WO2018004235A1 - 유기전기발광소자용 봉지 화합물, 조성물 및 이를 포함하는 봉지화된 장치 - Google Patents

유기전기발광소자용 봉지 화합물, 조성물 및 이를 포함하는 봉지화된 장치 Download PDF

Info

Publication number
WO2018004235A1
WO2018004235A1 PCT/KR2017/006764 KR2017006764W WO2018004235A1 WO 2018004235 A1 WO2018004235 A1 WO 2018004235A1 KR 2017006764 W KR2017006764 W KR 2017006764W WO 2018004235 A1 WO2018004235 A1 WO 2018004235A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
composition
encapsulation
formula
organic electroluminescent
Prior art date
Application number
PCT/KR2017/006764
Other languages
English (en)
French (fr)
Inventor
이제우
박용욱
윤대희
박윤석
이선희
박치현
Original Assignee
덕산네오룩스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 덕산네오룩스 주식회사 filed Critical 덕산네오룩스 주식회사
Publication of WO2018004235A1 publication Critical patent/WO2018004235A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C321/00Thiols, sulfides, hydropolysulfides or polysulfides
    • C07C321/24Thiols, sulfides, hydropolysulfides, or polysulfides having thio groups bound to carbon atoms of six-membered aromatic rings
    • C07C321/28Sulfides, hydropolysulfides, or polysulfides having thio groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C321/00Thiols, sulfides, hydropolysulfides or polysulfides
    • C07C321/24Thiols, sulfides, hydropolysulfides, or polysulfides having thio groups bound to carbon atoms of six-membered aromatic rings
    • C07C321/28Sulfides, hydropolysulfides, or polysulfides having thio groups bound to carbon atoms of six-membered aromatic rings
    • C07C321/30Sulfides having the sulfur atom of at least one thio group bound to two carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/73Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids
    • C07C69/734Ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/38Esters containing sulfur

