WO2021008196A1 - 一种电催化二氧化碳还原的催化剂及其制备方法 - Google Patents

一种电催化二氧化碳还原的催化剂及其制备方法 Download PDF

Info

Publication number
WO2021008196A1
WO2021008196A1 PCT/CN2020/088392 CN2020088392W WO2021008196A1 WO 2021008196 A1 WO2021008196 A1 WO 2021008196A1 CN 2020088392 W CN2020088392 W CN 2020088392W WO 2021008196 A1 WO2021008196 A1 WO 2021008196A1
Authority
WO
WIPO (PCT)
Prior art keywords
preparation
carbon dioxide
nitrogen
electrocatalytic
dioxide reduction
Prior art date
Application number
PCT/CN2020/088392
Other languages
English (en)
French (fr)
Inventor
王新
王加义
Original Assignee
肇庆市华师大光电产业研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 肇庆市华师大光电产业研究院 filed Critical 肇庆市华师大光电产业研究院
Publication of WO2021008196A1 publication Critical patent/WO2021008196A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the invention belongs to the technical field of electrocatalytic carbon dioxide reduction, and specifically relates to an electrocatalytic carbon dioxide reduction catalyst and a preparation method thereof.
  • the most influential one is the so-called greenhouse effect.
  • the most direct cause of the greenhouse effect is the increase in the content of carbon dioxide in the atmosphere. It is reported that the current concentration of carbon dioxide in the atmosphere is about 350 ⁇ 10 -6 , and the world emits about 2 billion tons of carbon dioxide each year. If the emission continues at this rate, it is expected that the concentration of carbon dioxide in the atmosphere will reach 560 ⁇ 10 by 2030. -6 , as a result, the average temperature of the earth will rise by 1.5 to 4.5°C. Rising temperature will cause the drying of subtropical regions, increased rainfall in high-latitude regions, reduced icy areas in the ocean, and early melting of ice and snow.
  • Carbon dioxide resources can be comprehensively utilized in the following ways: (1) Carbon dioxide contact oxidation is converted into useful chemical substances; (2) Organic compounds are produced through electrochemical, photoelectrochemical or photochemical reactions; (3) Carbon dioxide polymers are produced; ( 4) Produce fuel carbon.
  • carbon materials have attracted more and more attention in the field of carbon dioxide reduction, because carbon materials not only have abundant natural resources, adjustable porous structure, high specific surface area, acid resistance, It has the characteristics of alkali corrosion and can maintain a certain degree of stability at high temperatures, which is an environmentally friendly material.
  • carbon materials are used in electrocatalytic reduction of carbon dioxide.
  • Nano-structured carbon materials are considered to be ideal catalyst supports due to their high specific surface area and good electrical conductivity, and they are widely used. Used in the research of highly conductive nanocomposites and mixtures.
  • Electrocatalysts are the key to electrocatalytic reduction of carbon dioxide. At present, the choice of electrode materials is mostly concentrated in precious metals or transition metals with higher prices, which greatly increases the cost of catalysts. At the same time, the electrocatalytic process also has poor catalyst stability and target products. Low selectivity, low current efficiency and other issues, so the preparation of efficient and inexpensive carbon dioxide electrochemical reduction catalyst has great research significance.
  • the purpose of the present invention is to provide an electrocatalytic carbon dioxide reduction catalyst and a preparation method thereof in view of the above-mentioned defects.
  • the catalyst has both high electrocatalytic activity and selectivity for carbon dioxide reduction, and in particular, can significantly improve the utilization of carbon dioxide. Energy efficiency; in addition, the catalyst preparation method is simple in operation, green, high in yield, and has broad application prospects.
  • the technical scheme of the present invention is: an electrocatalytic carbon dioxide reduction catalyst, which is nitrogen-doped carbon nanofiber composite iron sulfide particles.
  • the preparation method of the electrocatalytic carbon dioxide reduction catalyst includes the following steps:
  • step (2) Preparation of nitrogen-doped carbon nanofiber composite iron particles: the fiber membrane precursor prepared in step (1) is placed in a tube furnace and calcined in a mixed gas atmosphere composed of argon and hydrogen, and the calcination is complete After cooling in the furnace, nitrogen-doped carbon nanofiber composite iron particles are obtained;
  • Step (3) Preparation of nitrogen-doped carbon nanofiber composite iron sulfide particles: take elemental sulfur powder and the nitrogen-doped carbon nanofiber composite iron particles prepared in step (2), mix and grind uniformly to obtain a mixed powder, and place the mixed powder In a tubular furnace, calcination is performed under an argon atmosphere, and after the calcination is completed, the furnace is cooled to obtain nitrogen-doped carbon nanofiber composite iron sulfide particles.
  • the polyacrylonitrile is 1 to 2 g
  • the ferric nitrate is 1 to 2 g
  • the N,N-dimethylformamide is 10 to 20 mL.
  • the elemental sulfur powder is 0.5 to 1 g, and the nitrogen-doped carbon nanofiber composite iron particles are 0.1 to 0.5 g.
  • the specific operation of electrospinning in the step (1) is as follows: using an electrospinning machine, suck the prepared uniform solution into a syringe, install a needle of model 20, exhaust air bubbles, set a voltage of 10-20KV, and a flow rate
  • the spinning distance is 0.02 ⁇ 0.08mm/min, the spinning distance is 13 ⁇ 20cm, the humidity is 20 ⁇ 50%, the temperature is room temperature, and spinning is started. After 12 ⁇ 24h, the fiber membrane precursor is obtained.
