WO2022261919A1 - 一种微米型臭氧催化剂的制备方法和应用 - Google Patents

一种微米型臭氧催化剂的制备方法和应用 Download PDF

Info

Publication number
WO2022261919A1
WO2022261919A1 PCT/CN2021/100782 CN2021100782W WO2022261919A1 WO 2022261919 A1 WO2022261919 A1 WO 2022261919A1 CN 2021100782 W CN2021100782 W CN 2021100782W WO 2022261919 A1 WO2022261919 A1 WO 2022261919A1
Authority
WO
WIPO (PCT)
Prior art keywords
micron
ozone catalyst
catalyst
preparation
ozone
Prior art date
Application number
PCT/CN2021/100782
Other languages
English (en)
French (fr)
Inventor
朱昊
刘汉飞
李双涛
黄益平
黄晶晶
倪嵩波
倪泽雨
Original Assignee
中建安装集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中建安装集团有限公司 filed Critical 中建安装集团有限公司
Priority to PCT/CN2021/100782 priority Critical patent/WO2022261919A1/zh
Publication of WO2022261919A1 publication Critical patent/WO2022261919A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30
    • B01J35/60
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds

Definitions

  • the invention belongs to the technical field of ozone catalysts, in particular to a preparation method and application of a micron ozone catalyst.
  • Ozone oxidation has the characteristics of strong oxidation ability, short reaction time and no secondary pollution. It is the research focus and hotspot in the field of advanced treatment of urban sewage. However, ozone oxidation is selective and reacts slowly with organic matter in water. It is difficult to guarantee high-standard discharge of urban sewage by using ozone oxidation technology alone. In recent years, studies have shown that the hydroxyl radicals produced by the ozone catalytic oxidation process can non-selectively oxidize most organic matter, which provides the possibility for the removal of low-concentration organic matter in urban tail water, and the development of catalysts is the core and key of ozone catalytic oxidation technology.
  • heterogeneous ozone catalysts Compared with the homogeneous ozone catalyst, the active component of the heterogeneous ozone catalyst is not easy to lose, the recovery is simple and convenient, and it has a better application prospect.
  • the types of heterogeneous ozone catalysts currently on the market are: metal oxide catalysts, such as manganese oxides, aluminum oxides and iron oxides; supported catalysts, such as ceramsite-supported, activated carbon-supported and mineral-supported.
  • attapulgite is rich in resources, has special crystal morphology, good adsorption performance and excellent surface chemical properties, making it suitable as a good carrier for the preparation of ozone catalysts.
  • ozone catalysts can be divided into nano-type, micron-type and millimeter-type.
  • the ozone catalytic efficiency of nano-sized catalysts is higher than that of micron-sized catalysts, the preparation cost of such catalysts is high, and it is difficult to separate and recover them during large-scale use, while the conversion rate of hydroxyl radicals of millimeter-sized catalysts is lower than that of micron-sized catalysts.
  • the present invention provides a preparation method and application of a micron-sized ozone catalyst to solve the problems of low catalytic efficiency of traditional millimeter-sized ozone catalysts, high recovery cost of nano-sized ozone catalysts, and difficulty in reusing homogeneous catalysts. question.
  • the preparation method of a kind of micron type ozone catalyst provided by the invention comprises the following steps:
  • the turbid liquid is sequentially subjected to suction filtration, roasting, and sieving to obtain micron-sized small-particle solids and millimeter-sized large-particle solids;
  • the mass concentration of the attapulgite aqueous solution is 100 g/L; the mass ratio of the polyacrylamide to attapulgite is 0.1:100.
  • the mass ratio of FeCl3 to attapulgite is 1:100; the specific operation of the stirring is: stirring for 12 hours at room temperature with a stirring speed of 250 r/min.
  • the roasting conditions are as follows: the roasting temperature is 400-600° C., and the roasting time is 2-4 hours.
  • the calcination temperature is 500° C.
  • the calcination time is 3 hours.
  • sieving is carried out under 120 mesh.
  • the micron-sized solid particle is washed three times with a mixture of water and ethanol, and dried at 105° C. for 1 hour to obtain a micron-sized ozone catalyst.
  • the present invention also provides an application of the obtained micron ozone catalyst in treating tail water of cities and towns.
  • the micron-type ozone catalyst is used to remove low-concentration organic matter in the tail water of cities and towns.
  • the specific method is: add the micron-type ozone catalyst to the tail water of cities and towns (COD concentration 65-75mg/L), and pass in ozone to catalyze The oxidation reaction is sufficient; the dosage of the micron ozone catalyst is 0.05-0.15g/L.
  • the dosage of the micron ozone catalyst is 0.1g/L, the dosage of the ozone is 1g/h, and the reaction time of the catalytic oxidation reaction is 15min.
  • the present invention utilizes attapulgite clay with wide sources and low cost, adopts the impregnation method to load metal oxides with high catalytic activity Fe and Ce, and selects micron-sized ozone catalysts through sieving, so as to prepare high-efficiency and low-consumption ozone catalyst, and the characteristics of magnetic iron are conducive to the separation and recovery of ozone catalyst.
