその製造方法
JP2005298930A (ja) 2004-04-14 2005-10-27 Nippon Steel Corp 表面凹凸を有するチタン材およびその製造方法
WO2010126051A1 (ja) * 2009-04-28 2010-11-04 株式会社神戸製鋼所 チタン板及びチタン板の製造方法
JP2010255085A (ja) 2009-04-28 2010-11-11 Kobe Steel Ltd チタン板及びチタン板の製造方法
JP2013010115A (ja) * 2011-06-29 2013-01-17 Nippon Steel & Sumitomo Metal Corp チタン板、およびその製造方法
US20140156673A1 (en) 2012-11-30 2014-06-05 International Business Machines Corporation Measuring and altering topic influence on edited and unedited media

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111902222A (zh) * 2018-04-03 2020-11-06 日本制铁株式会社 钛板
EP3778046A4 (en) * 2018-04-03 2021-12-22 Nippon Steel Corporation TITANIUM PLATE
US11566305B2 (en) 2018-04-03 2023-01-31 Nippon Steel Corporation Titanium plate

Also Published As

Publication number Publication date
US20190300996A1 (en) 2019-10-03
CN109415794A (zh) 2019-03-01
KR20190019165A (ko) 2019-02-26
DK3467139T3 (da) 2020-09-21
CN109415794B (zh) 2020-09-11
KR102142898B1 (ko) 2020-08-10
EP3467139A4 (en) 2019-11-06
EP3467139A1 (en) 2019-04-10
EP3467139B1 (en) 2020-09-02
JP6119927B1 (ja) 2017-04-26
JPWO2018008151A1 (ja) 2018-07-19
US10900109B2 (en) 2021-01-26

Similar Documents

Publication Publication Date Title
JP5570078B2 (ja) Niめっき鋼板及びそのNiめっき鋼板を用いた電池缶の製造方法
JP4584341B2 (ja) チタン板及びチタン板の製造方法
JP2008238268A (ja) 耐型かじり性に優れた高張力冷延鋼板およびその製造方法
JP6119927B1 (ja) チタン板及びその製造方法
JP6172408B1 (ja) チタン板
JP2016068145A (ja) チタン板およびその製造方法
JP2005298930A (ja) 表面凹凸を有するチタン材およびその製造方法
JP2016169428A (ja) チタン板及びその製造方法
JP2017110292A (ja) 方向性電磁鋼板およびその製造方法
JP2002194591A (ja) チタン薄板とその製造方法
JP6610062B2 (ja) チタン板
JP6432330B2 (ja) チタン板およびその製造方法
US11566305B2 (en) Titanium plate
JP2004244671A (ja) 成形性と潤滑性に優れたチタン板とその製造方法
JP2010280938A (ja) チタン板およびその製造方法
WO2022138837A1 (ja) チタン材
JP2016156054A (ja) チタン板とその製造方法
JP6543981B2 (ja) β型チタン合金板
KR100456934B1 (ko) 강판 코일 끝단부 꺾임 현상을 방지하기 위한 강판의제조방법
JP5988846B2 (ja) 転造工具およびその製造方法
JP2006291362A (ja) プレス成形性及び表面光沢に優れたチタン板
JP2019122997A (ja) 金属板およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016562609

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197001460

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016908195

Country of ref document: EP

Effective date: 20190104