  • the gas flow rate of the mixed gas composed of argon and hydrogen is 100-200 mL/min, wherein the volume ratio of argon: hydrogen is 5-10:1; the specific conditions of calcination are: 1 to
  • the temperature rise rate is 5°C/min to 500-1000°C, and the temperature is kept for 2 to 5 hours after the temperature rise is completed.
  • the specific conditions for calcination in the step (3) are: heating up to 500-600°C at a heating rate of 1 to 5°C/min, and keeping the temperature for 1 to 2 hours after the heating is completed.
  • the present invention uses an electrostatic spinning method to obtain a fiber membrane precursor, calcined in a mixed gas atmosphere composed of argon and hydrogen to obtain nitrogen-doped carbon nanofiber composite iron particles, and then introduces sulfur powder And calcined to obtain nitrogen-doped carbon nanofiber composite iron sulfide particles.
  • a catalyst with a special morphology and structure is obtained, which greatly increases the contact surface area of carbon dioxide and the catalyst, thereby providing more catalytic active sites and improving Faraday efficiency.
  • the invention carefully designs the structure of the final product during the preparation process, and obtains nitrogen-doped carbon nanofiber composite iron sulfide particles as an electrocatalytic carbon dioxide reduction catalyst.
  • Figure 1 shows the Faraday efficiency of formic acid production when the working electrode is loaded with the nitrogen-doped carbon nanofiber composite iron sulfide particle catalyst described in Examples 1-3 and electrolyzed in a CO 2 saturated 0.5 M KHCO 3 solution for 1 hour. It is obvious from Figure 1 that the catalyst prepared in Example 1 can significantly improve the Faraday efficiency.
  • the preparation method of the electrocatalytic carbon dioxide reduction catalyst includes the following steps:
  • the fiber membrane precursor prepared in step (1) is placed in a tube furnace and calcined in a mixed gas atmosphere composed of argon and hydrogen, The temperature rise rate is °C/min to 500°C. After the temperature rise is completed, the temperature is kept for 2 hours.
  • the gas flow rate of the mixed gas is 100mL/min, and the volume ratio is argon: hydrogen 10:1; after calcination, it is cooled with the furnace to obtain nitrogen Doped carbon nanofiber composite iron particles;
  • Step (3) Preparation of nitrogen-doped carbon nanofiber composite iron sulfide particles: take 0.5 g of elemental sulfur powder and 0.1 g of the nitrogen-doped carbon nanofiber composite iron particles prepared in step (2), mix and grind uniformly to obtain a mixed powder, Place the mixed powder in a tube furnace and calcine in an argon atmosphere. The temperature is raised to 500°C at a heating rate of 1°C/min. After the temperature rise is completed, the temperature is kept for 1 hour. After the calcination is completed, the nitrogen-doped carbon nanometers are obtained by cooling in the furnace. Fiber composite iron sulfide particles.
  • the preparation method of the electrocatalytic carbon dioxide reduction catalyst includes the following steps:
  • the fiber membrane precursor prepared in step (1) is placed in a tube furnace, and calcined in a mixed gas atmosphere composed of argon and hydrogen, to 5
  • the temperature rise rate of °C/min is raised to 1000°C, and the temperature is maintained for 5 hours after the temperature rise is completed.
  • the gas flow rate of the mixed gas is 200mL/min, and the volume ratio is argon: hydrogen 5:1; after the calcination is completed, it is cooled with the furnace to obtain nitrogen Doped carbon nanofiber composite iron particles;
  • Step (3) Preparation of nitrogen-doped carbon nanofiber composite iron sulfide particles: Take 1g of elemental sulfur powder and 0.5g of the nitrogen-doped carbon nanofiber composite iron particles prepared in step (2), mix and grind uniformly to obtain a mixed powder.
  • the mixed powder is placed in a tube furnace and calcined in an argon atmosphere. The temperature is raised to 600°C at a heating rate of 2°C/min. After the temperature is raised, it is kept for 2 hours. After the calcination is completed, the nitrogen-doped carbon nanofibers are obtained by cooling in the furnace. Compound iron sulfide particles.
  • the preparation method of the electrocatalytic carbon dioxide reduction catalyst includes the following steps:
  • the fiber membrane precursor prepared in step (1) is placed in a tube furnace, and calcined in a mixed gas atmosphere composed of argon and hydrogen, to 2
  • the temperature rise rate of °C/min is raised to 800°C, and the temperature is kept for 3 hours after the temperature rise is completed.
  • the gas flow rate of the mixed gas is 150mL/min.
  • the volume ratio of argon: hydrogen is 8:1; after the calcination is completed, it is cooled with the furnace to obtain nitrogen Doped carbon nanofiber composite iron particles;
  • Step (3) Preparation of nitrogen-doped carbon nanofiber composite iron sulfide particles: take 0.8g of elemental sulfur powder and 0.2g of the nitrogen-doped carbon nanofiber composite iron particles prepared in step (2), mix and grind uniformly to obtain a mixed powder, Place the mixed powder in a tube furnace and calcine in an argon atmosphere. The temperature is raised to 550°C at a temperature rise rate of 5°C/min. After the temperature rise is completed, the temperature is kept for 1 hour. After the calcination is completed, the nitrogen doped carbon nanometers are obtained by cooling in the furnace. Fiber composite iron sulfide particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Inorganic Fibers (AREA)