  • the present invention overcomes the problems of low catalytic efficiency of millimeter-type ozone catalysts and high recovery costs of nano-type ozone catalysts, and solves the problem of difficult reuse of homogeneous ozone catalysts.
  • the present invention adopts the micron type ozone catalyst to improve the removal efficiency of low-concentration organic matter in the tail water of cities and towns.
  • the attapulgite-supported Fe-Ce two-component ozone catalyst prepared by the present invention has an average particle size of 34.0 ⁇ m, irregular surface morphology, and a specific surface area of 44.6 m 2 /g.
  • micron type ozone catalyst obtained by the present invention treats town tail water for 15 minutes, and the COD removal rate is 44.9-52.5%; in addition, after the micron type ozone catalyst obtained by the present invention is used continuously for 5 times, the COD removal rate is only reduced by 5.0%. It shows that the micron ozone catalyst has good stability.
  • Figure 1 is a particle size distribution diagram of the micron ozone catalyst obtained in Example 5 of the present invention.
  • Fig. 2 is a scanning electron microscope image of the micron ozone catalyst obtained in Example 5 of the present invention.
  • Fig. 3 is a comparison chart of COD removal effects of different treatment methods in Test Example 2 of the present invention.
  • Fig. 4 is a diagram showing the COD removal effect of the micron-sized ozone catalyst in Test Example 3 of the present invention after being recycled.
  • a kind of preparation method of micron type ozone catalyst comprises the steps:
  • the turbid liquid is sequentially subjected to suction filtration, roasting, and sieving under 120 mesh to obtain micron-sized small-particle solids and millimeter-sized large-particle solids;
  • the calcination conditions are as follows: the calcination temperature is 400° C., and the calcination time is 2 hours.
  • a method for preparing a micron-sized ozone catalyst the difference from Example 1 is that the conditions for the calcination are: the calcination temperature is 500° C., and the calcination time is 2 hours.
  • a method for preparing a micron-sized ozone catalyst the difference from Example 1 is that the conditions for the calcination are: the calcination temperature is 600° C., and the calcination time is 2 hours.
  • a method for preparing a micron-sized ozone catalyst the difference from Example 1 is that the conditions for the calcination are: the calcination temperature is 400° C., and the calcination time is 3 hours.
  • a method for preparing a micron-sized ozone catalyst the difference from Example 1 is that the conditions for the calcination are: the calcination temperature is 500° C., and the calcination time is 3 hours.
  • a method for preparing a micron-sized ozone catalyst the difference from Example 1 is that the conditions for the calcination are: the calcination temperature is 600° C., and the calcination time is 3 hours.
  • a method for preparing a micron-sized ozone catalyst the difference from Example 1 is that the conditions for the calcination are: the calcination temperature is 400° C., and the calcination time is 4 hours.
  • a preparation method of a micron-sized ozone catalyst the difference from Example 1 is: the conditions of the calcination are: the calcination temperature is 500°C, and the calcination time is 4h.
  • a method for preparing a micron-sized ozone catalyst the difference from Example 1 is that the conditions for the calcination are: the calcination temperature is 600° C., and the calcination time is 4 hours.
  • micron type ozone catalyst that embodiment 5 is obtained carries out scanning electron microscope detection, obtains the scanning electron microscope figure as shown in Fig. 2, as can be seen from Fig. 2, micron type ozone catalyst surface presents irregular topography.
  • processing method is carried out as follows: join town tail water (COD concentration 65-75mg/L) in the reactor, add in reactor
  • the dosage of ozone catalysts with different particle sizes is 0.1g/L; ozone is introduced into the reactor for catalytic oxidation reaction, the dosage of ozone is 1g/h, the reaction time is 15min, and the treatment of urban tail water is completed .
  • the corresponding urban tail water COD removal rate is shown in the table below:
  • the method of using ozone alone for treatment is: adding town tail water (COD concentration 65-75mg/L) into the reactor, passing ozone into the reactor for oxidation reaction, the amount of ozone introduced is 1g/h, The reaction time is 15 minutes, and the treatment of town tail water is completed.
  • the method of using oxygen alone for treatment is: add town tail water (COD concentration 65-75mg/L) into the reactor, feed oxygen into the reactor for reaction, the amount of oxygen feed is 1g/h, and the reaction time is 15 minutes to complete the treatment of town tail water.
  • micron type ozone catalyst that embodiment 5 obtains to adopt the method for test example 1 to carry out town tail water treatment, recycle 5 times, obtain the micron type ozone catalyst COD removal effect picture as shown in Figure 4, as can be seen from Figure 4
  • the type ozone catalyst still has high catalytic performance after being used repeatedly for 5 times, which shows that the catalyst has good stability.

