WO2018006828A1 - 碳银复合催化剂的制备方法 - Google Patents

碳银复合催化剂的制备方法 Download PDF

Info

Publication number
WO2018006828A1
WO2018006828A1 PCT/CN2017/091850 CN2017091850W WO2018006828A1 WO 2018006828 A1 WO2018006828 A1 WO 2018006828A1 CN 2017091850 W CN2017091850 W CN 2017091850W WO 2018006828 A1 WO2018006828 A1 WO 2018006828A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
silver
carbon
solid fluid
composite
Prior art date
Application number
PCT/CN2017/091850
Other languages
English (en)
French (fr)
Inventor
张启辉
Original Assignee
深圳市知赢科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市知赢科技有限公司 filed Critical 深圳市知赢科技有限公司
Publication of WO2018006828A1 publication Critical patent/WO2018006828A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts

Definitions

  • the present invention relates to the field of new energy sources and industrial catalysts, and more particularly to a method for preparing a carbon-silver composite catalyst.
  • Silver is a precious metal that is expensive, has little reserves, and is environmentally friendly. It is widely used in electronic equipment, industrial catalysis, photovoltaic industry, and photosensitive materials. Because of the high price of silver, it limits its use in industrial production. In the prior art, the physical layer mixing using silver powder and carbon material, although simple and feasible, consumes a large amount of silver, resulting in high production costs. Due to the mixing process conditions and equipment limitations, the mixing of silver particles and carbon materials on a macroscopic scale is limited to the equipment scale.
  • the main object of the present invention is to provide a method for preparing a carbon-silver composite catalyst, which overcomes the uneven mixing of the carbon-silver composite catalyst, the large particle size, the uneven particle size distribution, the compact density of the powder, and the high temperature.
  • the firing causes defects in particle compactation.
  • the present invention provides a method for preparing a carbon-silver composite catalyst, comprising the following steps:
  • the gas-liquid solid fluid is heated at 120-800 ° C, and the heating gas is heated at a constant temperature for 1-12 hours to obtain a composite gas-solid fluid;
  • the gas-solid separation of the composite gas-solid fluid is carried out to obtain a carbon-silver composite powder catalyst.
  • the step of mixing the gas with the carbon powder in the sealed container to form a gas-solid fluid includes:
  • the pressure of the ascending airflow is greater than or equal to 5 atmospheres.
  • the step of mixing the gas-solid fluid with the silver solution to form the gas-liquid solid fluid comprises:
  • the silver salt is configured as a silver solution having a mass fraction of 1-10%, pumped to the top of the gas-solid fluid, and convectively mixed with the gas-solid fluid to form a gas-liquid solid fluid.
  • the step of performing gas-solid separation on the composite gas-solid fluid comprises:
  • the gas-solid separation of the composite gas-solid fluid is performed using a cyclone.
  • the mass ratio of silver to carbon in the carbon-silver composite powder catalyst is 1-50%.
  • the gas includes one or more of nitrogen, an inert gas, and a reducing gas.
  • the carbon powder includes one or more of graphite, carbon black, activated carbon, carbon nanotubes, carbon fibers, and graphene.
  • the silver solution comprises silver bromide, silver iodide, silver chloride, silver sulfate, silver nitrate, silver acetate, silver fluoride, silver perchlorate, silver chlorate, diammonium silver, and times.
  • the preparation method of the carbon-silver composite catalyst provided by the invention has the following beneficial effects:
  • the method for preparing a carbon-silver composite catalyst utilizes a gas stream to disperse a silver solution and carbon powder particles, and the carbon powder particles and the silver solution droplets are dripped in the fluidized bed under the driving of the air flow, and the non-stop Collision, heating to produce silver-carbon composite catalyst; the same, silver and carbon are mixed evenly, which can save the amount of silver; carbon is a cheap, conductive and stable material, the surface of carbon particles is rich and large.
  • the medium- and small-scale pores can be filled with silver, which acts to disperse silver, increase the catalytic medium area of silver, and improve the catalytic efficiency.
  • the strong convection and collision generated on the fluidized bed make the composite powder not be knotted.
  • the airflow drives the composite particles to form turbulent flow, collides between the components of the fluidized bed, grinds the edges of the particles, the surface of the particles tends to be smooth, improves the particle size distribution, and increases the compaction density. Improve catalytic efficiency.
  • FIG. 1 is a schematic flow chart of a preparation method of a carbon-silver composite catalyst in an embodiment of the present invention.
  • FIG. 1 is a schematic flow chart of a method for preparing a carbon-silver composite catalyst according to an embodiment of the present invention.
  • a method for preparing a carbon-silver composite catalyst which comprises the following steps:
  • Step S1 mixing gas and carbon powder in a sealed container to form a gas-solid fluid
  • Step S2 mixing the gas-solid fluid with the silver solution to form a gas-liquid solid fluid
  • Step S3 heat-treating the gas-liquid solid fluid at 120-800 ° C, and heating the crucible for 1-12 hours to obtain a composite gas-solid fluid;
  • Step S4 performing gas-solid separation on the composite gas-solid fluid to obtain a carbon-silver composite powder catalyst.
  • the silver solution and the carbon powder particles are dispersed by the airflow, and the carbon powder particles and the silver solution are dripped in the fluidized bed under the driving of the airflow, and the carbon powder is heated to produce silver.
  • Carbon composite catalysis Qi 1J; Tongyu, silver and carbon are evenly mixed, which can save the amount of silver; Carbon is a cheap, conductive and stable material, and the surface of carbon particles is rich in large, medium and small scales.
  • the pore size can be filled with silver, which acts to disperse silver, increase the catalytic medium area of silver, and improve the catalytic efficiency; the convection of the gas stream and the intense collision of the powder particles make the composite powder not be knotted and the particles refined;
  • the composite particles form turbulent flow, collide in the sealed container, and the particles are sharpened, the surface of the particles tends to be smooth, the particle size distribution is improved, the compaction density is increased, and the catalytic efficiency is improved.
  • the sealed container may be a fluidized bed or other devices having similar functions.
  • the above catalyst is prepared by using a fluidized bed apparatus as an example.
  • a catalyst bed is prepared using a fluidized bed, and in the above step S1, a gas is sealed in a sealed container
  • the steps of mixing with the carbon powder to form a gas-solid fluid include:
  • the gas is degreased and dewatered in advance.
  • the gas may include nitrogen, inert gas
  • One or more of reducing gases, and reducing gases include chlorine gas and the like.
  • the pressure of the ascending airflow is greater than or equal to 5 atmospheres. Increasing the pressure of the above gas stream is conducive to the formation of finer particles, thereby enhancing the composite effect of the composite material, thereby improving the catalytic efficiency.
  • the silver salt is disposed in a silver solution having a mass fraction of 1-10%, pumped to the top of the gas-solid fluid, and convectively mixed with the gas-solid fluid to form a gas-liquid solid fluid.