Abstract

本发明属于电催化二氧化碳还原的技术领域,具体的涉及一种电催化二氧化碳还原的催化剂及其制备方法。该催化剂为氮掺杂碳纳米纤维复合硫化铁颗粒。该催化剂对二氧化碳还原兼具高的电催化活性和选择性,特别是能显著提高对二氧化碳利用的能量效率;此外所述催化剂制备方法操作简单、绿色、产率高,应用前景广阔。

Description

一种电催化二氧化碳还原的催化剂及其制备方法 技术领域
本发明属于电催化二氧化碳还原的技术领域,具体的涉及一种电催化二氧化碳还原的催化剂及其制备方法。
背景技术
随着工业的高速发展,地球的生态环境正在遭到严重的破坏,其中影响最大的就是所谓温室效应,导致温室效应的最直接原因是二氧化碳在大气中含量的增加。据报导目前大气中二氧化碳的浓度约为350×10 -6,而当今全世界每年排放的二氧化碳约20亿t,如果按此速度继续排放,预计到2030年大气中二氧化碳的含量将达到560×10 -6,其结果将导致地球的平均温度上升1.5~4.5℃。气温上升会使亚热带地区干燥化,高纬度地区降雨量增加,海洋中结冰区域减少,冰雪提前融化,为了保护人类赖以生存的地球的生态环境,人们已不得不考虑采取对二氧化碳的控制措施。尽管二氧化碳在大量排放时对生态环境造成不良影响,但它又是大自然中重要的资源之一,因此近年来二氧化碳的资源化技术研究受到了人们普遍的关注。二氧化碳资源大致可以通过以下途径加以综合利用:(1)二氧化碳接触氧化转化为有用化学物质;(2)经电化学、光电化学或光化学反应制取有机化合物;(3)制取二氧化碳聚合物;(4)制取燃料碳。
在二氧化碳还原电催化剂的研究中,碳材料在二氧化碳还原领域越来越多地引起了人们的广泛关注,因为碳材料不仅拥有丰富的自然资源,可调节的多孔结构,高的比表面积,耐酸、碱腐蚀的特性,而且在高的温度下可保持一定的稳定性,属于环境友好型材料。基于上述的这些优点,目前已有大量文献报道碳材料应用于电催化还原二氧化碳,纳米结构的碳材料由于自身具有高的比表面积和良好的导电性,被认为是理想的催化剂载体,而且被广泛应用于高导电性纳米复合物和混合物的研究。
电催化剂是实现电催化还原二氧化碳的关键,目前电极材料的选择多集中在贵金属或者价格较高的过渡金属中,极大地提高了催化剂成本,同时电催化过程还存在催化剂稳定性较差、目标产物选择性较低、电流效率较低等问题,因此制备高效、廉价的二氧化碳电化学还原催化剂具有重大的研究意义。
技术问题
本发明的目的在于针对上述存在的缺陷而提供一种电催化二氧化碳还原的催化剂及其制备方法,该催化剂对二氧化碳还原兼具高的电催化活性和选择性,特别是能显著提高对二氧化碳利用的能量效率;此外所述催化剂制备方法操作简单、绿色、产率高,应用前景广阔。
技术解决方案
本发明的技术方案为:一种电催化二氧化碳还原的催化剂,该催化剂为氮掺杂碳纳米纤维复合硫化铁颗粒。
所述电催化二氧化碳还原的催化剂的制备方法,包括以下步骤:
(1)制备纤维膜前驱体:取聚丙烯腈和硝酸铁置于N,N-二甲基甲酰胺中,搅拌12~24小时后取均匀溶液通过静电纺丝法制得纤维膜前驱体;