Abstract

本发明公开了一种微米型臭氧催化剂的制备方法,包括凹凸棒载体的预处理、Fe和Ce盐溶液的浸渍、活性组分焙烧、催化剂筛分、洗涤烘干等步骤。本发明还公开了一种微米型臭氧催化剂在处理城镇尾水中的应用。本发明克服了毫米型臭氧催化剂催化效率低,纳米型臭氧催化剂回收成本高的难题,解决了均相臭氧催化剂重复利用难的问题。

Description

一种微米型臭氧催化剂的制备方法和应用 技术领域
本发明属于臭氧催化剂技术领域,具体是一种微米型臭氧催化剂的制备方法和应用。
背景技术
建立城镇污水高排放标准是保障污水处理厂清洁排放和改善水环境质量的先进引领。《十四五规划》指出要深入打好污染防治攻坚战,持续改善环境质量,故城镇尾水入流河道的水质也被赋予了更高的要求。面向城镇尾水高标准排放技术,在解决传统COD、氮、磷等问题上,仍需格外关注对残留碳源的深度降解。
臭氧氧化具有氧化能力强、反应时间短和无二次污染的特点,是城镇污水深度处理领域的研究焦点和热点。但是,臭氧氧化具有选择性,与水中的有机物反应速率缓慢,单独使用臭氧氧化技术难以保障城镇污水的高标准排放。近年来研究表明,臭氧催化氧化过程产生的羟基自由基能无选择性氧化大部分有机物,为城镇尾水中低浓度有机物的去除提供了可能,而催化剂的开发是臭氧催化氧化技术的核心与关键。
同均相臭氧催化剂相比,非均相臭氧催化剂活性组分不易流失,回收简单方便,具有更好的应用前景。目前市面上常见的非均相臭氧催化剂类型有:金属氧化物型催化剂,如锰氧化物、铝氧化物和铁氧化物;负载型催化剂,如陶粒负载型、活性炭负载型和矿物负载型。众多选择中,凹凸棒土资源丰富,具有特殊的晶体形态、较好的吸附性能和优良的表面化学特性,使其适合作为制备臭氧催化剂的良好载体。根据非均相催化剂的粒径,臭氧催化剂可分为纳米型、微米型和毫米型。虽然纳米型催化剂的臭 氧催化效率高于微米型催化剂,但是此类催化剂制备成本较高,规模化使用过程分离回收难度较大,而毫米型催化剂的羟基自由基的转化率不及微米型催化剂。
发明内容
针对现有技术存在的技术问题,本发明提供一种微米型臭氧催化剂的制备方法和应用,以解决传统毫米级臭氧催化剂催化效率低、纳米级臭氧催化剂回收成本高、均相催化剂重复利用难的问题。
本发明提供的一种微米型臭氧催化剂的制备方法,包括下述步骤:
S1、将反复洗涤后的凹凸棒土分散在水中形成凹凸棒土水溶液,向该凹凸棒土水溶液中加入聚丙烯酰胺,得到初混物;
S2、向所述初混物中加入相同质量的FeCl3和CeCl3,搅拌,得到浊液;
S3、将所述浊液依次进行抽滤、焙烧、过筛,分别得到微米型小颗粒固体和毫米型大颗粒固体;
S4、将所述微米型小颗粒固体洗涤后烘干,得到微米型臭氧催化剂。
优选地,S1中,所述凹凸棒土水溶液的质量浓度为100g/L;所述聚丙烯酰胺与凹凸棒土的质量比为0.1:100。
优选地,S2中,所述FeCl3与凹凸棒土的质量比为1:100;所述搅拌的具体操作为:在室温、搅拌速度为250r/min下,搅拌12h。
优选地,S3中,所述焙烧的条件为:焙烧温度为400-600℃,焙烧时间为2-4h。
优选地,所述焙烧温度为500℃,焙烧时间为3h。
优选地,S3中,在120目下进行过筛。
优选地,S4中,将所述微米型小颗粒固体采用水和乙醇的混合物洗涤3次,在105℃下烘干1h,得到微米型臭氧催化剂。