  • catalytic materials may also be added to the solution to form a mixed catalyst; wherein other catalytic materials may include nickel, cobalt, manganese, and the like.
  • the temperature of the fluidized bed is set to 120-800 ° C, and the temperature is kept constant for 1-12 hours to obtain a composite gas-solid fluid.
  • the composite gas-solid fluid is subjected to gas-solid separation using a cyclone separator.
  • Cyclone separators are usually used on fluidized beds.
  • the mass ratio of silver to carbon in the carbon-silver composite powder catalyst is 1 to 50%.
  • the above carbon powder includes one or more of graphite, carbon black, activated carbon, carbon nanotubes, carbon fibers, and graphene.
  • the silver solution comprises silver bromide, silver iodide, silver chloride, silver sulfate, silver nitrate, silver acetate, silver fluoride, silver perchlorate, silver chlorate, diammonium silver, and hypochlorous.
  • a carbon-silver composite catalyst is prepared, wherein the catalyst composition has a mass ratio of silver to carbon of 1:100, and the preparation method thereof comprises the following steps:
  • step (2) (3) 157 g of silver nitrate salt is formulated into a mass fraction of 1% silver solution, and then pumped to the top of the gas-solid fluid in step (2), and convectively mixed up and down to form a gas-liquid solid fluid.
  • the heating temperature of the fluidized bed is set to 120 ° C, and the constant temperature is set to 1 hour, to obtain a composite gas-solid fluid;
  • the gas-solid separation of the composite gas-solid fluid in the step (4) is performed using a cyclone to obtain a silver-carbon composite powder material, that is, a carbon-silver composite catalyst.
  • a carbon-silver composite catalyst is prepared, wherein the catalyst composition has a mass ratio of silver to carbon of 1:2, and the preparation method thereof comprises the following steps:
  • the heating temperature of the fluidized bed is set to 800 ° C, and the constant temperature is set to 12 hours to obtain a composite gas-solid fluid;
  • the gas-solid separation of the composite gas-solid fluid in the step (4) is performed using a cyclone to obtain a silver-carbon composite powder material, that is, a carbon-silver composite catalyst.
  • a carbon-silver composite catalyst having a composition in which the mass ratio of silver to carbon was 1:4 was prepared.
  • the preparation method comprises the following steps:
  • the gas-solid separation of the composite gas-solid fluid in the step (4) is performed using a cyclone to obtain a silver-carbon composite powder material, that is, a carbon-silver composite catalyst.
  • the method for preparing a carbon-silver composite catalyst utilizes a gas stream to disperse a silver solution and carbon powder particles, and the carbon powder particles and the silver solution are dripped under the action of the gas flow.
  • the inverted and non-stop collisions are heated to produce a silver-carbon composite catalyst; while the silver and carbon are uniformly mixed, the amount of silver can be saved; carbon is a material with low price, excellent electrical conductivity and stability.
  • the surface of the carbon particles is rich in large, medium and small-sized pores to fill the silver, which acts to disperse silver, increase the catalytic medium area of the silver, and improve the catalytic efficiency.
  • the strong convection and collision generated on the fluidized bed make the composite
  • the material powder will not be knotted and the particles will be refined; the air flow will drive the composite particles to form turbulent flow, collide between the components of the fluidized bed, the particles will be sharpened, the surface of the particles will be smooth, the particle size distribution will be improved, and the compaction density will be improved. , thereby improving the catalytic efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

