CN106824212A - 一种CeO2/Fe2O3负载凹凸棒土上的纳米环境材料的制备方法 - Google Patents

一种CeO2/Fe2O3负载凹凸棒土上的纳米环境材料的制备方法 Download PDF

Info

Publication number
CN106824212A
CN106824212A CN201710139624.5A CN201710139624A CN106824212A CN 106824212 A CN106824212 A CN 106824212A CN 201710139624 A CN201710139624 A CN 201710139624A CN 106824212 A CN106824212 A CN 106824212A
Authority
CN
China
Prior art keywords
attapulgite
atp
mixed
water
ceo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710139624.5A
Other languages
English (en)
Inventor
王小治
韩书文
侯建华
王圣森
郁何敏
尹微琴
封克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN201710139624.5A priority Critical patent/CN106824212A/zh
Publication of CN106824212A publication Critical patent/CN106824212A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种CeO2/Fe2O3‑ATP棒粒状复合纳米颗粒的制备方法,根据凹凸棒土具有巨大的比表面积,这使得凹凸棒土具有优良的吸附性能,对一些持续性有机污染物和重金属具有很强的降解去除能力的原理,将其作为催化剂载体可以为Ce3+和Fe3+的负载提供一定的活性位点,从而提高非均相芬顿反应的催化能力,并且因为铈和铁加入克服了凹凸棒土的胶体性能,使得这种新型环境纳米修复材料容易分离和重复利用,用于环境中有机污染物的去除。