Definitions

  • the present invention relates to an encapsulation composition for an organic electroluminescent device and an encapsulated device including the same.
  • OLED organic light emitting diode
  • electrons injected from a cathode and holes injected from an anode are combined in an emission layer of an organic light emitting part to form an electron-hole pair.
  • they are self-luminous flat panel display devices.
  • OLED has high luminous efficiency in the three primary colors of light, red, green, blue and white. It has low driving voltage and power consumption, wide viewing angle, and fast response time of pixels. .
  • OLED devices can realize ultra-thin, ultra-light displays that can be manufactured to a thickness of 1 mm or less on substrates such as glass or plastic, and are actively researched in the field of flexible displays.
  • light emitting materials and electrode materials are oxidized by oxygen or moisture, thereby causing problems such as dark spots and pixel shrinkage, resulting in a decrease in lifespan and efficiency.
  • encapsulation technology that blocks oxygen or moisture flowing into the OLED device is one of key technologies essential for development.
  • This encapsulation technology can be classified into three types: Can (Glass encap), TFE (thin film encap), and Hybrid.
  • Can Glass encap
  • TFE thin film encap
  • Hybrid Hybrid
  • Each method is a metal or glass cover plate with gas barrier properties and a can with getter.
  • the TFE method and the plastic barrier film which can be called the face sealing method, which realize barrier properties with organic or inorganic or inorganic multilayer thin film on the upper layer of the device, are used as cover plates and between the passivation thin film. It can be described by the hybrid method of placing the adhesive layer.
  • the sealing method is disclosed in Korean Patent Laid-Open Publication No. 2011-0071039.
  • the Can (Glass encap) method which is widely used to date, has an OLED device between two glasses composed of a substrate and a cover, and melts and seals glass powder with a laser or seals it with UV adhesive.
  • the heat conduction characteristics are poor due to the inert gas in the device, the cost of glass processing increases due to the large area, and there is a difficulty in applying to flexible OLED panels that require flexibility.
  • an OLED layer is laminated on the entire surface of the OLED element with an inorganic layer such as Al 2 O 3 having a high barrier to oxygen or moisture, and an organic layer of a polymer is alternately laminated to protect the OLED organic element.
  • Thin film encapsulation (TFE) a multilayer thin film encapsulation technology, is being actively researched.
  • a simple encapsulation adhesive film (Hybrid) technology for laminating the entire OLED device as a moisture barrier film is also being actively developed.
  • the encapsulation material of the organic light emitting device should be applicable to the flexible OLED device, and also should be a material applicable to the adhesive layer located between the passivation layer and the cover plate of the upper layer of the organic light emitting device in the hybrid method.
  • the TFE method which is a multi-layer encapsulation method, uses 4 to 6 pairs of Al 2 O 3 and an organic barrier layer as an inorganic barrier layer using Vitex's Barix method, and has a water vapor permeability suitable for an organic light emitting device.
  • US Patent 7767498 is disclosed.
  • the organic barrier layer used in the TFE method is located between the inorganic barrier layer, the inorganic barrier layer may be a metal oxide / nitride such as AlxOy, SiOx, SiNy, SiOxNy, inorganic barrier layer is sputtering deposition method (sputtering) on the organic barrier layer deposition) or plasma enhanced chemical vapor deposition (PECVD).
  • sputtering sputtering on the organic barrier layer deposition
  • PECVD plasma enhanced chemical vapor deposition
  • the organic barrier layer should ensure transparency that is suitable for display characteristics while maintaining the flatness of the organic barrier layer without loss of thickness or surface uniformity for particles having high energy in the process for forming the inorganic barrier layer. Particularly, when the inorganic barrier layer is formed, the metal oxide / nitride particles having high energy impact the organic barrier layer in the process using the plasma, and at this time, the organic barrier layer is plasma resistant so that the organic barrier layer does not lose or cause defects on the metal oxide / nitride particles. Should have
  • the organic barrier layer must have both flexibility suitable for a flexible OLED and resistance to plasma processing.
  • Plasma resistance for organic barrier layers was measured using the Ohnishi parameter represented by Equation 1 in “Dry etch resistance of organic materials,” Journal of the Electrochemical Society, vol. 130, 143-146 (1983) and “Limits to etch resistance for 193 nm single.
  • -layer resists "Proceedings of SPIE, vol. 2724, 365 (1995) has been studied the correlation between the ring parameter represented by the equation (2).
  • Ohnishi parameter N T / (N C -N O )
  • N T is the total number of atoms in the molecule
  • N C is the number of carbon atoms
  • N O is the number of oxygen atoms
  • the Ohnishi parameter represents the basic tendency of polymer etching, and most polymers are known to follow the trend well.
  • the researchers have made many modifications based on Ohnishi's model, for example, by combining ring parameters with carbon and oxygen content to improve prediction accuracy. These variants are more suitable for experimental data than for mathematical ones, but lack a description of their physical meaning.
  • the ring parameter is described as a limited model that is applied to a polymer containing an aromatic ring.
  • the Ohnishi parameter and etch rate (etch ratio) study results indicate that the etch rate using O 2 , CF 4 , and N 2 / H 2 for polymers consisting of carbon, oxygen, and hydrogen is in the range of 2 to 7 It is reported that the larger the value, the more linear the result is. That is, the low Ohnishi parameter value can be interpreted as having high plasma resistance under the conditions using the above gas.
  • Ring parameter M.W. of only aromatic carbon / M.W. total
  • the present invention provides an ultraviolet curable encapsulant composition that can form a thick film and has flexibility and plasma resistance during film formation while conforming to a display development direction converted from a rigid display to a flexible OLED.
  • Another object of the present invention is to provide a composition for encapsulation capable of forming a thick film and having flexibility.
  • Still another object of the present invention is to provide a sealing composition capable of forming a barrier layer for encapsulation of an environment sensitive device member.
  • composition for encapsulation of the present invention may include a photocuring monomer and an initiator of the formula (1).
  • the present invention uses the composition for encapsulation in which the acrylate derivatives are bonded to the meta-position of phenyl, thereby increasing the adhesion to the inorganic barrier layer after curing of the encapsulation composition, thereby preventing moisture and oxygen from penetrating from the outside. There is an effect that can improve the reliability of the molten member.
  • FIG. 1 is an exemplary view of an organic electroluminescent device according to an embodiment of the present invention.
  • FIG. 2 is a view schematically showing an example of the structure of an electronic device including an organic electroluminescent element.
  • halo or halogen as used herein is fluorine (F), bromine (Br), chlorine (Cl) or iodine (I) unless otherwise indicated.
  • alkyl or “alkyl group” has a single bond of 1 to 60 carbon atoms, unless otherwise indicated, and is a straight chain alkyl group, branched chain alkyl group, cycloalkyl (alicyclic) group, alkyl-substituted cyclo Radicals of saturated aliphatic functional groups, including alkyl groups, cycloalkyl-substituted alkyl groups.
  • heteroalkyl group means that at least one of the carbon atoms constituting the alkyl group has been replaced with a heteroatom.
  • alkenyl group or “alkynyl group”, unless stated otherwise, has a double or triple bond of 2 to 60 carbon atoms, and includes a straight or branched chain group, and is not limited thereto. It is not.
  • cycloalkyl refers to alkyl forming a ring having 3 to 60 carbon atoms, without being limited thereto.
  • alkoxyl group means an alkyl group to which an oxygen radical is attached, and unless otherwise specified, has a carbon number of 1 to 60, and is limited herein. It is not.
  • alkenoxyl group means an alkenyl group to which an oxygen radical is attached, and unless otherwise stated, it is 2 to 60 It has carbon number of, It is not limited to this.
  • aryloxyl group or “aryloxy group” means an aryl group to which an oxygen radical is attached, and unless otherwise specified, has a carbon number of 6 to 60, but is not limited thereto.
  • aryl group and “arylene group” have a carbon number of 6 to 60 unless otherwise stated, but is not limited thereto.
  • an aryl group or an arylene group means an aromatic of a single ring or multiple rings, and includes an aromatic ring formed by neighboring substituents participating in a bond or a reaction.
  • the aryl group may be a phenyl group, biphenyl group, terphenyl group, naphthyl group, anthracenyl group, fluorene group, spirofluorene group, spirobifluorene group.
  • aryl or "ar” means a radical substituted with an aryl group.
  • an arylalkyl group is an alkyl group substituted with an aryl group
  • an arylalkenyl group is an alkenyl group substituted with an aryl group
  • the radical substituted with an aryl group has the carbon number described herein.
  • an arylalkoxy group means an alkoxy group substituted with an aryl group
  • an alkoxylcarbonyl group means a carbonyl group substituted with an alkoxyl group
  • an arylcarbonylalkenyl group means an alkenyl group substituted with an arylcarbonyl group.
  • the arylcarbonyl group is a carbonyl group substituted with an aryl group.
  • heteroalkyl means an alkyl including one or more heteroatoms unless otherwise indicated.
  • heteroaryl group or “heteroarylene group” means an aryl group or arylene group having 2 to 60 carbon atoms, each containing one or more heteroatoms, unless otherwise specified. It may include at least one of a single ring and multiple rings, and may be formed by combining adjacent functional groups.
  • heterocyclic group includes one or more heteroatoms, unless otherwise indicated, and has from 2 to 60 carbon atoms, and includes at least one of single and multiple rings, heteroaliphatic rings and hetero Aromatic rings. Adjacent functional groups may be formed in combination.
  • heteroatom refers to N, O, S, P or Si unless otherwise stated.
  • a “heterocyclic group” may also include a ring containing SO 2 in place of the carbon forming the ring.
  • a “heterocyclic group” includes the following compounds.
  • aliphatic as used herein means an aliphatic hydrocarbon having 1 to 60 carbon atoms
  • aliphatic ring means an aliphatic hydrocarbon ring having 3 to 60 carbon atoms.
  • ring refers to a fused ring consisting of an aliphatic ring having 3 to 60 carbon atoms or an aromatic ring having 6 to 60 carbon atoms or a hetero ring having 2 to 60 carbon atoms or a combination thereof. Saturated or unsaturated rings.
  • heterocompounds or heteroradicals other than the aforementioned heterocompounds include, but are not limited to, one or more heteroatoms.
  • carbonyl used in the present invention is represented by -COR ', wherein R' is hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, and 3 to 30 carbon atoms. Cycloalkyl group, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, or a combination thereof.
  • ether as used herein is represented by -RO-R ', wherein R or R' are each independently of each other hydrogen, an alkyl group having 1 to 20 carbon atoms, It is an aryl group, a C3-C30 cycloalkyl group, a C2-C20 alkenyl group, a C2-C20 alkynyl group, or a combination thereof.
  • substituted in the term “substituted or unsubstituted” as used in the present invention is deuterium, halogen, amino group, nitrile group, nitro group, C 1 ⁇ C 20 alkyl group, C 1 ⁇ C 20 alkoxyl group, C 1 ⁇ C 20 alkylamine group, C 1 ⁇ C 20 alkylthiophene group, C 6 ⁇ C 20 arylthiophene group, C 2 ⁇ C 20 alkenyl group, C 2 ⁇ C 20 alkynyl, C 3 ⁇ C 20 cycloalkyl group, C 6 ⁇ C 20 aryl group, of a C 6 ⁇ C 20 substituted by deuterium aryl group, a C 8 ⁇ C 20 aryl alkenyl group, a silane group, a boron Group, germanium group, and C 2 ⁇ C 20 It is meant to be substituted with one or more substituents selected from the group consist
  • the substituent R 1 when a is an integer of 0, the substituent R 1 is absent, when a is an integer of 1, one substituent R 1 is bonded to any one of carbons forming the benzene ring, and a is an integer of 2 or 3 are each bonded as follows, where R 1 may be the same or different from each other, and when a is an integer from 4 to 6, it is bonded to the carbon of the benzene ring in a similar manner, while the indication of hydrogen bonded to the carbon forming the benzene ring Is omitted.
  • FIG. 1 is an exemplary view of an encapsulated device according to an embodiment of the present invention.
  • a compound according to the present invention includes a first electrode 120, a second electrode 180, and a first electrode 110 and a second electrode 180 formed on a substrate 110.
  • An organic material layer is provided.
  • the first electrode 120 may be an anode (anode)
  • the second electrode 180 may be a cathode (cathode)
  • the first electrode may be a cathode and the second electrode may be an anode.
  • the organic layer may include a hole injection layer 130, a hole transport layer 140, a light emitting layer 150, an electron transport layer 160, and an electron injection layer 170 on the first electrode 120 in sequence. At this time, the remaining layers except for the light emitting layer 150 may not be formed.
  • the hole blocking layer, the electron blocking layer, the light emitting auxiliary layer 151, the buffer layer 141 may be further included, and the electron transport layer 160 may serve as the hole blocking layer.
  • the organic electroluminescent device 200 includes a protective layer or a light efficiency improving layer formed on one surface of the at least one surface of the first electrode 120 and the second electrode 180 opposite to the organic material layer ( Capping layer) may be further included.
  • the organic electroluminescent device 200 may be manufactured using a physical vapor deposition (PVD) method.
  • PVD physical vapor deposition
  • a metal or conductive metal oxide or an alloy thereof is deposited on the substrate to form the first electrode 120, and the hole injection layer 130, the hole transport layer 140, the light emitting layer 150, and the electrons are formed thereon.
  • the organic layer including the transport layer 160 and the electron injection layer 170 it can be prepared by depositing a material that can be used as the second electrode 180 thereon.
  • the organic material layer is a solution or solvent process (e.g., spin coating process, nozzle printing process, inkjet printing process, slot coating process, dip coating process, roll-to-roll process, doctor blading) using various polymer materials. It can be produced in fewer layers by methods such as ding process, screen printing process, or thermal transfer method. Since the organic material layer according to the present invention may be formed in various ways, the scope of the present invention is not limited by the forming method.
  • the organic electroluminescent device 200 according to the present invention may be a top emission type, a bottom emission type or a double-sided emission type according to the material used.
  • WOLED White Organic Light Emitting Device
  • Various structures for white organic light emitting devices mainly used as backlight devices have been proposed and patented. Representatively, a side-by-side method in which R (Red), G (Green), and B (Blue) light emitting parts are mutually planarized, and a stacking method in which R, G, and B light emitting layers are stacked up and down. And a color conversion material (CCM) method using photo-luminescence of an inorganic phosphor by using electroluminescence by a blue (B) organic light emitting layer and light therefrom. May also be applied to these WOLEDs.
  • CCM color conversion material
  • the organic electroluminescent device 200 may be one of an organic light emitting diode (OLED), an organic solar cell, an organic photoconductor (OPC), an organic transistor (organic TFT), a single color or a white light emitting device.
  • OLED organic light emitting diode
  • OPC organic photoconductor
  • organic TFT organic transistor
  • Another embodiment of the present invention may include a display device including the organic electroluminescent device 200 of the present invention described above, and an electronic device including a control unit for controlling the display device.