一种碳银复合催化剂的制备方法,包括:在密封容器内,将气体与碳粉体进行混合,形成气固流体;将气固流体与银溶液混合,形成气液固流体;对气液固流体进行120‑800℃加热处理,恒温加热时间1‑12小时,得到复合气固流体;对复合气固流体进行气固分离,得到碳银复合粉体催化剂。该方法克服碳银复合催化剂制备时混合不均匀、产品颗粒偏大、粒度分布不均匀、粉体的压实密度小以及高温焙烧导致颗粒板结的缺陷。

Description

说明书 发明名称:碳银复合催化剂的制备方法 技术领域
[0001] 本发明涉及新能源、 工业催化剂领域, 特别涉及一种碳银复合催化剂的制备方 法。
背景技术
[0002] 银是一种价格昂贵、 储量稀少、 对环境无污染的贵金属, 其广泛应用于电子器 件、 工业催化、 光伏产业、 感光材料等领域。 由于银价格昂贵, 限制其在工业 生产中的运用。 现有技术中, 采用银粉和碳材料进行物理层面的混合, 虽然简 单可行, 但是耗费大量银, 导致生产成本居高不下。 鉴于混合工艺条件以及设 备的限制, 在宏观上银颗粒与碳材料混合仅限于设备尺度。 在化学合成方面, 刘曙光、 欧秀芹在 《金属空气电池阴极的改进与研究》 的论文中提出采用焙烧 碘化银、 硝酸银的方法来制备空气电极粉体。 但是存在产品颗粒偏大、 粒度分 布不均匀、 粉体的压实密度小以及高温焙烧导致颗粒板结等缺陷。
技术问题
[0003] 本发明的主要目的为提供一种碳银复合催化剂的制备方法, 克服碳银复合催化 剂制备吋混合不均匀、 产品颗粒偏大、 粒度分布不均匀、 粉体的压实密度小以 及高温焙烧导致颗粒板结的缺陷。
问题的解决方案
技术解决方案
[0004] 本发明提出一种碳银复合催化剂的制备方法, 包括以下步骤:
[0005] 在密封容器内, 将气体与碳粉体进行混合, 形成气固流体;
[0006] 将气固流体与银溶液混合, 形成气液固流体;
[0007] 对气液固流体进行 120-800°C加热处理, 恒温加热吋间 1-12小吋, 得到复合气固 流体;
[0008] 对复合气固流体进行气固分离, 得到碳银复合粉体催化剂。
[0009] 进一步地, 所述在密封容器内, 将气体与碳粉体进行混合, 形成气固流体的步 骤包括:
[0010] 将气体泵送至流化床底部, 形成上升气流, 并将碳粉体泵送至上升气流的顶部
, 使气体与碳粉体流动边混合形成气固流体。
[0011] 进一步地, 所述上升气流的压强大于或等于 5个大气压。
[0012] 进一步地, 所述将气固流体与银溶液混合, 形成气液固流体的步骤包括:
[0013] 将银盐配置成质量分数为 1-10%的银溶液, 泵送至气固流体的顶部, 与气固流 体上下对流混合形成气液固流体。
[0014] 进一步地, 所述对复合气固流体进行气固分离的步骤包括:
[0015] 使用旋风分离器对复合气固流体进行气固分离。
[0016] 进一步地, 所述碳银复合粉体催化剂中银与碳的质量比为 1-50%。
[0017] 进一步地, 所述气体包括氮气、 惰性气体、 还原性气体中的一种或者多种。
[0018] 进一步地, 所述碳粉体包括石墨、 碳黑、 活性碳、 碳纳米管、 碳纤维、 石墨烯 中的一种或多种。
[0019] 进一步地, 所述银溶液为包括溴化银、 碘化银、 氯化银、 硫酸银、 硝酸银、 醋 酸银、 氟化银、 高氯酸银、 氯酸银、 二铵合银、 次氯酸银、 羟基-氯合银中的一 种或多种银盐配置而成的银溶液。
发明的有益效果
有益效果
[0020] 与现有技术相比, 本发明中提供的碳银复合催化剂的制备方法, 具有以下有益 效果:
[0021] 本发明中提供的碳银复合催化剂的制备方法, 利用气流分散银溶液和碳粉体颗 粒, 在气流的带动下碳粉体颗粒和银溶液滴在流化床里腾挪翻转、 不停的碰撞 , 经过加热生产银碳复合催化剂; 同吋, 银和碳混合均匀, 可以节约银的用量 ; 碳是一种价格便宜, 导电性、 稳定性优良的材料, 碳颗粒表面拥有丰富的大 、 中、 小尺度的孔径可以填充银, 起到分散银的作用, 提高银的催化媒介面积 , 提高催化效率; 在流化床上产生的强烈对流和碰撞, 使复合材料粉体不会板 结, 使颗粒细化; 气流带动复合材料颗粒形成湍流, 在流化床各部件之间碰撞 , 将颗粒棱角磨去, 颗粒表面趋于圆滑, 改善粒度分布, 提高压实密度, 进而 提高催化效率。
对附图的简要说明
附图说明
[0022] 图 1是本发明实施例中碳银复合催化剂的制备方法流程示意图。
[0023]
[0024] 本发明目的的实现、 功能特点及优点将结合实施例, 参照附图做进一步说明。
实施该发明的最佳实施例
本发明的最佳实施方式
[0025] 应当理解, 此处所描述的具体实施例仅仅用以解释本发明, 并不用于限定本发 明。
[0026] 参照图 1, 为本发明实施例中碳银复合催化剂的制备方法流程示意图。
[0027] 本发明实施例中提出一种碳银复合催化剂的制备方法, 包括以下步骤:
[0028] 步骤 Sl, 在密封容器内, 将气体与碳粉体进行混合, 形成气固流体;
[0029] 步骤 S2, 将气固流体与银溶液混合, 形成气液固流体;
[0030] 步骤 S3, 对气液固流体进行 120-800°C加热处理, 恒温加热吋间 1-12小吋, 得到 复合气固流体;
[0031] 步骤 S4, 对复合气固流体进行气固分离, 得到碳银复合粉体催化剂。
[0032] 在本实施例中, 利用气流分散银溶液和碳粉体颗粒, 在气流的带动下碳粉体颗 粒和银溶液滴在流化床里腾挪翻转、 不停的碰撞, 经过加热生产银碳复合催化 齐 1J ; 同吋, 银和碳混合均匀, 可以节约银的用量; 碳是一种价格便宜, 导电性 、 稳定性优良的材料, 碳颗粒表面拥有丰富的大、 中、 小尺度的孔径可以填充 银, 起到分散银的作用, 提高银的催化媒介面积, 提高催化效率; 气流的对流 和粉体颗粒的激烈碰撞, 使复合材料粉体不会板结, 使颗粒细化; 气流带动复 合材料颗粒形成湍流, 在密封容器内碰撞, 将颗粒棱角磨去, 颗粒表面趋于圆 滑, 改善粒度分布, 提高压实密度, 进而提高催化效率。
[0033] 具体地, 上述密封容器可以为流化床, 或者其它具有类似功能的设备。 本实施 例中以流化床设备制备上述催化为例进行阐述。
[0034] 具体地, 使用流化床制备催化剂吋, 在上述步骤 S1中, 在密封容器内, 将气体 与碳粉体进行混合, 形成气固流体的步骤包括:
[0035] 将气体泵送至流化床底部, 形成上升气流, 并将碳粉体泵送至上升气流的顶部
, 使气体与碳粉体流动边混合形成气固流体。
[0036] 在此步骤中, 预先对气体进行除油、 除水处理。 该气体可包括氮气、 惰性气体
、 还原性气体中的一种或者多种, 还原性气体包括氯气等。
[0037] 进一步地, 上述上升气流的压强大于或等于 5个大气压。 增大上述气流的压强 有利于形成更细小的颗粒, 从而提升复合材料的复合效果, 进而提高催化效率
[0038] 进一步地, 将银盐配置成质量分数为 1-10%的银溶液, 泵送至上述气固流体的 顶部, 与气固流体上下对流混合形成气液固流体。
[0039] 应该理解的是, 在此过程中, 也可以添加其他催化材料至溶液中, 制成混合催 化剂; 其中, 其它催化材料可包括镍、 钴、 锰等。
[0040] 进一步地, 将流化床的温度设置为 120-800°C, 恒温保持加热 1-12小吋, 得到复 合气固流体。
[0041] 进一步地, 使用旋风分离器对复合气固流体进行气固分离。 旋风分离器通常搭 配在流化床上使用。
[0042] 进一步地, 上述碳银复合粉体催化剂中银与碳的质量比为 1-50%。
[0043] 进一步地, 上述碳粉体包括石墨、 碳黑、 活性碳、 碳纳米管、 碳纤维、 石墨烯 中的一种或多种。
[0044] 进一步地, 上述银溶液为包括溴化银、 碘化银、 氯化银、 硫酸银、 硝酸银、 醋 酸银、 氟化银、 高氯酸银、 氯酸银、 二铵合银、 次氯酸银、 羟基-氯合银中的一 种或多种银盐配置而成的银溶液。