本发明还提供了一种所述得到的微米型臭氧催化剂在处理城镇尾水中的应用。
优选地,采用所述微米型臭氧催化剂去除城镇尾水中的低浓度有机物,具体方法为:向城镇尾水(COD浓度65-75mg/L)中加入所述微米型臭氧催化剂,通入臭氧进行催化氧化反应即可;所述微米型臭氧催化剂的投加量为0.05-0.15g/L。
优选地,所述微米型臭氧催化剂的投加量为0.1g/L,所述臭氧的投加量为1g/h,所述催化氧化反应的反应时间为15mi n。
相对于现有技术,本发明的有益效果为:
1、本发明利用来源广且成本低的凹凸棒土,采用浸滞法负载具有高催化活性Fe和Ce的金属氧化物,通过筛分定向选择微米型臭氧催化剂,可制备出高效低耗的臭氧催化剂,且磁性铁的特质有利于臭氧催化剂的分离回收。
2、本发明克服了毫米型臭氧催化剂催化效率低,纳米型臭氧催化剂回收成本高的难题,解决了均相臭氧催化剂重复利用难的问题。
3、本发明同臭氧氧化技术和毫米型催化剂催化臭氧氧化技术相比,采用微米型臭氧催化剂,提高了城镇尾水低浓度有机物的去除效率。
4、本发明制备的凹凸棒土负载Fe-Ce双组分臭氧催化剂的平均粒径为34.0μm,表面形貌不规则,比表面积为44.6m 2/g。
5、本发明得到的微米型臭氧催化剂处理城镇尾水15min,COD去除率为44.9-52.5%;此外,本发明得到的微米型臭氧催化剂连续使用5次后,COD去除率仅降低了5.0%,表明该微米型臭氧催化剂具有良好的稳定性。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例5得到的微米型臭氧催化剂的粒径分布图。
图2为本发明实施例5得到的微米型臭氧催化剂的扫描电镜图。
图3为本发明试验例2中不同处理方法的COD去除效果对比图。
图4为本发明试验例3中微米型臭氧催化剂循环使用后的COD去除效果图。
具体实施方式
提供下述实施例是为了更好地进一步理解本发明,并不局限于所述最佳实施方式,不对本发明的内容和保护范围构成限制,任何人在本发明的启示下或是将本发明与其他现有技术的特征进行组合而得出的任何与本发明相同或相近似的产品,均落在本发明的保护范围之内。
实施例1
一种微米型臭氧催化剂的制备方法,包括下述步骤:
S1、将反复洗涤后的凹凸棒土分散在水中形成凹凸棒土水溶液,向该凹凸棒土水溶液中加入聚丙烯酰胺,得到初混物;所述凹凸棒土水溶液的质量浓度为100g/L,所述聚丙烯酰胺与凹凸棒土的质量比为0.1:100;
S2、向所述初混物中加入相同质量的FeCl 3和CeCl 3,在室温、搅拌速度为250r/min下,搅拌12h,得到浊液;所述FeCl 3与凹凸棒土的质量比为1:100;
S3、将所述浊液依次进行抽滤、焙烧、在120目下过筛,分别得到微米型小颗粒固体和毫米型大颗粒固体;
S4、将所述微米型小颗粒固体采用体积比为1:1的水和乙醇的混合物洗涤3次,在105℃下烘干1h,得到微米型臭氧催化剂。
其中,所述焙烧的条件为:焙烧温度为400℃,焙烧时间为2h。
实施例2
一种微米型臭氧催化剂的制备方法,与实施例1的区别为:所述焙烧的条件为:焙烧温度为500℃,焙烧时间为2h。
实施例3
一种微米型臭氧催化剂的制备方法,与实施例1的区别为:所述焙烧的条件为:焙烧温度为600℃,焙烧时间为2h。
实施例4