Description

一种CeO2/Fe2O3负载凹凸棒土上的纳米环境材料的制备方法
技术领域
本发明属于无机型纳米材料制备领域,涉及一种金属氧化物复合纳米颗粒的制备方法,属于环境修复领域。
背景技术
Fe2O3是铁氧化物中性质较稳定的一种氧化物,具有含量丰富、对环境无害、制备成本低等优点。CeO2是具有良好的氧化反应的一种氧化物,具有独一无二的还原特性和高的氧储存能力,因此可以作为一种替代或部分替代贵金属催化剂。在非均相芬顿催化及气体催化氧化等工业催化研究中作为催化剂和助催化剂的应用越来越被人们所重视。凹凸棒土(ATP)是一种层链状含水富镁硅酸盐矿物,其具有特殊的层链状晶体结构和大量的微孔孔道,较大的比表面积。这也使得凹土具有优异的吸附性能,从而成为一种很有应用前景的吸附剂,将其作为催化剂载体为其他元素的负载提供活性位点的研究也引起了人们的极大兴趣。
近来,人们研究发现,CeO2在催化氧化反应中的重要作用是由于催化反应中的表面氧种类以及阴离子空位的产生和参与。由于三价离子和更小的尺寸会对氧化铈的结构和性能产生影响,已有专家研究将Fe3+离子引入进入CeO2的晶格,并发现,铁替代铈在氧化铈可以扭曲的晶格氧促进激晶格氧,这样所形成的含铈的多元纳米复合材料在气体催化、化工和环保等领域中成为重要的催化剂的研究对象。有研究报道,CeO2/Fe2O3复合纳米材料能利用晶格氧直接转化甲烷合成气,表面铁位点和Ce-Fe固溶增强了Ce-Fe-O材料的还原性。Ce1-xSmxO2-q/ATP纳米催化剂用于催化有机污染废水工业具有很高的活性。采用浸渍法制备Ce-Fe/活性炭纤维用于非均相Fendun法处理染料废水具有理想的处理效果。
研究表明,催化剂的性能不但与元素的组成相关,还与其形态结构以及稳定性有很大的关系。文献报道大多采用浸渍法或共沉淀法将多金属氧化物负载在膨润土和碳纳米材料上,但关于将多金属元素负载在凹凸棒土的方法较少。因此,开发复合金属氧化物负载在凹凸棒土上的简易经济的制备方法,对高性能催化剂的开发具有重要意义。
发明内容
本发明涉及一种在凹凸棒土上负载复合金属氧化物的制备方法,所得到的产物体现的纳米结构形貌和结构效应,具有较高的催化性能。
实现本发明目的的技术解决方案是:一种CeO2/Fe2O3-ATP棒粒状复合纳米颗粒的制备方法,其步骤为:
第一步:将预干燥处理的凹凸棒土分散在去离子水中形成凹凸棒土悬浮液,;
第二步:于70-80℃下,搅拌配制一定摩尔比的Ce(NO3)3和Fe(NO3)3的混合溶液,调节混合溶液的pH值;
第三步:将第二步形成的沉淀物质,于70-80℃水浴下继续搅拌一定时间,超声波震荡后,放在室温下静置陈化12-24h;
第四步:室温下,将第三步陈化后的溶液,缓慢滴加到第一步制备的凹凸棒土悬浮液中,形成一定比例的[Ce3+]+[Fe3+])/ATP混合液,在70-80℃水浴下搅拌均匀;
第五步:调节第四步得到的混合浆液中的pH值,并于70-80℃水浴下搅拌4-5h;
第六步:将第六步得到的沉淀物质,淋洗、烘干、磨细过筛,煅烧一定时间,得到所述的复合金属纳米材料。
进一步的,第一步中,预干燥处理的凹凸棒土是通过在80℃下干燥至恒重,过筛去除非凹凸棒土杂质后得到;采用磁力搅拌制备凹凸棒土悬浮液,其质量浓度为1-3%,磁力搅拌时间为22-24h。
进一步的,第二步中,Ce(NO3)3和Fe(NO3)3的混合溶液中Ce和Fe的摩尔比=8:2。
进一步的,第二步中,采用10wt%氨水溶液调节混合溶液的pH值至7-8。
进一步的,第三步中,采用磁力搅拌1.5-2h;超声震荡频率为40kHz,超声波震荡时间为30min以上。
进一步的,第四步中,[Ce3+]+[Fe3+])/ATP混合液中[Ce3+]+[Fe3+])/ATP=10-20mmol/g。
进一步的,第五步中,采用10wt%氨水溶液调节混合溶液的pH值至10-12。
进一步的,第六步中,煅烧温度为300-400℃,煅烧时间为3-4h。
与现有技术相比,本发明的有益效果是:
(1)本发明合成工艺简单,生产成本低,有利于低成本的大规模生产。
(2)采用凹凸棒土做为载体,由于凹凸棒土具有巨大的比表面积以及较好的阳离子交换量,这有利于Ce/Fe的负载。
(3)采用Ce(NO3)3·6H2O和Fe(NO3)3·9H2O的摩尔比=8:2可以提高催化剂的比表面积,使得材料的活性位点多。
附图说明
图1是本发明实施例1中所制备的Fe2O3@ATP纳米材料的透射电镜图。
图2是本发明实施例2中所制备的CeO2@ATP纳米材料的透射电镜图。
图3是本发明实施例3中所制备的CeO2-Fe2O3@ATP纳米材料的透射电镜图。
图4是本发明实施例4中所制备的各种纳米材料去除罗丹明B的效果图,曲线a是CeO2@ATP对罗丹明B的吸附催化效率图,曲线b是Fe2O3@ATP对罗丹明B的吸附催化效率图以及曲线c是CeO2-Fe2O3@ATP对罗丹明B的吸附催化效率图。
具体实施方式
根据凹凸棒土具有巨大的比表面积,这使得凹凸棒土具有优良的吸附性能,对一些持续性有机污染物和重金属具有很强的降解去除能力的原理。将其作为催化剂载体可以为Ce3+和Fe3+的负载提供一定的活性位点,从而提高非均相芬顿反应的催化能力。并且因为铈和铁加入克服了凹凸棒土的胶体性能,使得这种新型环境纳米修复材料容易分离和重复利用,用于环境中有机污染物的去除。
实施例1
称取1g凹凸棒土于100ml去离子水中室温下持续搅拌24h;称取8.0780g Fe(NO3)3·9H2O于100ml去离子水中,调节溶液pH至8,并于70℃水浴中持续搅拌2h后,放在室温下静置陈化24h;将陈化后的溶液滴加到凹凸棒土的悬浮液中,使得[Fe3+]/ATP=20mmol/g,调节混合液pH至10,并与并于70℃水浴中持续搅拌5h,制得Fe2O3/ATP纳米材料。图1为利用本发明所述方法制备的Fe2O3@ATP纳米颗粒的HTEM衍射图。从图可以看出,Fe2O3分布在ATP上,但是分布的并不均匀。
实施例2
称取1g凹凸棒土于100ml去离子水中室温下持续搅拌24h;称取8.6824g Ce(NO3)3·6H2O于100ml去离子水中,调节溶液pH至8,并于70℃水浴中持续搅拌2h后,放在室温下静置陈化24h;将陈化后的溶液滴加到凹凸棒土的悬浮液中,使得[Ce3+]/ATP=20mmol/g,调节混合液pH至10,并与并于70℃水浴中持续搅拌5h,制得CeO2@ATP纳米材料。图2为利用本发明所述方法制备的CeO2@ATP纳米颗粒的HTEM衍射图。从图可以看出,CeO2分布在ATP上,分布的相对均匀。
实施例3
称取1g凹凸棒土于100ml去离子水中室温下持续搅拌24h;配置摩尔比为8:2的Ce(NO3)3·6H2O和Fe(NO3)3·9H2O于100ml去离子水中,调节溶液pH至8,并于70℃水浴中持续搅拌2h后,放在室温下静置陈化24h;将陈化后的溶液滴加到凹凸棒土的悬浮液中,使得[Ce3+]+[Fe3+])/ATP=20mmol/g,调节混合液pH至10,并与并于70℃水浴中持续搅拌5h,制得CeO2-Fe2O3/ATP纳米材料。图3为利用本发明所述方法制备的CeO2-Fe2O3@ATP纳米颗粒的HTEM衍射图。从图可以看出,ATP上相对均匀的负载了两种颗粒。较黑的粒子为Fe2O3,颜色较浅的粒子为CeO2
实施例4
分别取0.1g的CeO2@ATP、Fe2O3@ATP和CeO2-Fe2O3@ATP纳米颗粒与100ml溴化乙锭溶液,于250ml锥形瓶中,50℃下恒温振荡吸附30min,罗丹明B溶液浓度80mg/L。图4曲线a,b和c,分别为实验测得三种材料对罗丹明B的去除效率曲线。从图上可以看出在CeO2@ATP和Fe2O3@ATP吸附了18%左右,而CeO2-Fe2O3@ATP吸附率达到27%左右。吸附完全后,催化15min后罗丹明B的降解率分别为58%、43%和98%。这表明了CeO2-Fe2O3@ATP纳米可以的比表面积相对较大,因而产生的活性位点也相对较多,对罗丹明B的去除率相对较高。

Claims (8)

1.一种CeO2/Fe2O3-ATP棒粒状复合纳米颗粒的制备方法,其特征在于,其步骤为:
第一步:将预干燥处理的凹凸棒土分散在去离子水中形成凹凸棒土悬浮液,;
第二步:于70-80℃下,搅拌配制一定摩尔比的Ce(NO3)3和Fe(NO3)3的混合溶液,调节混合溶液的pH值;
第三步:将第二步形成的沉淀物质,于70-80℃水浴下继续搅拌一定时间,超声波震荡后,放在室温下静置陈化12-24h;
第四步:室温下,将第三步陈化后的溶液,缓慢滴加到第一步制备的凹凸棒土悬浮液中,形成一定比例的[Ce3+]+[Fe3+])/ATP混合液,在70-80℃水浴下搅拌均匀;
第五步:调节第四步得到的混合浆液中的pH值,并于70-80℃水浴下搅拌4-5h;
第六步:将第六步得到的沉淀物质,淋洗、烘干、磨细过筛,煅烧一定时间,得到所述的复合金属纳米材料。
2.如权利要求1所述的方法,其特征在于,第一步中,预干燥处理的凹凸棒土是通过在80℃下干燥至恒重,过筛去除非凹凸棒土杂质后得到;采用磁力搅拌制备凹凸棒土悬浮液,其质量浓度为1-3%,磁力搅拌时间为22-24h。
3.如权利要求1所述的方法,其特征在于,第二步中,Ce(NO3)3和Fe(NO3)3的混合溶液中Ce和Fe的摩尔比=8:2。
4.如权利要求1所述的方法,其特征在于,第二步中,采用10wt%氨水溶液调节混合溶液的pH值至7-8。
5.如权利要求1所述的方法,其特征在于,第三步中,采用磁力搅拌1.5-2h;超声震荡频率为40kHz,超声波震荡时间为30min以上。
6.如权利要求1所述的方法,其特征在于,第四步中,[Ce3+]+[Fe3+])/ATP混合液中[Ce3 +]+[Fe3+])/ATP=10-20mmol/g。
7.如权利要求1所述的方法,其特征在于,第五步中,采用10wt%氨水溶液调节混合溶液的pH值至10-12。
8.如权利要求1所述的方法,其特征在于,第六步中,煅烧温度为300-400℃,煅烧时间为3-4h。
CN201710139624.5A 2017-03-10 2017-03-10 一种CeO2/Fe2O3负载凹凸棒土上的纳米环境材料的制备方法 Pending CN106824212A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710139624.5A CN106824212A (zh) 2017-03-10 2017-03-10 一种CeO2/Fe2O3负载凹凸棒土上的纳米环境材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710139624.5A CN106824212A (zh) 2017-03-10 2017-03-10 一种CeO2/Fe2O3负载凹凸棒土上的纳米环境材料的制备方法

Publications (1)

Publication Number Publication Date
CN106824212A true CN106824212A (zh) 2017-06-13

Family

ID=59144281

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710139624.5A Pending CN106824212A (zh) 2017-03-10 2017-03-10 一种CeO2/Fe2O3负载凹凸棒土上的纳米环境材料的制备方法

Country Status (1)

Country Link
CN (1) CN106824212A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108144622A (zh) * 2017-12-20 2018-06-12 广州润方环保科技有限公司 一种芬顿催化材料及其制备方法和应用
CN109134152A (zh) * 2018-10-31 2019-01-04 盛世生态环境股份有限公司 一种富集土壤肥力的改良剂及利用其进行园林土壤改良的方法
CN113426451A (zh) * 2021-06-18 2021-09-24 中建安装集团有限公司 一种微米型臭氧催化剂的制备方法和应用
CN113941333A (zh) * 2021-10-25 2022-01-18 四川轻化工大学 一种负载双金属的凹凸棒土催化剂的制备方法及应用
CN114643059A (zh) * 2022-05-23 2022-06-21 山东森洋环境技术有限公司 一种用于水处理的芬顿催化剂及其制备方法
WO2022261919A1 (zh) * 2021-06-18 2022-12-22 中建安装集团有限公司 一种微米型臭氧催化剂的制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103041815A (zh) * 2013-01-04 2013-04-17 南京林业大学 一种载铁凹凸棒土非均相芬顿催化剂的制备方法
CN104785268A (zh) * 2015-01-30 2015-07-22 山东科技大学 一种磁性Ce1-xSmxO2-δ/凹凸棒石纳米复合材料的制备方法
CN106111149A (zh) * 2016-06-16 2016-11-16 浙江三龙催化剂有限公司 船舶用脱硝催化剂及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103041815A (zh) * 2013-01-04 2013-04-17 南京林业大学 一种载铁凹凸棒土非均相芬顿催化剂的制备方法
CN104785268A (zh) * 2015-01-30 2015-07-22 山东科技大学 一种磁性Ce1-xSmxO2-δ/凹凸棒石纳米复合材料的制备方法
CN106111149A (zh) * 2016-06-16 2016-11-16 浙江三龙催化剂有限公司 船舶用脱硝催化剂及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
RUI C. MARTINS等: "Ceria based solid catalysts for Fenton’s depuration of phenolic wastewaters,biodegradability enhancement and toxicity removal", 《APPLIED CATALYSIS B: ENVIRONMENTAL》 *
ZHENHUA GU等: "Enhanced reducibility and redox stability of Fe2O3 in the presence of CeO2 nanoparticles", 《RSC ADV.》 *
莫立焕等: "Fe2O3/凹凸棒光催化-Fenton深度处理造纸废水", 《纸和造纸》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108144622A (zh) * 2017-12-20 2018-06-12 广州润方环保科技有限公司 一种芬顿催化材料及其制备方法和应用
CN109134152A (zh) * 2018-10-31 2019-01-04 盛世生态环境股份有限公司 一种富集土壤肥力的改良剂及利用其进行园林土壤改良的方法
CN113426451A (zh) * 2021-06-18 2021-09-24 中建安装集团有限公司 一种微米型臭氧催化剂的制备方法和应用
WO2022261919A1 (zh) * 2021-06-18 2022-12-22 中建安装集团有限公司 一种微米型臭氧催化剂的制备方法和应用
CN113941333A (zh) * 2021-10-25 2022-01-18 四川轻化工大学 一种负载双金属的凹凸棒土催化剂的制备方法及应用
CN114643059A (zh) * 2022-05-23 2022-06-21 山东森洋环境技术有限公司 一种用于水处理的芬顿催化剂及其制备方法
CN114643059B (zh) * 2022-05-23 2022-07-19 山东森洋环境技术有限公司 一种用于水处理的芬顿催化剂及其制备方法

Similar Documents

Publication Publication Date Title
CN106824212A (zh) 一种CeO2/Fe2O3负载凹凸棒土上的纳米环境材料的制备方法
Zhao et al. A novel Z-scheme CeO2/g-C3N4 heterojunction photocatalyst for degradation of Bisphenol A and hydrogen evolution and insight of the photocatalysis mechanism
Dong et al. Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation
Zhu et al. Insight into the influence of morphology of Bi2WO6 for photocatalytic degradation of VOCs under visible light
Hu et al. Ceria hollow spheres as an adsorbent for efficient removal of acid dye
Chen et al. Salt-assisted synthesis of hollow Bi2WO6 microspheres with superior photocatalytic activity for NO removal
Tian et al. Glucose-mediated solution–solid route for easy synthesis of Ag/ZnO particles with superior photocatalytic activity and photostability
Wang et al. Enhanced photocatalytic properties of CeO2/TiO2 heterostructures for phenol degradation
Wang et al. Enhanced visible light photocatalytic activity of a floating photocatalyst based on B–N-codoped TiO 2 grafted on expanded perlite
CN107837816B (zh) Fe2O3/g-C3N4复合体系及制备方法和应用
Rong et al. Highly active water oxidation on nanostructured biomimetic calcium manganese oxide catalysts
Jing et al. Realizing the synergistic effect of electronic modulation over graphitic carbon nitride for highly efficient photodegradation of bisphenol A and 2-mercaptobenzothiazole: Mechanism, degradation pathway and density functional theory calculation
CN113145174B (zh) 配位调制剂改性的铁基金属有机骨架多孔复合材料及其制备方法和应用
CN106807400B (zh) 一种复合铁酸铋光催化剂及其制备方法和应用
Wang et al. Bioframe synthesis of NF–TiO 2/straw charcoal composites for enhanced adsorption-visible light photocatalytic degradation of RhB
Yang et al. Removing low concentration of Cr (III) from wastewater: using titanium dioxide surface modified montmorillonite as a selective adsorbent
Lei et al. Mixed-phase TiO 2 nanomaterials as efficient photocatalysts
Zhao et al. Fly ash cenospheres as multifunctional supports of g-C3N4/N-TiO2 with enhanced visible-light photocatalytic activity and adsorption
Sun et al. Efficient catalytic oxidation of tetraethylated rhodamine over ordered mesoporous manganese oxide
Yin et al. Synergistically enhanced photocatalytic degradation of tetracycline hydrochloride by Z-scheme heterojunction MT-BiVO4 microsphere/P-doped g-C3N4 nanosheet composite
Wang et al. Facile synthesis of porous TiO2 photocatalysts using waste sludge as the template
Xu et al. Synthesis of ordered mesoporous silica from biomass ash and its application in CO2 adsorption
Chobchun et al. Characterization of TiO2-activated carbon onto adsorption and photocatalytic properties and its application
Adán et al. Photocatalytic degradation of ethidium bromide over titania in aqueous solutions
Wang et al. Amorphous SiO2 nanofiber@ CuO quantum dots with enhanced photocatalytic activity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170613