(2)制备氮掺杂碳纳米纤维复合铁颗粒:将步骤(1)制备所得的纤维膜前驱体置于管式炉中,在由氩气和氢气组成的混合气气氛下进行煅烧,煅烧结束后随炉冷却,获得氮掺杂碳纳米纤维复合铁颗粒;
(3)制备氮掺杂碳纳米纤维复合硫化铁颗粒:取单质硫粉和步骤(2)中制备所得的氮掺杂碳纳米纤维复合铁颗粒进行混合并研磨均匀得到混合粉末,将混合粉末置于管式炉中,在氩气气氛下进行煅烧,煅烧结束后随炉冷却得到氮掺杂碳纳米纤维复合硫化铁颗粒。
所述步骤(1)中聚丙烯腈为1~2g,硝酸铁为1~2g,N,N-二甲基甲酰胺为10~20mL。
所述步骤(3)中单质硫粉为0.5~1g,氮掺杂碳纳米纤维复合铁颗粒为0.1~0.5g。
所述步骤(1)中静电纺丝具体操作为:采用静电纺丝机,将制备好的均匀溶液吸入注射器中,安装型号为20的针头,排空气泡,设定电压为10~20KV,流速为0.02~0.08mm/min,纺丝距离为13~20cm,湿度为20~50%,温度为室温,开始纺丝,12~24h后,得到纤维膜前驱体。
所述步骤(2)中由氩气和氢气组成的混合气的气流速度为100~200mL/min,其中按体积比氩气:氢气为5~10:1;煅烧的具体条件为:以1~5℃/min的升温速度升温至500~1000℃,升温完成后保温2~5小时。
所述步骤(3)中煅烧具体条件为:以1~5℃/min的升温速度升温至500~600℃,升温完成后保温1~2小时。
有益效果
本发明的有益效果为:本发明运用静电纺丝的方法得到纤维膜前驱体,在由氩气和氢气组成的混合气气氛下煅烧得到氮掺杂碳纳米纤维复合铁颗粒,随后通过引入硫粉并煅烧得到氮掺杂碳纳米纤维复合硫化铁颗粒。通过有效调控催化剂制备条件,获得具有特殊形貌与结构的催化剂,极大地提高二氧化碳与催化剂的接触比表面积,从而提供更多的催化活性位,提高法拉第效率。
本发明在制备过程中精心的设计了最终产物的结构,得到氮掺杂碳纳米纤维复合硫化铁颗粒作为电催化二氧化碳还原的催化剂。
附图说明
图1为工作电极负载有实施例1-3所述氮掺杂碳纳米纤维复合硫化铁颗粒催化剂,在CO 2饱和的0.5M KHCO 3溶液中电解1小时的产甲酸法拉第效率。通过图1明显看出实施例1制备得到的催化剂可以显著提高法拉第效率。
本发明的最佳实施方式
下面通过实施例对本发明进行详细说明。
实施例1
所述电催化二氧化碳还原的催化剂的制备方法,包括以下步骤:
(1)制备纤维膜前驱体:取1g聚丙烯腈和1g硝酸铁置于10mL N,N-二甲基甲酰胺中,搅拌12小时后取均匀溶液,采用静电纺丝机,将制备好的均匀溶液吸入注射器中,安装型号为20的针头,排空气泡,设定电压为10KV,流速为0.02mm/min,纺丝距离为13cm,湿度为20%,温度为室温,开始静电纺丝,12h后,制得纤维膜前驱体;
(2)制备氮掺杂碳纳米纤维复合铁颗粒:将步骤(1)制备所得的纤维膜前驱体置于管式炉中,在由氩气和氢气组成的混合气气氛下进行煅烧,以1℃/min的升温速度升温至500℃,升温完成后保温2小时,其中混合气的气流速度为100mL/min,按体积比氩气:氢气为10:1;煅烧结束后随炉冷却,获得氮掺杂碳纳米纤维复合铁颗粒;
(3)制备氮掺杂碳纳米纤维复合硫化铁颗粒:取0.5g单质硫粉和0.1g步骤(2)中制备所得的氮掺杂碳纳米纤维复合铁颗粒进行混合并研磨均匀得到混合粉末,将混合粉末置于管式炉中,在氩气气氛下进行煅烧,以1℃/min的升温速度升温至500℃,升温完成后保温1小时,煅烧结束后随炉冷却得到氮掺杂碳纳米纤维复合硫化铁颗粒。
实施例2
所述电催化二氧化碳还原的催化剂的制备方法,包括以下步骤:
(1)制备纤维膜前驱体:取2g聚丙烯腈和2g硝酸铁置于20mL N,N-二甲基甲酰胺中,搅拌24小时后取均匀溶液,采用静电纺丝机,将制备好的均匀溶液吸入注射器中,安装型号为20的针头,排空气泡,设定电压为20KV,流速为0.08mm/min,纺丝距离为20cm,湿度为50%,温度为室温,开始静电纺丝, 24h后,制得纤维膜前驱体;
(2)制备氮掺杂碳纳米纤维复合铁颗粒:将步骤(1)制备所得的纤维膜前驱体置于管式炉中,在由氩气和氢气组成的混合气气氛下进行煅烧,以5℃/min的升温速度升温至1000℃,升温完成后保温5小时,其中混合气的气流速度为200mL/min,按体积比氩气:氢气为5:1;煅烧结束后随炉冷却,获得氮掺杂碳纳米纤维复合铁颗粒;
(3)制备氮掺杂碳纳米纤维复合硫化铁颗粒:取1g单质硫粉和0.5g步骤(2)中制备所得的氮掺杂碳纳米纤维复合铁颗粒进行混合并研磨均匀得到混合粉末,将混合粉末置于管式炉中,在氩气气氛下进行煅烧,以2℃/min的升温速度升温至600℃,升温完成后保温2小时,煅烧结束后随炉冷却得到氮掺杂碳纳米纤维复合硫化铁颗粒。
实施例3
所述电催化二氧化碳还原的催化剂的制备方法,包括以下步骤:
(1)制备纤维膜前驱体:取1.5g聚丙烯腈和1.5g硝酸铁置于15mL N,N-二甲基甲酰胺中,搅拌18小时后取均匀溶液,采用静电纺丝机,将制备好的均匀溶液吸入注射器中,安装型号为20的针头,排空气泡,设定电压为20KV,流速为0.02mm/min,纺丝距离为13~20cm,湿度为50%,温度为室温,开始静电纺丝, 24h后,制得纤维膜前驱体;
(2)制备氮掺杂碳纳米纤维复合铁颗粒:将步骤(1)制备所得的纤维膜前驱体置于管式炉中,在由氩气和氢气组成的混合气气氛下进行煅烧,以2℃/min的升温速度升温至800℃,升温完成后保温3小时,其中混合气的气流速度为150mL/min,按体积比氩气:氢气为8:1;煅烧结束后随炉冷却,获得氮掺杂碳纳米纤维复合铁颗粒;
(3)制备氮掺杂碳纳米纤维复合硫化铁颗粒:取0.8g单质硫粉和0.2g步骤(2)中制备所得的氮掺杂碳纳米纤维复合铁颗粒进行混合并研磨均匀得到混合粉末,将混合粉末置于管式炉中,在氩气气氛下进行煅烧,以5℃/min的升温速度升温至550℃,升温完成后保温1小时,煅烧结束后随炉冷却得到氮掺杂碳纳米纤维复合硫化铁颗粒。

Claims (7)

  1. 一种电催化二氧化碳还原的催化剂,其特征在于,该催化剂为氮掺杂碳纳米纤维复合硫化铁颗粒。
  2. 一种权利要求1所述电催化二氧化碳还原的催化剂的制备方法,其特征在于,包括以下步骤:
    (1)制备纤维膜前驱体:取聚丙烯腈和硝酸铁置于N,N-二甲基甲酰胺中,搅拌12~24小时后取均匀溶液通过静电纺丝法制得纤维膜前驱体;
    (2)制备氮掺杂碳纳米纤维复合铁颗粒:将步骤(1)制备所得的纤维膜前驱体置于管式炉中,在由氩气和氢气组成的混合气气氛下进行煅烧,煅烧结束后随炉冷却,获得氮掺杂碳纳米纤维复合铁颗粒;
    (3)制备氮掺杂碳纳米纤维复合硫化铁颗粒:取单质硫粉和步骤(2)中制备所得的氮掺杂碳纳米纤维复合铁颗粒进行混合并研磨均匀得到混合粉末,将混合粉末置于管式炉中,在氩气气氛下进行煅烧,煅烧结束后随炉冷却得到氮掺杂碳纳米纤维复合硫化铁颗粒。
  3. 根据权利要求2所述电催化二氧化碳还原的催化剂的制备方法,其特征在于,所述步骤(1)中聚丙烯腈为1~2g,硝酸铁为1~2g,N,N-二甲基甲酰胺为10~20mL。
  4. 根据权利要求3所述电催化二氧化碳还原的催化剂的制备方法,其特征在于,所述步骤(3)中单质硫粉为0.5~1g,氮掺杂碳纳米纤维复合铁颗粒为0.1~0.5g。
  5. 根据权利要求2所述电催化二氧化碳还原的催化剂的制备方法,其特征在于,所述步骤(1)中静电纺丝具体操作为:采用静电纺丝机,将制备好的均匀溶液吸入注射器中,安装型号为20的针头,排空气泡,设定电压为10~20KV,流速为0.02~0.08mm/min,纺丝距离为13~20cm,湿度为20~50%,温度为室温,开始纺丝,12~24h后,得到纤维膜前驱体。
  6. 根据权利要求5所述电催化二氧化碳还原的催化剂的制备方法,其特征在于,所述步骤(2)中由氩气和氢气组成的混合气的气流速度为100~200mL/min,其中按体积比氩气:氢气为5~10:1;煅烧的具体条件为:以1~5℃/min的升温速度升温至500~1000℃,升温完成后保温2~5小时。
  7. 根据权利要求6所述电催化二氧化碳还原的催化剂的制备方法,其特征在于,所述步骤(3)中煅烧具体条件为:以1~5℃/min的升温速度升温至500~600℃,升温完成后保温1~2小时。
PCT/CN2020/088392 2019-07-18 2020-04-30 一种电催化二氧化碳还原的催化剂及其制备方法 WO2021008196A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910647761.9A CN110280294A (zh) 2019-07-18 2019-07-18 一种电催化二氧化碳还原的催化剂及其制备方法
CN201910647761.9 2019-07-18

Publications (1)

Publication Number Publication Date
WO2021008196A1 true WO2021008196A1 (zh) 2021-01-21

Family

ID=68023338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088392 WO2021008196A1 (zh) 2019-07-18 2020-04-30 一种电催化二氧化碳还原的催化剂及其制备方法

Country Status (2)

Country Link
CN (1) CN110280294A (zh)
WO (1) WO2021008196A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113477932A (zh) * 2021-07-06 2021-10-08 信阳师范学院 一种二维金属锡纳米片的制备方法
CN113600222A (zh) * 2021-07-28 2021-11-05 河南师范大学 一种镍氮氧共掺杂碳基纳米材料的制备方法
CN113926455A (zh) * 2021-09-14 2022-01-14 河南科技大学 一种双金属纳米颗粒纤维催化剂的制备方法
CN114045506A (zh) * 2021-12-07 2022-02-15 陕西科技大学 一种Ru-C/C电催化剂及其制备方法
CN114395780A (zh) * 2022-01-25 2022-04-26 中南大学 一种氮掺杂钒钛磁铁矿基电极、制备方法及应用
CN114808004A (zh) * 2022-03-08 2022-07-29 南京工业大学 一种Bi2O2SO4催化剂、制备方法及其电催化还原CO2的应用
CN114990575A (zh) * 2022-06-09 2022-09-02 陕西科技大学 一种纳米花衍生的碳负载镍颗粒的电催化剂及其制备方法和应用
CN115074994A (zh) * 2022-07-11 2022-09-20 江苏优风环保科技有限公司 一种空气过滤材料的制备方法及其制备的空气过滤材料
CN115821315A (zh) * 2022-10-14 2023-03-21 哈尔滨理工大学 一种三元铁钼氧化物合成氨催化剂的制备方法和应用
CN115896858A (zh) * 2023-02-02 2023-04-04 郑州大学 一种双相多组元复合电催化材料及制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110280294A (zh) * 2019-07-18 2019-09-27 肇庆市华师大光电产业研究院 一种电催化二氧化碳还原的催化剂及其制备方法
CN112264080A (zh) * 2020-11-23 2021-01-26 景德镇陶瓷大学 氮化碳/碳复合纳米线的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107910564A (zh) * 2017-11-26 2018-04-13 江苏师范大学 一种铁与氮元素共掺杂的碳纳米纤维催化剂的制备方法
CN108321401A (zh) * 2018-03-01 2018-07-24 上海电力学院 一种铁、钴、氮共掺杂碳纳米纤维催化剂的制备方法
CN110280294A (zh) * 2019-07-18 2019-09-27 肇庆市华师大光电产业研究院 一种电催化二氧化碳还原的催化剂及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107910564A (zh) * 2017-11-26 2018-04-13 江苏师范大学 一种铁与氮元素共掺杂的碳纳米纤维催化剂的制备方法
CN108321401A (zh) * 2018-03-01 2018-07-24 上海电力学院 一种铁、钴、氮共掺杂碳纳米纤维催化剂的制备方法
CN110280294A (zh) * 2019-07-18 2019-09-27 肇庆市华师大光电产业研究院 一种电催化二氧化碳还原的催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANZHEN LIU ET AL.: "Direct synthesis of FeS/N-doped carbon composite for high-performance sodium-ion batteries", JOURNAL OF MATERIALS CHEMISTRY A, no. 6, 19 November 2018 (2018-11-19), XP055774347, DOI: 20200717095244Y *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113477932A (zh) * 2021-07-06 2021-10-08 信阳师范学院 一种二维金属锡纳米片的制备方法
CN113600222A (zh) * 2021-07-28 2021-11-05 河南师范大学 一种镍氮氧共掺杂碳基纳米材料的制备方法
CN113926455A (zh) * 2021-09-14 2022-01-14 河南科技大学 一种双金属纳米颗粒纤维催化剂的制备方法
CN113926455B (zh) * 2021-09-14 2024-01-23 河南科技大学 一种双金属纳米颗粒纤维催化剂的制备方法
CN114045506A (zh) * 2021-12-07 2022-02-15 陕西科技大学 一种Ru-C/C电催化剂及其制备方法
CN114395780A (zh) * 2022-01-25 2022-04-26 中南大学 一种氮掺杂钒钛磁铁矿基电极、制备方法及应用
CN114395780B (zh) * 2022-01-25 2023-01-17 中南大学 一种氮掺杂钒钛磁铁矿基电极、制备方法及应用
CN114808004B (zh) * 2022-03-08 2023-06-02 南京工业大学 一种Bi2O2SO4催化剂、制备方法及其电催化还原CO2的应用
CN114808004A (zh) * 2022-03-08 2022-07-29 南京工业大学 一种Bi2O2SO4催化剂、制备方法及其电催化还原CO2的应用
CN114990575A (zh) * 2022-06-09 2022-09-02 陕西科技大学 一种纳米花衍生的碳负载镍颗粒的电催化剂及其制备方法和应用
CN114990575B (zh) * 2022-06-09 2023-12-29 陕西科技大学 一种纳米花衍生的碳负载镍颗粒的电催化剂及其制备方法和应用
CN115074994A (zh) * 2022-07-11 2022-09-20 江苏优风环保科技有限公司 一种空气过滤材料的制备方法及其制备的空气过滤材料
CN115821315A (zh) * 2022-10-14 2023-03-21 哈尔滨理工大学 一种三元铁钼氧化物合成氨催化剂的制备方法和应用
CN115896858A (zh) * 2023-02-02 2023-04-04 郑州大学 一种双相多组元复合电催化材料及制备方法
CN115896858B (zh) * 2023-02-02 2024-04-16 郑州佛光发电设备股份有限公司 一种双相多组元复合电催化材料及制备方法

Also Published As

Publication number Publication date
CN110280294A (zh) 2019-09-27

Similar Documents

Publication Publication Date Title
WO2021008196A1 (zh) 一种电催化二氧化碳还原的催化剂及其制备方法
CN108736028B (zh) 一种多孔氮掺杂碳负载钴纳米材料、制备方法及其应用
CN106669762A (zh) 一种氮掺杂碳纳米管/Co复合催化剂及其制备与应用
CN106669763B (zh) 一种氮掺杂碳包覆纳米花状MoSe2复合材料及制备与应用
CN111659443B (zh) 单原子铁-硫-氮共掺杂的碳气凝胶电催化剂、制备方法和应用
CN112495408B (zh) 一种电催化析氢纳米材料的制备方法
CN108660473A (zh) 一种基于MXene与过渡金属碳化物复合纳米结构的电解海水制氢催化剂及其合成方法
CN107658474A (zh) 一种氮硫共掺杂多孔碳微球及制备方法、用途和氧还原电极
CN106111130B (zh) 一种多孔超高比表面积IrO2析氧催化剂及其制备方法
CN109665525B (zh) 一种“哑铃型”铁氮双掺杂多孔碳的制备方法
CN112076791A (zh) 一种在泡沫镍表面原位生长Ni-MOF薄膜光催化剂及其制备方法和应用
CN109647408B (zh) 一种基于Co-MOF的多孔复合自支撑催化剂的制备方法和应用
CN113881965B (zh) 一种以生物质碳源为模板负载金属纳米颗粒催化剂及其制备方法和应用
CN105789639A (zh) 一种燃料电池用金团簇/碳纳米管复合催化剂的制备方法
CN113117709A (zh) 基于MXene和海藻酸钠制备高效锌空气电池催化剂
CN106853375A (zh) 氮磷掺杂碳包覆的氧化钨/碳复合析氢电催化剂的制备方法
CN108588754A (zh) 一种用于电催化析氢的钼酸镍/石墨烯复合材料及制备方法
CN109346732A (zh) 一种利用土豆制备的氮掺杂多孔碳催化剂及其制备与应用
CN110117797B (zh) 一种电解池及其在电解水制氢中的应用
CN110548507A (zh) 一种碳负载纳米银催化剂的制备方法
CN111203219B (zh) 一种用于二氧化碳制甲酸的铜基催化剂、制备方法及应用
CN105688965A (zh) 介孔五氧化二铌/掺氮石墨烯高效复合光催化剂的制备方法
CN112657521A (zh) 一种原位生长在碳布上的铬掺杂磷化钴纳米棒阵列的制备方法
CN112410816A (zh) 一种电催化剂及其制备方法
CN107694586A (zh) 一种石墨烯缠绕碳化钼/碳微球电催化剂及其制备方法以及在酸性条件下电解水制氢中应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840848

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20840848

Country of ref document: EP

Kind code of ref document: A1