一种微米型臭氧催化剂的制备方法,与实施例1的区别为:所述焙烧的条件为:焙烧温度为400℃,焙烧时间为3h。
实施例5
一种微米型臭氧催化剂的制备方法,与实施例1的区别为:所述焙烧的条件为:焙烧温度为500℃,焙烧时间为3h。
实施例6
一种微米型臭氧催化剂的制备方法,与实施例1的区别为:所述焙烧的条件为:焙烧温度为600℃,焙烧时间为3h。
实施例7
一种微米型臭氧催化剂的制备方法,与实施例1的区别为:所述焙烧的条件为:焙烧温度为400℃,焙烧时间为4h。
实施例8
一种微米型臭氧催化剂的制备方法,与实施例1的区别为:所述焙烧的条件为:焙烧温度为500℃,焙烧时间为4h。
实施例9
一种微米型臭氧催化剂的制备方法,与实施例1的区别为:所述焙烧的条件为:焙烧温度为600℃,焙烧时间为4h。
(1)对实施例5得到的微米型臭氧催化剂进行粒径分析,得到如图1的粒径分布图;其中横坐标为臭氧催化剂的粒径,纵坐标为某一区间颗粒尺寸的臭氧催化剂占所制得不同粒径的总的臭氧催化剂的比例;从图1中可以看出,该臭氧催化剂的平均粒径为34.0μm。
(2)对实施例5得到的微米型臭氧催化剂进行扫描电镜检测,得到如 图2所示的扫描电镜图,从图2中可以看出,微米型臭氧催化剂表面呈现不规则形貌。
试验例1
分别利用实施例1-9得到的微米型臭氧催化剂处理城镇尾水,处理方法按以下步骤进行:将城镇尾水(COD浓度65-75mg/L)加入到反应器中,向反应器中投加不同粒径的臭氧催化剂,投加量为0.1g/L;向反应器中通入臭氧进行催化氧化反应,所述臭氧投加量为1g/h,反应时间为15mi n,完成城镇尾水处理。对应的城镇尾水COD去除率见下表:
Figure PCTCN2021100782-appb-000001
试验例2
利用实施例5得到的微米型臭氧催化剂采用试验例1的方法进行城镇尾水处理,并与单独使用臭氧进行处理和单独使用氧气进行处理作为对照,对COD去除率进行测定,得到如图3所示的城镇尾水COD去除效果对比图(每隔3min取样,共15min);其中1代表实施例5得到的微米型臭氧催化剂,2代表单独臭氧,3代表单独氧气,从图3可看出单独使用氧气作为对照的情况下,COD去除率为4.3%,说明空气吹脱对城镇尾水低浓度有机物去除的影响较小,单独臭氧处理城镇尾水COD的去除率达到28.2%,微米型臭氧催化剂的加入使COD去除率提高至52.5%,表明该催化剂催化氧化去除城镇尾水低浓度有机物的高效性。
其中,单独使用臭氧进行处理的方法为:将城镇尾水(COD浓度65-75mg/L)加入到反应器中,向反应器中通入臭氧进行氧化反应,臭氧通 入量为1g/h,反应时间为15min,完成城镇尾水处理。
单独使用氧气进行处理的方法为:将城镇尾水(COD浓度65-75mg/L)加入到反应器中,向反应器中通入氧气进行反应,氧气通入量为1g/h,反应时间为15min,完成城镇尾水处理。
试验例3
利用实施例5得到的微米型臭氧催化剂采用试验例1的方法进行城镇尾水处理,循环使用5次,得到如图4所示的微米型臭氧催化剂COD去除效果图,从图4可以看出微米型臭氧催化剂反复使用5次后仍具有较高的催化性能,说明该催化剂具有良好的稳定性。
以上仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构,直接或间接运用在其他相关的技术领域,均同理在本发明的专利保护范围之内。