  • the electronic device may be a current or future wired or wireless communication terminal, and includes all electronic devices such as a mobile communication terminal such as a mobile phone, a PDA, an electronic dictionary, a PMP, a remote controller, a navigation device, a game machine, various TVs, and various computers.
  • the present invention may further include an encapsulation layer 300 for protecting the organic electroluminescent device 200.
  • FIG. 1 discloses a configuration in which the encapsulation layer 300 is a single layer, the present invention is not limited thereto, and the encapsulation layer 300 may be formed of multiple layers. This configuration is examined with reference to FIG. 2 as follows.
  • FIG. 2 is a view schematically showing an example of the structure of an electronic device including an organic electroluminescent element.
  • the electronic device disclosed in FIG. 2 includes a substrate 110, an organic electroluminescent device 200 disposed on the substrate 110, and an encapsulation layer 300 disposed on the organic electroluminescent device 200.
  • the organic light emitting diode 200 may be protected by using the encapsulation layer 300.
  • FIG. 2 discloses an embodiment in which the encapsulation layer 300 according to the present invention consists of multiple layers including the first encapsulation layer 310 and the second encapsulation layer 320.
  • FIG. 2 discloses a configuration in which the encapsulation layer 300 is two layers, the present invention may include all configurations in which the encapsulation layer 300 is two or more layers.
  • the encapsulation layer 300 is composed of two or more multilayers, it may include an inorganic barrier layer and an organic barrier layer.
  • the second encapsulation layer 320 may be an organic barrier layer, and when the first encapsulation layer 310 is an organic barrier layer, the second encapsulation layer 320 may be used. ) May be an inorganic barrier layer.
  • the encapsulation layer 300 of the present invention can be disposed on the device member.
  • the encapsulation layer 300 may be disposed on the organic electroluminescent device 200, and more specifically, the encapsulation layer 300 may be disposed to surround the organic electroluminescent device 200. That is, the encapsulation layer 300 may be disposed in a structure that can effectively protect the organic electroluminescent device 200.
  • the encapsulation layer 300 has an effect of improving the reliability of the electronic device by blocking moisture and oxygen in the organic electroluminescent device 200.
  • the encapsulation composition constituting the encapsulation layer 300 may include the compound represented by the following Formula 1, thereby exhibiting the above-described effects.
  • a, b, c, d, e, f, g, h are integers of 0 or 1;
  • X 1 to X 5 are each independently one of O, S, NR ′ and CR ”R”;
  • R ′ and R ′′ are each independently of the other C 1 -C 20 alkyl group, C 6 -C 24 aryl group, C 2 -C 20 heteroaryl group, and R ′ and R ′′ are each ring Can form splices.
  • Ar 1 , Ar 2 are each an arylene group of C 6 -C 24 ;
  • R 1 , R 2 , R 4 and R 5 are C 2 -C 20 alkylene groups
  • R 3 and R 6 are the same as or different from each other, and are one of hydrogen and an alkyl group of C 1 -C 20 ;
  • n may be an integer of 0 or 1.
  • X 1 to X 5 , Ar 1 , Ar 2 , R 1 to R 6 are an alkyl group, an aryl group, a heteroaryl group, an arylene group, or an alkylene group, each of these is deuterium; halogen; A silane group unsubstituted or substituted with a C 1 -C 20 alkyl group or a C 6 -C 20 aryl group; Siloxane groups; Boron group; Germanium group; Cyano group; Nitro group; Import alkylthio of C 1 -C 20; An alkoxyl group of C 1 -C 20 ; An alkyl group of C 1 -C 20 ; Alkenyl groups of C 2 -C 20 ; An alkynyl group of C 2 -C 20 ; Aryl group of C 6 -C 20 ; C 6 -C 20 aryl group substituted with deuterium; Fluorenyl groups; C 2 -C 20 heterocyclic group including at least one hetero
  • the carbon number may be 6 to 60, preferably 6 to 40 carbon atoms, more preferably 6 to 30 carbon atoms, and in the case of the heterocyclic group, the carbon number is 2 to 60, preferably 2 carbon atoms. ⁇ 30, more preferably a hetero ring having 2 to 20 carbon atoms, and in the case of the alkyl group, the carbon number is 1 to 50, preferably 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and particularly preferably It may be an alkyl group of 1 to 10.
  • the aryl group or arylene group is independently of each other a phenyl group, biphenyl group, terphenyl group, naphthyl group, phenanthryl group or phenylene group, biphenylene group, terphenylene group, naphthyl Or a phenanthrene group or the like.
  • the compound represented by Formula 1 may be any one of the following compounds, but the compound represented by Formula 1 is not limited to the following compound.
  • X 1 to X 5 , Ar 1 , Ar 2 , R 1 to R 6 are the same as defined in Chemical Formula 1.
  • the compound represented by Formula 1 may be any one of the following compounds, and the compound represented by Formula 1 is not limited to the following compound.
  • the composition for encapsulation using the general formula (1) of the present invention may form an organic barrier layer positioned between the inorganic barrier layers for encapsulation or encapsulation of a flexible display device, and the organic barrier layer may photocure the composition for encapsulation. Can be formed.
  • the encapsulation composition (organic barrier layer material) may be applied using methods such as vapor deposition, spin coating, and slit coating, and an initiator may be used during photocuring.
  • the initiator may include, without limitation, conventional photopolymerization initiators capable of carrying out the photocurable reaction.
  • the photopolymerization initiator may include a triazine, acetophenone, benzophenone, thioxanthone, benzoin, phosphorus, oxime or mixtures thereof.
  • Triazines include 2,4,6-trichloro-s-triazine, 2-phenyl-4,6-bis (trichloromethyl) -s-triazine, 2- (3 ', 4'-dimethoxy sty Reyl) -4,6-bis (trichloromethyl) -s-triazine, 2- (4'-methoxy naphthyl) -4,6-bis (trichloromethyl) -s-triazine, 2- ( p-methoxy phenyl) -4,6-bis (trichloromethyl) -s-triazine, 2- (p-tolyl) -4,6-bis (trichloromethyl) -s-triazine, 2-r Phenyl-4,6-bis (trichloromethyl) -s-triazine, bis (trichloromethyl) -6-styryl-s-triazine, 2- (naphtho-1-yl) -4,
  • acetophenone type 2,2'- diethoxy acetophenone, 2,2'- dibutoxy acetophenone, 2-hydroxy-2-methyl propiophenone, pt-butyl trichloro acetophenone, pt-butyl dichloro Acetophenone, 4-chloro acetophenone, 2,2'-dichloro-4-phenoxy acetophenone, 2-methyl-1- (4- (methylthio) phenyl) -2-morpholino propane-1-one, 2-benzyl-2-dimethyl amino-1- (4-morpholino phenyl) -butan-1-one, or mixtures thereof.
  • benzophenones include benzophenone, benzoyl benzoic acid, benzoyl benzoic acid methyl, 4-phenyl benzophenone, hydroxy benzophenone, acrylated benzophenone, 4,4'-bis (dimethyl amino) benzophenone, and 4,4'-dichloro benzo Phenone, 3,3'-dimethyl-2-methoxy benzophenone or mixtures thereof.
  • Thioxanthones include thioxanthone, 2-methyl thioxanthone, isopropyl thioxanthone, 2,4-diethyl thioxanthone, 2,4-diisopropyl thioxanthone, 2-chloro thioxanthone or Mixtures thereof.
  • the benzoin system may be benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzyl dimethyl ketal or mixtures thereof.
  • Phosphorus-based may be bisbenzoylphenyl phosphine oxide, benzoyldiphenyl phosphine oxide or mixtures thereof.
  • oximes examples include 2- (o-benzoyloxime) -1- [4- (phenylthio) phenyl] -1,2-octanedione and 1- (o-acetyloxime) -1- [9-ethyl-6- ( 2-methylbenzoyl) -9H-carbazol-3-yl] ethanone, or mixtures thereof.
  • the initiator may be included in 0.1-20% by weight, preferably 0.5-20% by weight, more preferably 0.5-10% by weight, most preferably 0.5-7% by weight of the composition on a solids basis. Within this range, photopolymerization can occur sufficiently during exposure, and the transmittance can be prevented from being lowered due to the unreacted initiator remaining after the photopolymerization.
  • the composition for encapsulation 0.1 ⁇ 20 ⁇ m 1 ⁇ 15 ⁇ m most preferably 1 ⁇ 10 ⁇ m and irradiated for 1 second ⁇ 60 seconds at 10 ⁇ 500 mW / cm2 It can be cured.
  • the curing rate may be 90% or more, and preferably 93% or more.
  • the composition and the initiator that do not participate in the photocuring reaction in the organic barrier layer may be minimized, and pass-way of moisture and / or oxygen may be suppressed to have good barrier properties.
  • the shrinkage is about 1 to 20%, more preferably 1 to 15% Can be.
  • the shrinkage rate of the organic barrier layer is 20% or more, dark spots and pixel shrinkage occur due to oxygen and / or moisture infiltration into the inorganic barrier layer, and an organic-inorganic body forming two or more layers.
  • the multilayer barrier layer is formed, warpage may occur, which may lead to coupling of the light emitting devices.
  • the inorganic barrier layer and the organic barrier layer may be deposited by sputtering, chemical vapor deposition (CVD), plasma chemical vapor deposition (PECVD), evaporation, sublimation, inkjet, and combinations thereof.
  • the multilayer barrier layer includes the organic barrier layer and the inorganic barrier layer, but may be deposited alternately, the number of barrier layers is not limited and the number of barrier layers is permeable to oxygen and / or moisture and / or chemicals. Can change according to level.
  • the organic barrier layer and the inorganic barrier layer may be alternately deposited in two or more layers and ten or less layers, respectively, preferably two or more layers and seven or less layers.
  • the encapsulation layer according to the present invention may be disposed on a device member of an electronic device including an organic electroluminescent device, and may be formed of a multilayer barrier layer including an inorganic barrier layer and an organic barrier layer.
  • the inorganic barrier layer includes a metal, a metal oxide, a metal nitride, a metal carbide, a metal oxynitride, a metal oxyboride, or a mixture thereof, and the metal includes silicon (Si), aluminum (Al), and selenium (Se). ), Zinc (Zn), antimony (Sb), indium (In), germanium (Ge), tin (Sn), bismuth (Bi), a transition metal, may include one or more of a lanthanide metal.
  • the encapsulation composition of the present invention may contain the compound alone, the compound may be contained in two or more different combinations, or the compound may be contained in two or more combinations with other compounds.
  • the encapsulation composition may include a compound corresponding to Formula 1 alone, a mixture of two or more compounds of Formula 1, and the compounds of Claims 1 to 3 and 9 to 10 and And mixtures with compounds which do not correspond to the present invention.
  • the compound not corresponding to the present invention may be a single compound or two or more compounds.
  • the other compound when the compound is contained in a combination of two or more kinds of other compounds, the other compound may be a known compound of each organic material layer, or a compound to be developed in the future.
  • the compound contained in the organic material layer may be made of only the same kind of compound, but may be a mixture of two or more kinds of the compound represented by the formula (1).
  • one or more compounds of Formula 1 and a compound represented by Formula 7 may be mixed with each other, and Formula 7 is as follows.
  • P is an integer from 1 to 20;
  • X 1 , X 2 are the same or different from each other and are one of O, S and NR ′;
  • R ′ is any one of an alkyl group of C 1 -C 20 , an aryl group of C 6 -C 24 , and a heteroaryl group of C 2 -C 20.
  • Y 1 , Y 2 are the same as or different from each other, and are C 1 -C 20 alkylene groups, C 6 -C 24 arylene groups, C 7 -C 24 arylalkylene groups, C 1 -C 20 alkyl Any one of the lenoxy groups;
  • R 3 and R 6 are the same as or different from each other, and are one of hydrogen and an alkyl group of C 1 -C 20 ;
  • R 7, R 8, R 9 is hydrogen, deuterium, tritium, an alkyl group of C 1 -C 30, C 1 - is any one of an alkoxy group, a hydroxyl group of 20.
  • X 1 , X 2 , Y 1 , Y 2 , R 3 , R 6 , R 7 , R 8 , R 9 are alkyl group, aryl group, heteroaryl group, alkylene group, arylene group, arylalkylene group, alkyleneoxy group , Alkoxy group, hydroxy group, each of these is deuterium; halogen; A silane group unsubstituted or substituted with a C 1 -C 20 alkyl group or a C 6 -C 20 aryl group; Siloxane groups; Boron group; Germanium group; Cyano group; Nitro group; Import alkylthio of C 1 -C 20; An alkoxyl group of C 1 -C 20 ; An alkyl group of C 1 -C 20 ; Alkenyl groups of C 2 -C 20 ; An alkynyl group of C 2 -C 20 ; Aryl group of C 6 -C 20 ; C 6 -C 20
  • the carbon number may be 6 to 60, preferably 6 to 40 carbon atoms, more preferably 6 to 30 carbon atoms, and in the case of the heterocyclic group, the carbon number is 2 to 60, preferably 2 carbon atoms. ⁇ 30, more preferably a hetero ring having 2 to 20 carbon atoms, and in the case of the alkyl group, the carbon number is 1 to 50, preferably 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and particularly preferably It may be an alkyl group of 1 to 10.
  • the aryl group or arylene group is independently of each other a phenyl group, biphenyl group, terphenyl group, naphthyl group, phenanthryl group or phenylene group, biphenylene group, terphenylene group, naphthyl Or a phenanthrene group or the like.
  • the compound represented by Formula 7 may be any one of the following compounds, but the compound represented by Formula 7 is not limited to the following compound.
  • a mixture of the compounds of the present invention (1) (P1-1 to P1-55) and (7) (P2-1 to P2-21) and Diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (diphenyl ( 2, 4, 6-trimethylbenzoyl) phosphine oxide, Darocur TPO) was mixed as shown in Table 1 to prepare a composition. At this time, the initiator Darocur TPO uses 3% by weight.
  • the initiator is Diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (diphenyl (2, 4, 6-trimethylbenzoyl) phosphine oxide, Darocur TPO) It is a substance which has a following formula.
  • Comparative Example 1 was prepared by mixing Darocur TPO as an initiator in the mixture of the compound of the present invention and the comparative compound or a mixture between the comparative compounds as shown in Table 1. At this time, the initiator Darocur TPO uses 3% by weight. (The total weight of the total mixture composition is 100%.) Specifically, the compounds used in Comparative Examples are Comparative Compounds 1 to 3, and Comparative Compounds 1 to 3 are each trimethylolpropane triacrylate (trimetholpropane).
  • Triacrylate Dipentaerythritol Hexaacrylate (dipentaerythritol hexaacrylate, Miramer M600), and Poly (ethylene glycol) diacrylate (polyethylene glycol diacrylate, Miramer M284) are substances having the following formula.
  • the mixed composition was mixed to the content (based on weight) shown in Table 1 below, and stirred for 3 hours to prepare a composition for encapsulation.
  • the curing shrinkage ratio was calculated by measuring the specific gravity of the liquid composition before photocuring and the specific gravity of the solid after curing with a digital solid hydrometer DME-220E (Shinko Co., Japan). After coating the composition to about 10um ⁇ 2um UV curing (100mW / cm2 x 10 seconds) to produce a film (thickness: 8-12um, 1.5-2.5cm horizontal, 1.5-2.5cm vertical). Cure shrinkage was calculated according to the following equation (3).
  • Cure Shrinkage (%) (Solid specific gravity after curing-specific gravity of liquid composition before curing) / Specific gravity of liquid composition before curing ⁇ 100
  • the photocurable composition was sprayed onto the glass substrate and irradiated with 100J / cm 2 for 10 seconds to UV cured to obtain a 20 cm x 20 cm x 3 ⁇ m (horizontal x vertical x thick) specimen, followed by FT-IR (NICOLET 4700, Thermo).
  • Photocuring rate was calculated according to the following equation (4).
  • A is the ratio of the intensity of the absorption peak in the vicinity of 1635 cm ⁇ 1 to the intensity of the absorption peak in the vicinity of 1720 cm ⁇ 1 for the cured film, and B is in the vicinity of 1720 cm ⁇ 1 for the photocurable composition. Ratio of the intensity of the absorption peak in the vicinity of 1635 cm ⁇ 1 to the intensity of the absorption peak)
  • the encapsulation composition was UV cured to prepare a film having a thickness of 10 ⁇ m, and the light transmittance was measured at a wavelength of 550 nm in the visible region with Lambda950 (Perkin Elmer).
  • Examples 1 to 5 which are the composition of the compound of the present invention, had a low shrinkage rate and a high photocuring rate, and confirmed excellent results in light transmittance.
  • the calculated Ohnishi parameter value showed high plasma resistance.
  • Examples 1 to 5 using the composition of the compound of the present invention shows a smaller Ohnishi parameter value than Comparative Examples 1 to 5, which is higher in the plasma composition of the composition of the compound than the comparative example It is shown to have resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 외부에서 침투되는 수분과 산소를 막아 장치용 부재의 신뢰성을 향상시킬 수 있는 유기전기발광소자용 봉지용 조성물 및 이를 포함하는 봉지화된 장치를 제공한다.

Description

유기전기발광소자용 봉지 화합물, 조성물 및 이를 포함하는 봉지화된 장치
본 발명은 유기전기발광소자용 봉지 조성물 및 이를 포함하는 봉지화된 장치에 관한 것이다.
유기발광다이오드(OLED, Organic Light Emitting Diode)는 캐소드(cathode)로부터 주입된 전자와 애노드(anode)로부터 주입된 정공이 유기 발광부의 발광층에서 결합하여 전자-정공쌍(Electron-Hole pair)을 형성하고, 그들이 재결합하는 과정에서 자체 발광하는 평판 표시 소자이다. OLED는 빛의 삼원색인 빨강, 초록, 파란색 및 백색에서 높은 발광효율을 나타내며, 구동전압 및 소비전력이 낮고, 시야각이 넓으며, 화소의 응답속도가 빨라서 고화질의 동영상을 표할 수 있는 장점을 가지고 있다.
또한 OLED 소자는 유리 또는 플라스틱 등의 기판 위에 두께 1mm 이하로 제작할 수 있는 초박형, 초경량 디스플레이 구현이 가능하며, 플렉시블 디스플레이 분야에서 활발하게 연구되고 있다. 그러나 OLED 소자 경우 산소나 수분에 의해 발광재료 및 전극재료가 산화되고 그로 인해 흑점(dark spot) 및 화소 수축(pixel shrinkage) 등과 같은 문제점이 발생하여 결국 수명과 효율의 감소현상이 발생하고 있다.
위와 같이 OLED 소자 내로 유입되는 산소나 수분을 차단하는 봉지(encapsulation)기술은 개발이 필수적인 key technology 중 하나이다.
이러한 봉지기술은 크게 Can(Glass encap), TFE(thin film encap), Hybrid 3가지 방식으로 나눌 수 있으며, 각 방식은 Gas barrier 특성을 갖는 금속 또는 유리재질의 cover plate와 흡습제(getter)를 갖는 Can방식과 소자 상층에 유무기 또는 무기 다층박막으로 장벽특성 (barrier property)을 구현하는 전면봉지 (face sealing)법이라 칭할 수 있는 TFE 방식과 플라스틱 barrier film을 cover plate로 사용하고 passivation 박막과의 사이에 접착층을 위치시키는 Hybrid방식으로 설명할 수 있다. 실링방법에 관하여 한국공개특허 제2011-0071039에 개시되어져 있다.
현재까지 널리 사용되고 있는 Can(Glass encap) 방식은 기판과 덮개로 구성된 2개의 글라스 사이에 OLED 소자를 두고, 글라스 파우더를 레이저로 녹여 밀봉하거나, UV 접착제를 사용하여 밀봉하는 기술로 가장 좋은 봉지 특성을 보여주고 있으나, 소자내의 비활성 기체로 인해 열전도 특성이 나쁘며, 대면적화에 따른 글라스 가공에 의한 비용이 증가되는 단점이 있으며, 유연성이 요구되는 플렉시블 OLED 패널 제작에도 적용하기에는 어려움을 갖고 있는 상태이다.
이러한 글라스 봉지 기술의 단점을 보완하기 위해서, OLED 소자 전면을 산소나 수분에 높은 차단성을 갖는 Al2O3와 같은 무기층과, 폴리머의 유기층을 박막으로 교대로 적층하여, OLED 유기 소자를 보호하는 다층 박막 봉지 기술인 TFE(Thin film encapsulation)가 활발하게 연구되고 있다. 또한 수분 차단성을 갖는 필름으로 OLED 소자 전면을 라미네이팅 하는 간단한 봉지 접착 필름 (Hybrid)기술도 활발히 개발되고 있는 현실이다.
따라서 유기발광소자의 봉지 재료는 유연발광(flexible OLED) 소자에 적용 가능하여야 하며, 또한 Hybrid 방식에서 유기발광소자 상층의 passivation 층과 cover plate 사이에 위치하는 접착층에도 적용이 가능한 물질이어야 한다.
다층구조의 봉지방식인 TFE 방식은 Vitex사의 Barix 공법으로 무기장벽층으로 Al2O3와 유기장벽층을 4~6 쌍으로 적용하여 박막다층구조를 구현하였을 때 유기발광소자에 적합한 투습도를 갖는다고 미국특허 7767498호에 개시되어 있다.
상기 TFE 방식에 사용되는 유기장벽층은 무기장벽층 사이에 위치하고, 무기장벽층은 AlxOy, SiOx, SiNy, SiOxNy등의 금속 산화/질화물일 수 있으며, 무기장벽층은 유기장벽층 위에 스퍼터링 증착법 (sputtering deposition) 또는 플라즈마 강화 화학적 증착법(PECVD) 등의 공정을 통해 형성 될 수 있다.
상기 유기장벽층은 무기장벽층 형성을 위한 상기 공정에서 높은 에너지를 가진 입자들에 대해 유기장벽층이 두께손실이나 표면균일도 이상이 없이 평탄도를 유지하면서, 디스플레이 특성에 적합한 투명성을 확보해야 한다. 특히 무기장벽층 형성 시 상기 플라즈마를 이용하는 공정에서 높은 에너지를 갖는 금속산화/질화물 입자가 유기장벽층을 충격하게 되며 이때, 유기장벽층이 금속 산화/질화물 입자에 대해 손실과 결함이 생기지 않도록 플라즈마 저항성을 가져야 한다.
따라서 유기장벽층은 유연발광소자(flexible OLED)에 적합한 유연성 (flexibility)과 플라즈마 공정에 버티는 저항성을 동시에 가져야 한다. 유기장벽층에 대한 플라즈마 저항성은 “Dry etch resistance of organic materials," Journal of the Electrochemical Society, vol. 130, 143-146 (1983)에서 식1로 표현되는 Ohnishi parameter와 “Limits to etch resistance for 193nm single-layer resists," Proceedings of SPIE, vol. 2724, 365 (1995)에서 식 2로 표현되는 ring parameter간의 상관관계가 연구되어 왔다.
[식1]
Ohnishi parameter = NT/(NC-NO)
여기서 NT 는 분자 내 전체 원자의 개수, NC 는 탄소원자의 개수, NO는 산소원자의 개수이며, Ohnishi parameter는 고분자 에칭의 기본경향을 나타내며, 대부분의 고분자는 그 경향을 잘 따르는 것으로 알려져 있다. 이후 연구자들은 Ohnishi 모델에 기초하여 많은 변형을 했고, 예로써 Ring parameter와 탄소와 산소의 함량을 조합하여 예측 정확성을 높이기 위한 노력들을 해 왔다. 이러한 변형들은 수학적 보다는 실험적 데이터에 적합하나 물리적 의미의 설명은 부족한 것으로 "Plasma etch properties of organic BARCs" Proc. of SPIE Vol. 6923, 69232G, (2008)에서 밝히고 있다. 여기서, Ring parameter는 방향족 고리를 포함하는 고분자의 경우에 적용되는 점이 제한적인 모델인 것으로 설명하고 있다.
상기 문헌에서 Ohnishi parameter 와 etch rate(식각비) 연구결과에서는 탄소, 산소, 수소로 이루어진 고분자체는 O2, CF4, N2/H2를 이용한 etch rate는 Ohnishi parameter 값이 2~7범위에서 큰 값을 가질수록 빠른 etch rate를 나타내는 선형적인 결과를 얻었다고 보고하고 있다. 즉, 낮은 Ohnishi parameter 값은 상기의 기체를 사용하는 조건에서 높은 플라즈마 저항성을 갖는 것으로 해석할 수 있다.
[식2]
Ring parameter = M.W. of only aromatic carbon / M.W. total
미국특허 7767498호에서 박막의 유기장벽층과 무기장벽층의 쌍이 많을수록 수분과 산소의 장벽특성(barrier property)에 유리하다고 밝히고 있으나, 진공조건에서 수회의 성막공정을 거치면서 이물혼입에 따른 장벽특성의 저하와 함께 수율의 저하가 단점으로 보고되고 있다.
최근 연구에서는 장벽특성을 유지하면서 수율 저하를 극복하기 위해 박막다층구조에서 유기/무기 장벽층의 두께를 두껍게 하고 층수를 줄이는 방향으로 연구가 진행되고 있으며, 그 이유로는 장벽층의 두께를 높이면서 그 수를 줄이면 공정 수가 줄어들게 되어 이물혼입에 따른 특성저하와 수율저하를 극복하면서 제조경비 절감효과를 볼 수 있기 때문이다.
따라서 본 발명에서는 rigid display에서 유연발광소자 (flexible OLED)로 변환되는 디스플레이 개발방향에 부합하면서 후막형성이 가능하고 성막 시 유연성과 플라즈마 저항성을 갖는 자외선 경화 가능한 봉지재 조성물을 제공한다.
본 발명의 목적은 플라즈마 저항성을 가지며 증기증착 공정과 잉크젯 공정에 적합한 봉지용 조성물을 제공하는 것이다.
본 발명의 다른 목적은 후막형성이 가능하며 유연성을 갖는 봉지용 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 환경에 민감한 장치용 부재의 봉지를 위한 장벽층을 형성할 수 있는 봉지용 조성물을 제공하는 것이다.
본 발명의 봉지용 조성물은 하기 화학식 1의 광경화 모노머 및 개시제를 포함할 수 있다.
Figure PCTKR2017006764-appb-I000001
본 발명은 페닐의 메타(meta-) 위치에 아크릴레이트 유도체들이 결합되어 있는 봉지용 조성물을 이용함으로써, 봉지용 조성물의 경화 후 무기장벽층에 대한 부착력을 높여 외부에서 침투되는 수분과 산소를 막아 장치용 부재의 신뢰성을 향상시킬 수 있는 효과가 있다.
도 1은 본 발명에 일 실시예에 따른 유기전기발광소자에 대한 예시도이다.
도 2는 유기전기발광소자를 포함하는 전자장치의 구조의 일례를 개략적으로 도시한 도면이다.
이하, 본 발명의 실시예를 첨부된 도면을 참조하여 상세하게 설명한다.
각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
본 명세서 및 첨부된 청구의 범위에서 사용된 바와 같이, 달리 언급하지 않는 한, 하기 용어의 의미는 하기와 같다.
본 명세서에서 사용된 용어 "할로" 또는 "할로겐"은 다른 설명이 없는 한 불소(F), 브롬(Br), 염소(Cl) 또는 요오드(I)이다.
본 발명에 사용된 용어 "알킬" 또는 "알킬기"는 다른 설명이 없는 한 1 내지 60의 탄소수의 단일결합을 가지며, 직쇄 알킬기, 분지쇄 알킬기, 사이클로알킬(지환족)기, 알킬-치환된 사이클로알킬기, 시클로알킬-치환된 알킬기를 비롯한 포화 지방족 작용기의 라디칼을 의미한다.
본 발명에 사용된 용어 "할로알킬기" 또는 "할로겐알킬기"는 다른 설명이 없는 한 할로겐으로 치환된 알킬기를 의미한다.
본 발명에 사용된 용어 "헤테로알킬기"는 알킬기를 구성하는 탄소 원자 중 하나 이상이 헤테로원자로 대체된 것을 의미한다.
본 발명에 사용된 용어 "알켄일기" 또는 "알킨일기"는 다른 설명이 없는 한 각각 2 내지 60의 탄소수의 이중결합 또는 삼중결합을 가지며, 직쇄형 또는 측쇄형 사슬기를 포함하며, 여기에 제한되는 것은 아니다.
본 발명에 사용된 용어 "시클로알킬"은 다른 설명이 없는 한 3 내지 60의 탄소수를 갖는 고리를 형성하는 알킬을 의미하며, 여기에 제한되는 것은 아니다.
본 발명에 사용된 용어 "알콕실기", "알콕시기", 또는 "알킬옥시기"는 산소 라디칼이 부착된 알킬기를 의미하며, 다른 설명이 없는 한 1 내지 60의 탄소수를 가지며, 여기에 제한되는 것은 아니다.
본 발명에 사용된 용어 "알켄옥실기", "알켄옥시기", "알켄일옥실기", 또는 "알켄일옥시기"는 산소 라디칼이 부착된 알켄일기를 의미하며, 다른 설명이 없는 한 2 내지 60의 탄소수를 가지며, 여기에 제한되는 것은 아니다.
본 발명에 사용된 용어 "아릴옥실기" 또는 "아릴옥시기"는 산소 라디칼이 부착된 아릴기를 의미하며, 다른 설명이 없는 한 6 내지 60의 탄소수를 가지며, 여기에 제한되는 것은 아니다.
본 발명에 사용된 용어 "아릴기" 및 "아릴렌기"는 다른 설명이 없는 한 각각 6 내지 60의 탄소수를 가지며, 이에 제한되는 것은 아니다. 본 발명에서 아릴기 또는 아릴렌기는 단일 고리 또는 다중 고리의 방향족을 의미하며, 이웃한 치환기가 결합 또는 반응에 참여하여 형성된 방향족 고리를 포함한다. 예컨대, 아릴기는 페닐기, 비페닐기, 터페닐기, 나프틸기, 안트라센일기, 플루오렌기, 스파이로플루오렌기, 스파이로바이플루오렌기일 수 있다.
접두사 "아릴" 또는 "아르"는 아릴기로 치환된 라디칼을 의미한다. 예를 들어 아릴알킬기는 아릴기로 치환된 알킬기이며, 아릴알켄일기는 아릴기로 치환된 알켄일기이며, 아릴기로 치환된 라디칼은 본 명세서에서 설명한 탄소수를 가진다.
또한 접두사가 연속으로 명명되는 경우 먼저 기재된 순서대로 치환기가 나열되는 것을 의미한다. 예를 들어, 아릴알콕시기의 경우 아릴기로 치환된 알콕시기를 의미하며, 알콕실카르보닐기의 경우 알콕실기로 치환된 카르보닐기를 의미하며, 또한 아릴카르보닐알켄일기의 경우 아릴카르보닐기로 치환된 알켄일기를 의미하며 여기서 아릴카르보닐기는 아릴기로 치환된 카르보닐기이다.
본 명세서에서 사용된 용어 "헤테로알킬"은 다른 설명이 없는 한 하나 이상의 헤테로원자를 포함하는 알킬을 의미한다. 본 발명에 사용된 용어 "헤테로아릴기" 또는 "헤테로아릴렌기"는 다른 설명이 없는 한 각각 하나 이상의 헤테로원자를 포함하는 탄소수 2 내지 60의 아릴기 또는 아릴렌기를 의미하며, 여기에 제한되는 것은 아니며, 단일 고리 및 다중 고리 중 적어도 하나를 포함하며, 이웃한 작용기기가 결합하여 형성될 수도 있다.
본 발명에 사용된 용어 "헤테로고리기"는 다른 설명이 없는 한 하나 이상의 헤테로원자를 포함하고, 2 내지 60의 탄소수를 가지며, 단일 고리 및 다중 고리 중 적어도 하나를 포함하며, 헤테로지방족 고리 및 헤테로방향족 고리를 포함한다. 이웃한 작용기가 결합하여 형성될 수도 있다.
본 명세서에서 사용된 용어 "헤테로원자"는 다른 설명이 없는 한 N, O, S, P 또는 Si를 나타낸다.
또한 "헤테로고리기"는, 고리를 형성하는 탄소 대신 SO2를 포함하는 고리도 포함할 수 있다. 예컨대, "헤테로고리기"는 다음 화합물을 포함한다.
Figure PCTKR2017006764-appb-I000002
다른 설명이 없는 한, 본 발명에 사용된 용어 "지방족"은 탄소수 1 내지 60의 지방족 탄화수소를 의미하며, "지방족고리"는 탄소수 3 내지 60의 지방족 탄화수소 고리를 의미한다.
다른 설명이 없는 한, 본 발명에 사용된 용어 "고리"는 탄소수 3 내지 60의 지방족고리 또는 탄소수 6 내지 60의 방향족고리 또는 탄소수 2 내지 60의 헤테로고리 또는 이들의 조합으로 이루어진 융합 고리를 말하며, 포화 또는 불포화 고리를 포함한다.
전술한 헤테로화합물 이외의 그 밖의 다른 헤테로화합물 또는 헤테로라디칼은 하나 이상의 헤테로원자를 포함하며, 여기에 제한되는 것은 아니다.
다른 설명이 없는 한, 본 발명에 사용된 용어 "카르보닐"이란 -COR'로 표시되는 것이며, 여기서 R'은 수소, 탄소수 1 내지 20 의 알킬기, 탄소수 6 내지 30 의 아릴기, 탄소수 3 내지 30의 사이클로알킬기, 탄소수 2 내지 20의 알켄일기, 탄소수 2 내지 20의 알킨일기, 또는 이들의 조합인 것이다.
다른 설명이 없는 한, 본 발명에 사용된 용어 "에테르"란 -R-O-R'로 표시되는 것이며, 여기서 R 또는 R'은 각각 서로 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 30의 아릴기, 탄소수 3 내지 30의 사이클로알킬기, 탄소수 2 내지 20의 알켄일기, 탄소수 2 내지 20의 알킨일기, 또는 이들의 조합인 것이다.
또한 명시적인 설명이 없는 한, 본 발명에서 사용된 용어 "치환 또는 비치환된"에서 "치환"은 중수소, 할로겐, 아미노기, 니트릴기, 니트로기, C1~C20의 알킬기, C1~C20의 알콕실기, C1~C20의 알킬아민기, C1~C20의 알킬티오펜기, C6~C20의 아릴티오펜기, C2~C20의 알켄일기, C2~C20의 알킨일기, C3~C20의 시클로알킬기, C6~C20의 아릴기, 중수소로 치환된 C6~C20의 아릴기, C8~C20의 아릴알켄일기, 실란기, 붕소기, 게르마늄기, 및 C2~C20의 헤테로고리기로 이루어진 군으로부터 선택되는 1개 이상의 치환기로 치환됨을 의미하며, 이들 치환기에 제한되는 것은 아니다.
또한 명시적인 설명이 없는 한, 본 발명에서 사용되는 화학식은 하기 화학식의 지수 정의에 의한 치환기 정의와 동일하게 적용된다.
Figure PCTKR2017006764-appb-I000003
여기서, a가 0의 정수인 경우 치환기 R1은 부존재하며, a가 1의 정수인 경우 하나의 치환기 R1은 벤젠 고리를 형성하는 탄소 중 어느 하나의 탄소에 결합하며, a가 2 또는 3의 정수인 경우 각각 다음과 같이 결합하며 이때 R1은 서로 동일하거나 다를 수 있으며, a가 4 내지 6의 정수인 경우 이와 유사한 방식으로 벤젠 고리의 탄소에 결합하며, 한편 벤젠 고리를 형성하는 탄소에 결합된 수소의 표시는 생략한다.
Figure PCTKR2017006764-appb-I000004
도 1은 본 발명에 일 실시예에 따른 봉지화된 장치에 대한 예시도이다.
도 1을 참조하면, 기판(110) 상에 형성된 제 1전극(120), 제 2전극(180) 및 제 1전극(110)과 제 2전극(180) 사이에 본 발명에 따른 화합물을 포함하는 유기물층을 구비한다. 이때, 제 1전극(120)은 애노드(양극)이고, 제 2전극(180)은 캐소드(음극)일 수 있으며, 인버트형의 경우에는 제 1전극이 캐소드이고 제 2전극이 애노드일 수 있다.
유기물층은 제 1전극(120) 상에 순차적으로 정공주입층(130), 정공수송층(140), 발광층(150), 전자수송층(160) 및 전자주입층(170)을 포함할 수 있다. 이때, 발광층(150)을 제외한 나머지 층들이 형성되지 않을 수 있다. 정공저지층, 전자저지층, 발광보조층(151), 버퍼층(141) 등을 더 포함할 수도 있고, 전자수송층(160) 등이 정공저지층의 역할을 할 수도 있을 것이다.
또한, 미도시하였지만, 본 발명에 따른 유기전기발광소자(200)는 제 1전극(120)과 제 2전극(180) 중 적어도 일면 중 상기 유기물층과 반대되는 일면에 형성된 보호층 또는 광효율 개선층(Capping layer)을 더 포함할 수 있다.
본 발명의 일 실시예에 따른 유기전기발광소자(200)는 PVD(physical vapor deposition) 방법을 이용하여 제조될 수 있다. 예컨대, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 제 1전극(120)을 형성하고, 그 위에 정공주입층(130), 정공수송층(140), 발광층(150), 전자수송층(160) 및 전자주입층(170)을 포함하는 유기물층을 형성한 후, 그 위에 제 2전극(180)으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다.
또한, 유기물층은 다양한 고분자 소재를 사용하여 증착법이 아닌 용액 공정 또는 솔벤트 프로세스(solvent process), 예컨대 스핀코팅 공정, 노즐 프린팅 공정, 잉크젯 프린팅 공정, 슬롯코팅 공정, 딥코팅 공정, 롤투롤 공정, 닥터 블레이딩 공정, 스크린 프린팅 공정, 또는 열 전사법 등의 방법에 의하여 더 적은 수의 층으로 제조할 수 있다. 본 발명에 따른 유기물층은 다양한 방법으로 형성될 수 있으므로, 그 형성방법에 의해 본 발명의 권리범위가 제한되는 것은 아니다.
본 발명에 따른 유기전기발광소자(200)는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
WOLED(White Organic Light Emitting Device)는 고해상도 실현이 용이하고 공정성이 우수한 한편, 기존의 LCD의 칼라필터 기술을 이용하여 제조될 수 있는 이점이 있다. 주로 백라이트 장치로 사용되는 백색 유기발광소자에 대한 다양한 구조들이 제안되고 특허화되고 있다. 대표적으로, R(Red), G(Green), B(Blue) 발광부들을 상호평면적으로 병렬배치(side-by-side) 방식, R, G, B 발광층이 상하로 적층되는 적층(stacking) 방식이 있고, 청색(B) 유기발광층에 의한 전계발광과 이로부터의 광을 이용하여 무기형광체의 자발광(photo-luminescence)을 이용하는 색변환물질(color conversion material, CCM) 방식 등이 있는데, 본 발명은 이러한 WOLED에도 적용될 수 있을 것이다.
또한, 본 발명에 따른 유기전기발광소자(200)는 유기발광소자(OLED), 유기태양전지, 유기감광체(OPC), 유기트랜지스터(유기 TFT), 단색 또는 백색 조명용 소자 중 하나일 수 있다.
본 발명의 다른 실시예는 상술한 본 발명의 유기전기발광소자(200)를 포함하는 디스플레이장치와, 이 디스플레이장치를 제어하는 제어부를 포함하는 전자장치를 포함할 수 있다. 이때, 전자장치는 현재 또는 장래의 유무선 통신단말일 수 있으며, 휴대폰 등의 이동 통신 단말기, PDA, 전자사전, PMP, 리모콘, 네비게이션, 게임기, 각종 TV, 각종 컴퓨터 등 모든 전자장치를 포함한다.
또한, 본 발명에서는 유기전기발광소자(200)를 보호하기 위한 봉지층(300)을 더 포함할 수 있다. 도 1에서는 봉지층(300)이 단일층인 구성을 개시하고 있으나, 본 발명은 이에 국한되지 않으며, 봉지층(300)이 다중층으로 이루어질 수도 있다. 이러한 구성을 도 2를 참조하여 검토하면 다음과 같다.
도 2는 유기전기발광소자를 포함하는 전자장치의 구조의 일례를 개략적으로 도시한 도면이다. 도 2에 개시된 전자장치는 기판(110), 기판(110)상에 배치된 유기전기발광소자(200) 및 유기전기발광소자(200) 상에 배치된 봉지층(300)을 포함한다. 일례에 따른 전자장치에서는 봉지층(300)을 이용하여 유기전기발광소자(200)를 보호할 수 있다.
한편, 도 2에서는 본 발명에 따른 봉지층(300)이 제 1봉지층(310) 및 제 2 봉지층(320)으로 구성되는 다중층으로 구성된 실시예를 개시한다. 도 2에서는 봉지층(300)이 2층인 구성을 개시하고 있으나, 본 발명은 봉지층(300)이 2층 이상인 구성을 모두 포함할 수 있다. 봉지층(300)이 2층 이상의 다중층으로 구성될 경우, 무기장벽층과 유기장벽층을 포함할 수 있다. 예를 들면, 제 1봉지층(310)이 무기장벽층일 경우, 제 2봉지층(320)은 유기장벽층일 수 있으며, 제 1봉지층(310)이 유기장벽층일 경우, 제 2봉지층(320)은 무기장벽층일 수 있다.
또한, 도 2에 도시한 바와 같이, 본 발명의 봉지층(300)은 장치용 부재 상에 배치될 수 있다. 구체적으로는 봉지층(300)은 유기전기발광소자(200) 상에 배치될 수 있고, 더욱 구체적으로는, 봉지층(300)은 유기전기발광소자(200)를 둘러싸도록 배치될 수 있다. 즉, 봉지층(300)은 유기전기발광소자(200)를 효과적으로 보호할 수 있는 구조로 배치될 수 있다. 이때, 봉지층(300)은 유기전기발광소자(200)에 수분과 산소를 막아 전자장치의 신뢰성을 향상시킬 수 있는 효과가 있다. 이러한 봉지층(300)을 구성하는 봉지용 조성물은 하기 화학식 1로 표시되는 화합물을 포함함으로써, 상술한 효과를 나타낼 수 있다.
이하, 본 발명의 일 측면에 따른 화합물에 대하여 설명한다. 본 발명의 일 측면에 따른 화합물은 하기 화학식 1로 표시된다.
Figure PCTKR2017006764-appb-I000005
상기 화학식 1에서,
*1) a, b, c, d, e, f, g, h는 0 또는 1의 정수이고;
(여기서, a, b, c, d, e, f, g, h는 서로 같거나 상이할 수 있다.)
2) X1은 내지 X5는 각각 독립적으로 O, S, NR’및 CR”R”중 하나이며;
(여기서, R', R"은 서로 독립적으로 C1-C20의 알킬기, C6-C24의 아릴기, C2-C20의 헤테로아릴기 중 하나이며, R' 과 R"은 고리가 형성되어 스파이로 결합을 할 수 있다.)
3) Ar1,Ar2는 각각 C6-C24의 아릴렌기이며;
4) R1, R2, R4 및 R5는 C2-C20의 알킬렌기이며;
5) R3 및 R6는 각각 서로 같거나 상이하고, 수소 및 C1-C20의 알킬기 중 하나이며;
6) n은 0 또는 1의 정수일 수 있다.
상기 X1 내지 X5, Ar1, Ar2, R1 내지 R6가 알킬기, 아릴기, 헤테로아릴기, 아릴렌기, 알킬렌기인 경우, 이들 각각은 중수소; 할로겐; C1-C20의 알킬기 또는 C6-C20의 아릴기로 치환 또는 비치환된 실란기; 실록산기; 붕소기; 게르마늄기; 시아노기; 니트로기; C1-C20의 알킬싸이오기; C1-C20의 알콕실기; C1-C20의 알킬기; C2-C20의 알켄일기; C2-C20의 알킨일기; C6-C20의 아릴기; 중수소로 치환된 C6-C20의 아릴기; 플루오렌일기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C20의 헤테로고리기; C3-C20의 시클로알킬기; C7-C20의 아릴알킬기; 및 C8-C20의 아릴알켄일기로 이루어진 군에서 선택된 하나 이상의 치환기로 더욱 치환될 수 있다.
여기서, 상기 아릴기인 경우 탄소수는 6~60, 바람직하게는 탄소수 6~40, 보다 바람직하게는 탄소수 6~30의 아릴기일 수 있으며, 상기 헤테로고리기인 경우 탄소수는 2~60, 바람직하게는 탄소수 2~30, 보다 바람직하게는 탄소수 2~20의 헤테로고리일 수 있으며, 상기 알킬기인 경우 탄소수는 1~50, 바람직하게는 탄소수 1~30, 보다 바람직하게는 탄소수 1~20, 특히 바람직하게는 탄소수 1~10의 알킬기일 수 있다.
상기 전술한 아릴기 또는 아릴렌기일 경우, 구체적으로 아릴기 또는 아릴렌기는 서로 독립적으로 페닐기, 비페닐기, 터페닐기, 나프틸기, 페난트릴기 또는 페닐렌기, 비페닐렌기, 터페닐렌기, 나프틸렌기 또는 페난트릴렌기 등일 수 있다.
보다 구체적으로, 상기 화학식 1로 표시되는 화합물은 하기 화합물들 중 어느 하나일 수 있으나, 상기 화학식 1로 표시되는 화합물이 하기 화합물에만 국한되는 것은 아니다.
Figure PCTKR2017006764-appb-I000006
Figure PCTKR2017006764-appb-I000007
Figure PCTKR2017006764-appb-I000008
Figure PCTKR2017006764-appb-I000009
Figure PCTKR2017006764-appb-I000010
상기 화학식 2 내지 화학식 6에서,
n, X1 내지 X5, Ar1, Ar2, R1 내지 R6는 상기 화학식 1에서 정의된 것과 동일하다.
보다 구체적으로, 상기 화학식 1로 표시되는 화합물은 하기 화합물들 중 어느 하나일 수 있으며, 화학식 1로 표시되는 화합물이 하기 화합물에만 국한되는 것은 아니다.
Figure PCTKR2017006764-appb-I000011
Figure PCTKR2017006764-appb-I000012
Figure PCTKR2017006764-appb-I000013
Figure PCTKR2017006764-appb-I000014
Figure PCTKR2017006764-appb-I000015
Figure PCTKR2017006764-appb-I000016
본 발명인 화학식 1를 이용한 봉지용 조성물은 유연(flexible) 디스플레이 장치의 봉지 또는 캡슐화 용도로써 무기장벽층 사이에 위치하는 유기장벽층을 형성 할 수 있으며, 상기 유기장벽층은 봉지용 조성물을 광경화시켜 형성할 수 있다.
상기 봉지용 조성물(유기장벽층 물질)은 증착, 스핀도포, 슬릿도포 등의 방법을 사용하여 도포할 수 있으며, 광경화 시 개시제를 사용할 수 있다.
개시제는 광경화성 반응을 수행할 수 있는 통상의 광중합 개시제를 제한 없이 포함할 수 있다. 예를 들면 광중합 개시제는 트리아진계, 아세토페논계, 벤조페논계, 티오크산톤계, 벤조인계, 인계, 옥심계 또는 이들의 혼합물을 포함할 수 있다.
트리아진계로는 2,4,6-트리클로로-s-트리아진, 2-페닐-4,6-비스(트리클로로 메틸)-s-트리아진, 2-(3',4'-디메톡시 스티릴)-4,6-비스(트리클로로 메틸)-s-트리아진, 2-(4'-메톡시 나프틸)-4,6-비스(트리클로로 메틸)-s-트리아진, 2-(p-메톡시 페닐)-4,6-비스(트리클로로 메틸)-s-트리아진, 2-(p-톨릴)-4,6-비스(트리클로로 메틸)-s-트리아진, 2-비페닐-4,6-비스(트리클로로 메틸)-s-트리아진, 비스(트리클로로 메틸)-6-스티릴-s-트리아진, 2-(나프토-1-일)-4,6-비스(트리클로로 메틸)-s-트리아진, 2-(4-메톡시 나프토-1-일)-4,6-비스(트리클로로 메틸)-s-트리아진, 2,4-트리클로로 메틸(피페로닐)-6-트리아진, 2,4-(트리클로로 메틸(4'-메톡시 스티릴)-6-트리아진 또는 이들의 혼합물이 될 수 있다.
아세토페논계로는, 2,2'-디에톡시 아세토페논, 2,2'-디부톡시 아세토페논, 2-히드록시-2-메틸 프로피오페논, p-t-부틸 트리클로로 아세토페논, p-t-부틸 디클로로 아세토페논, 4-클로로 아세토페논, 2,2'-디클로로-4-페녹시 아세토페논, 2-메틸-1-(4-(메틸티오)페닐)-2-모폴리노 프로판-1-온, 2-벤질-2-디메틸 아미노-1-(4-모폴리노 페닐)-부탄-1-온, 또는 이들의 혼합물이 될 수 있다.
벤조페논계로는 벤조페논, 벤조일 안식향산, 벤조일 안식향산 메틸, 4-페닐 벤조페논, 히드록시 벤조페논, 아크릴화 벤조페논, 4,4'-비스(디메틸 아미노)벤조페논, 4,4'-디클로로 벤조페논, 3,3'-디메틸-2-메톡시 벤조페논 또는 이들의 혼합물이 될 수 있다.
티오크산톤계로는 티오크산톤, 2-메틸 티오크산톤, 이소프로필 티오크산톤, 2,4-디에틸 티오크산톤, 2,4-디이소프로필 티오크산톤, 2-클로로 티오크산톤 또는 이들의 혼합물이 될 수 있다.
벤조인계로는 벤조인, 벤조인 메틸 에테르, 벤조인 에틸 에테르, 벤조인 이소프로필 에테르, 벤조인 이소부틸에테르, 벤질 디메틸 케탈 또는 이들의 혼합물이 될 수 있다.
인계로는 비스벤조일페닐 포스핀옥시드, 벤조일디페닐 포스핀옥시드 또는 이들의 혼합물이 될 수 있다.
옥심계로는 2-(o-벤조일옥심)-1-[4-(페닐티오)페닐]-1,2-옥탄디온 및 1-(o-아세틸옥심)-1-[9-에틸-6-(2-메틸벤조일)-9H-카르바졸-3-일]에탄온, 또는 이들의 혼합물이 될 수 있다.
개시제는 고형분 기준으로 상기 조성물 중 0.1-20중량%, 바람직하게는 0.5-20중량%, 더 바람직하게는 0.5-10중량%, 가장 바람직하게는 0.5-7중량%로 포함될 수 있다. 상기 범위에서, 노광시 광중합이 충분히 일어날 수 있고, 광중합 후 남은 미반응 개시제로 인하여 투과율이 저하되는 것을 막을 수 있다.
광경화를 이용한 유기장벽층 형성은 봉지용 조성물을 0.1~20 ㎛ 바람직하게는 1~15 ㎛ 가장 바람직하게는 1~10 ㎛ 로 코팅하고 10~500 ㎽/㎠에서 1초~60 초 동안 조사하여 경화시킬 수 있다. 이때 경화율은 90%이상 일수 있고, 바람직하게는 93% 이상일 수 있다. 이때 유기장벽층 내의 광경화 반응에 참여하지 못한 조성물과 개시제가 최소화되며 수분 및/또는 산소의 침투경로(pass-way)가 억제되어 양호한 장벽특성을 가질 수 있다.
또한 상기 봉지용 조성물을 경화시킬 때(유기장벽층을 형성시킬 때), 코팅이 된 봉지용 조성물은 수축이 일어날 수 있으며, 상기 수축율은 1~20% 정도이며, 더 바람직하게는 1~15%일수 있다.
상기 유기장벽층의 수축율이 20% 이상일 경우, 무기장벽층에 산소 및/또는 수분 침투로 인하여 흑점 (dark spot) 및 화소 수축(pixel shrinkage) 이 발생하게 되며, 또한 2개 이상의 층을 이루는 유무기 다층장벽층 형성 시 휨 발생으로 발광소자의 결합으로 이어 질 수 있다.
상기 무기장벽층과 유기장벽층은 스퍼터링, 화학기상증착(CVD), 플라즈마 화학기상증착(PECVD), 증발, 승화, 잉크젯 및 이의 조합으로 증착 될 수 있다.
다층장벽층은 상기 유기장벽층과 무기장벽층을 포함하되, 교대로 증착 될 수 있고, 장벽층의 수는 제한되지 않으며 장벽층의 수는 산소 및/또는 수분 및/또는 화학물질에 대한 투과성의 수준에 따라 변경할 수 있다. 유기장벽층과 무기장벽층은 각각 2층이상, 10층 이하로 교대로 증착될 수 있으며, 바람직하게는 2층 이상 7층 이하이다.
즉, 본 발명에 따른 봉지층은 유기전기발광소자를 포함하는 전자장치의 장치용 부재 상에 배치될 수 있으며, 무기장벽층과 유기장벽층을 포함하는 다층장벽층으로 이루어질 수 있다. 여기서, 무기장벽층은 금속, 금속 산화물, 금속 질화물, 금속 탄화물, 금속 산소질화물, 금속산소붕소화물, 또는 이들의 혼합물을 포함하고, 상기 금속은 실리콘(Si), 알루미늄(Al), 셀레늄(Se), 아연(Zn), 안티몬(Sb), 인듐(In), 게르마늄(Ge), 주석(Sn), 비스무트(Bi), 전이금속, 란탄족 금속 중 하나 이상을 포함할 수 있다.
다른 실시예에서, 본 발명의 봉지 조성물에 상기 화합물이 단독으로 함유되거나, 상기 화합물이 서로 다른 2종 이상의 조합으로 함유되거나, 상기 화합물이 다른 화합물과 2종 이상의 조합으로 함유될 수 있다. 다시 말해서, 봉지 조성물에는 화학식 1에 해당하는 화합물이 단독으로 포함될 수 있고, 2종 이상의 화학식 1의 화합물들의 혼합물이 포함될 수 있으며, 청구항 1항 내지 청구항 3항 및 청구항 9항 내지 청구항 10항의 화합물과, 본 발명에 해당하지 않는 화합물과의 혼합물이 포함될 수 있다.
여기서 본 발명에 해당하지 않는 화합물은 단일의 화합물일 수 있고, 2종 이상의 화합물들일 수도 있다. 이때 상기 화합물이 다른 화합물과 2종 이상의 조합으로 함유될 경우 다른 화합물은 각 유기물층의 이미 알려진 화합물일 수도 있고, 앞으로 개발될 화합물 등일 수 있다. 이때 상기 유기물층에 함유된 화합물은 동종의 화합물로만 이루어질 수도 있지만, 화학식 1로 표시되는 이종의 화합물이 2종 이상 혼합된 혼합물일 수도 있다.
한편, 본 발명에 따른 봉지 조성물은 상기 화학식 1의 1종 이상의 화합물과 화학식 7로 표시되는 화합물이 서로 혼합될 수 있으며, 화학식 7은 하기와 같다.
Figure PCTKR2017006764-appb-I000017
상기 화학식 7에서,
1) P는 1 내지 20의 정수이고;
2) X1, X2는 각각 서로 같거나 상이하고, O, S 및 NR' 중 하나이며;
(여기서, R'은 C1-C20의 알킬기, C6-C24의 아릴기, C2-C20의 헤테로아릴기 중 어느 하나이다.)
3) Y1, Y2는 각각 서로 같거나 상이하고, C1-C20의 알킬렌기, C6-C24의 아릴렌기, C7-C24의 아릴알킬렌기, C1-C20의 알킬렌옥시기 중 어느 하나이며;
4) R3 및 R6는 각각 서로 같거나 상이하고, 수소 및 C1-C20의 알킬기 중 하나이며;
5) R7, R8, R9은 수소, 중수소, 삼중수소, C1-C30의 알킬기, C1-20의 알콕시기, 하이드록시기 중 어느 하나이다.
상기 X1, X2, Y1, Y2, R3, R6, R7, R8, R9가 알킬기, 아릴기, 헤테로 아릴기, 알킬렌기, 아릴렌기, 아릴알킬렌기, 알킬렌옥시기, 알콕시기, 하이드록시기인 경우, 이들 각각은 중수소; 할로겐; C1-C20의 알킬기 또는 C6-C20의 아릴기로 치환 또는 비치환된 실란기; 실록산기; 붕소기; 게르마늄기; 시아노기; 니트로기; C1-C20의 알킬싸이오기; C1-C20의 알콕실기; C1-C20의 알킬기; C2-C20의 알켄일기; C2-C20의 알킨일기; C6-C20의 아릴기; 중수소로 치환된 C6-C20의 아릴기; 플루오렌일기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C20의 헤테로고리기; C3-C20의 시클로알킬기; C7-C20의 아릴알킬기; 및 C8-C20의 아릴알켄일기로 이루어진 군에서 선택된 하나 이상의 치환기로 더욱 치환될 수 있다.
여기서, 상기 아릴기인 경우 탄소수는 6~60, 바람직하게는 탄소수 6~40, 보다 바람직하게는 탄소수 6~30의 아릴기일 수 있으며, 상기 헤테로고리기인 경우 탄소수는 2~60, 바람직하게는 탄소수 2~30, 보다 바람직하게는 탄소수 2~20의 헤테로고리일 수 있으며, 상기 알킬기인 경우 탄소수는 1~50, 바람직하게는 탄소수 1~30, 보다 바람직하게는 탄소수 1~20, 특히 바람직하게는 탄소수 1~10의 알킬기일 수 있다.
상기 전술한 아릴기 또는 아릴렌기일 경우, 구체적으로 아릴기 또는 아릴렌기는 서로 독립적으로 페닐기, 비페닐기, 터페닐기, 나프틸기, 페난트릴기 또는 페닐렌기, 비페닐렌기, 터페닐렌기, 나프틸렌기 또는 페난트릴렌기 등일 수 있다.
보다 구체적으로, 상기 화학식 7로 표시되는 화합물은 하기 화합물들 중 어느 하나일 수 있으나, 상기 화학식 7로 표시되는 화합물이 하기 화합물에만 국한되는 것은 아니다.
Figure PCTKR2017006764-appb-I000018
Figure PCTKR2017006764-appb-I000019
이하에서, 본 발명에 따른 화학식 1로 표시되는 화합물의 합성예 및 유기전기발광소자의 제조예에 관하여 실시예를 들어 구체적으로 설명하지만, 본 발명이 하기의 실시예로 한정되는 것은 아니다.
[합성예]
본 발명에 따른 화합물 (final products)은 하기 반응식으로 합성되며, 이에 한정되는 것은 아니다.
Figure PCTKR2017006764-appb-I000020
구체적 화합물의 합성예는 다음과 같다.
1. P1-1 합성예
Figure PCTKR2017006764-appb-I000021
출발 물질인 1-(bromomethyl)-3-phenoxybenzene (10 g, 38.00 mmol)과 Acrylic acid (2.73 g, 38.00 mmol)을 둥근바닥 플라스크에 Acetonitrile (190 ml)에 녹인 후, Triethylamine (11.53 g, 114.00 mmol) 을 첨가하고 80°C에 교반하였다. 반응이 완료되면 Ethyl acetate와 물로 추출한 후 유기층을 MgSO4 로 건조하고 농축한다. 농축된 화합물을 Silicagel column하여 생성물 5.79 g (수율 70 %)를 얻었다.
2. P1-6 합성예
Figure PCTKR2017006764-appb-I000022
출발 물질인 (2-(2-bromoethoxy)ethyl)(3-phenoxybenzyl)sulfane (10.00 g, 27.22 mmol)과 acrylic acid (1.96 g, 27.22 mmol)을 둥근바닥 플라스크에 Acetonitrile (140 ml)에 녹인 후, Triethylamine (8.26 g, 81.66 mmol) 을 상기 P1-4 합성법을 사용하여 생성물 6.19 g (수율 62 %)를 얻었다.
3. P1-19 합성예
Figure PCTKR2017006764-appb-I000023
출발 물질인 bis(3-(bromomethyl)phenyl)sulfane (10.00 g, 26.87 mmol)과 acrylic acid (1.93 g, 26.87 mmol)을 둥근바닥 플라스크에 Acetonitrile (140 ml)에 녹인 후, Triethylamine (8.15 g, 80.67 mmol) 을 상기 P1-1 합성법을 사용하여 생성물 7.59 g (수율 83 %)를 얻었다.
4. P1-23 합성예
Figure PCTKR2017006764-appb-I000024
출발 물인 bis(4-((2-bromoethyl)thio)phenyl)sulfane (10.00 g, 21.53 mmol)과 acrylic acid (1.55 g, 21.53 mmol)을 둥근바닥 플라스크에 Acetonitrile (170 ml)에 녹인 후, Triethylamine (6.53 g, 64.56 mmol) 을 상기 P1-1 합성법을 사용하여 생성물 5.48 g (수율 57 %)를 얻었다.
5. P1-25 합성예
Figure PCTKR2017006764-appb-I000025
출발 물질인 bis(3-bromophenyl)sulfane (10.00 g, 29.06 mmol)과 acrylic acid (2.09 g, 29.06 mmol)을 둥근바닥 플라스크에 Acetonitrile (150ml)에 녹인 후, Triethylamine (8.82 g, 87.18 mmol) 을 상기 P1-1 합성법을 사용하여 생성물 6.73 g (수율 71 %)를 얻었다.
6. P1-33 합성예
Figure PCTKR2017006764-appb-I000026
출발 물질인 3-(bromomethyl)-N-(3-(bromomethyl)phenyl)-N-phenylaniline (10.00 g, 23.19 mmol)과 acrylic acid (1.67 g, 23.19 mmol)을 둥근바닥 플라스크에 Acetonitrile (120 ml)에 녹인 후, Triethylamine (7.03 g, 69.57 mmol) 을 상기 P1-1 합성법을 사용하여 생성물 8.53 g (수율 89 %)를 얻었다.
7. P1-51 합성예
Figure PCTKR2017006764-appb-I000027
출발 물질인 (2-bromoethyl)(3-(2-phenylpropan-2-yl)phenyl)sulfane (10.00 g, 29.82 mmol)과 acrylic acid (2.14 g, 29.82 mmol)을 둥근바닥 플라스크에 Acetonitrile (150 ml)에 녹인 후, Triethylamine (9.05 g, 89.46 mmol) 을 상기 P1-1 합성법을 사용하여 생성물 8.07 g (수율 83 %)를 얻었다.
8. P2-3 합성예
Figure PCTKR2017006764-appb-I000028
출발 물질인 1,5-dibromopentane (10.00 g, 43.48 mmol)과 acrylic acid (6.26 g, 86.96 mmol)을 둥근바닥 플라스크에 Acetonitrile (220 ml)에 녹인 후, Triethylamine (13.19 g, 130.44 mmol) 을 상기 P1-1합성법을 사용하여 생성물 5.62 g (수율 61 %)를 얻었다.
9. P2-6 합성예
Figure PCTKR2017006764-appb-I000029
출발 물질인 1,12-dibromododecane (10.00 g, 30.47 mmol)과 acrylic acid (4.39 g, 60.94 mmol)을 둥근바닥 플라스크에 Acetonitrile (150 ml)에 녹인 후, Triethylamine (9.24 g, 91.41 mmol) 을 상기 P1-1 합성법을 사용하여 생성물 8.04 g (수율 85 %)를 얻었다.
10. P2-8 합성예
Figure PCTKR2017006764-appb-I000030
출발 물질인 3,10-dibromododecane (10.00 g, 30.47 mmol)과 acrylic acid (4.39 g, 60.94 mmol)을 둥근바닥 플라스크에 Acetonitrile (150 ml)에 녹인 후, Triethylamine (9.24 g, 91.41 mmol) 을 상기 P1-1 합성법을 사용하여 생성물 4.81 g (수율51 %)를 얻었다.
11. P2-9 합성예
Figure PCTKR2017006764-appb-I000031
출발 물질인 2,6-dibromoheptane (10.00 g, 38.75 mmol)과 prop-2-enethioic S-acid (6.82 g, 77.50 mmol)을 둥근바닥 플라스크에 Acetonitrile (190 ml)에 녹인 후, Triethylamine (11.74 g, 116.25 mmol) 을 상기 P1-1 합성법을 사용하여 생성물 7.70 g (수율 73 %)를 얻었다.
12. P2-16 합성예
Figure PCTKR2017006764-appb-I000032
출발 물질인 1,3-dibromo-2-propoxypropane (10.00 g, 38.46 mmol)과 acrylic acid (5.54 g, 76.93 mmol)을 둥근바닥 플라스크에 Acetonitrile (190 ml)에 녹인 후, Triethylamine (11.65 g, 115.38 mmol) 을 상기 P1-1 합성법을 사용하여 생성물 6.52 g (수율 70 %)를 얻었다.
13. P2-17 합성예
Figure PCTKR2017006764-appb-I000033
출발 1,3-bis(3-bromophenyl)propane (10.00 g, 28.24 mmol)과 acrylic acid (4.06 g, 56.48 mmol)을 둥근바닥 플라스크에 Acetonitrile (140 ml)에 녹인 후, Triethylamine (8.57 g, 84.72 mmol) 을 상기 P1-1 합성법을 사용하여 생성물 6.64 g (수율 70 %)를 얻었다.
한편, 상기에서는 화학식 1로 표시되는 본 발명의 합성예는 Org . Lett ., 2009, 11(20), 4708-4711, J. Org . Chem ., 2001, 66(7), 2291-2295, Org . Lett ., 2005, 7(7), 1295-1298, J. Org . Chem ., 2008, 73(19), 7772-7774, Organometallics 2002, 21(26), 5713-5725, J. Org . Chem ., 2011, 76(7), 2187-2194, J. Am. Chem . Soc ., 2009, 131(5), 1766-1774 등에 기초한 것으로 구체적 합성예에 명시된 치환기 이외에 화학식 1에 정의된 다른 치환기(X1 내지 X5, Ar1, Ar2, R1 내지 R6)가 결합되더라도 상기 반응이 진행된다는 것을 당업자라면 쉽게 이해할 수 있을 것이다.
봉지 조성물의 제조평가
[실시예] 혼합 조성물의 제조
본 발명의 화합물인 화학식 1(P1-1~P1-55) 및 화학식 7(P2-1~P2-21))의 혼합물과 개시제인 Diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (디페닐 (2, 4, 6-트리메틸벤조일)포스핀옥시드, Darocur TPO)를 하기 표 1과 같이 혼합하여 조성물을 제조하였다. 이 때 개시제인 Darocur TPO는 중량 기준으로 3%를 사용한다. (전체 혼합물 조성물의 총 중량합계는 100%로 한다.) 상기 개시제는 Diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide(디페닐 (2, 4, 6-트리메틸벤조일)포스핀옥시드, Darocur TPO)으로 하기 화학식을 갖는 물질이다.
Figure PCTKR2017006764-appb-I000034
비교예는 하기 표 1과 같이 본 발명 화합물과 비교화합물의 혼합물 또는 비교화합물 간의 혼합물에 개시제인 Darocur TPO를 혼합하여 조성물을 제조하였다. 이때 개시제인 Darocur TPO는 중량 기준으로 3%를 사용한다. (전체 혼합물 조성물의 총 중량합계는 100%로 한다.) 구체적으로, 비교예에 사용된 화합물은 비교화합물 1 내지 비교화합물 3이며, 비교화합물 1 내지 비교화합물 3은 각각 Trimethylolpropane triacrylate(트리메티롤프로판 트리아크릴레이트), Dipentaerythritol Hexaacrylate (디펜타에리스리톨 헥사아크릴레이트, Miramer M600), Poly(ethylene glycol) diacrylate(폴리에틸렌글리콜 디아크릴레이트, Miramer M284)으로 하기 화학식을 갖는 물질이다.
Figure PCTKR2017006764-appb-I000035
상기 혼합 조성물은 하기 표 1에 기재된 함량(중량 기준)으로 혼합하고, 3시간 교반하여 봉지용 조성물로 제조하였다.
P1-1 P1-21 P2-5 P2-7 P2-20 P2-21 비교화합물 1 비교화합물 2 비교화합물 3
실시예 1 80% 17%
실시예 2 80% 17%
실시예 3 80% 17%
실시예 4 80% 17%
실시예 5 80% 10% 7%
비교예 1 80% 17%
비교예 2 80% 17%
비교예 3 80% 17%
비교예 4 17% 80%
비교예 5 80% 10% 7%
상기 표 1의 함량에 따라 혼합된 조성물의 경화 수축율 및 광경화율, 광투과율을 하기 방법과 같이 진행하여 측정하였으며, 그 결과를 하기 표 2에 나타내었다.
1. 경화 수축율
디지털 고체비중계 DME-220E(Shinko사, 일본)로 광 경화전 액체 조성물의 비중, 경화 후 고체의 비중을 측정하여 경화 수축율을 계산하였다. 조성물을 10um?2um 내외로 코팅 후 UV 경화(100mW/㎠ x 10초) 시켜 필름(두께: 8-12um, 가로 1.5-2.5cm, 세로 1.5-2.5cm)을 제조하여 수행. 경화 수축율은 하기 식 3에 따라 계산하였다.
[식 3]
경화 수축율(%)=(경화후 고체 비중 - 경화전 액체 조성물의 비중)/경화전 액체 조성물의 비중 x 100
2. 광경화율
광경화 조성물에 대하여 FT-IR(FT/IR-6600, Jasco사)을 사용하여 1635cm-1 부근(C=C), 1720cm- 1부근(C=O)에서의 흡수 피크의 강도를 측정하였다. 유리 기판 위에 광경화 조성물을 스프레이로 도포하고 100J/cm2으로 10초동안 조사하여 UV 경화시켜, 20cm x 20cm x 3㎛(가로 x 세로 x 두께)의 시편을 얻어 FT-IR(NICOLET 4700, Thermo사)를 이용하여 1635cm-1 부근 (C=C), 1720cm-1 부근(C=O)에서의 흡수 피크의 강도를 측정. 광경화율은 하기 식 4에 따라 계산하였다.
[식 4]
광경화율(%)= |1-(A/B)| x 100
(상기에서, A는 경화된 필름에 대해 1720cm-1 부근에서의 흡수 피크의 강도에 대한 1635cm-1 부근에서의 흡수 피크의 강도의 비이고, B는 광경화 조성물에 대해 1720cm-1 부근에서의 흡수 피크의 강도에 대한 1635cm-1 부근에서의 흡수 피크의 강도의 비율)
3. 광투과율
봉지용 조성물을 UV 경화시켜 두께 10?m의 필름을 제조하고, 필름에 대해 Lambda950(Perkin Elmer사)로 가시광 영역 파장 550nm에서 광투과율을 측정하였다.
경화 수축률(%) 광경화율(%) 광투과율(%) Ohnishi parameter
실시예 1 11.5 96 96.5 2.67
실시예 2 14.9 90 93.3 2.77
실시예 3 9.9 94 93.5 2.63
실시예 4 13.5 93 94.1 2.74
실시예 5 9.8 96 96.2 2.55
비교예 1 21.5 87 89.5 4.17
비교예 2 22.3 78 90.7 4.77
비교예 3 19.8 82 90.1 4.25
비교예 4 18.8 85 91.2 5.83
비교예 5 23.3 90 91.5 4.20
상기 표2를 확인해본 결과 본 발명화합물을 혼합한 조성물인 실시예 1~실시예 5는 낮은 수축율과 높은 광경화율을 가지며, 광투과율에서도 우수한 결과를 확인하였다. 또한 계산된 Ohnishi parameter 값을 통해 높은 플라즈마 저항성을 나타내는 것을 확인 할 수 있었다.
이는 each rate(식각비)와 Ohnishi parameter 상관관계로 설명이 가능한데, Ohnishi parameter 값이 2~7 범위에서 큰 값을 가질수록 빠른 etch rate를 갖으며, 빠른 etch rate 값을 가질수록 기체를 사용하는 조건에서 플라즈마 저항성이 낮아지기 때문이다.
본 발명 화합물을 혼합한 조성물을 사용한 실시예 1~실시예 5의 경우 비교예 1~비교예 5보다 작은 Ohnishi parameter 값을 보여주고 있으며, 이는 비교예보다 본 발명 화합물을 혼합한 조성물이 더 높은 플라즈마 저항성을 갖는 것을 보여주고 있다.
CROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2016년 06월 28일 한국에 출원한 특허출원번호 제 10-2016-0080625 호에 대해 미국 특허법 119(a)조 (35 U.S.C § 119(a))에 따라 우선권을 주장하며, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.

Claims (11)

  1. 상기 화학식 1로 나타내는 1종 이상의 화합물을 포함하는 것을 특징으로 하는 유기전기발광소자용 봉지용 조성물.
    Figure PCTKR2017006764-appb-I000036
    1) a, b, c, d, e, f, g, h는 0 또는 1의 정수이고;
    (여기서, a, b, c, d, e, f, g, h는 서로 같거나 상이할 수 있다.)
    2) X1은 내지 X5는 각각 독립적으로 O, S, NR’및 CR”R”중 하나이며;
    (여기서, R', R"은 서로 독립적으로 C1-C20의 알킬기, C6-C24의 아릴기, C2-C20의 헤테로아릴기 중 하나이며, R' 과 R"은 고리가 형성되어 스파이로 결합을 할 수 있다.)
    3) Ar1,Ar2는 각각 C6-C24의 아릴렌기이며;
    4) R1, R2, R4 및 R5는 C2-C20의 알킬렌기이며;
    5) R3 및 R6는 각각 서로 같거나 상이하고, 수소 및 C1-C20의 알킬기 중 하나이며;
    6) n은 0 또는 1의 정수일 수 있다.
    상기 X1 내지 X5, Ar1, Ar2, R1 내지 R6가 알킬기, 아릴기, 헤테로아릴기, 아릴렌기, 알킬렌기인 경우, 이들 각각은 중수소; 할로겐; C1-C20의 알킬기 또는 C6-C20의 아릴기로 치환 또는 비치환된 실란기; 실록산기; 붕소기; 게르마늄기; 시아노기; 니트로기; C1-C20의 알킬싸이오기; C1-C20의 알콕실기; C1-C20의 알킬기; C2-C20의 알켄일기; C2-C20의 알킨일기; C6-C20의 아릴기; 중수소로 치환된 C6-C20의 아릴기; 플루오렌일기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C20의 헤테로고리기; C3-C20의 시클로알킬기; C7-C20의 아릴알킬기; 및 C8-C20의 아릴알켄일기로 이루어진 군에서 선택된 하나 이상의 치환기로 더욱 치환될 수 있다.
  2. 제 1항에 있어서,
    상기 화학식 1이 하기화학식 2~화학식 6과 같이 나타내는 것을 특징으로 하는 유기전기발광 소자용 봉지용 조성물.
    Figure PCTKR2017006764-appb-I000037
    Figure PCTKR2017006764-appb-I000038
    Figure PCTKR2017006764-appb-I000039
    Figure PCTKR2017006764-appb-I000040
    Figure PCTKR2017006764-appb-I000041
    상기 화학식 2 내지 화학식 6에서,
    n, X1 내지 X5, Ar1, Ar2, R1 내지 R6는 상기 화학식 1에서 정의된 것과 동일하다.
  3. 제 1항에 있어서,
    상기 화학식 1은 하기 화합물 중 하나인 유기전기발광 소자용 봉지용 조성물.
    Figure PCTKR2017006764-appb-I000042
    Figure PCTKR2017006764-appb-I000043
    Figure PCTKR2017006764-appb-I000044
    Figure PCTKR2017006764-appb-I000045
    Figure PCTKR2017006764-appb-I000046
    Figure PCTKR2017006764-appb-I000047
    Figure PCTKR2017006764-appb-I000048
  4. 제 1항에 있어서,
    상기 봉지 조성물은 개시제를 더 포함하는 것을 특징으로 하는 유기전기발광 소자용 봉지조성물.
  5. 제 4항에 있어서,
    화학식 1로 표시되는 화합물 중 서로 상이한 화합물 2종 이상이 혼합되어 있는 것을 특징으로 하는 유기전기발광소자용 봉지용 조성물.
  6. 제 4항에 있어서,
    상기 화학식 1의 1종 이상의 화합물과 하기 화학식 7이 서로 혼합되어 있는 것을 특징으로 하는 유기전기발광소자용 조성물.
    Figure PCTKR2017006764-appb-I000049
    상기 화학식 7에서,
    1) P는 1 내지 20의 정수이고;
    2) X1, X2는 각각 서로 같거나 상이하고, O, S 및 NR' 중 하나이며;
    (여기서, R'은 C1-C20의 알킬기, C6-C24의 아릴기, C2-C20의 헤테로아릴기 중 어느 하나이다.)
    3) Y1, Y2는 각각 서로 같거나 상이하고, C1-C20의 알킬렌기, C6-C24의 아릴렌기, C7-C24의 아릴알킬렌기, C1-C20의 알킬렌옥시기 중 어느 하나이며;
    4) R3 및 R6는 각각 서로 같거나 상이하고, 수소 및 C1-C20의 알킬기 중 하나이며;
    5) R7, R8, R9은 수소, 중수소, 삼중수소, C1-C30의 알킬기, C1-20의 알콕시기, 하이드록시기 중 어느 하나이다.
    상기 X1, X2, Y1, Y2, R3, R6, R7, R8, R9가 알킬기, 아릴기, 헤테로 아릴기, 알킬렌기, 아릴렌기, 아릴알킬렌기, 알킬렌옥시기, 알콕시기, 하이드록시기인 경우, 이들 각각은 중수소; 할로겐; C1-C20의 알킬기 또는 C6-C20의 아릴기로 치환 또는 비치환된 실란기; 실록산기; 붕소기; 게르마늄기; 시아노기; 니트로기; C1-C20의 알킬싸이오기; C1-C20의 알콕실기; C1-C20의 알킬기; C2-C20의 알켄일기; C2-C20의 알킨일기; C6-C20의 아릴기; 중수소로 치환된 C6-C20의 아릴기; 플루오렌일기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C20의 헤테로고리기; C3-C20의 시클로알킬기; C7-C20의 아릴알킬기; 및 C8-C20의 아릴알켄일기로 이루어진 군에서 선택된 하나 이상의 치환기로 더욱 치환될 수 있다.
  7. 제 6항에 있어서,
    상기 화학식 7은 하기 화합물 중 하나인 유기전기발광소자용 조성물.
    Figure PCTKR2017006764-appb-I000050
    Figure PCTKR2017006764-appb-I000051
  8. 제 6항에 있어서,
    상기 화학식 1이 2종 이상일 경우 상기 조성물 중 화학식 1은 고형분 기준으로 50~95중량%(2종 이상의 화합물의 중량 합계 %), 화학식 7은 1~40중량%, 개시제는 0.1~20중량%를 포함하는 유기전기발광소자용 봉지 조성물.
  9. 제 4항에 있어서,
    상기 조성물은 고형분 기준으로 화학식 1이 70~80 중량%이고, 개시제가 0.1~20 중량%를 포함하는 유기전기발광소자용 봉지 조성물.
  10. 장치용 부재; 및
    상기 장치용 부재 상에 배치되며 무기장벽층과 유기장벽층으로 이루어지는 다층장벽층을;을 포함하고,
    상기 유기장벽층은 제 1항 내지 제 9항 중 어느 한 항의 봉지용 조성물로 구성되는 봉지화된 장치.
  11. 제 10항에 있어서,
    상기 무기장벽층은 금속, 금속 산화물, 금속 질화물, 금속 탄화물, 금속 산소질화물, 금속산소붕소화물, 또는 이들의 혼합물을 포함하고, 상기 금속은 실리콘(Si), 알루미늄(Al), 셀레늄(Se), 아연(Zn), 안티몬(Sb), 인듐(In), 게르마늄(Ge), 주석(Sn), 비스무트(Bi), 전이금속, 란탄족 금속 중 하나 이상을 포함하는 봉지화된 장치.
PCT/KR2017/006764 2016-06-28 2017-06-27 유기전기발광소자용 봉지 화합물, 조성물 및 이를 포함하는 봉지화된 장치 WO2018004235A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0080625 2016-06-28
KR1020160080625A KR20180002093A (ko) 2016-06-28 2016-06-28 유기전기발광소자용 봉지 화합물, 조성물 및 이를 포함하는 봉지화된 장치

Publications (1)

Publication Number Publication Date
WO2018004235A1 true WO2018004235A1 (ko) 2018-01-04

Family

ID=60787336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/006764 WO2018004235A1 (ko) 2016-06-28 2017-06-27 유기전기발광소자용 봉지 화합물, 조성물 및 이를 포함하는 봉지화된 장치

Country Status (2)

Country Link
KR (1) KR20180002093A (ko)
WO (1) WO2018004235A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110554584A (zh) * 2018-05-31 2019-12-10 佳能株式会社 电子照相感光构件、处理盒和电子照相设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102669647B1 (ko) * 2018-11-27 2024-05-28 덕산네오룩스 주식회사 유기발광소자용 봉지 화합물, 조성물 및 이를 포함하는 봉지화된 장치
JP7493058B2 (ja) * 2020-11-18 2024-05-30 三井化学株式会社 有機el表示素子用封止材、その硬化物および有機el表示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05255454A (ja) * 1992-03-13 1993-10-05 Hitachi Ltd 光学部品
KR20140089246A (ko) * 2013-01-04 2014-07-14 제일모직주식회사 봉지용 조성물, 이를 포함하는 장벽층 및 이를 포함하는 봉지화된 장치
JP2015081288A (ja) * 2013-10-22 2015-04-27 パナック株式会社 光学用接着剤組成物、光学用接着シート及び光学製品
KR20150123161A (ko) * 2014-04-23 2015-11-03 삼성에스디아이 주식회사 유기발광소자 봉지용 조성물 및 이로부터 제조된 유기발광소자 표시장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05255454A (ja) * 1992-03-13 1993-10-05 Hitachi Ltd 光学部品
KR20140089246A (ko) * 2013-01-04 2014-07-14 제일모직주식회사 봉지용 조성물, 이를 포함하는 장벽층 및 이를 포함하는 봉지화된 장치
JP2015081288A (ja) * 2013-10-22 2015-04-27 パナック株式会社 光学用接着剤組成物、光学用接着シート及び光学製品
KR20150123161A (ko) * 2014-04-23 2015-11-03 삼성에스디아이 주식회사 유기발광소자 봉지용 조성물 및 이로부터 제조된 유기발광소자 표시장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIN, S.-H. ET AL.: "Synthesis of Ultraviolet Curable Encapsulating Adhesives and Their Package Applications for Organic Optoelectronic Devices", SOLID STATE SCIENCES, vol. 13, no. 10, 2 August 2011 (2011-08-02), pages 1889 - 1895, XP028391190 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110554584A (zh) * 2018-05-31 2019-12-10 佳能株式会社 电子照相感光构件、处理盒和电子照相设备

Also Published As

Publication number Publication date
KR20180002093A (ko) 2018-01-08

Similar Documents

Publication Publication Date Title
WO2016204398A1 (ko) 유기발광표시장치
WO2016204399A1 (ko) 유기발광표시장치
WO2011055933A9 (ko) 유기광전소자용 조성물, 이를 이용한 유기광전소자 및 이를 포함하는 표시장치
WO2015083948A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2017105078A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2014104522A1 (ko) 봉지용 조성물, 이를 포함하는 장벽층 및 이를 포함하는 봉지화된 장치
WO2017052129A1 (ko) 유기전기소자용 신규 화합물, 이를 이용한 유기전기소자 및 그 전자장치
WO2014142472A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2016056757A2 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2014003336A1 (ko) 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2011037429A2 (ko) 아릴 고리가 축합된 복소환 5원자고리 유도체를 가지는 화합물 및 이를 이용한 유기전기소자, 그 단말
WO2014148717A1 (ko) 광경화 조성물 및 이를 포함하는 봉지화된 장치
WO2013055132A2 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2016204400A1 (ko) 유기발광표시장치
WO2019017630A1 (ko) 유기발광소자 봉지용 조성물 및 이로부터 제조된 유기발광소자 표시장치
WO2017069392A2 (ko) 유기발광소자 봉지용 조성물 및 이로부터 제조된 유기발광소자 표시장치
WO2018169261A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2011108901A2 (ko) 스파이로 골격을 포함하는 스파이로 카바졸 화합물 및 이를 이용한 유기전자소자, 그 단말
WO2017039228A1 (ko) 유기발광소자 봉지용 조성물 및 이로부터 제조된 유기발광소자 표시장치
WO2015030469A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2018131877A1 (ko) 지연형광 화합물 및 이를 이용한 유기전기소자 및 그 전자 장치
WO2018004235A1 (ko) 유기전기발광소자용 봉지 화합물, 조성물 및 이를 포함하는 봉지화된 장치
WO2021210898A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2016013817A2 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2014178497A1 (ko) 광경화 조성물 및 이를 포함하는 봉지화된 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17820511

Country of ref document: EP

Kind code of ref document: A1