[0045] 为了便于对本发明中的方法进行阐述, 例举以下具体实施例。
[0046] 具体实施例 1
[0047] 制备一种碳银复合催化剂, 该催化剂组成为其中银与碳的的质量比为 1:100, 其制备方法具体包括如下步骤:
[0048] (1) 将载气氮气除油、 除水, 然后泵送到流化床底部, 形成上升气流;
[0049] (2) 将 1000g石墨粉体泵送到步骤 (1) 中上升气流的顶部, 让载气气流与碳 粉边流动边混合, 形成气固流体;
[0050] (3) 将 157g硝酸银盐配制成质量分数为 1%银溶液, 然后泵送到步骤 (2) 中 气固流体的顶部, 上下对流混合, 形成气液固流体。
[0051] (4) 将流化床的加热温度设为 120°C, 恒温吋间设定为 1小吋, 得到复合气固 流体;
[0052] (5) 使用旋风分离器对步骤 (4) 中复合气固流体进行气固分离, 得到银碳复 合粉体材料, 即碳银复合催化剂。
[0053] 具体实施例 2
[0054] 制备一种碳银复合催化剂, 该催化剂组成为其中银与碳的质量比为 1:2, 其制 备方法具体包括如下步骤:
[0055] (1) 将载气氩气除油、 除水, 然后泵送到流化床底部, 形成上升气流;
[0056] (2) 将 1000g炭黑体泵送到步骤 (1) 中上升气流的顶部, 让载气气流与碳粉 边流动边混合, 形成气固流体;
[0057] (3) 将 773g醋酸银盐配制成质量分数为 10%银溶液, 然后泵送到步骤 (2) 中 气固流体的顶部, 上下对流混合, 形成气液固流体。
[0058] (4) 将流化床的加热温度设为 800°C, 恒温吋间设定为 12小吋, 得到复合气固 流体;
[0059] (5) 使用旋风分离器对步骤 (4) 中复合气固流体进行气固分离, 得到银碳复 合粉体材料, 即碳银复合催化剂。
[0060] 具体实施例 3
[0061] 制备一种碳银复合催化剂, 其组成为其中银与碳的质量比为 1:4。 其制备方法 具体包括如下步骤:
[0062] (1) 将载气氖气除油、 除水, 然后泵送到流化床底部, 形成上升气流;
[0063] (2) 将 1000g活性炭和 1000g碳纳米管泵送到步骤 (1) 中上升气流的顶部, 让 气流与碳粉边流动边混合, 形成气固流体;
[0064] (3) 将 870g溴化银盐配制成质量分数为 5%的银溶液, 然后泵送到步骤 (2) 中气固流体的顶部, 上下对流混合, 形成气液固流体。
[0065] (4) 将流化床的加热温度设为 460°C, 恒温吋间设定为 6小吋, 得到复合气固 流体;
[0066] (5) 使用旋风分离器对步骤 (4) 中的复合气固流体进行气固分离, 得到银碳 复合粉体材料, 即碳银复合催化剂。
[0067] 综上所述, 为本发明实施例中提供的碳银复合催化剂的制备方法, 利用气流分 散银溶液和碳粉体颗粒, 在气流的带动下碳粉体颗粒和银溶液滴在流化床里腾 挪翻转、 不停的碰撞, 经过加热生产银碳复合催化剂; 同吋, 银和碳混合均匀 , 可以节约银的用量; 碳是一种价格便宜, 导电性、 稳定性优良的材料, 碳颗 粒表面拥有丰富的大、 中、 小尺度的孔径可以填充银, 起到分散银的作用, 提 高银的催化媒介面积, 提高催化效率; 在流化床上产生的强烈对流和碰撞, 使 复合材料粉体不会板结, 使颗粒细化; 气流带动复合材料颗粒形成湍流, 在流 化床各部件之间碰撞, 将颗粒棱角磨去, 颗粒表面趋于圆滑, 改善粒度分布, 提高压实密度, 进而提高催化效率。
[0068]
[0069] 以上所述仅为本发明的优选实施例, 并非因此限制本发明的专利范围, 凡是利 用本发明说明书及附图内容所作的等效结构或等效流程变换, 或直接或间接运 用在其他相关的技术领域, 均同理包括在本发明的专利保护范围内。

Claims

权利要求书
[权利要求 1] 一种碳银复合催化剂的制备方法, 其特征在于, 包括以下步骤: 在密封容器内, 将气体与碳粉体进行混合, 形成气固流体; 将气固流体与银溶液混合, 形成气液固流体;
对气液固流体进行 120-800°C加热处理, 恒温加热吋间 1-12小吋, 得 到复合气固流体;
对复合气固流体进行气固分离, 得到碳银复合粉体催化剂。
[权利要求 2] 根据权利要求 1所述的方法, 其特征在于, 所述在密封容器内, 将气 体与碳粉体进行混合, 形成气固流体的步骤包括: 将气体泵送至流化床底部, 形成上升气流, 并将碳粉体泵送至上升气 流的顶部, 使气体与碳粉体流动边混合形成气固流体。
[权利要求 3] 根据权利要求 2所述的方法, 其特征在于, 所述上升气流的压强大于 或等于 5个大气压。
[权利要求 4] 根据权利要求 2所述的方法, 其特征在于, 所述将气固流体与银溶液 混合, 形成气液固流体的步骤包括:
将银盐配置成质量分数为 1-10%的银溶液, 泵送至气固流体的顶部, 与气固流体上下对流混合形成气液固流体。
[权利要求 5] 根据权利要求 4所述的方法, 其特征在于, 所述对复合气固流体进行 气固分离的步骤包括:
使用旋风分离器对复合气固流体进行气固分离。
[权利要求 6] 根据权利要求 1-5任一项所述的方法, 其特征在于, 所述碳银复合粉 体催化剂中银与碳的质量比为 1-50%。
[权利要求 7] 根据权利要求 1-5任一项所述的方法, 其特征在于, 所述气体包括氮 气、 惰性气体、 还原性气体中的一种或者多种。
[权利要求 8] 根据权利要求 1-5任一项所述的方法, 其特征在于, 所述碳粉体包括 石墨、 碳黑、 活性碳、 碳纳米管、 碳纤维、 石墨烯中的一种或多种。
[权利要求 9] 根据权利要求 1-5任一项所述的方法, 其特征在于, 所述银溶液为包 括溴化银、 碘化银、 氯化银、 硫酸银、 硝酸银、 醋酸银、 氟化银、 高 氯酸银、 氯酸银、 二铵合银、 次氯酸银、 羟基-氯合银中的一种或多 种银盐配置而成的银溶液。
PCT/CN2017/091850 2016-07-05 2017-07-05 碳银复合催化剂的制备方法 WO2018006828A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610522110.3 2016-07-05
CN201610522110.3A CN106179335A (zh) 2016-07-05 2016-07-05 碳银复合催化剂的制备方法

Publications (1)

Publication Number Publication Date
WO2018006828A1 true WO2018006828A1 (zh) 2018-01-11

Family

ID=57465499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091850 WO2018006828A1 (zh) 2016-07-05 2017-07-05 碳银复合催化剂的制备方法

Country Status (2)

Country Link
CN (1) CN106179335A (zh)
WO (1) WO2018006828A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106179335A (zh) * 2016-07-05 2016-12-07 张启辉 碳银复合催化剂的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101970715A (zh) * 2008-03-11 2011-02-09 阿克马法国公司 在碳纳米管上沉积金属或准金属的方法和系统
CN106179335A (zh) * 2016-07-05 2016-12-07 张启辉 碳银复合催化剂的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3563913A (en) * 1967-10-30 1971-02-16 Shell Oil Co Silver catalyst production
CN101444730B (zh) * 2007-11-27 2011-07-27 北京化工大学 一种纳米碳纤维/银纳米粒子复合催化剂的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101970715A (zh) * 2008-03-11 2011-02-09 阿克马法国公司 在碳纳米管上沉积金属或准金属的方法和系统
CN106179335A (zh) * 2016-07-05 2016-12-07 张启辉 碳银复合催化剂的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HIERSO, J.C. ET AL.: "MOCVD of Rhodium, Palladium and Platinum Complexes on Fluidized Divided Substrates: Novel Process for One-Step Preparation of Noble-Metal Catalysts", APPLIED ORGANOMETALLIC CHEMISTRY, vol. 12, no. 3, 31 March 1998 (1998-03-31), pages 168, XP008047636 *
PARK, J.H. ET AL.: "The Effect of Substrates on The Characteristics of Titania Nano-Coated Particles Prepared by Fluidized Bed Chemical Vapor Deposition (FBCVD", MATERIALS SCIENCE FORUM, vol. 510-511, 15 March 2006 (2006-03-15), pages 126 - 129, XP055450251 *

Also Published As

Publication number Publication date
CN106179335A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
CN104003368B (zh) 一种多孔磷-氮共掺杂碳材料及其制备方法
Zhong et al. Facile electrochemical synthesis of hexagonal Cu2O nanotube arrays and their application
CN105344380B (zh) 一种金属有机框架/石墨烯负载钯纳米复合催化剂及其制备方法和应用
WO2021008196A1 (zh) 一种电催化二氧化碳还原的催化剂及其制备方法
CN104953103B (zh) 用于锂离子电池的Fe2O3/膨胀石墨复合材料的制备方法
CN106077622A (zh) 石墨烯包覆金属基复合粉末的气相沉积制备方法
CN104587918A (zh) 一种银纳米粒子修饰碳球/石墨烯复合气凝胶材料及其制备方法与应用
CN101628807B (zh) 一种简便的活性炭陶瓷及其制备方法
CN108264037B (zh) 三维多孔氮掺杂石墨烯复材及氮掺杂石墨烯的制备方法
CN107055521A (zh) 规模化制备高度规则球形石墨烯微球的方法及该石墨烯微球
CN103084194A (zh) 一种碳化钨/石墨烯纳米复合材料及制备方法
CN104437822A (zh) 碳-碳化硅微粉的分离方法
CN107552075A (zh) 一种θ‑AlF3微纳球催化剂的制备方法及其应用
CN106824212A (zh) 一种CeO2/Fe2O3负载凹凸棒土上的纳米环境材料的制备方法
CN101966989B (zh) 一种采用四角氧化锌光催化还原氧化石墨烯的方法
CN109755485A (zh) 一种SnO2/石墨烯锂离子电池负极材料制备方法
WO2018006828A1 (zh) 碳银复合催化剂的制备方法
CN104520231A (zh) 一种制备含硫碳材料的方法及其制备的含硫碳材料
Zheng et al. Electro-injection-enhanced catalytic formaldehyde degradation based on conductive MnOx cellulose aerogels at room temperature
Peixoto et al. Hydrothermal synthesis as a versatile tool for the preparation of metal hexacyanoferrates: a review
CN102390828B (zh) 一种低温反应制备高石墨化空心纳米碳球的方法
CN109638253A (zh) 一种多孔碳/二氧化锡复合锂离子电池负极材料的制备方法
CN101696005B (zh) 一种丙烯腈聚合物基中孔炭的制备方法
EP2879991A1 (de) Verfahren zur herstellung von porösem kohlenstoff
CN108579715A (zh) 一种多孔易分离二氧化钛纳米催化剂的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17823640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17823640

Country of ref document: EP

Kind code of ref document: A1