Claims (10)

  1. 一种微米型臭氧催化剂的制备方法,其特征在于,包括下述步骤:
    S1、向凹凸棒土水溶液中加入聚丙烯酰胺,得到初混物;
    S2、向所述初混物中加入相同质量的FeCl 3和CeCl 3,搅拌,得到浊液;
    S3、将所述浊液依次进行抽滤、焙烧、过筛,分别得到微米型小颗粒固体和毫米型大颗粒固体;
    S4、将所述微米型小颗粒固体洗涤后烘干,得到微米型臭氧催化剂。
  2. 如权利要求1所述的微米型臭氧催化剂的制备方法,其特征在于,S1中,所述凹凸棒土水溶液的质量浓度为100g/L;所述聚丙烯酰胺与凹凸棒土的质量比为0.1:100。
  3. 如权利要求1所述的微米型臭氧催化剂的制备方法,其特征在于,S2中,所述FeCl 3与凹凸棒土的质量比为1:100;所述搅拌的具体操作为:在室温、搅拌速度为250r/min下,搅拌12h。
  4. 如权利要求1所述的微米型臭氧催化剂的制备方法,其特征在于,S3中,所述焙烧的条件为:焙烧温度为400-600℃,焙烧时间为2-4h。
  5. 如权利要求4所述的微米型臭氧催化剂的制备方法,其特征在于,所述焙烧温度为500℃,焙烧时间为3h。
  6. 如权利要求1所述的微米型臭氧催化剂的制备方法,其特征在于,S3中,在120目下进行过筛。
  7. 如权利要求1所述的微米型臭氧催化剂的制备方法,其特征在于,S4中,将所述微米型小颗粒固体采用水和乙醇的混合物洗涤3次,在105℃下烘干1h,得到微米型臭氧催化剂。
  8. 如权利要求1-7任一项所述得到的微米型臭氧催化剂在处理城镇尾水中的应用。
  9. 如权利要求8所述的应用,其特征在于,采用所述微米型臭氧催化剂去除城镇尾水中的低浓度有机物,具体方法为:向城镇尾水中加入所述微米型臭氧催化剂,通入臭氧进行催化氧化反应即可;所述微米型臭氧催 化剂的投加量为0.05-0.15g/L。
  10. 如权利要求9所述的应用,其特征在于,所述微米型臭氧催化剂的投加量为0.1g/L,所述臭氧的投加量为1g/h,所述催化氧化反应的反应时间为15min。
PCT/CN2021/100782 2021-06-18 2021-06-18 一种微米型臭氧催化剂的制备方法和应用 WO2022261919A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/100782 WO2022261919A1 (zh) 2021-06-18 2021-06-18 一种微米型臭氧催化剂的制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/100782 WO2022261919A1 (zh) 2021-06-18 2021-06-18 一种微米型臭氧催化剂的制备方法和应用

Publications (1)

Publication Number Publication Date
WO2022261919A1 true WO2022261919A1 (zh) 2022-12-22

Family

ID=84525890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100782 WO2022261919A1 (zh) 2021-06-18 2021-06-18 一种微米型臭氧催化剂的制备方法和应用

Country Status (1)

Country Link
WO (1) WO2022261919A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115337922A (zh) * 2022-08-01 2022-11-15 浙江大学 基于活性污泥生物质燃料灰渣的陶粒催化剂及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102941084A (zh) * 2012-11-22 2013-02-27 大连理工大学 一种负载型双组分金属氧化物臭氧催化氧化催化剂的制备方法
CN106391043A (zh) * 2016-10-21 2017-02-15 浙江工业大学 改性凹凸棒土负载Fe‑Mn双组分催化剂的制备方法及其应用
CN106824212A (zh) * 2017-03-10 2017-06-13 扬州大学 一种CeO2/Fe2O3负载凹凸棒土上的纳米环境材料的制备方法
CN107744811A (zh) * 2017-11-22 2018-03-02 芜湖格丰环保科技研究院有限公司 一种臭氧降解水体cod的高效催化剂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102941084A (zh) * 2012-11-22 2013-02-27 大连理工大学 一种负载型双组分金属氧化物臭氧催化氧化催化剂的制备方法
CN106391043A (zh) * 2016-10-21 2017-02-15 浙江工业大学 改性凹凸棒土负载Fe‑Mn双组分催化剂的制备方法及其应用
CN106824212A (zh) * 2017-03-10 2017-06-13 扬州大学 一种CeO2/Fe2O3负载凹凸棒土上的纳米环境材料的制备方法
CN107744811A (zh) * 2017-11-22 2018-03-02 芜湖格丰环保科技研究院有限公司 一种臭氧降解水体cod的高效催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN LI M, JIANG W M, LI MIN, WEIMING CHEN, GUOBIN JIANG, AIPING ZHANG: "Ozonation treatment of high humic acid wastewater catalized by Fe-Ce / GAC", ACTA SCIENTIAE CIRCUMSTANTIAE, KEXUE CHUBANSHE,, CN, vol. 37, no. 9, 30 September 2017 (2017-09-30), CN , XP093015364, ISSN: 0253-2468 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115337922A (zh) * 2022-08-01 2022-11-15 浙江大学 基于活性污泥生物质燃料灰渣的陶粒催化剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
Li et al. Efficient reduction of Cr (VI) by a BMO/Bi2S3 heterojunction via synergistic adsorption and photocatalysis under visible light
US10518252B1 (en) Carbon nitride membrane composite material modified by black phosphorus/ metal organic framework, and preparation method thereof and application in waste gas treatment
JP7011350B2 (ja) 過硫酸塩を効率よく活性化可能なグラフェン系中空硫化コバルトのナノ結晶の製造方法
Wang et al. Self-assembled BiOCl/Ti3C2Tx composites with efficient photo-induced charge separation activity for photocatalytic degradation of p-nitrophenol
CN210261244U (zh) 污水处理装置
CN108675431B (zh) 一种制备多孔碳包覆磁性纳米铁水处理复合材料的方法
CN110156120B (zh) 污水处理装置及处理方法
CN103055896B (zh) 一种磁性可回收石墨烯基贵金属复合纳米片催化剂、制备方法及应用
Chen et al. Highly stable and activated Cerium-based MOFs superstructures for ultrahigh selective uranium (VI) capture from simulated seawater
CN105478120A (zh) 一种赤泥基铁系催化剂的制备方法及其在甲烷裂解制氢中的应用
CN109364940A (zh) 生物炭负载铁锰双金属氧化物光芬顿复合材料及其制备方法
CN114225938A (zh) 磁性纳米Fe3O4@菌渣生物炭芬顿催化剂及制备方法
WO2022083793A1 (zh) 三维 / 二维 Ni-Co 双金属氧化物 /g-C3N4 纳米复合材料及其制备方法与应用
CN113209968B (zh) 一种磁性铜铁双金属生物质炭微球的制备方法及应用
CN105289610A (zh) 一种氧化铝负载铁氧化物催化剂、制备方法及其在有机废水处理中的应用
CN108767279A (zh) 一种NiCo金属有机骨架纳米片/碳纳米管复合材料及其制备方法和应用
CN111992255B (zh) 用于去除水中双酚A的片状g-C3N4/ZIF-8/AgBr复合材料及其制备方法
CN108671886A (zh) 一种基于废弃生物质的磁性活性炭吸附剂及其制备方法与应用
WO2022261919A1 (zh) 一种微米型臭氧催化剂的制备方法和应用
Liu et al. Dual reaction centers promote adsorption-photo Fenton synergistic efficient removal of tetracycline by reduced graphene oxide/CuFe2O4-oxygen vacancies
Lv et al. Octahedron of zero-valent and mono-valent copper anchored on nitrogen doping porous carbon to enhance heterogeneous electro-Fenton like activity
CN106693970A (zh) 一种碳包覆四氧化三铁/铁多形貌复合材料的制备方法
CN113600133A (zh) 一种除磷吸附剂及其制备方法和应用
CN116655091A (zh) 一种利用Fe-N-C活化亚硫酸盐去除水体中有机污染物的方法
CN113426451A (zh) 一种微米型臭氧催化剂的制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE