WO2018003776A1 - 二連式の光コネクタプラグ及び二連式の光コネクタプラグの極性変換方法並びにフェルール研磨方法 - Google Patents

二連式の光コネクタプラグ及び二連式の光コネクタプラグの極性変換方法並びにフェルール研磨方法 Download PDF

Info

Publication number
WO2018003776A1
WO2018003776A1 PCT/JP2017/023507 JP2017023507W WO2018003776A1 WO 2018003776 A1 WO2018003776 A1 WO 2018003776A1 JP 2017023507 W JP2017023507 W JP 2017023507W WO 2018003776 A1 WO2018003776 A1 WO 2018003776A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical connector
gear
casing
rotation
plug
Prior art date
Application number
PCT/JP2017/023507
Other languages
English (en)
French (fr)
Inventor
平 淳司
正幸 地引
洋平 高石
則匡 新井
Original Assignee
株式会社精工技研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社精工技研 filed Critical 株式会社精工技研
Priority to CN201780001762.5A priority Critical patent/CN107801412B/zh
Priority to US15/828,443 priority patent/US10042126B2/en
Priority to US15/828,441 priority patent/US10042129B2/en
Publication of WO2018003776A1 publication Critical patent/WO2018003776A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3863Details of mounting fibres in ferrules; Assembly methods; Manufacture fabricated by using polishing techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2726Optical coupling means with polarisation selective and adjusting means in or on light guides, e.g. polarisation means assembled in a light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/381Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres
    • G02B6/3825Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres with an intermediate part, e.g. adapter, receptacle, linking two plugs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/381Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres
    • G02B6/3826Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres characterised by form or shape
    • G02B6/3831Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres characterised by form or shape comprising a keying element on the plug or adapter, e.g. to forbid wrong connection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3874Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls using tubes, sleeves to align ferrules
    • G02B6/3878Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls using tubes, sleeves to align ferrules comprising a plurality of ferrules, branching and break-out means
    • G02B6/3879Linking of individual connector plugs to an overconnector, e.g. using clamps, clips, common housings comprising several individual connector plugs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3885Multicore or multichannel optical connectors, i.e. one single ferrule containing more than one fibre, e.g. ribbon type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/389Dismountable connectors, i.e. comprising plugs characterised by the method of fastening connecting plugs and sockets, e.g. screw- or nut-lock, snap-in, bayonet type
    • G02B6/3893Push-pull type, e.g. snap-in, push-on
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12166Manufacturing methods
    • G02B2006/12197Grinding; Polishing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3897Connectors fixed to housings, casing, frames or circuit boards
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3898Tools, e.g. handheld; Tuning wrenches; Jigs used with connectors, e.g. for extracting, removing or inserting in a panel, for engaging or coupling connectors, for assembling or disassembling components within the connector, for applying clips to hold two connectors together or for crimping

Definitions

  • the present invention relates to a duplex optical connector plug and a polarity conversion method for converting the polarity of the duplex optical connector plug. Furthermore, the present invention relates to a ferrule polishing method for obliquely polishing first and second ferrules of a duplex optical connector plug.
  • a duplex optical fiber connector having two optical connector assemblies arranged in the lateral direction and capable of independently rotating the optical connector assemblies in opposite directions is disclosed (see US 8,152,385 B2).
  • the duplex optical fiber connectors can change the polarities of the optical connector assemblies by rotating the optical connector assemblies separately 180 degrees in opposite directions.
  • an optical fiber connector having two outer housings arranged in a lateral direction and ferrule holders housed in the outer housings, keys are formed in the outer housings, and key slots are formed in the ferrule holders.
  • the ferrule holder can be rotated 90 degrees with respect to the outer housing, and the ferrule can be simultaneously obliquely polished by rotating the ferrule holder 90 degrees.
  • the optical fiber connector disclosed in US 7,150,567 B1 is a ferrule holder in which the key and the key slot are released by pushing the ferrule holder in the axial direction of the outer housing against the biasing force of the spring.
  • the first premise of the present invention for solving the above-mentioned problems is a first plug frame that holds the first optical fiber and accommodates the first ferrule extending in the axial direction, and a first stop that engages the first plug frame.
  • a first optical connector assembly having a first spring installed between the ring, the first ferrule and the first stop ring and biasing the first ferrule axially forward; and holding the second optical fiber in the axial direction
  • a second plug frame that accommodates a second ferrule extending to the second plug ring, a second stop ring that engages with the second plug frame, and a second ferrule that is installed between the second ferrule and the second stop ring and attached to the front in the axial direction.
  • a duplex optical connector plug including a second optical connector assembly having a second spring to be biased and parallel to the first optical connector assembly.
  • the duplex optical connector plug includes one of the first and second optical connector assemblies.
  • the other optical connector assembly When rotating around the axis, the other optical connector assembly is rotated in the same direction as the one optical connector assembly around the axis.
  • the first gear extending in the axial direction is formed at the rear end of the first stop ring, and the second gear extending in the axial direction is the rear end of the second stop ring.
  • a double-type optical connector plug is interposed between the first gear and the second gear, extends in the axial direction, circumscribes the first and second gears, and the first and second gears.
  • An intermediate gear that rotates the other gear in the same direction as the one gear while transmitting the rotational force of one of the gears to the other gear.
  • the duplex optical connector plug is an optical connector assembly of one of the first and second optical connector assemblies.
  • a gear that transmits a rotational force to the other optical connector assembly, and the duplex optical connector plug has a gear when one of the first and second optical connector assemblies rotates about its axis.
  • the other optical connector assembly is rotated about its axis in conjunction with the rotation of one optical connector assembly.
  • a gear is formed at the rear end of the first stop ring and extends in the axial direction, and at the rear end of the second stop ring.
  • a second gear that is formed and extends in the axial direction, extends between the first gear and the second gear, extends in the axial direction, circumscribes the first and second gears, and includes the first gear and the second gear.
  • the intermediate gear is configured to rotate the other gear in the same direction as the one gear while transmitting the rotational force of the one gear to the other gear.
  • the duplex optical connector plug has a gear ratio of 1 to the first gear, the second gear, and the intermediate gear.
  • the duplex optical connector plug includes a rear end portion of a first stop ring that forms a first gear and a second stop that forms a second gear.
  • a first casing that houses a rear end portion of the ring and an intermediate gear, and the first casing includes a first gear housing portion that rotatably accommodates a rear end portion of the first stop ring, and a second stop ring.
  • a second gear housing portion that rotatably accommodates the end portion, and an intermediate gear housing portion that is positioned between the first and second gear housing portions and rotatably accommodates the intermediate gear.
  • the duplex optical connector plug includes a rotation angle regulating means for regulating a rotation angle of at least one of the first and second optical connector assemblies.
  • the first casing has a first opening that opens at a front end thereof and passes through the first stop ring; and a second opening that passes through the second stop ring;
  • a rotation restricting convex portion that is formed in at least one of the two openings and protrudes inward in the radial direction of the opening, and is formed on at least one of the peripheral surfaces of the first and second stop rings and radially outward of the peripheral surface
  • the first and second optical connector assemblies are prevented from rotating by the abutment projections coming into contact with the rotation regulating projections.
  • Regulated by rotation angle regulating means The first and the rotation range to the rotation ending the rotation starting point of the second optical connector assembly is a half turn.
  • the duplex optical connector plug includes a rotation angle regulating means for regulating a rotation angle of at least one of the first and second optical connector assemblies.
  • a rotation angle restricting means is formed on at least one of the first gear and the second gear and protrudes outward in the radial direction of the gear, the first gear housing portion of the first casing, and the second gear A rotation restricting protrusion that is formed on at least one of the two gear receiving portions and protrudes radially inward of the receiving portion.
  • the contact protrusion is a rotation restricting protrusion. The rotation of the first and second optical connector assemblies is blocked by the contact, and the rotation range from the rotation start point to the rotation end point of the first and second optical connector assemblies regulated by the rotation angle regulating means is a half rotation. .
  • the duplex optical connector plug includes a second casing that accommodates the first casing in the axial direction, and the second casing opens at a front end thereof. Front end opening and axially extending from the top wall of the second casing, exposed axially forward from the front end opening, and detachable from the optical connector adapter when the first and second connector assemblies are inserted into the optical connector adapter And an engagement latch for maintaining the inserted state of the first and second connector assemblies with respect to the optical connector adapter.
  • the second casing has the top wall opposed to the top wall of the first casing and the bottom wall of the first casing opposed to the bottom wall.
  • the first casing can be accommodated in the state, or the first casing is accommodated with the bottom wall of the first casing facing the top wall and the top wall of the first casing facing the bottom wall. Is possible.
  • the duplex optical connector plug is located axially rearward of the second casing and is slidably coupled to the second casing in the axial direction.
  • the engagement state of the engagement latch with respect to the optical connector adapter is maintained before the slider is slid rearward in the axial direction with respect to the second casing.
  • the slider pushes the engagement latch downward, and the engagement state of the engagement latch with the optical connector adapter is released.
  • the slider can slide in the axial direction on the upper surface of the engagement latch, and gradually inclines downward from the front end of the slider toward the rear in the axial direction.
  • a duplex optical connector plug having a sliding top wall with a slope when the slider is slid axially rearward with respect to the second casing, the slope of the sliding top wall causes the engagement latch to move downward. Press down.
  • the second premise of the present invention for solving the above-mentioned problems is that a first plug frame that holds the first optical fiber and accommodates the first ferrule extending in the axial direction, and a first stop engaged with the first plug frame.
  • a first optical connector assembly having a first spring installed between the ring, the first ferrule and the first stop ring and biasing the first ferrule axially forward; and holding the second optical fiber in the axial direction
  • a second plug frame that accommodates a second ferrule extending to the second plug ring, a second stop ring that engages with the second plug frame, and a second ferrule that is installed between the second ferrule and the second stop ring and attached to the front in the axial direction.
  • one of the first and second optical connector assemblies rotates from the rotation start point about its axis.
  • the other optical connector assembly is rotated halfway from the rotation start point to the rotation end point in the same direction as the one optical connector assembly about the axis, and thereby The polarity of the optical connector plug is to be converted.
  • a first gear extending in the axial direction is formed at the rear end portion of the first stop ring, and the axial direction is formed at the rear end portion of the second stop ring.
  • a second gear extending in the direction is formed, an intermediate gear extending between the first gear and the second gear and extending in the axial direction circumscribes the first and second gears, and the polarity conversion method uses the intermediate gear.
  • the connector assembly By transmitting the rotational force of one of the first gear and the second gear to the other gear and rotating the one gear and the other gear half-turn in the same direction, the first and second light
  • the connector assembly rotates half a turn from the rotation start point to the rotation end point, and the polarity of the duplex optical connector plug is converted.
  • the duplex optical connector plug has a rotational force of one of the first and second optical connector assemblies on the other side.
  • the optical connector assembly includes a gear that transmits to the optical connector assembly, and the polarity conversion method includes: when the optical connector assembly of one of the first and second optical connector assemblies is rotated half a turn from the rotation start point to the rotation end point about the axis; In conjunction with the rotation of one optical connector assembly, the other optical connector assembly is rotated half a turn from the rotation start point to the rotation end point about the axis, thereby converting the polarity of the duplex optical connector plug. is there.
  • a gear is formed at the rear end portion of the first stop ring and extends in the axial direction
  • the shaft is formed at the rear end portion of the second stop ring.
  • a second gear extending in the direction, extending between the first gear and the second gear, extending in the axial direction and circumscribing the first and second gears, and one of the first and second gears
  • An intermediate gear that rotates the other gear in the same direction as the one gear while transmitting the rotational force of the first gear to the other gear.
  • the first and second optical connector assemblies are rotated from the rotation start point to the rotation end point by rotating the one gear and the other gear in half in the same direction while transmitting the rotational force of one of the gears to the other gear. Rotate half turn until the polarity of the duplex optical connector plug is converted .
  • a duplex optical connector plug As another example of the polarity conversion method of the present invention, a duplex optical connector plug, a first gear housing portion that rotatably accommodates the rear end portion of the first stop ring on which the first gear is formed, A second gear accommodating portion that rotatably accommodates the rear end portion of the second stop ring formed with the second gear, and an intermediate gear that is rotatably located between the first and second gear accommodating portions.
  • a first casing having an intermediate gear housing portion, and a first and second gear housed in the first and second gear housing portions using the intermediate gear housed in the intermediate gear housing portion in the polarity conversion method.
  • the first and second optical connector assemblies are rotated from the rotation start point by rotating the one gear and the other gear in half in the same direction while transmitting the rotational force of one of the gears to the other gear. Rotate half turn to end point, double optical connector plastic Polarity of is conversion.
  • the duplex optical connector plug includes a rotation angle restricting means for restricting a rotation angle of at least one of the first and second optical connector assemblies.
  • the casing has a first opening that opens at the front end thereof and passes through the first stop ring, and a second opening that passes through the second stop ring, and the rotation angle restricting means includes the first and second openings.
  • a rotation restricting convex portion that is formed on at least one of the first and second stop rings and is convex outward in the radial direction of the peripheral surface.
  • the first and second optical connectors are prevented from rotating by the contact convex portion contacting the rotation restricting convex portion. Assembly rotation range is half-turn It has been control.
  • the duplex optical connector plug includes a rotation angle restricting means for restricting a rotation angle of at least one of the first and second optical connector assemblies.
  • the restricting means is formed on at least one peripheral surface of the first gear and the second gear, and comes into contact with a convex portion protruding radially outward of the gear, the first gear housing portion of the first casing, and the second gear. It is formed from a rotation restricting convex portion that is formed on at least one of the gear accommodating portion and protrudes radially inward of the accommodating portion, and in the polarity conversion method, the abutting convex portion abuts on the rotation restricting convex portion. The rotation of the first and second optical connector assemblies is blocked, and the rotation range of the first and second optical connector assemblies is restricted to half rotation.
  • the duplex optical connector plug includes a second casing that accommodates the first casing in the axial direction, and the second casing has a front end opening that opens to the front end thereof;
  • the second casing extends axially from the top wall of the second casing and is exposed axially forward from the front end opening.
  • the first and second connector assemblies are detachably engaged with the optical connector adapter when inserted into the optical connector adapter. And an engagement latch for maintaining the insertion state of the first and second connector assemblies with respect to the optical connector adapter.
  • the second casing has a first wall in a state where the top wall of the first casing faces the top wall and the bottom wall of the first casing faces the bottom wall.
  • the casing can be accommodated, or the first casing can be accommodated with the bottom wall of the first casing facing the top wall and the top wall of the first casing facing the bottom wall.
  • the polarity conversion method is a method in which the first casing is pulled out from the second casing in the axial direction, and one of the first and second optical connector assemblies is moved to By rotating the second optical connector assembly about the axis from the rotation start point to the rotation end point, the other optical connector assembly is rotated about the axis from the rotation start point to the rotation end point, and the second casing is rotated half a rotation.
  • the first casing is accommodated in the second casing such that the bottom wall of the first casing faces the top wall of the two casings and the top wall of the first casing faces the bottom wall of the second casing, thereby providing a duplex system.
  • the polarity of the optical connector plug can be converted.
  • the third premise of the present invention for solving the above-mentioned problems is that a first plug frame that holds the first optical fiber and accommodates the first ferrule extending in the axial direction, and a first stop engaged with the first plug frame.
  • a first optical connector assembly having a first spring installed between the ring, the first ferrule and the first stop ring and biasing the first ferrule axially forward; and holding the second optical fiber in the axial direction
  • a second plug frame that accommodates a second ferrule extending to the second plug ring, a second stop ring that engages with the second plug frame, and a second ferrule that is installed between the second ferrule and the second stop ring and attached to the front in the axial direction.
  • the first and second ferrules of the duplex optical connector plug having the second spring to be biased and the second optical connector assembly parallel to the first optical connector assembly are inclined.
  • the ferrule polishing method is characterized in that one of the first and second optical connector assemblies is rotated by a quarter of the rotation starting point about the axis thereof. Then, in conjunction with this, the other optical connector assembly rotates about 1 ⁇ 4 from the rotation starting point in the same direction as the one optical connector assembly around the axis, and the first and second optical connector plugs are used from the first use state.
  • the first and second ferrules are simultaneously obliquely polished using an optical fiber ferrule polishing machine in a state where the second optical connector assembly is rotated 1/4.
  • a first gear extending in the axial direction is formed at the rear end of the first stop ring, and at the rear end of the second stop ring.
  • a second gear extending in the axial direction is formed, an intermediate gear extending between the first gear and the second gear and extending in the axial direction circumscribes the first and second gears.
  • the rotational force of one gear is transmitted to the other gear while rotating the one gear and the other gear in the same direction by a quarter turn.
  • the second ferrule is obliquely polished simultaneously.
  • the duplex optical connector plug includes a first gear housing portion that rotatably houses a rear end portion of the first stop ring on which the first gear is formed, A second gear accommodating portion that rotatably accommodates the rear end portion of the second stop ring formed with the second gear, and an intermediate gear that is rotatably located between the first and second gear accommodating portions.
  • the first and second gears are provided with a first casing having an intermediate gear accommodating portion, and the ferrule polishing method is accommodated in the first and second gear accommodating portions using the intermediate gear accommodated in the intermediate gear accommodating portion.
  • One gear and the other gear are rotated 1/4 in the same direction while transmitting the rotational force of one of the gears to the other gear, and the first and second ferrules are simultaneously obliquely polished in that state. .
  • the duplex optical connector plug of the present invention when one of the first and second optical connector assemblies rotates about its axis, the other optical connector assembly is centered on the axis. Therefore, it is possible to rotate the other connector assembly simply by rotating one of the first and second optical connector assemblies.
  • the duplex optical connector plug when one optical connector assembly is rotated, the other connector assembly is rotated. Therefore, the first and second optical connector assemblies can be rotated by one rotation operation (one action). Therefore, it is possible to save labor and time as compared with the case where these optical connector assemblies are rotated separately.
  • the duplex optical connector plug When the optical connector assembly of one of the first and second optical connector assemblies rotates clockwise or counterclockwise about the axis, the duplex optical connector plug is interlocked with the other optical connector assembly. Since the connector assembly rotates about the axis in the same clockwise or counterclockwise direction as one of the optical connector assemblies, it is only necessary to rotate one of the first and second optical connector assemblies. The other connector assembly can be simultaneously rotated in the same direction as the one optical connector assembly. In the duplex optical connector plug, since the first and second optical connector assemblies rotate simultaneously in the same direction, the first and second optical connector assemblies can be rotated simultaneously by one rotation operation (one action). Therefore, it is possible to save labor and time as compared with the case where these optical connector assemblies are rotated separately.
  • the first gear extending in the axial direction is formed at the rear end portion of the first stop ring
  • the second gear extending in the axial direction is formed at the rear end portion of the second stop ring
  • It is interposed between one gear and the second gear extends in the axial direction, circumscribes the first and second gears, and transmits the rotational force of one of the first and second gears to the other gear.
  • the duplex optical connector plug in which the gear ratio of the first gear, the second gear, and the intermediate gear is 1, and the gear ratio of these gears is set to 1, so that the first and second optical connector assemblies
  • the other optical connector assembly rotates at the same rotation angle as one optical connector assembly, and the first and second optical connector assemblies rotate.
  • the rotation range from the start point to the rotation end point can be made the same, and by rotating one optical connector assembly, the other optical connector assembly can be rotated to the same position as one optical connector assembly.
  • a first casing that houses a rear end portion of a first stop ring that forms a first gear, a rear end portion of a second stop ring that forms a second gear, and an intermediate gear, the first casing being a first stop ring
  • a first gear receiving portion that rotatably accommodates the rear end portion of the second stop ring, a second gear accommodating portion that rotatably accommodates the rear end portion of the second stop ring, and the first and second gear accommodating portions;
  • the duplex optical connector plug having an intermediate gear receiving portion for rotatably receiving the intermediate gear, one of the first and second optical connector assemblies is rotated clockwise or counterclockwise.
  • the rotational force is transmitted from one gear of the first and second gears rotatably accommodated in the first and second gear accommodating portions to the other through the intermediate gear accommodated rotatably in the intermediate gear accommodating portion. Is transmitted to the gears From, by using a gear rotatably accommodated in their housing part, it can be rotated simultaneously the other connector assembly to one of the optical connector assembly in the same direction.
  • Rotation angle restricting means for restricting the rotation angle of at least one of the first and second optical connector assemblies, and from the rotation start point to the rotation end point of the first and second optical connector assemblies restricted by the rotation angle restriction means.
  • the duplex optical connector plug having a rotation range of half rotation is configured to restrict the rotation range from the rotation start point to the rotation end point of the first and second optical connector assemblies to half rotation by the rotation angle restriction means, for example, When converting the polarity of a duplex optical connector plug, the polarity conversion can be performed reliably and accurately by stopping the rotation at a position where the optical connector assembly is rotated by half a clockwise rotation.
  • the optical connector assembly By rotating the optical connector assemblies that have been rotated half-clockwise in the clockwise direction by half-turning in the counterclockwise direction, it is possible to reliably and accurately form a duplex system. It is possible to return the polarity of the connector plug.
  • the optical connector assembly can be prevented from rotating indefinitely, and the optical fiber can be prevented from being twisted.
  • the first casing has a first opening that opens at the front end thereof and passes through the first stop ring, and a second opening that passes through the second stop ring, and the rotation angle is restricted.
  • the means is formed on at least one of the first and second openings, and is provided on a rotation restricting protrusion that protrudes radially inward of the opening and at least one peripheral surface of the first and second stop rings. The first and second optical connector assemblies are prevented from rotating by the contact protrusions coming into contact with the rotation restricting protrusions.
  • the rotation angle of the optical connector assembly is regulated by using the rotation restricting convex portion that protrudes radially inward of the opening and the contact convex portion that protrudes radially outward of the peripheral surface.
  • Postcard for example, from the rotation start point of those optical connector assemblies When setting the range of rotation of up to rolling endpoint half rotation, it is possible to accurately half turn rotation range to the rotation ending the rotation starting point of these optical connector assembly.
  • the rotation angle restricting means is formed on at least one of the first gear and the second gear and protrudes radially outward of the gear, and the first casing
  • a rotation restricting protrusion formed on at least one of the first gear receiving portion and the second gear receiving portion and projecting radially inward of the receiving portion is formed, and the abutting protrusion contacts the rotation restricting protrusion. Since the rotation of the first and second optical connector assemblies is prevented by the contact, the abutment convex portion that protrudes radially outward of the gear and the rotation that protrudes radially inward of the peripheral surface of the gear housing portion
  • the rotation angle of these optical connector assemblies can be restricted by using the restricting convex portion. For example, when the rotation range from the rotation start point to the rotation end point of these optical connector assemblies is set to half rotation, these optical connectors are used. From assembly rotation start point to rotation end point The rotation range can be precisely half turn.
  • a second casing that accommodates the first casing in the axial direction, the second casing extending in the axial direction from the front end opening that opens to the front end of the first casing and the top wall of the second casing, and is exposed axially forward from the front end opening;
  • An engagement latch that removably engages the optical connector adapter when the first and second optical connector assemblies are inserted into the optical connector adapter and maintains the insertion state of the first and second optical connector assemblies with respect to the optical connector adapter.
  • the two-stage optical connector plug having the above-mentioned structure maintains the insertion state of each stop ring of the optical connector plug with respect to the optical connector adapter by using an engagement latch extending in the axial direction from the top wall of the second casing.
  • the optical connection state of the first and second optical fibers to the optical fiber of the optical connector can be maintained. Further, if the engagement latch is installed in the first and second plug frames of the first and second optical connector assemblies, the engagement latch becomes an obstacle and the optical connector assemblies cannot be rotated in the same direction. However, since the engagement latch is installed on the top wall of the second casing, the optical connector assemblies can be rotated in the same direction without disturbing the engagement latch.
  • the second casing can accommodate the first casing in a state where the top wall of the first casing faces the top wall and the bottom wall of the first casing faces the bottom wall of the second casing.
  • a duplex optical connector plug capable of accommodating the first casing in a state where the bottom wall of the first casing faces the top wall and the top wall of the first casing faces the bottom wall is, for example, a duplex
  • the polarity of the optical connector plug can be converted by rotating either the first or second optical connector assembly, and the first casing is turned upside down In the second casing, the polarity of the duplex optical connector plug can be converted.
  • the slider includes a slider positioned axially rearward of the second casing and slidably connected to the second casing in the axial direction, and is engaged with the second casing before the slider is slid axially rearward.
  • the slider pushes the engagement latch downward to engage the engagement latch with the optical connector adapter.
  • the double-type optical connector plug is released by sliding the slider axially rearward with respect to the second casing, so that the slider pushes the engagement latch downward, and the engagement latch engages with the optical connector adapter. Since the state is released, the optical connector can be simply moved by sliding the slider back in the axial direction. Can be pulled out of their optical connector assembly of the optical connector plug from the descriptor, the insertion state of the optical connector adapter of the first and second optical connector assembly can be easily released.
  • the slider is slidable in the axial direction on the upper surface of the engagement latch, and has a sliding top wall with a slope that gradually slopes downward from the front end of the slider toward the rear in the axial direction.
  • the slope of the sliding top wall pushes the engagement latch downward. Pushes down the engagement latch gradually, and the engagement state of the engagement latch with respect to the optical connector adapter is released.
  • the first and second optical connector assemblies can be easily released from being inserted into the optical connector adapter. Door can be.
  • one of the first and second optical connector assemblies is rotated half a turn from the rotation start point to the rotation end point about the axis. Then, the polarity of the duplex optical connector plug is converted by rotating the other optical connector assembly about the axis from the rotation start point to the rotation end point, so that the rotation operation (one action) can be performed once.
  • the polarity of the optical connector plug can be converted, and the time and effort for the polarity conversion can be saved compared with the case where the optical connector assembly is rotated separately to convert the polarity of the optical connector plug.
  • the polarity conversion method of the duplex optical connector plug is such that when one of the first and second optical connector assemblies rotates halfway from the rotation start point to the rotation end point around the axis, The optical connector assembly of the first and second optical connector assemblies is rotated halfway from the rotation start point to the rotation end point in the same direction as the one optical connector assembly about the axis.
  • the polarity of the duplex optical connector plug can be converted simply by rotating.
  • the polarity conversion method since the first and second optical connector assemblies rotate simultaneously in the same direction, the polarity of the duplex optical connector plug can be converted by one rotation operation (one action). Compared with the case where the connector assembly is rotated separately to convert the polarity of the optical connector plug, it is possible to save labor and time for polarity conversion.
  • a first gear extending in the axial direction is formed at the rear end portion of the first stop ring, and a second gear extending in the axial direction is formed at the rear end portion of the second stop ring.
  • An intermediate gear formed between the first gear and the second gear and extending in the axial direction circumscribes the first and second gears, and uses the intermediate gear to select one of the first and second gears.
  • One gear connector assembly of the first and second optical connector assemblies can be rotated by half rotation in the same direction while transmitting the rotational force of the other gear to the other gear. Is rotated clockwise or counterclockwise, the rotational force is transmitted from one gear of the first and second gears to the other gear via the intermediate gear.
  • the other connector assembly The connector assembly in the same direction can be half turn rotate simultaneously, it is possible to convert the polarity of the optical connector plug of duplex in one rotational operation.
  • a first gear receiving portion that rotatably accommodates the rear end portion of the first stop ring in which the first gear is formed, and a second gear portion that rotatably accommodates the rear end portion of the second stop ring in which the second gear is formed.
  • a first casing having a two-gear housing portion and an intermediate gear housing portion that is positioned between the first and second gear housing portions and rotatably accommodates the intermediate gear; One gear and the other gear are made the same while transmitting the rotational force of one of the first and second gears accommodated in the first and second gear accommodating portions to the other gear using the gears.
  • the first and second optical connector assemblies When one of the optical connector assemblies is rotated in the clockwise direction or the counterclockwise direction, one of the first and second gears whose rotational force is rotatably accommodated in the first and second gear accommodating portions. Is transmitted to the other gear via the intermediate gear rotatably accommodated in the intermediate gear accommodating portion, so that the other connector assembly can be connected to the other gear assembly by utilizing the gear rotatably accommodated in the accommodating portion.
  • the optical connector assembly can be rotated by half a turn simultaneously in the same direction as the optical connector assembly, and the polarity of the duplex optical connector plug can be converted by a single rotation operation.
  • Rotation angle restricting means for restricting the rotation angle of at least one of the first and second optical connector assemblies, and from the rotation start point to the rotation end point of the first and second optical connector assemblies using the rotation angle restriction means.
  • the rotation range from the rotation start point to the rotation end point of the first and second optical connector assemblies is made half rotation by the rotation angle restriction means. Because it regulates, the polarities of the duplex optical connector plugs can be converted reliably and accurately by stopping the rotation of the optical connector assembly at the position where it is rotated half-clockwise in the clockwise direction. Double optical connector plugs reliably and accurately by rotating these optical connector assemblies that have been rotated halfway in the counterclockwise direction by half rotation in the counterclockwise direction It is possible to return the polarity.
  • the first casing has a first opening that opens at the front end thereof and passes through the first stop ring, and a second opening that passes through the second stop ring.
  • the rotation angle restricting means is formed in at least one of the first and second openings and is protruded radially inward of the opening; and at least one circumference of the first and second stop rings.
  • the first and second optical connector assemblies are rotated by abutting projections that are formed on the surface and projecting radially outwardly on the peripheral surface, and the abutment projections abut against the rotation restricting projections.
  • the rotation restricting convex portion that protrudes radially inward of the opening and the radially outward protrusion of the peripheral surface can be used by using The rotation angle of the optical connector plug can be accurately regulated to half rotation, and the rotation of the optical connector assembly is stopped at the position rotated by half rotation clockwise, so that the polarity of the duplex optical connector plug can be reliably and accurately
  • the polarities of the duplex optical connector plugs can be reliably and accurately restored by rotating the optical connector assemblies that have been rotated half-clockwise in the counterclockwise direction by half-rotating in the counterclockwise direction. .
  • the polarity conversion method for the duplex optical connector plug is such that the rotation angle restricting means is formed on at least one peripheral surface of the first gear and the second gear and protrudes radially outward of the gear. Formed on at least one of the first gear housing portion and the second gear housing portion of the first casing, and a rotation restricting convex portion that is convex inward in the radial direction of the housing portion.
  • the first and second optical connector assemblies are prevented from rotating by contacting the rotation restricting convex portion, and the rotation range of the first and second optical connector assemblies is restricted to half rotation.
  • the rotation angle of the optical connector assembly is accurately regulated to half rotation by utilizing the contact convex portion that protrudes in the direction and the rotation restricting convex portion that protrudes inward in the radial direction of the circumferential surface of the gear housing portion. At the position rotated half-clockwise in the clockwise direction. By stopping the rotation of the connector assembly, the polarity of the duplex optical connector plug can be converted reliably and accurately, and those optical connector assemblies that have been rotated clockwise by half a turn are counterclockwise. By rotating and rotating, the polarity of the duplex optical connector plug can be reliably and accurately returned.
  • a second casing that accommodates the first casing in the axial direction, the second casing extending in the axial direction from the front end opening that opens to the front end of the first casing and the top wall of the second casing, and is exposed axially forward from the front end opening;
  • An engagement latch that removably engages the optical connector adapter when the first and second connector assemblies are inserted into the optical connector adapter and maintains the insertion state of the first and second connector assemblies with respect to the optical connector adapter;
  • the method of converting the polarity of the duplex optical connector plug having the optical connector plug maintains the insertion state of each stop ring of the optical connector plug with respect to the optical connector adapter by using an engagement latch extending in the axial direction from the top wall of the second casing.
  • First and second optical fibers for the optical fiber of the optical connector before or after the polarity conversion can be maintained in the optical connection state. Further, if the engagement latch is installed in the first and second plug frames of the first and second optical connector assemblies, the engagement latch becomes an obstacle and the optical connector assemblies cannot be rotated in the same direction. However, since the engagement latch is installed on the top wall of the second casing, the optical connector assembly can be rotated in the same direction without interfering with the engagement latch. Can be reliably converted.
  • the second casing can accommodate the first casing in a state where the top wall of the first casing faces the top wall and the bottom wall of the first casing faces the bottom wall of the second casing.
  • the first casing can be accommodated with the bottom wall of the first casing facing the top wall and the top wall of the first casing facing the bottom wall, thereby converting the polarity of the optical connector plug.
  • the method of converting the polarity of the duplex optical connector plug that can be used not only can change the polarity of the optical connector assembly by rotating any one of the first and second optical connector assemblies, By accommodating the second casing in an inverted state, the polarity of the duplex optical connector plug can be converted.
  • the first casing is pulled out axially forward from the second casing, and one optical connector assembly of the first and second optical connector assemblies is rotated half a turn from the rotation start point to the rotation end point around the axis.
  • the optical connector assembly is rotated halfway from the rotation start point to the rotation end point about the axis thereof, and the second casing is rotated by half rotation.
  • the bottom wall of the first casing faces the top wall of the second casing and the second casing is rotated second.
  • a duplex optical connector in which the first casing is accommodated in the second casing so that the top wall of the first casing faces the bottom wall of the casing and thereby the polarity of the duplex optical connector plug can be changed.
  • a method for changing the polarity of a plug includes rotating one of a first optical connector assembly and a second optical connector assembly to rotate the poles of the optical connector assemblies. Not only can convert, by accommodating the second casing in a state where the first casing is turned upside down, it is possible to convert the polarity of the optical connector plug of duplex.
  • the first and second optical connector assemblies are rotated by a quarter of the first and second optical connector assemblies from the use state of the duplex optical connector plug. Since two ferrules are obliquely polished simultaneously using an optical fiber ferrule polishing machine, it is possible to save labor and time by separately obliquely polishing the first and second ferrules, and the ferrules are obliquely polished quickly and efficiently. can do.
  • the ferrule polishing method when one optical connector assembly of the first and second optical connector assemblies rotates about a quarter of the rotation starting point from the rotation start point, the other optical connector assembly is linked with the center of the rotation. In this case, the first and second optical connector assemblies are simultaneously rotated in the same direction by 1/4 in one rotation operation (one action) in the same direction as one of the optical connector assemblies.
  • the first and second ferrules can be obliquely polished simultaneously using an optical fiber ferrule polishing machine.
  • the ferrule polishing method can save time and effort by rotating the first and second optical connector assemblies separately to polish the first and second ferrules obliquely separately, and quickly and efficiently obliquely tilt the ferrules. Can be polished.
  • a first gear extending in the axial direction is formed at the rear end portion of the first stop ring, and a second gear extending in the axial direction is formed at the rear end portion of the second stop ring, between the first gear and the second gear.
  • An intermediate gear that extends in the axial direction through the shaft circumscribes the first and second gears, and transmits the rotational force of one of the first and second gears to the other gear using the intermediate gear.
  • One of the first and second optical connector assemblies is a ferrule polishing method in which one gear and the other gear are rotated 1/4 in the same direction and the first and second ferrules are simultaneously obliquely polished in that state.
  • the other connector Assembly may be allowed to simultaneously quarter turn to one of the optical connector assembly in the same direction, the first and second ferrule by using an optical fiber ferrule polishing machine can be obliquely polished simultaneously.
  • a first gear receiving portion that rotatably accommodates the rear end portion of the first stop ring in which the first gear is formed, and a second gear portion that rotatably accommodates the rear end portion of the second stop ring in which the second gear is formed.
  • a first casing having a two-gear housing portion and an intermediate gear housing portion that is positioned between the first and second gear housing portions and rotatably accommodates the intermediate gear; One gear and the other gear are made the same while transmitting the rotational force of one of the first and second gears accommodated in the first and second gear accommodating portions to the other gear using the gears.
  • the optical connector assembly of one of the first and second optical connector assemblies is rotated clockwise or counterclockwise.
  • the first and second ferrules can be simultaneously obliquely polished using a polishing machine.
  • FIG. 5 is a cross-sectional view taken along line II in FIG. 4.
  • FIG. 5 is a cross-sectional view taken along the line II-II in FIG. 4.
  • FIG. 5 is a cross-sectional view taken along line III-III in FIG. 4.
  • FIG. 10 is a sectional view taken along line IV-IV in FIG. 9.
  • the perspective view of the 1st and 2nd stop ring The perspective view of the 1st and 2nd stop ring.
  • FIG. 18 is a cross-sectional view taken along line VV in FIG. 17.
  • FIG. 22 is a cross-sectional view taken along line VI-VI in FIG. 21.
  • FIG. 28 is a top view of the duplex optical connector plug of FIG. 27.
  • the side view of the duplex optical connector plug of FIG. FIG. 28 is a front view of the duplex optical connector plug of FIG. 27.
  • FIG. 28 is an exploded perspective view of the duplex optical connector plug of FIG. 27.
  • FIG. 33 is a cross-sectional view taken along line VII-VII in FIG. 30.
  • FIG. 33 is a cross-sectional view taken along line VIII-VIII in FIG. 30.
  • FIG. 31 is a cross-sectional view taken along line IX-IX in FIG. 30.
  • FIG. 36 is a sectional view taken along line XX in FIG.
  • FIG. 36 is a cross-sectional view taken along line XI-XI in FIG. 35.
  • FIG. 41 is an external view of the first casing of FIG. 40.
  • FIG. 44 is a cross-sectional view taken along line XII-XII in FIG. 43.
  • the front view of the slider of FIG. FIG. 48 is a cross-sectional view taken along line XIII-XIII in FIG.
  • FIG. 26 is a partially enlarged view of the first and second ferrules shown in the top view of FIG. 25.
  • FIG. 27 is a partially enlarged view of the first ferrule shown in the side view of FIG. 26.
  • FIG. 54 is a cross-sectional view taken along line XIV-XIV in FIG. 53.
  • FIG. 1 is a perspective view of a duplex optical connector plug 10A shown as an example, the dual optical connector plug and the polarity conversion method in the dual optical connector plug according to the present invention
  • FIG. 2 is a top view of the duplex optical connector plug 10A
  • FIG. 3 is a side view of the duplex optical connector plug 10A
  • 4 is a front view of the duplex optical connector plug 10A
  • FIG. 5 is an exploded perspective view of the duplex optical connector plug 10A.
  • 6 is a cross-sectional view taken along the line II of FIG. 4
  • FIG. 7 is a cross-sectional view taken along the line II-II of FIG.
  • FIG. 8 is a cross-sectional view taken along line III-III in FIG. 1 to 3, the axial direction is indicated by an arrow A, the radial direction (lateral direction or vertical direction) is indicated by an arrow B, and the peripheral direction is indicated by an arrow C.
  • the duplex optical connector plug 10A is used for optical connection between optical fibers by being attached to an optical connector adapter (not shown).
  • the optical connector plug 10A includes a first optical connector assembly 11a and a second optical connector assembly 11b, a first gear 12a and a second gear 12b, an intermediate gear 13, a first casing 14a and a second casing 15a, and a slider 16a. And a caulking ring 17 and a boot 18.
  • the optical connector plug 10A includes first and second casings 14a, 15a and a slider 16a arranged rearward in the axial direction of the first and second optical connector assemblies 11a, 11b.
  • the caulking ring 17 and the boot 18 are arranged in the axially rearward direction of 16a.
  • the first optical connector assembly 11a includes an axially extending first ferrule 19a, a first plug frame 20a that houses the first ferrule 19a, a first stop ring 21a that engages with the first plug frame 20a, and a first And a spring 22a (coil spring).
  • the first ferrule 19a is formed of a first capillary 23a extending in the axial direction and a first sleeve 28a formed in a cylindrical shape extending in the axial direction.
  • the first capillary 23a holds at least one first optical fiber 24a.
  • the first capillary 23a is formed in a substantially cylindrical shape that is long in the axial direction, and has a tip surface 25 at which the end surface of the first optical fiber 24 is exposed at the tip in the axial direction. 26.
  • the shape of the chamfered portion 26 includes a shape such as a square surface or a round surface, but may be any shape.
  • the front end surface 25 is a vertical surface extending perpendicularly in the radial direction.
  • the chamfered portion 26 is gradually inclined outward in the radial direction from the distal end surface 25 toward the rear in the axial direction.
  • the first capillary 23a is made of a ceramic material such as zirconia, a plastic material, a glass material such as crystallized glass, borosilicate glass, or quartz. Note that a zirconia capillary made of zirconia is used for the illustrated first capillary 23a.
  • the outer diameter of the first capillary 23a is 1.2485 mm to 1.2495 mm.
  • a first optical fiber insertion hole 27 extending in the axial direction is formed in the first capillary 23a (ferrule). The first optical fiber 24a is inserted into an optical fiber insertion hole 27 drilled in the first capillary 23a.
  • the first sleeve 28a is connected to the rear side in the axial direction of the first capillary 23a (first ferrule 19a).
  • a first core wire cover 29a (PTFE tube) that covers the entire outer periphery of the first optical fiber 24a and extends in the axial direction is connected to the rear of the first sleeve 28a in the axial direction.
  • a polygonal cylindrical first flange 30a having a diameter larger than that of the first capillary 23a and the first core wire cover 29a is integrally formed at the front end of the first sleeve 28a.
  • the first sleeve 28a and the first flange 30a are made of a metal material such as stainless steel, brass or steel, or a synthetic resin material.
  • first sleeve 28a Inside the first sleeve 28a, there are a capillary insertion hole 31 for inserting and holding the first capillary 23a, and a core wire insertion hole 32 for inserting and holding the first optical fiber core wire incorporating the first optical fiber 24a. Perforated.
  • the rear end portion of the first capillary 23a is inserted into the capillary insertion hole 31 of the first sleeve 28a, and the rear end portion of the first capillary 23a is fixedly held in the capillary insertion hole 31 of the first sleeve 28a.
  • One end portion of the first optical fiber core wire is inserted into the core wire insertion hole 32 of the first sleeve 28a, and one end portion of the first optical fiber core wire is fixedly held in the core wire insertion hole 32 of the first sleeve 28a.
  • the cross-sectional shape of the first sleeve 28a in the axial direction is not limited to the illustrated cylindrical shape, and may be a rectangular tube shape that is long in the axial direction.
  • FIG. 9 is a perspective view of the first and second plug frames 20a and 20b
  • FIG. 10 is a cross-sectional view taken along the line IV-IV in FIG.
  • the first plug frame 20a is made of a synthetic resin material and is formed into a hollow, substantially quadrangular prism shape.
  • the first plug frame 20a has a top wall 33 and a bottom wall 34 that extend in the axial direction while being spaced apart from each other in the vertical direction, and both side walls 35 and 36 that are spaced apart from each other in the horizontal direction and extend in the axial direction.
  • a guide projection 37 extending in the axial direction is formed on the top wall 33 in the axially forward direction of the first plug frame 20a, and the second casing 15 is provided on each of the walls 33 to 36 in the axially backward direction of the first plug frame 20a.
  • An engaging recess 38a is formed in which an engaging claw 72 at the front end of the top wall 66 described later is engaged.
  • a substantially square fitting opening 39 is perforated in the side walls 35 and 36 on the rear side in the axial direction of the first plug frame 20a.
  • the first plug frame 20a is formed with a ferrule housing space 40 that is surrounded by the walls 33 to 36 and extends in the axial direction, and has a front end exposure port 41 through which the front end of the first capillary 23a is exposed.
  • the rear end insertion port 42 for inserting the first ferrule 19a is opened.
  • An abutting portion 43 extends radially inward from the inner peripheral surface of the ferrule housing space 40 behind the front end exposure port 41 of the first plug frame 20a in the axial direction.
  • the first flange 30a of the first sleeve 28a comes into contact with the contact portion 43. When the first flange 30a of the first sleeve 28a contacts the contact portion 43, further movement of the first sleeve 28a forward in the axial direction relative to the first plug frame 20a is prevented.
  • FIG. 11 is a perspective view of the first and second stop rings 21a and 21b
  • FIG. 12 is a perspective view of the first and second stop rings 21a and 21b shown from other directions.
  • the first stop ring 21a is made of a metal material or a synthetic resin material, is formed in a substantially cylindrical shape, and extends in the axial direction.
  • the first stop ring 21a includes a front end portion 44 (front end tube portion) positioned forward in the axial direction, a rear end portion 46 (rear end tube portion) positioned forward in the axial direction, and the front end portion 44 and the rear end portion 46. And an intermediate portion 45 (intermediate tube portion) extending therebetween.
  • a core wire exposure port 47 through which the first optical fiber core wire is exposed opens at the front end portion 44 of the first stop ring 21a, and a core wire insertion port through which the first optical fiber core wire is inserted at the rear end portion 46. 48 is open.
  • a fitting convex portion 49 that is convex outward in the radial direction is formed on the outer peripheral surface (peripheral surface) of the intermediate portion 45 of the first stop ring 21a.
  • the fitting convex portion 49 is fitted into a fitting opening 39 drilled in the side walls 35 and 36 of the first plug frame 20a.
  • the first stop ring 21a is connected to the first plug frame 20a.
  • the contact protrusion 50 is formed on the outer peripheral surface facing the rotation restricting protrusion 57 formed in the first opening 55a described later of the first casing 14a.
  • the first spring 22a is installed between the first ferrule 19a and the first stop ring 21a, is inserted through the first core wire cover 29a, and extends in the axial direction.
  • the front end of the first spring 22a is in contact with the first flange 30a of the first sleeve 28a, and the rear end thereof is in contact with the front end portion 44 of the first stop ring 21a.
  • the first spring 22a biases the first ferrule 19a forward in the axial direction.
  • the first gear 12a is formed at the rear end portion 46 of the first stop ring 21a and extends in the axial direction.
  • the second optical connector assembly 11b is adjacent to the first optical connector assembly 11a and extends in the axial direction in parallel with the first optical connector assembly 11a.
  • the second optical connector assembly 11b includes a second ferrule 19b that extends in the axial direction, a second plug frame 20b that houses the second ferrule 19b, a second stop ring 21b that engages with the second plug frame 20b, and a second And a spring 22b (coil spring).
  • the second ferrule 19b is formed by a second capillary 23b extending in the axial direction and a second sleeve 28b formed in a cylindrical shape extending in the axial direction.
  • the second capillary 23b holds at least one second optical fiber 24b.
  • the second capillary 23b is adjacent to the lateral direction of the first capillary 23a and extends in the axial direction in parallel with the first capillary 23a.
  • the second capillary 23b is formed in a substantially cylindrical shape that is long in the axial direction, and has a tip surface 25 at which the end surface of the second optical fiber 24 is exposed at the tip in the axial direction, and a chamfered portion on the outer diameter area of the end surface 25 26.
  • the distal end surface 25 is a vertical surface extending perpendicularly in the radial direction, and the shape of the chamfered portion 26 is the same as that of the first capillary 23a.
  • An optical fiber insertion hole 27 extending in the axial direction is formed in the second capillary 23b (ferrule).
  • the second optical fiber 24b is inserted into the optical fiber insertion hole 27 drilled in the second capillary 23b.
  • the material and outer diameter of the second capillary 23b are the same as those of the first capillary 23a.
  • the second sleeve 28b is connected to the rear side in the axial direction of the second capillary 23b (second ferrule 19b).
  • a second core wire cover 29b (PTFE tube) that covers the entire outer periphery of the second optical fiber 24b and extends in the axial direction is connected to the rear side of the second sleeve 28b in the axial direction.
  • the second core wire cover 29b is adjacent to the first core wire cover 29a in the lateral direction, and extends in the axial direction in parallel with the first core wire cover 29a.
  • a polygonal cylindrical second flange 30b having a diameter larger than that of the second capillary 23b and the second core wire cover 29b is integrally formed.
  • the second flange is adjacent to the lateral direction of the first flange.
  • the second sleeve 28b and the second flange 30b are made of a metal material such as stainless steel, brass, and steel, or a synthetic resin material.
  • a capillary insertion hole 31 for inserting and holding the second capillary 23b
  • a core wire insertion hole 32 for inserting and holding the second optical fiber core wire incorporating the second optical fiber 24b. Perforated.
  • the rear end portion of the second capillary 23b is inserted into the capillary insertion hole 31 of the second sleeve 28b, and the rear end portion of the second capillary 23b is fixedly held in the capillary insertion hole 31 of the second sleeve 28b.
  • One end portion of the second optical fiber core wire is inserted into the core wire insertion hole 32 of the second sleeve 28b, and one end portion of the second optical fiber core wire is fixedly held in the core wire insertion hole 32 of the second sleeve 28b.
  • the cross-sectional shape in the axial direction of the second sleeve 28b is not limited to the illustrated cylindrical shape, and may be a rectangular tube shape that is long in the axial direction.
  • the second plug frame 20b is adjacent to the first plug frame 20a in the lateral direction, and extends in the axial direction in parallel with the first plug frame 20a. Similar to the first plug frame 20a, the second plug frame 20b is made of a synthetic resin material and is formed into a hollow, substantially quadrangular prism shape.
  • the second plug frame 20b includes a top wall 33 and a bottom wall 34 that extend in the axial direction while being spaced apart from each other in the vertical direction, and both side walls 35 and 36 that are spaced apart from each other in the horizontal direction and extend in the axial direction.
  • a guide protrusion 37 extending in the axial direction is formed on the top wall 33 in the axially forward direction of the second plug frame 20b, and the second casing 15 is provided on each of the walls 33 to 36 in the axially backward direction of the second plug frame 20b.
  • An engaging recess 38 that engages with an engaging claw 72 at the front end of the top wall 66 is formed.
  • a substantially square fitting opening 39 is perforated in the side walls 35 and 36 on the rear side in the axial direction of the second plug frame 20b.
  • the second plug frame 20b defines a ferrule housing space 40 that is surrounded by the walls 33 to 36 and extends in the axial direction, and has a front end exposure port 41 through which the tip of the second capillary 23b is exposed.
  • the rear end insertion port 42 for inserting the second ferrule 19b is opened.
  • a contact portion 43 extends radially inward from the inner peripheral surface of the ferrule housing space 40 on the rear side in the axial direction of the front end exposure port 41 of the second plug frame 20b.
  • the second flange 30b of the second sleeve 28b contacts the contact portion 43. Since the first flange 30b of the first sleeve 28b contacts the contact portion 43, further movement of the second sleeve 28b forward in the axial direction relative to the second plug frame 20b is prevented.
  • the second stop ring 21b is adjacent to the lateral direction of the first stop ring 21a and extends in the axial direction in parallel with the first stop ring 21a.
  • the second stop ring 21b is made of a metal material or a synthetic resin material and is formed in a substantially cylindrical shape.
  • the second stop ring 21b includes a front end portion 44 (front end tube portion) positioned forward in the axial direction, a rear end portion 46 (rear end tube portion) positioned forward in the axial direction, and the front end portion 44 and the rear end portion 46. And an intermediate portion 45 (intermediate tube portion) extending therebetween.
  • the front end portion 44 of the second stop ring 21b has a core wire exposure port 47 through which the second optical fiber core wire is exposed, and the rear end portion 46 has a core wire insertion port through which the second optical fiber core wire is inserted. 48 is open.
  • a fitting convex portion 49 that is convex outward in the radial direction is formed on the outer peripheral surface (peripheral surface) of the intermediate portion 45 of the second stop ring 21b.
  • the fitting convex portion 49 is fitted into the fitting opening 39 formed in the side walls 35 and 36 of the second plug frame 20b.
  • the second stop ring 21b is connected to the second plug frame 20b.
  • the contact protrusion 50 is formed on the outer peripheral surface facing the rotation restricting protrusion 57a formed in the second opening 55b described later of the first casing 14a.
  • the second spring 22b is installed between the second ferrule 19b and the second stop ring 21b, and is inserted through the second core wire cover 29b.
  • the second spring 22b is adjacent to the lateral direction of the first spring 22a, and extends in the axial direction in parallel with the first spring 22a.
  • the second spring 22b has a front end in contact with the second flange 30b of the second sleeve 28b and a rear end in contact with the front end portion 44 of the second stop ring 21b.
  • the second spring 22b biases the second ferrule 19b forward in the axial direction.
  • the second gear 12b is formed at the rear end portion 46 of the second stop ring 21b and extends in the axial direction.
  • FIG. 13 is a perspective view of the intermediate gear 13.
  • the intermediate gear 13 is interposed between the first gear 12a and the second gear 12b and extends in the axial direction.
  • the intermediate gear 13 circumscribes the first and second gears 12a and 12b, transmits the rotational force of one of the first and second gears 12a and 12b to the other gear, and transmits the other gear to the other gear. Rotate in the same direction as the gear.
  • the gear ratio of the first gear 12a, the second gear 12b, and the intermediate gear 13 is 1. Therefore, when the first gear 12a rotates once in the clockwise direction, the intermediate gear 13 rotates once in the counterclockwise direction, and the second gear 12b rotates once in the clockwise direction. On the contrary, when the first gear 12a makes one rotation in the counterclockwise direction, the intermediate gear 13 makes one rotation in the clockwise direction, and the second gear 12b makes one rotation in the counterclockwise direction.
  • FIG. 14 is a perspective view of the first casing 14a shown in a state of being separated into two parts
  • FIG. 15 is an inner view of the first casing 14a shown in a state of being separated into two parts
  • FIG. 16 is an external view of the first casing 14a.
  • the first casing 14a is made of a synthetic resin material and is hollow.
  • the first casing 14a has a top wall 51 and a bottom wall 52 that extend in the axial direction while being spaced apart from each other in the vertical direction, and both side walls 53 and 54 that are spaced apart from each other in the horizontal direction and extend in the axial direction. It has a first opening 55a that opens and passes through the first stop ring 21a, and a second opening 55b that opens at the front end thereof and passes through the second stop ring 21b.
  • a cylindrical portion 56 through which the caulking ring 17 is inserted and the boot 18 is fitted is connected to the rear of the first casing 14a in the axial direction.
  • the first opening 55a of the first casing 14a is formed with a rotation restricting convex portion 57a (rotation angle restricting means) that protrudes radially inward of the first opening 55a, and the second opening 55b has a second opening.
  • a rotation restricting convex portion 57a (rotation angle restricting means) that protrudes inward in the radial direction of 55b is formed.
  • first gear receiving portion 59 Inside the first casing 14a, there are a first gear receiving portion 59 surrounded by the walls 51 to 54 and the partition wall 58, and a second gear receiving portion 60 surrounded by the walls 51 to 54 and the partition wall 58.
  • An intermediate gear housing portion 61 is defined which is surrounded by the partition wall 58 and located between the first and second gear housing portions 59 and 60.
  • a first gear 12a formed at the rear end portion 46 of the first stop ring 21a is rotatably accommodated in the first gear accommodating portion 59, and a rear end of the second stop ring 21b is accommodated in the second gear accommodating portion 60.
  • the 2nd gearwheel 12b formed in the edge part 46 is accommodated rotatably.
  • the intermediate gear 13 In the intermediate gear accommodating portion 61, the intermediate gear 13 is rotatably accommodated.
  • the first and second gears 12a, 12b and the intermediate gear 13 are accommodated in the first and second gear accommodating portions 59, 60 and the intermediate gear accommodating portion 61, so that the gears 12a, The first gear 12a and the intermediate gear 13 are circumscribed, and the second gear 12b and the intermediate gear 13 are circumscribed, while 12b and 13 are arranged in the horizontal direction.
  • the first casing 14 a is made by connecting the casings 14 a separated into two in the vertical direction. When the casings 14a are connected, the fitting claws 62 formed in the lower casing 14a are fitted into the fitting holes 63 formed in the upper casing 14a, and the casings 14a are integrated.
  • FIG. 17 is a top view of the second casing 15a
  • FIG. 18 is a front view of the second casing 15a
  • 19 is a cross-sectional view taken along line VV in FIG.
  • the second casing 15a is made of a synthetic resin material, and has a top wall 64 and a bottom wall 65 extending in the axial direction and spaced apart from each other in the vertical direction, and both side walls 66 and 67 spaced in the lateral direction and extending in the axial direction. And a guide wall 68 extending upward and axially from the side walls 66 and 67.
  • the second casing 15 a has a front end opening 69 that opens to the front end, a rear end opening 70 that opens to the rear end, and a pair of engagement latches 71 located on the top wall 64.
  • An engaging claw 72 that protrudes downward is formed at the front end of the top wall 64 of the second casing 15a.
  • An engaging key 73 extending in the axial direction is formed at the center tip of the top wall 64 of the second casing 15a.
  • These engagement latches 71 are separated from each other by a predetermined dimension in the lateral direction, and extend straight in the axial direction in parallel with each other. These engagement latches 71 are connected to the top wall 64 of the second casing 15a, and extend forward in the axial direction from the connection 74, and are exposed (extended) to the front in the axial direction from the front end opening 69. And a free portion 75 to be used. An engagement key 76 is formed at the tip of the free part 75. The free part 75 has flexibility and can be elastically deformed downward.
  • the second casing 15 a can accommodate the first casing 14 a with the top wall 51 of the first casing 14 a facing the top wall 64 and the bottom wall 52 of the first casing 14 a facing the bottom wall 65. It is. Conversely, the first casing 14a can be accommodated with the bottom wall 52 of the first casing 14a facing the top wall 64 and the top wall 51 of the first casing 14a facing the bottom wall 65.
  • the second casing 15a can be accommodated in a state where the first casing 14a is turned upside down.
  • FIG. 20 is a perspective view of the slider 16a
  • FIG. 21 is a front view of the slider 16a
  • 22 is a cross-sectional view taken along line VI-VI in FIG.
  • the slider 16a is made of a synthetic resin material, and is connected to a rear end portion of the second casing 15a.
  • a sliding top wall 78 (sliding plate) that extends axially forward from the top portion of the box 77, and a slider.
  • Guide walls 79 extending downward and axially from both sides of the moving top wall 78 are provided.
  • the slider 16 a has a front end opening 80 that opens to the front end of the box 77 and a rear end opening 81 that opens to the rear end of the box 77.
  • a pair of inclined surfaces 82 are formed which gradually incline downward from the front end of the slider 16a toward the rear in the axial direction.
  • a key engagement portion 83 into which the engagement key 73 of the top wall 64 of the second casing 15a is engaged is formed at the center of the lower surface of the tip portion of the sliding top wall 78.
  • the slider 16a is positioned rearward in the axial direction of the second casing 15a, and its box 77 is positioned rearward in the axial direction of the rear end portion of the second casing 15a and is slidably connected to the second casing 15a in the axial direction.
  • the guide wall 79 of the slider 16a is located inside the guide wall 68 of the second casing 15a, and the engagement key 74 is a key of the sliding top wall 78 of the slider 16a.
  • the slope 82 of the sliding top wall 78 of the slider 16 a is in contact with the upper surface of the engagement latch 71.
  • the slider 16a slides on the upper surface of the engagement latch 71 forward and backward in the axial direction.
  • the slope 82 of the slider 16a presses the engagement latch 71 downward, and the slope 82 pushes the engagement latch 71 downward.
  • the caulking ring 17 is inserted through a cylindrical portion 56 located on the rear side in the axial direction of the first casing 14a.
  • the boot 18 is fitted into the cylindrical portion 56 of the first casing 14 a via the caulking ring 17 so that the inner peripheral surface thereof is in close contact with the outer peripheral surface of the front end portion of the caulking ring 17.
  • the first optical fiber core wire containing the first optical fiber 24a and the second optical fiber core wire containing the second optical fiber 24b are grouped together in the first casing 14a as an optical fiber cord.
  • the optical fiber cord 90 is inserted into the caulking ring 17 and extends outward from the rear end of the caulking ring 17.
  • an abutment convex portion 50 (formed at the intermediate portion 45 of the first stop ring 21a (rotation angle restricting means) is formed on the rotation restricting convex portion 57a (rotation angle restricting means) formed at the first opening 55a of the first casing 14a.
  • the rotation angle restricting means abuts, the rotation of the first optical connector assembly 11a (first stop ring 21a) is prevented, and the rotation restricting convex portion 57a (rotation) formed in the second opening 55b of the first casing 14a.
  • Rotation of the second optical connector assembly 11b (second stop ring 21b) is caused by the contact protrusion 50 (rotation angle restriction means) formed on the intermediate portion 45 of the second stop ring 21b coming into contact with the angle restriction means). Is blocked.
  • the rotation angle of the first and second optical connector assemblies 11a and 11b is determined by the formation range of the rotation restricting convex portion 57a of the first opening 55a and the first opening 55b.
  • the rotation range from the rotation start point to the rotation end point of the first and second optical connector assemblies 11a and 11b is restricted to half rotation (rotation angle is 180 degrees).
  • FIG. 23 is a perspective view for explaining the procedure for rotating the first and second optical connector assemblies 11a and 11b
  • FIG. 24 is a perspective view for explaining the procedure following
  • FIG. 25 is a perspective view for explaining a procedure continued from FIG. 24,
  • FIG. 26 is a perspective view after the first and second optical connector assemblies 11a and 11b are rotated half a turn (180 degrees).
  • a procedure for rotating the first and second optical connector assemblies 11a and 11b of the optical connector plug 10A will be described as follows.
  • the engagement between the engagement recess 38 formed in the first and second plug frames 20a and 20b and the engagement claw 72 formed on the top wall 64 of the second casing 15a is released.
  • the first casing 14a is pulled out axially forward from the second casing 15a.
  • the first optical connector assembly 11a one optical connector assembly is rotated in the clockwise direction.
  • the first optical connector assembly 11a one optical connector assembly
  • the first gear 12a one gear
  • the rotation of the first gear 12a causes the intermediate gear 13 to rotate in the counterclockwise direction.
  • the intermediate gear 13 transmits the rotational force (rotation) of the first gear 12a to the second gear 12b (the other gear), and the second gear 12b is interlocked with the first gear 12a and the first gear 12a around its axis.
  • the second optical connector assembly 11b rotates in the clockwise direction. Since the gear ratio of the gears 12a, 12b, and 13 is 1, when the first optical connector assembly 11a is rotated in the clockwise direction, the second optical connector assembly 11b (the other optical connector assembly) is the first optical connector. It rotates in the clockwise direction at the same rotation angle as the connector assembly 11a. When the second optical connector assembly 11b (one optical connector assembly) is rotated in the clockwise direction, the first optical connector assembly 11a (the other optical connector assembly) is rotated at the same rotation angle as the second optical connector assembly 11b. Rotate clockwise.
  • the rotational force of the first and second gears 12a and 12b rotatably accommodated in the first and second gear accommodating portions 59 and 60 is transferred from one gear 12a and 12b of the first and second gears 12a and 12b to the intermediate gear. Since it is transmitted to the other gears 12a, 12b via the intermediate gear 13 rotatably accommodated in the accommodating part 61, the other optical connector assemblies 11a, 11b can be obtained by using these gears 12a, 12b, 13 The optical connector assemblies 11a and 11b can be simultaneously rotated in the same direction.
  • the gear ratio of the gears 12a, 12b, 13 is 1, when one of the first and second optical connector assemblies 11a, 11b rotates, the other optical connector is rotated.
  • the assemblies 11a and 11b rotate at the same rotation angle as one of the optical connector assemblies 11a and 11b, and the rotation range from the rotation start point to the rotation end point of the first and second optical connector assemblies 11a and 11b can be made the same.
  • the other optical connector assembly 11a, 11b can be rotated to the same position as the one optical connector assembly 11a, 11b.
  • the second casing 15a (slider 16a) is moved as shown by an arrow C2 in FIG. ) In the clockwise direction (or counterclockwise direction).
  • the top wall 64 of the second casing 15a is positioned on the bottom wall 52 side of the first casing 14a, and the second casing 15a
  • the bottom wall 65 is located on the top wall 51 side of the first casing 14a.
  • the second casing 15a is moved forward in the front-rear direction toward the first casing 14a, the bottom wall 52 of the first casing 14a faces the top wall 64 of the second casing 15a, and the bottom wall of the second casing 15a.
  • the first casing 14 a is accommodated in the second casing 15 a so that the top wall 51 of the first casing 14 a faces the 65, and the engaging recess 38 and the engaging claw 72 are engaged.
  • the first and second optical connector assemblies 11a and 11b are simultaneously rotated by a half turn (180 degrees) in the clockwise direction from the state of FIG. 1 to the state of FIG.
  • a polarity conversion method is implemented in which is converted.
  • the engagement between the engagement recess 38 and the engagement claw 72 is released, and the first casing 14a is axially moved from the second casing 15a. Pulled forward, the second optical connector assembly 11b (one optical connector assembly) is rotated counterclockwise.
  • the second optical connector assembly 11b (one optical connector assembly) of the first and second optical connector assemblies 11a and 11b rotates counterclockwise around the axis, the first and second gears 12a and 12b are rotated. Of these, the second gear 12b (one gear) rotates counterclockwise, and the rotation of the second gear 12b causes the intermediate gear 13 to rotate clockwise.
  • the intermediate gear 13 transmits the rotational force (rotation) of the second gear 12b to the first gear 12a (the other gear), and the first gear 12a is linked to the second gear 12b and the second gear 12b about its axis.
  • the first optical connector assembly 11a rotates in the counterclockwise direction. Since the gear ratio of these gears is 1, when the second optical connector assembly 11b is rotated counterclockwise, the first optical connector assembly 11a is counterclockwise at the same rotation angle as the second optical connector assembly 11b. Rotate around. When the first optical connector assembly 11a (one optical connector assembly) is rotated counterclockwise, the second optical connector assembly 11b (the other optical connector assembly) has the same rotation angle as the first optical connector assembly 11a. To rotate counterclockwise.
  • the top wall 64 of the second casing 15a is positioned on the top wall 51 side of the first casing 14a, and the bottom wall 65 of the second casing 15a is the first casing. It is located on the side of the bottom wall 52 of 14a.
  • the second casing 15a is moved forward in the front-rear direction toward the first casing 14a, the top wall 51 of the first casing 14a faces the top wall 64 of the second casing 15a, and the bottom wall of the second casing 15a.
  • the first casing 14 a is accommodated in the second casing 15 a so that the bottom wall 52 of the first casing 14 a faces the 65, and the engaging recess 38 and the engaging claw 72 are engaged.
  • the first and second optical connector assemblies 11a and 11b are simultaneously rotated counterclockwise by half rotation (180 degrees) to obtain the state shown in FIG.
  • a polarity conversion method is performed in which the polarity is converted.
  • one of the first and second optical connector assemblies 11a, 11b is rotated half a turn (180 degrees) from the rotation start point to the rotation end point around the axis. Then, in conjunction with this, the other optical connector assembly 11a, 11b rotates around the axis in the same direction as the one optical connector assembly 11a, 11b from the rotation start point to the rotation end point by a half rotation (180 degrees).
  • the polarity of the duplex optical connector plug 10A can be converted from the state of FIG. 1 to the state of FIG. 26, and the polarity of the duplex optical connector plug 10A can be converted from the state of FIG. It is.
  • FIG. 27 is a perspective view of a duplex optical connector plug 10B as another example, and FIG. 28 is a top view of the duplex optical connector plug 10B.
  • FIG. 29 is a side view of the duplex optical connector plug 10B, and
  • FIG. 30 is a front view of the duplex optical connector plug 10B.
  • 31 is an exploded perspective view of the duplex optical connector plug 10B,
  • FIG. 32 is a sectional view taken along line VII-VII in FIG. 30, and
  • FIG. 33 is a view taken along line VIII-VIII in FIG. It is sectional drawing.
  • 34 is a cross-sectional view taken along line IX-IX in FIG.
  • FIG. 35 is a perspective view of the first and second plug frames 20c and 20d
  • FIG. 36 is a cross-sectional view taken along line XX in FIG. 37 is a cross-sectional view taken along line XI-XI in FIG. 35
  • FIG. 38 is a perspective view of the first and second stop rings 21c and 21d
  • FIG. 39 is a perspective view of the first and second stop rings 21c and 21d shown from other directions. 27 to 29, the axial direction is indicated by arrow A, the radial direction (lateral direction or vertical direction) is indicated by arrow B, and the peripheral direction is indicated by arrow C.
  • the duplex optical connector plug 10B is used for optical connection between optical fibers by being attached to an optical connector adapter (not shown).
  • the optical connector plug 10B includes a first optical connector assembly 11c and a second optical connector assembly 11d, a first gear 12c and a second gear 12d, an intermediate gear 13, a first casing 14b and a second casing 15b, and a slider 16b. And a caulking ring 17, a boot 18, and a pipe 91.
  • the optical connector plug 10B includes first and second casings 14b and 15b, a pipe 91, and a slider 16b on the rear side in the axial direction of the first and second optical connector assemblies 11a and 11b.
  • the caulking ring 17 and the boot 18 are lined up behind the slider 16 in the axial direction.
  • the first optical connector assembly 11c includes a first ferrule 19a that extends in the axial direction, a first plug frame 20c that houses the first ferrule 19a, a first stop ring 21c that engages with the first plug frame 20c, and a first And a spring 22a (coil spring).
  • the first ferrule 19a and the first spring 22a are the same as those of the optical connector plug 10A.
  • the first plug frame 20c is made of a synthetic resin material and is formed into a hollow, substantially quadrangular prism shape.
  • the first plug frame 20c includes a top wall 33 and a bottom wall 34 that extend in the axial direction while being spaced apart from each other in the vertical direction, and both side walls 35 and 36 that are spaced apart from each other in the horizontal direction and extend in the axial direction.
  • a guide convex portion 37 extending in the axial direction is formed on the top wall 33 in the axially forward direction of the first plug frame 20c, and the first casing 14b is formed on each of the walls 33 to 36 in the axially backward direction of the first plug frame 20c.
  • An insertion recess 38b into which an opening protrusion 57b formed in a first opening 55a described later is inserted is formed.
  • the first plug frame 20c defines a ferrule housing space 40 that is surrounded by the walls 33 to 36 and extends in the axial direction, and has a front end exposure port 41 through which the front end portion of the first capillary 23a is exposed.
  • the rear end insertion port 42 for inserting the first ferrule 19a is opened.
  • An abutting portion 43 extends radially inward from the inner peripheral surface of the ferrule housing space 40 on the rear side in the axial direction of the front end exposure port 41 of the first plug frame 20c.
  • the first flange 30a of the first sleeve 28a contacts the contact portion 43. Since the first flange 30a of the first sleeve 28a contacts the contact portion 43, further movement of the first sleeve 28a forward in the axial direction relative to the first plug frame 20c is prevented. Abutting flanges 92 are formed on the walls 33 to 36 in the vicinity of the rear end insertion opening 42 of the first plug frame 20c so as to protrude outward in the radial direction of the walls 33 to 36. The contact flange 92 is slidably contacted with the front end edge of the first opening 55a of the first casing 14b.
  • the first stop ring 21c is made of a metal material or a synthetic resin material, is formed in a substantially cylindrical shape, and extends in the axial direction.
  • the first stop ring 21c includes a front end portion 44 (front end tube portion) positioned forward in the axial direction, a rear end portion 46 (rear end tube portion) positioned forward in the axial direction, and the front end portion 44 and the rear end portion 46. And an intermediate portion 45 (intermediate tube portion) extending therebetween.
  • a core wire exposure port 47 through which the first optical fiber core wire is exposed opens at the front end portion 44 of the first stop ring 21c, and a core wire insertion port through which the first optical fiber core wire is inserted at the rear end portion 46. 48 is open.
  • the first stop ring 21c has a front end portion 44 and an intermediate portion 45 that are press-fitted into the first plug frame 20c from the rear end insertion port 42 of the first plug frame 20c, and the outer peripheral surfaces of the front end portion 44 and the intermediate portion 45. Is in close contact with the inner peripheral surface of the first plug frame 20c.
  • the first stop ring 21c is detachably connected to the first plug frame 20c, and rotates with the rotation of the first plug frame 20c.
  • the first spring 22a is installed between the first ferrule 19a and the first stop ring 21c, is inserted through the first core wire cover 29a, and extends in the axial direction.
  • the front end of the first spring 22a is in contact with the first flange 30a of the first sleeve 28a, and the rear end thereof is in contact with the front end portion 44 of the first stop ring 21c.
  • the first spring 22a biases the first ferrule 19a forward in the axial direction.
  • the first gear 12c is formed at the rear end portion 46 of the first stop ring 21c and extends in the axial direction.
  • the first gear 12c is formed with a contact protrusion 93 (rotation restricting means) that protrudes radially outward.
  • the contact protrusion 93 protrudes radially outward from the teeth of the first gear 12c.
  • the second optical connector assembly 11d includes a second ferrule 19b that extends in the axial direction, a second plug frame 20d that houses the second ferrule 19b, a second stop ring 21d that engages with the second plug frame 20d, and a second And a spring 22b (coil spring).
  • the second ferrule 19b and the second spring 22b are the same as those of the optical connector plug 10A.
  • the second plug frame 20d is made of a synthetic resin material and is formed into a hollow, substantially quadrangular prism shape.
  • the second plug frame 20d includes a top wall 33 and a bottom wall 34 that extend in the axial direction while being spaced apart from each other in the vertical direction, and both side walls 35 and 36 that are spaced apart from each other in the horizontal direction and extend in the axial direction.
  • a guide protrusion 37 extending in the axial direction is formed on the top wall 33 in the axially forward direction of the second plug frame 20d, and the first casing 14b is formed on each of the walls 33 to 36 in the axially backward direction of the second plug frame 20d.
  • An insertion recess 38b into which the opening protrusion 57b formed in the second opening 55b is inserted is formed.
  • the second plug frame 20d defines a ferrule housing space 40 that is surrounded by the walls 33 to 36 and extends in the axial direction, and has a front end exposure port 41 through which the front end of the second capillary 23b is exposed.
  • the rear end insertion port 42 for inserting the second ferrule 19b is opened.
  • An abutting portion 43 extends radially inward from the inner peripheral surface of the ferrule housing space 40 behind the front end exposure port 41 of the second plug frame 20d in the axial direction.
  • the second flange 30b of the second sleeve 28b comes into contact with the contact portion 43. Since the second flange 30b of the second sleeve 28b contacts the contact portion 43, further movement of the second sleeve 28b forward in the axial direction relative to the second plug frame 20d is prevented.
  • Abutting flanges 92 are formed on the walls 33 to 36 in the vicinity of the rear end insertion opening 42 of the second plug frame 20d so as to protrude outward in the radial direction of the walls 33 to 36.
  • the contact flange 92 is slidably contacted with the front end edge of the second opening 55b of the first casing 14b.
  • the second stop ring 21d is adjacent to the lateral direction of the first stop ring 21c, and extends in the axial direction in parallel with the first stop ring 21c.
  • the second stop ring 21d is made of a metal material or a synthetic resin material, is formed in a substantially cylindrical shape, and extends in the axial direction.
  • the second stop ring 21d includes a front end portion 44 (front end tube portion) positioned forward in the axial direction, a rear end portion 46 (rear end tube portion) positioned forward in the axial direction, and the front end portion 44 and the rear end portion 46. And an intermediate portion 45 (intermediate tube portion) extending therebetween.
  • a core wire exposure port 47 through which the second optical fiber core wire is exposed opens at the front end portion 44 of the second stop ring 21d, and a core wire insertion port through which the second optical fiber core wire is inserted at the rear end portion 46. 48 is open.
  • the front end portion 44 and the intermediate portion 45 of the second stop ring 21d are press-fitted into the second plug frame 20d from the rear end insertion port 42 of the second plug frame 20d, and the outer peripheral surfaces of the front end portion 44 and the intermediate portion 45 Is in close contact with the inner peripheral surface of the second plug frame 20d.
  • the second stop ring 21d is detachably connected to the second plug frame 20d, and rotates with the rotation of the second plug frame 20d.
  • the second spring 22b is installed between the second ferrule 19b and the second stop ring 21d, is inserted through the second core wire cover 29b, and extends in the axial direction.
  • the second spring 22b has a front end in contact with the second flange 30b of the second sleeve 28b and a rear end in contact with the front end portion 44 of the second stop ring 21d.
  • the second spring 22b biases the second ferrule 19b forward in the axial direction.
  • the second gear 12d is formed at the rear end portion 46 of the second stop ring 21d and extends in the axial direction.
  • the second gear 12d is formed with a contact convex portion 93 (rotation restricting means) that is convex outward in the radial direction.
  • the contact protrusion 93 protrudes radially outward from the teeth of the second gear 12d.
  • the intermediate gear 13 is the same as that of the optical connector plug 10A (see FIG. 13).
  • the intermediate gear 13 is interposed between the first gear 12c and the second gear 12d and circumscribes the first and second gears 12c and 12d, and is connected to one of the first and second gears 12c and 12d. While the rotational force is transmitted to the other gear, the other gear is rotated in the same direction as the one gear.
  • the gear ratio of the first gear 12c, the second gear 12d, and the intermediate gear 13 is 1. When the first gear 12c rotates once in the clockwise direction, the intermediate gear 13 rotates once in the counterclockwise direction, and the second gear 12d rotates once in the clockwise direction. Conversely, when the first gear 12c makes one rotation in the counterclockwise direction, the intermediate gear 13 makes one rotation in the clockwise direction, and the second gear 12d makes one rotation in the counterclockwise direction.
  • FIG. 40 is a perspective view of the first casing 14b shown in a state of being separated into two parts
  • FIG. 41 is an inner view of the first casing 14b shown in a state of being separated into two parts
  • FIG. 42 is an external view of the top wall 51 of the first casing 14b.
  • the external view of the bottom wall 52 of the first casing 14b appears the same as FIG.
  • the first casing 14b is made of a synthetic resin material and is formed into a hollow shape.
  • the first casing 14b has a top wall 51 and a bottom wall 52 that extend in the axial direction while being spaced apart from each other in the vertical direction, and both side walls 53 and 54 that are spaced apart from each other in the horizontal direction and extend in the axial direction. It has a first opening 55a that opens and inserts the first stop ring 21c, and a second opening 55b that opens at the front end and inserts the second stop ring 21d.
  • an engaging projection 96 formed at the approximate center of the top wall 64 of the second casing 15b described later and at the approximate center of the bottom wall 65 of the second casing 15b are formed.
  • An engaging recess 94 is formed in which the engaging protrusion 96 is engaged.
  • the engaging projection 96 formed at the approximate center of the top wall 64 of the second casing 15b and the approximate center of the bottom wall 65 of the second casing 15b are formed.
  • An engaging concave portion 94 into which the engaging convex portion 96 is engaged is formed (see FIG. 42).
  • the first opening 55a of the first casing 14b is formed with an opening convex portion 57b that protrudes radially inward of the first opening 55a, and the second opening 55b is radially inward of the second opening 55b.
  • the opening convex part 57b used as the convex is formed.
  • Inside the first casing 14b there are a first gear housing 59 surrounded by the walls 51 to 54 and the partition wall 58, and a second gear housing 60 surrounded by the walls 51 to 54 and the partition wall 58.
  • An intermediate gear housing portion 61 is defined which is surrounded by the partition wall 58 and located between the first and second gear housing portions 59 and 60.
  • the first gear 12c formed at the rear end portion 46 of the first stop ring 21c is rotatably accommodated.
  • a second gear 12d formed at the rear end 46 of the second stop ring 21d is rotatably accommodated in the second gear accommodating portion 60.
  • the intermediate gear accommodating portion 61 the intermediate gear 13 is rotatably accommodated.
  • the first and second gears 12c, 12d and the intermediate gear 13 are accommodated in the first and second gear accommodating portions 59, 60 and the intermediate gear accommodating portion 61, so that the gears 12c, 12c, The first gear 12c and the intermediate gear 13 are circumscribed, and the second gear 12d and the intermediate gear 13 are circumscribed, while 12d and 13 are arranged in the horizontal direction.
  • the first gear housing portion 59 (the inner peripheral surface of the first casing 14b) is formed with a rotation restricting convex portion 95 (rotation angle restricting means) that protrudes inward in the radial direction of the housing portion 59.
  • the contact protrusion 93 formed on the first gear 12c contacts the rotation restricting protrusion 95 of the first gear housing 59, thereby preventing the first stop ring 21c (first plug frame 20c) from rotating.
  • the second gear housing portion 60 (the inner peripheral surface of the first casing 14b) is formed with a rotation restricting convex portion 95 (rotation angle restricting means) that protrudes radially inward of the housing portion 60.
  • the abutment convex portion 93 formed on the second gear 12d abuts against the rotation restricting convex portion 95 of the second gear housing portion 60, thereby preventing the rotation of the second stop ring 21d (second plug frame 20d).
  • the rotation angle of the first and second optical connector assemblies 11c and 11d depends on the formation position of the rotation restricting projection 95 with respect to the first gear housing 59 and the second gear housing 60. However, in the optical connector plug 10B, the rotation range from the rotation start point to the rotation end point of the first and second optical connector assemblies 11c and 11d is restricted to half rotation (rotation angle is 180 degrees).
  • the first casing 14b is made by connecting the casings 14b separated into two in the vertical direction.
  • the fitting claws 62 formed in the lower casing 14b are fitted into the fitting holes 63 formed in the upper casing 14b, and the casings 14b are integrated.
  • the front end of the pipe 91 is fitted into the rear end of the first casing 14b.
  • FIG. 43 is a top view of the second casing 15b
  • FIG. 44 is a front view of the second casing 15b
  • 45 is a cross-sectional view taken along line XII-XII in FIG.
  • the second casing 15b is made of a synthetic resin material, and has a top wall 64 and a bottom wall 65 extending in the axial direction and spaced apart from each other in the vertical direction, and both side walls 66 and 67 spaced in the lateral direction and extending in the axial direction. And a guide wall 68 extending upward and axially from the side walls 66 and 67.
  • the second casing 15b has a front end opening 69 that opens to the front end thereof, a rear end opening 70 that opens to the rear end thereof, and a pair of engagement latches 71 located on the top wall 64 thereof.
  • Engaging protrusions 96 that protrude radially inward from the inner peripheral surface of the top wall 64 of the second casing 15b are formed, and in the approximate center of the bottom wall 65 of the second casing 15b, Engaging convex portions 96 that are convex inward in the radial direction from the inner peripheral surface are formed.
  • An engaging key 73 extending in the axial direction is formed at the center tip of the top wall 64 of the second casing 15a.
  • engagement latches 71 are separated from each other by a predetermined dimension in the lateral direction, and extend straight in the axial direction in parallel with each other.
  • the engaging latches 71 are connected to the top wall 64 of the second casing 15b, and extend forward in the axial direction from the connecting portion 74 and are exposed (extended) to the front in the axial direction from the front end opening 69.
  • An engagement key 76 is formed at the tip of the free part 75.
  • the free part 75 has flexibility and can be elastically deformed downward.
  • the second casing 15b can accommodate the first casing 14b with the top wall 51 of the first casing 14b facing the top wall 64 and the bottom wall 52 of the first casing 14b facing the bottom wall 65. It is. Conversely, the first casing 14b can be accommodated with the bottom wall 52 of the first casing 14b facing the top wall 64 and the top wall 51 of the first casing 14b facing the bottom wall 65.
  • the second casing 15b can be accommodated with the first casing 14b turned upside down.
  • FIG. 46 is a perspective view of the slider 16b
  • FIG. 47 is a front view of the slider 16b
  • 48 is a cross-sectional view taken along line XIII-XIII in FIG.
  • the slider 16b is made of a synthetic resin material, and is connected to a rear end portion of the second casing 15b.
  • a sliding top wall 78 (sliding plate) extending from the top portion of the box 77 in the axial direction, and a slider.
  • Guide walls 79 extending downward and axially from both sides of the moving top wall 78 are provided.
  • the slider 16 b has a front end opening 80 that opens to the front end of the box 77 and a rear end opening 81 that opens to the rear end of the box 77.
  • a pair of inclined surfaces 82 are formed that gradually incline downward from the front end of the slider 16b toward the rear in the axial direction.
  • a key engagement portion 83 into which the engagement key 73 of the top wall 64 of the second casing 15b is engaged is formed at the center of the lower surface of the distal end portion of the sliding top wall 78.
  • the slider 16b is positioned rearward in the axial direction of the second casing 15b, and its box 77 is positioned rearward in the axial direction of the rear end portion of the second casing 15b, and is slidably connected to the second casing 15b in the axial direction.
  • the guide wall 79 of the slider 16b is located inside the guide wall 68 of the second casing 15b, and the engagement key 74 is a key of the sliding top wall 78 of the slider 16b.
  • the slope 82 of the sliding top wall 78 of the slider 16 b is in contact with the upper surface of the engagement latch 71.
  • the slider 16b slides on the upper surface of the engagement latch 71 forward and backward in the axial direction.
  • the slope 82 of the slider 16b presses the engagement latch 71 downward, and the slope 82 pushes the engagement latch 71 downward.
  • the caulking ring 17 is located in the axially rearward direction of the pipe 91 fitted in the rear end portion of the first casing 14 b, and the front end portion of the pipe 91 is in contact with the outer peripheral surface of the pipe 91. It is fitted into the rear end and is inserted into the boot 18. The inner peripheral surface of the front end of the boot 18 is in close contact with the outer peripheral surface of the front end of the caulking ring 17, and is connected to the first casing 14 b via the pipe 91 and the caulking ring 17. Note that the first optical fiber core wire containing the first optical fiber 24a and the second optical fiber core wire containing the second optical fiber 24b are grouped together in the first casing 14a as an optical fiber cord. The optical fiber cord 90 is inserted into the caulking ring 17 and extends outward from the rear end of the caulking ring 17.
  • the procedure for rotating the first and second optical connector assemblies 11c and 11d of the optical connector plug 10B is substantially the same as that of the optical connector plug 10A, but the procedure will be briefly described as follows. While supporting the second casing 15b, the first casing 14b is pressed forward in the axial direction, the engaging recess 94 formed in the top wall 51 and the bottom 52 of the first casing 14b, and the top wall 64 and the bottom of the second casing 15b. The engagement with the engaging projection 96 formed on the wall 65 is released, and the first casing 14b is pulled out forward in the axial direction from the second casing 15b. After the first casing 14b is pulled out from the second casing 15b, for example, the first optical connector assembly 11c (one optical connector assembly) is rotated clockwise (see FIG. 23).
  • the first optical connector assembly 11c one optical connector assembly
  • the first gear 12c one gear
  • the intermediate gear 13 rotates counterclockwise by the rotation of one gear 12c.
  • the intermediate gear 13 transmits the rotational force (rotation) of the first gear 12c to the second gear 12d (the other gear), and the second gear 12d is interlocked with the first gear 12c and the first gear 12c about its axis.
  • the second optical connector assembly 11d rotates in the clockwise direction.
  • the gear ratio of the gears 12c, 12d, and 13 is 1, when the first optical connector assembly 11c is rotated in the clockwise direction, the second optical connector assembly 11d (the other optical connector assembly) is the first optical connector.
  • the connector assembly 11c rotates clockwise at the same rotation angle.
  • the other optical connector assembly 11c and 11d can be simultaneously rotated in the same direction as the one optical connector assembly 11c and 11d.
  • the gear ratio of the gears 12c, 12d, 13 is 1, the rotation range from the rotation start point to the rotation end point of the first and second optical connector assemblies 11c, 11d can be made the same, and one of the light beams By rotating the connector assemblies 11c and 11d, the other optical connector assemblies 11c and 11d can be rotated to the same position as the one optical connector assembly 11c and 11d.
  • the second casing 15b (including the slider 16b) is rotated in the clockwise direction (or counterclockwise direction).
  • a half rotation (180 degrees) is performed (see FIG. 24).
  • the top wall 64 of the second casing 15b is positioned on the bottom wall 52 side of the first casing 14b, and the bottom wall 65 of the second casing 15b is the first casing. It is located on the side of the top wall 51 of 14b.
  • the second casing 15b is moved forward in the front-rear direction toward the first casing 14b, the bottom wall 52 of the first casing 14b faces the top wall 64 of the second casing 15b, and the bottom wall of the second casing 15b.
  • the first casing 14b is press-fitted (accommodated) into the second casing 15b so that the top wall 51 of the first casing 14b faces the 65, and the engaging protrusions of the top wall 64 and the bottom wall 65 of the second casing 15b are inserted.
  • the part 96 is engaged with the engaging recess 94 of the top wall 51 and the bottom part 52 of the first casing 14b.
  • a polarity conversion method in which the polarity of the duplex optical connector plug 10B is converted by simultaneously rotating the first and second optical connector assemblies 11c and 11d in the clockwise direction by half rotation (180 degrees) is performed.
  • the engagement between the engaging recess 94 and the engaging protrusion 96 is released, and the first casing 14b is pulled forward in the axial direction from the second casing 15b.
  • the two optical connector assembly 11d (one optical connector assembly) is rotated counterclockwise.
  • the second optical connector assembly 11d (one optical connector assembly) rotates counterclockwise about its axis
  • the second gear 12d (one gear) rotates counterclockwise
  • the second gear 12d The intermediate gear 13 rotates in the clockwise direction by the rotation.
  • the intermediate gear 13 transmits the rotational force (rotation) of the second gear 12d to the first gear 12c (the other gear), and the first gear 12c is linked to the second gear 12d and the second gear 12d around its axis.
  • the first optical connector assembly 11c rotates in the counterclockwise direction.
  • the gear ratio of these gears is 1, when the second optical connector assembly 11d is rotated counterclockwise, the first optical connector assembly 11c is counterclockwise at the same rotation angle as the second optical connector assembly 11d. Rotate around.
  • the rotation restricting convex portion 95 (rotation angle restricting means) is formed.
  • the abutting convex portion 93 (rotation angle regulating means) abuts, and the rotation of the first and second optical connector assemblies 11c and 11d in the counterclockwise direction is stopped.
  • the second casing 15b (including the slider 16b) is rotated counterclockwise (or clockwise). Rotate half a turn (180 degrees).
  • the top wall 64 of the second casing 15b is positioned on the top wall 51 side of the first casing 14b, and the bottom wall 65 of the second casing 15b is the bottom wall of the first casing 14b. 52 side.
  • the second casing 15b is moved forward in the front-rear direction toward the first casing 14b, the top wall 51 of the first casing 14b faces the top wall 64 of the second casing 15b, and the bottom wall of the second casing 15b.
  • the first casing 14 b is press-fitted (accommodated) into the second casing 15 b so that the bottom wall 52 of the first casing 14 b faces 65, and the engaging protrusion 96 is inserted into the engaging recess 94.
  • a polarity conversion method in which the polarity of the duplex optical connector plug 10B is converted by simultaneously rotating the first and second optical connector assemblies 11c and 11d counterclockwise by half rotation (180 degrees) is performed. .
  • one of the first and second optical connector assemblies 11c, 11d is rotated half a turn (180 degrees) from the rotation start point to the rotation end point about the axis. Then, in conjunction with this, the other optical connector assembly 11c, 11d rotates about a half turn (180 degrees) from the rotation start point to the rotation end point in the same direction as the one optical connector assembly 11c, 11d.
  • the polarity of the duplex optical connector plug 10B can be converted.
  • the first and second optical connector assemblies 11a and 11b or the first and second optical connector assemblies 11c and 11d are inserted into the optical connector adapter. Insert into the optical connector adapter through the opening.
  • the engagement latches 71 extending forward from the top wall 66 of the second casing 15 in the axial direction.
  • the free part 75 enters the optical connector adapter, the engagement key 76 of the free part 75 of the engagement latch 71 engages with the key engagement part of the optical connector adapter, and the first and second optical connector assemblies 11a and 11b.
  • the insertion state of the first and second optical connector assemblies 11c and 11d with respect to the optical connector adapter is maintained.
  • the sliders 15a and 15b slide rearward in the axial direction with respect to the second casings 16a and 16b. Not. In a state before the sliders 15a and 15b are slid rearward in the axial direction with respect to the second casings 16a and 16b, the engagement state of the engagement latch 71 with respect to the optical connector adapter is maintained. In order to release the connection between the optical connector plug 10 and the optical connector adapter, the slider 15a or the slider 15a is moved from the state in which the engagement key 76 of the free portion 75 of the engagement latch 71 is engaged with the key engagement portion of the optical connector adapter. Slide 15b rearward in the axial direction.
  • the first and second optical connector assemblies 11a and 11b and the first and second optical connector adapters are released.
  • the optical connector assemblies 11c and 11d can be pulled out from the inside of the optical connector adapter.
  • duplex optical connector plugs 10A and 10B include optical connector assemblies 11a, 11b, 11c, one of the first and second optical connector assemblies 11a, 11b or the first and second optical connector assemblies 11c, 11d, respectively.
  • 11d When 11d is rotated clockwise or counterclockwise about its axis, the other optical connector assembly 11a, 11b, 11c, 11d is interlocked with that and one optical connector assembly 11a, 11b is centered on that axis.
  • the duplex optical connector plugs 10A and 10B are configured so that the first and second optical connector assemblies 11a and 11b and the first and second optical connector assemblies 11c and 11d rotate simultaneously in the same direction at the same rotation angle.
  • the first and second optical connector assemblies 11a and 11b and the first and second optical connector assemblies 11c and 11d can be simultaneously rotated by one rotation operation (one action), and the optical connector assemblies 11a and 11b and the first optical connector assemblies 11a and 11b can be rotated simultaneously.
  • labor and time can be saved.
  • the duplex optical connector plugs 10A, 10B (polarity conversion method) are first and second rotated by the rotation angle restricting means (the contact convex portion 50 and the rotation restricting convex portion 57a, the contact convex portion 93 and the rotation restricting convex portion 95).
  • the rotation angle from the rotation start point to the rotation end point of the second optical connector assemblies 11a and 11b and the first and second optical connector assemblies 11c and 11d is restricted to half rotation (180 degrees), for example, the optical connector assemblies 11a and 11b.
  • the polarities of the optical connector plugs 10A and 10B are stopped by stopping the rotation at a position rotated by half rotation (180 degrees) in the clockwise direction. Can be reliably and accurately converted, and conversely, the optical connector assemblies 11a rotated half-turn (180 degrees) in the clockwise direction, 1b and their first and second optical connector assemblies 11c, 11d anti half rotation (180 °) in the clockwise direction by rotating the optical connector plug 10A, it is possible to the polarity of the 10B returns reliably and accurately.
  • the duplex optical connector plugs 10A and 10B are used as the first and second optical connector assemblies 11a.
  • 11b or the first and second optical connector assemblies 11c and 11d are rotated to change the polarities of the optical connector assemblies 11a and 11b and the first and second optical connector assemblies 11c and 11d.
  • the optical connector assemblies 11a and 11b and the first and second optical connector assemblies 11c and 11d are accommodated. The polarity can be converted.
  • the method of converting the polarity of the duplex optical connector plugs 10A, 10B is as follows: the first and second optical connector assemblies 11a, 11b or one of the first and second optical connector assemblies 11c, 11d. , 11c, 11d are rotated halfway (180 degrees) from the rotation start point to the rotation end point about the axis, and the other optical connector assembly 11a, 11b, 11c, 11d is linked to the other axis. Since the optical connector assemblies 11a, 11b, 11c, and 11d are rotated half a turn (180 degrees) from the rotation start point to the rotation end point in the same direction, the first and second optical connector assemblies 11a and 11b and the first and second optical connectors are rotated.
  • One optical connector assembly 11a, 11b, 11c, 11d of the assemblies 11c, 11d is half Rolling (180 °) only by rotating, it can be converted duplex optical connector plug 10A, the polarity of the 10B.
  • the first and second optical connector assemblies 11a and 11b rotate simultaneously in the same direction, or the first and second optical connector assemblies 11c and 11d rotate simultaneously in the same direction.
  • the polarities of the optical connector plug 10A and the optical connector plug 10B can be changed by a rotation operation (one action), and the optical connector assemblies 11a and 11b and the first and second optical connector assemblies 11c and 11d are separately rotated. Compared to the case of converting the polarities of the optical connector plugs 10A and 10B, it is possible to save labor and time for the polarity conversion.
  • FIG. 49 is a top view after the first and second optical connector assemblies 11a and 11b are rotated by 1/4 (90 degrees), and FIG. 50 shows the first and second optical connector assemblies 11a and 11b as 1 It is a side view after rotating / 4 (90 degree
  • 51 is a partially enlarged view of the first and second ferrules 19a and 19b shown in the top view of FIG. 49
  • FIG. 52 is a partially enlarged view of the first ferrule 19a shown in the side view of FIG.
  • the details of the ferrule polishing method according to the present invention will be described with reference to these drawings (including FIGS. 53 to 59) as follows.
  • the ferrule polishing method using the optical connector plug 10A as an example is illustrated, but the ferrule polishing method using the optical connector plug 10B as an example is the same as that of the optical connector plug 10A. Therefore, the following description of the ferrule polishing method includes the optical connector plug 10B.
  • the capillaries 23a and 23b of the first and second ferrules 19a and 19b of the optical connector plug 10A and the optical connector plug 10B are simultaneously obliquely polished.
  • the first and second optical connector assemblies 11a and 11b of the optical connector plug 10 in the state shown in FIG. 1 for example, the first optical connector assembly 11a (one optical connector assembly) is rotated clockwise around the axis 1 / 49 (50), or by rotating the first optical connector assembly 11c (one optical connector assembly) 1/4 (90 degrees) clockwise about its axis, as shown in FIGS.
  • the first and second optical connector assemblies 11a and 11b and the first and second optical connector assemblies 11c and 11d are rotated 1/4 (90 degrees) in the clockwise direction.
  • the tip surfaces 25 of the first and second ferrules 19a and 19b before the oblique polishing are vertical surfaces extending vertically in the radial direction as shown in FIGS.
  • the first optical connector assembly 11a (one optical connector assembly) or the first optical connector assembly 11c (one optical connector assembly) is rotated 1/4 (90 degrees) clockwise from the rotation starting point about the axis. Then, the first gear 12a (one gear) or the first gear 12c (one gear) rotates in the clockwise direction, and the intermediate gear 13 rotates in the counterclockwise direction by the rotation of the first gear 12a or the first gear 12c. Rotate.
  • the rotational force (rotation) of the first gear 12a and the first gear 12c is transmitted to the second gear 12b (the other gear) and the second gear 12d (the other gear) by the intermediate gear 13, and is transmitted to the first gears 12a and 12c.
  • the second gears 12b and 12d rotate around the axis in the same clockwise direction as the first gears 12a and 12c, so that the second optical connector assembly 11b and the second optical connector assembly 11d move from the rotation start point. Rotate 1/4 (90 degrees) clockwise.
  • FIG. 53 is a top view of the optical connector plugs 10A and 10B shown in a state of being installed in the optical fiber ferrule polishing holder 84
  • FIG. 54 is an optical connector plug 10A and 10B shown in a state of being installed in the optical fiber ferrule polishing holder 84
  • FIG. 55 is a cross-sectional view taken along line XIV-XIV in FIG. 53 to 55, the optical fiber ferrule polishing machine 86 is partially shown. In FIG. 55, only the optical fiber ferrule polishing holder 84 and the optical fiber ferrule polishing machine 86 are shown in cross section.
  • the first and second optical connector assemblies 11a and 11b or the first and second optical connector assemblies 11c and 11d are rotated 1/4 (90 degrees) clockwise.
  • An optical connector plug 10A and an optical connector plug 10B are installed in a known optical fiber ferrule polishing holder 84.
  • the connector plug 10B is installed in the optical fiber ferrule polishing holder 84.
  • the optical connector plug 10A is inserted and fixed so that the first and second optical connector assemblies 11a and 11b can be inserted into and removed from the fixing recess 85 of the optical fiber ferrule polishing holder 84.
  • the optical connector plug 10B includes the first and second optical connectors.
  • the assemblies 11c and 11d are inserted and fixed in the fixing recess 85 of the optical fiber ferrule polishing holder 84 so as to be detachable.
  • the first and second optical connector assemblies 11a and 11b of the optical connector plug 10A are fixed to the fixing recess 85 of the optical fiber ferrule polishing holder 84, or the first and second optical connector assemblies 11c and 11d of the optical connector plug 10B are fixed.
  • the axis L2 of the optical connector plug 10 is inclined by a predetermined angle with respect to the vertical axis L1, and the optical connector plug 10A and the optical connector plug are inserted into the optical fiber ferrule polishing holder 84. 10B is installed in an inclined state.
  • optical connector plug 10A, 10B is installed in the optical fiber ferrule polishing holder 84
  • a plurality of fixing recesses 85 are arranged in an annular shape in the optical fiber ferrule polishing holder 84
  • the optical connector plugs 10A and 10B are fixed to the fixing recesses 85, and the plurality of optical connector plugs 10A and 10B are polished at a time.
  • the optical fiber ferrule polishing holder 84 is installed in a known optical fiber ferrule polishing machine 86.
  • the second capillary 23b of the second ferrule 19b contacts (contacts) while being inclined with respect to the polishing film 88.
  • the front end face 25 and the chamfered portion 26 of the first and second capillaries 23a and 23b are in contact with the polishing film 88.
  • the polishing disk 89 of the optical fiber ferrule polishing machine 86 starts rotating and revolving motion, and the rubber pad 87.
  • the front end surface 25 and the chamfered portion 26 of the first and second capillaries 23a and 23b are obliquely polished by the polishing film 88 attached to the head.
  • FIG. 56 is a side view of the optical connector plugs 10A and 10B after polishing the first and second capillaries 23a and 23b
  • FIG. 57 is a partially enlarged view of the first ferrule 19a shown in the side view of FIG. is there.
  • the front end surface 25 and the chamfered portion 26 of the first capillary 23a polished obliquely are directed from the top wall 33 to the bottom wall 34 of the first plug frame 20a and the first plug frame 20c, as shown in FIGS.
  • the tip surface 25 and the chamfered portion 26 of the second capillary 23b that is inclined so as to gradually approach the bottom wall 34 and are obliquely polished are transferred from the top wall 33 of the second plug frame 20b and the second plug frame 20d to the bottom wall 34. It inclines so that it may approach the bottom wall 34 gradually toward it.
  • FIG. 58 is a top view of the optical connector plug 10A and the optical connector plug 10B after the first and second capillaries 23a and 23b are polished
  • FIG. 59 is a first and second ferrule shown in the top view of FIG. It is the elements on larger scale of 19a, 19b.
  • the second optical connector assembly 11b one optical connector assembly
  • the second optical connector assembly 11d one optical connector assembly
  • the first and second optical connector assemblies 11a and 11b and the first and second optical connector assemblies 11c and 11d are set to 1 in the counterclockwise direction. / 4 (90 degrees).
  • the first gears 12a and 12c rotate about the axis in the same counterclockwise direction as the second gear 12b, whereby the first optical connector assembly 11a (the other optical connector assembly) and the first optical connector assembly 11c ( The other optical connector assembly) rotates 1/4 (90 degrees) counterclockwise.
  • the optical connector plug 10A returns to the state of FIG. Return to the state shown in the figure.
  • the tip surface 25 and the chamfered portion 26 of the first capillary 23a polished obliquely gradually approach the side wall 35 from one side wall 36 of the first plug frame 20a toward the other side wall 35.
  • the tip surface 25 and the chamfered portion 26 of the second capillary 23b, which are inclined to be inclined and inclined, are inclined so as to gradually approach the side wall 35 from one side wall 36 of the second plug frame 20b toward the other side wall 35.
  • the first and second capillaries 23a and 23b are inclined obliquely in the same direction.
  • the ferrule polishing method for the first and second ferrules 19a and 19b is the optical connector assembly 11a, 11b, one of the first and second optical connector assemblies 11a and 11b or the first and second optical connector assemblies 11c and 11d.
  • 11c and 11d are rotated by 1/4 (90 degrees) from the rotation start point about the axis
  • the other optical connector assembly 11a, 11b, 11c and 11d is linked to the one optical connector assembly about the axis.
  • 11a, 11b, 11c, and 11d are rotated 1/4 (90 degrees) from the rotation start point in the same direction as the first and second optical connector assemblies 11a, 11b, 11c, and 11d in one rotation operation (one action).
  • the first and second optical connector assemblies can be simultaneously rotated 1/4 (90 degrees) in the same direction.
  • the first and second capillaries 23a and 23b are polished by using the optical fiber ferrule polishing machine 86 in a state where 1a, 11b, 11c, and 11d are rotated by 1/4 (90 degrees).
  • the ferrules 19a and 19b can be obliquely polished simultaneously.
  • the first and second optical connector assemblies 11a and 11b and the first and second optical connector assemblies 11c and 11d are separately rotated and the first and second ferrules 19a and 19b are separately obliquely polished.
  • the first and second ferrules 19a and 19b can be obliquely polished quickly and efficiently.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

二連式の光コネクタプラグ10Aは、第1及び第2光コネクタアセンブリ11a,11bのうちの一方の光コネクタアセンブリ11a,11bをその軸を中心に時計回り方向または反時計回り方向へ回転させると、第1及び第2歯車の一方の回転力が中間歯車によって他方の歯車に伝達され、それによって一方の光コネクタアセンブリ11a,11bに連動して他方の光コネクタアセンブリ11a,11bがその軸を中心に一方の光コネクタアセンブリ11a,11bと同一の時計回り方向または反時計回り方向へ回転する。

Description

二連式の光コネクタプラグ及び二連式の光コネクタプラグの極性変換方法並びにフェルール研磨方法
 本発明は、二連式の光コネクタプラグに関するとともに、二連式の光コネクタプラグの極性を変換する極性変換方法に関する。さらに、二連式の光コネクタプラグの第1及び第2フェルールを斜め研磨するフェルール研磨方法に関する。
 横方向に並ぶ2つの光コネクタアセンブリを備え、それら光コネクタアセンブリをそれぞれ別個独立に反対方向へ回転させることが可能なデュプレックス光ファイバーコネクタが開示されている(US8,152,385 B2参照)。このデュプレックス光ファイバーコネクタは、それら光コネクタアセンブリを反対方向へ別々に180度回転させることで、それら光コネクタアセンブリの極性を変更することができる。
 また、横方向に並ぶ2つのアウターハウジングと、それらアウターハウジングに収容されたフェルールホルダーとを有し、キーがそれらアウターハウジングに形成され、キースロットがそれらフェルールホルダーに形成された光ファイバーコネクタが開示されている(US7,150,567 B1参照)。この光ファイバーコネクタは、アウターハウジングに対してフェルールホルダーを90度回転させることができ、フェルールホルダーを90度回転させることでそれらフェルールを同時に斜め研磨することができる。
US8,152,385 B2 US7,150,567 B1
 前記US8,152,385 B2に開示のデュプレックス光ファイバーコネクタは、それら光コネクタアセンブリの極性を変更する場合、一方の光コネクタアセンブリを時計回り方向へ回転させた後、他方の光コネクタアセンブリを反時計回り方向へ回転させなければならず、それら光コネクタアセンブリを同時に同一の方向へ回転させることができず、極性変更に手間と時間とを有する。
 前記US7,150,567 B1に開示の光ファイバーコネクタは、バネの付勢力に抗してフェルールホルダーをアウターハウジングの軸方向へ押し込んでキーとキースロットとの嵌合を解除し、その状態でフェルールホルダーを90度回転させなければならず、フェルールホルダーの回転操作が煩雑であり、小型の光ファイバーコネクタでは操作性が一層低下する。
 本発明の目的は、第1及び第2光コネクタアセンブリのうちの一方の光コネクタアセンブリを回転させることで、他方のコネクタアセンブリを一方の光コネクタアセンブリと同一の方向へ同時に回転させることができる二連式の光コネクタプラグを提供することにある。本発明の他の目的は、手間と時間とを要せずに第1及び第2光コネクタアセンブリを同一の方向へ同時に回転させることができ、極性を変えることができる二連式の光コネクタプラグの極性変換方法を提供することにある。本発明の他の目的は、第1及び第2光コネクタアセンブリを回転始点から同一の方向へ同時に1/4回転させることができ、第1及び第2フェルールを同時に斜め研磨することができるフェルール研磨方法を提供することにある。
 前記課題を解決するための本発明の第1の前提は、第1光ファイバを保持して軸方向へ延びる第1フェルールを収容する第1プラグフレーム、第1プラグフレームに係入する第1ストップリング、第1フェルールと第1ストップリングとの間に設置されて第1フェルールを軸方向前方へ付勢する第1ばねを有する第1光コネクタアセンブリと、第2光ファイバを保持して軸方向へ延びる第2フェルールを収容する第2プラグフレーム、第2プラグフレームに係入する第2ストップリング、第2フェルールと第2ストップリングとの間に設置されて第2フェルールを軸方向前方へ付勢する第2ばねを有して第1光コネクタアセンブリに並行する第2光コネクタアセンブリとを備えた二連式の光コネクタプラグである。
 前記第1の前提における本発明の二連式の光コネクタプラグの第1の特徴として、二連式の光コネクタプラグは、第1及び第2光コネクタアセンブリのうちの一方の光コネクタアセンブリがその軸を中心に回転すると、それに連動して他方の光コネクタアセンブリがその軸を中心に一方の光コネクタアセンブリと同一の方向へ回転することにある。
 本発明の二連式の光コネクタプラグの一例としては、軸方向へ延びる第1歯車が第1ストップリングの後端部に形成され、軸方向へ延びる第2歯車が第2ストップリングの後端部に形成され、二連式の光コネクタプラグが、第1歯車と第2歯車との間に介在して軸方向へ延びていて第1及び第2歯車に外接し、第1及び第2歯車のうちの一方の歯車の回転力を他方の歯車に伝達しつつ他方の歯車を一方の歯車と同一の方向へ回転させる中間歯車を含む。
 前記第1の前提における本発明の二連式の光コネクタプラグの第2の特徴としては、二連式の光コネクタプラグが、第1及び第2光コネクタアセンブリのうちの一方の光コネクタアセンブリの回転力を他方の光コネクタアセンブリに伝達する歯車を備え、二連式の光コネクタプラグは、第1及び第2光コネクタアセンブリのうちの一方の光コネクタアセンブリがその軸を中心に回転すると、歯車によって一方の光コネクタアセンブリの回転に連動して他方の光コネクタアセンブリがその軸を中心に回転することにある。
 本発明の二連式の光コネクタプラグの他の一例としては、歯車が、第1ストップリングの後端部に形成されて軸方向へ延びる第1歯車と、第2ストップリングの後端部に形成されて軸方向へ延びる第2歯車と、第1歯車と第2歯車との間に介在して軸方向へ延びていて第1及び第2歯車に外接し、第1及び第2歯車のうちの一方の歯車の回転力を他方の歯車に伝達しつつ他方の歯車を一方の歯車と同一の方向へ回転させる中間歯車とから形成されている。
 本発明の二連式の光コネクタプラグの他の一例として、二連式の光コネクタプラグでは、第1歯車と第2歯車と中間歯車との歯車比が1である。
 本発明の二連式の光コネクタプラグの他の一例としては、二連式の光コネクタプラグが、第1歯車を形成した第1ストップリングの後端部と第2歯車を形成した第2ストップリングの後端部と中間歯車とを収容する第1ケーシングを含み、第1ケーシングが、第1ストップリングの後端部を回転可能に収容する第1歯車収容部と、第2ストップリングの後端部を回転可能に収容する第2歯車収容部と、第1及び第2歯車収容部の間に位置して中間歯車を回転可能に収容する中間歯車収容部とを有する。
 本発明の二連式の光コネクタプラグの他の一例としては、二連式の光コネクタプラグが、第1及び第2光コネクタアセンブリのうちの少なくとも一方の回転角度を規制する回転角度規制手段を含み、第1ケーシングが、その前端に開口して第1ストップリングを挿通する第1開口と、第2ストップリングを挿通する第2開口とを有し、回転角度規制手段が、第1及び第2開口のうちの少なくとも一方に作られて開口の径方向内方へ凸となる回転規制凸部と、第1及び第2ストップリングの少なくとも一方の周面に作られて周面の径方向外方へ凸となる当接凸部とから形成され、二連式の光コネクタプラグでは、当接凸部が回転規制凸部に当接することで第1及び第2光コネクタアセンブリの回転が阻止され、回転角度規制手段によって規制された第1及び第2光コネクタアセンブリの回転始点から回転終点までの回転範囲が半回転である。
 本発明の二連式の光コネクタプラグの他の一例としては、二連式の光コネクタプラグが、第1及び第2光コネクタアセンブリのうちの少なくとも一方の回転角度を規制する回転角度規制手段を含み、回転角度規制手段が、第1歯車と第2歯車との少なくとも一方に作られて歯車の径方向外方へ凸となる当接凸部と、第1ケーシングの第1歯車収容部と第2歯車収容部との少なくとも一方に作られて収容部の径方向内方へ凸となる回転規制凸部とから形成され、二連式の光コネクタプラグでは、当接凸部が回転規制凸部に当接することで第1及び第2光コネクタアセンブリの回転が阻止され、回転角度規制手段によって規制された第1及び第2光コネクタアセンブリの回転始点から回転終点までの回転範囲が半回転である。
 本発明の二連式の光コネクタプラグの他の一例としては、二連式の光コネクタプラグが第1ケーシングを軸方向へ収容する第2ケーシングを含み、第2ケーシングが、その前端に開口する前端開口と、第2ケーシングの頂壁から軸方向へ延びていて前端開口から軸方向前方へ露出し、第1及び第2コネクタアセンブリを光コネクタアダプタに挿入したときに光コネクタアダプタに係脱可能に係合して第1及び第2コネクタアセンブリの光コネクタアダプタに対する挿入状態を維持する係合ラッチとを有する。
 本発明の二連式の光コネクタプラグの他の一例としては、第2ケーシングが、その頂壁に第1ケーシングの頂壁を対向させるとともにその底壁に第1ケーシングの底壁を対向させた状態で、第1ケーシングを収容可能であり、または、その頂壁に第1ケーシングの底壁を対向させるとともにその底壁に第1ケーシングの頂壁を対向させた状態で、第1ケーシングを収容可能である。
 本発明の二連式の光コネクタプラグの他の一例としては、二連式の光コネクタプラグが第2ケーシングの軸方向後方に位置して第2ケーシングに対して軸方向へスライド可能に連結されたスライダーを含み、二連式の光コネクタプラグでは、第2ケーシングに対してスライダーを軸方向後方へスライドさせる前の状態において係合ラッチの光コネクタアダプタに対する係合状態が維持され、第2ケーシングに対してスライダーを軸方向後方へスライドさせると、スライダーが係合ラッチを下方へ押し下げて係合ラッチの光コネクタアダプタに対する係合状態が解除される。
 本発明の二連式の光コネクタプラグの他の一例としては、スライダーが係合ラッチの上面を軸方向へ摺動可能であって、スライダーの前端から軸方向後方へ向かうにつれて下方へ次第に傾斜する斜面を備えた摺動頂壁を有し、二連式の光コネクタプラグでは、第2ケーシングに対してスライダーを軸方向後方へスライドさせると、摺動頂壁の斜面が係合ラッチを下方へ押し下げる。
 前記課題を解決するための本発明の第2の前提は、第1光ファイバを保持して軸方向へ延びる第1フェルールを収容する第1プラグフレーム、第1プラグフレームに係入する第1ストップリング、第1フェルールと第1ストップリングとの間に設置されて第1フェルールを軸方向前方へ付勢する第1ばねを有する第1光コネクタアセンブリと、第2光ファイバを保持して軸方向へ延びる第2フェルールを収容する第2プラグフレーム、第2プラグフレームに係入する第2ストップリング、第2フェルールと第2ストップリングとの間に設置されて第2フェルールを軸方向前方へ付勢する第2ばねを有して第1光コネクタアセンブリに並行する第2光コネクタアセンブリとを備えた二連式の光コネクタプラグの極性を変換する極性変換方法である。
 前記第2の前提における本発明の極性変換方法の第1の特徴として、極性変換方法は、第1及び第2光コネクタアセンブリのうちの一方の光コネクタアセンブリがその軸を中心に回転始点から回転終点まで半回転回転すると、それに連動して他方の光コネクタアセンブリがその軸を中心に一方の光コネクタアセンブリと同一の方向へ回転始点から回転終点まで半回転回転し、それによって前記二連式の光コネクタプラグの極性が変換されることにある。
 本発明の極性変換方法の一例として、二連式の光コネクタプラグでは、第1ストップリングの後端部に軸方向へ延びる第1歯車が形成され、第2ストップリングの後端部に軸方向へ延びる第2歯車が形成され、第1歯車と第2歯車との間に介在して軸方向へ延びる中間歯車が第1及び第2歯車に外接し、極性変換方法が、中間歯車を利用して第1及び第2歯車のうちの一方の歯車の回転力を他方の歯車に伝達しつつ一方の歯車と他方の歯車とを同一の方向へ半回転回転させることで、第1及び第2光コネクタアセンブリが回転始点から回転終点まで半回転回転し、二連式の光コネクタプラグの極性が変換される。
 前記第2の前提における本発明の極性変換方法の第2の特徴としては、二連式の光コネクタプラグが第1及び第2光コネクタアセンブリのうちの一方の光コネクタアセンブリの回転力を他方の光コネクタアセンブリに伝達する歯車を備え、極性変換方法は、第1及び第2光コネクタアセンブリのうちの一方の光コネクタアセンブリがその軸を中心に回転始点から回転終点まで半回転回転すると、歯車によって一方の光コネクタアセンブリの回転に連動して他方の光コネクタアセンブリがその軸を中心に回転始点から回転終点まで半回転回転し、それによって二連式の光コネクタプラグの極性が変換されることにある。
 本発明の極性変換方法の他の一例としては、歯車が、第1ストップリングの後端部に形成されて軸方向へ延びる第1歯車と、第2ストップリングの後端部に形成されて軸方向へ延びる第2歯車と、第1歯車と第2歯車との間に介在して軸方向へ延びていて第1及び第2歯車に外接し、第1及び第2歯車のうちの一方の歯車の回転力を他方の歯車に伝達しつつ他方の歯車を一方の歯車と同一の方向へ回転させる中間歯車とから形成され、極性変換方法が、中間歯車を利用して第1及び第2歯車のうちの一方の歯車の回転力を他方の歯車に伝達しつつ一方の歯車と他方の歯車とを同一の方向へ半回転回転させることで、第1及び第2光コネクタアセンブリが回転始点から回転終点まで半回転回転し、二連式の光コネクタプラグの極性が変換される。
 本発明の極性変換方法の他の一例としては、二連式の光コネクタプラグが、第1歯車が形成された第1ストップリングの後端部を回転可能に収容する第1歯車収容部と、第2歯車が形成された第2ストップリングの後端部を回転可能に収容する第2歯車収容部と、第1及び第2歯車収容部の間に位置して中間歯車を回転可能に収容する中間歯車収容部とを有する第1ケーシングを備え、極性変換方法では、中間歯車収容部に収容された中間歯車を利用して第1及び第2歯車収容部に収容された第1及び第2歯車のうちの一方の歯車の回転力を他方の歯車に伝達しつつ一方の歯車と他方の歯車とを同一の方向へ半回転回転させることで、第1及び第2光コネクタアセンブリが回転始点から回転終点まで半回転回転し、二連式の光コネクタプラグの極性が変換される。
 本発明の極性変換方法の他の一例としては、二連式の光コネクタプラグが、第1及び第2光コネクタアセンブリのうちの少なくとも一方の回転角度を規制する回転角度規制手段を含み、第1ケーシングが、その前端に開口して第1ストップリングを挿通する第1開口と、第2ストップリングを挿通する第2開口とを有し、回転角度規制手段が、第1及び第2開口のうちの少なくとも一方に作られて開口の径方向内方へ凸となる回転規制凸部と、第1及び第2ストップリングの少なくとも一方の周面に作られて周面の径方向外方へ凸となる当接凸部とから形成され、極性変換方法では、当接凸部が回転規制凸部に当接することで第1及び第2光コネクタアセンブリの回転が阻止され、第1及び第2光コネクタアセンブリの回転範囲が半回転に規制されている。
 本発明の極性変換方法の他の一例としては、二連式の光コネクタプラグが、第1及び第2光コネクタアセンブリのうちの少なくとも一方の回転角度を規制する回転角度規制手段を含み、回転角度規制手段が、第1歯車と第2歯車との少なくとも一方の周面に作られて歯車の径方向外方へ凸となる当接凸部と、第1ケーシングの第1歯車収容部と第2歯車収容部との少なくとも一方に作られて収容部の径方向内方へ凸となる回転規制凸部とから形成され、極性変換方法では、当接凸部が回転規制凸部に当接することで第1及び第2光コネクタアセンブリの回転が阻止され、第1及び第2光コネクタアセンブリの回転範囲が半回転に規制されている。
 本発明の極性変換方法の他の一例としては、二連式の光コネクタプラグが第1ケーシングを軸方向へ収容する第2ケーシングを含み、第2ケーシングが、その前端に開口する前端開口と、第2ケーシングの頂壁から軸方向へ延びていて前端開口から軸方向前方へ露出し、第1及び第2コネクタアセンブリを光コネクタアダプタに挿入したときに光コネクタアダプタに係脱可能に係合して第1及び第2コネクタアセンブリの光コネクタアダプタに対する挿入状態を維持する係合ラッチとを有する。
 本発明の極性変換方法の他の一例としては、第2ケーシングがその頂壁に第1ケーシングの頂壁を対向させるとともにその底壁に第1ケーシングの底壁を対向させた状態で、第1ケーシングを収容可能であり、または、その頂壁に第1ケーシングの底壁を対向させるとともにその底壁に第1ケーシングの頂壁を対向させた状態で、第1ケーシングを収容可能であり、それによって二連式の光コネクタプラグの極性を変換することができる。
 本発明の極性変換方法の他の一例としては、極性変換方法が、第1ケーシングを第2ケーシングから軸方向前方へ引き出し、第1及び第2光コネクタアセンブリのうちの一方の光コネクタアセンブリをその軸を中心に回転始点から回転終点まで半回転回転させることで、他方の光コネクタアセンブリをその軸を中心に回転始点から回転終点まで半回転回転させるとともに、第2ケーシングを半回転回転させ、第2ケーシングの頂壁に第1ケーシングの底壁が対向するとともに第2ケーシングの底壁に第1ケーシングの頂壁が対向するように第1ケーシングを第2ケーシングに収容し、それによって二連式の光コネクタプラグの極性を変換することができる。
 前記課題を解決するための本発明の第3の前提は、第1光ファイバを保持して軸方向へ延びる第1フェルールを収容する第1プラグフレーム、第1プラグフレームに係入する第1ストップリング、第1フェルールと第1ストップリングとの間に設置されて第1フェルールを軸方向前方へ付勢する第1ばねを有する第1光コネクタアセンブリと、第2光ファイバを保持して軸方向へ延びる第2フェルールを収容する第2プラグフレーム、第2プラグフレームに係入する第2ストップリング、第2フェルールと第2ストップリングとの間に設置されて第2フェルールを軸方向前方へ付勢する第2ばねを有して第1光コネクタアセンブリに並行する第2光コネクタアセンブリとを備えた二連式の光コネクタプラグの第1及び第2フェルールを斜め研磨するフェルール研磨方法である。
 前記第3の前提における本発明のフェルール研磨方法の特徴として、フェルール研磨方法は、第1及び第2光コネクタアセンブリのうちの一方の光コネクタアセンブリがその軸を中心に回転始点から1/4回転すると、それに連動して他方の光コネクタアセンブリがその軸を中心に一方の光コネクタアセンブリと同一の方向へ回転始点から1/4回転し、二連式の光コネクタプラグの使用状態から第1及び第2光コネクタアセンブリが1/4回転した状態で、第1及び第2フェルールを光ファイバフェルール研磨機を利用して同時に斜め研磨することにある。
 本発明のフェルール研磨方法の他の一例として、二連式の光コネクタプラグでは、第1ストップリングの後端部に軸方向へ延びる第1歯車が形成され、第2ストップリングの後端部に軸方向へ延びる第2歯車が形成され、第1歯車と第2歯車との間に介在して軸方向へ延びる中間歯車が第1及び第2歯車に外接し、フェルール研磨方法は、中間歯車を利用して第1及び第2歯車のうちの一方の歯車の回転力を他方の歯車に伝達しつつ一方の歯車と他方の歯車とを同一の方向へ1/4回転させ、その状態で第1及び第2フェルールを同時に斜め研磨する。
 本発明のフェルール研磨方法の他の一例としては、二連式の光コネクタプラグが、第1歯車が形成された第1ストップリングの後端部を回転可能に収容する第1歯車収容部と、第2歯車が形成された第2ストップリングの後端部を回転可能に収容する第2歯車収容部と、第1及び第2歯車収容部の間に位置して中間歯車を回転可能に収容する中間歯車収容部とを有する第1ケーシングを備え、フェルール研磨方法が、中間歯車収容部に収容された中間歯車を利用して第1及び第2歯車収容部に収容された第1及び第2歯車のうちの一方の歯車の回転力を他方の歯車に伝達しつつ一方の歯車と他方の歯車とを同一の方向へ1/4回転させ、その状態で第1及び第2フェルールを同時に斜め研磨する。
 本発明に係る二連式の光コネクタプラグによれば、第1及び第2光コネクタアセンブリのうちの一方の光コネクタアセンブリがその軸を中心に回転すると、他方の光コネクタアセンブリがその軸を中心に回転するから、第1及び第2光コネクタアセンブリのうちの一方の光コネクタアセンブリを回転させるだけで、他方のコネクタアセンブリを回転させることができる。二連式の光コネクタプラグは、一方の光コネクタアセンブリを回転させると、他方のコネクタアセンブリが回転するから、一度の回転操作(ワンアクション)で第1及び第2光コネクタアセンブリを回転させることができ、それら光コネクタアセンブリを別々に回転させる場合と比較して手間や時間を省くことができる。
 二連式の光コネクタプラグは、第1及び第2光コネクタアセンブリのうちの一方の光コネクタアセンブリがその軸を中心に時計回り方向または反時計回り方向へ回転すると、それに連動して他方の光コネクタアセンブリがその軸を中心に一方の光コネクタアセンブリと同一の時計回り方向または反時計回り方向へ回転するから、第1及び第2光コネクタアセンブリのうちの一方の光コネクタアセンブリを回転させるだけで、他方のコネクタアセンブリを一方の光コネクタアセンブリと同一の方向へ同時に回転させることができる。二連式の光コネクタプラグは、第1及び第2光コネクタアセンブリが同一の方向へ同時に回転するから、一度の回転操作(ワンアクション)で第1及び第2光コネクタアセンブリを同時に回転させることができ、それら光コネクタアセンブリを別々に回転させる場合と比較して手間や時間を省くことができる。
 二連式の光コネクタプラグは、軸方向へ延びる第1歯車が第1ストップリングの後端部に形成され、軸方向へ延びる第2歯車が第2ストップリングの後端部に形成され、第1歯車と第2歯車との間に介在して軸方向へ延びていて第1及び第2歯車に外接し、第1及び第2歯車のうちの一方の歯車の回転力を他方の歯車に伝達しつつ他方の歯車を一方の歯車と同一の方向へ回転させる中間歯車を含み、第1及び第2光コネクタアセンブリのうちの一方の光コネクタアセンブリが時計回り方向または反時計回り方向へ回転すると、その回転力が第1及び第2歯車の一方の歯車から中間歯車を介して他方の歯車に伝達されるから、それら歯車を利用することで、他方のコネクタアセンブリを一方の光コネクタアセンブリと同一の方向へ同時に回転させることができる。
 第1歯車と第2歯車と中間歯車との歯車比が1である二連式の光コネクタプラグは、それら歯車の歯車比を1にすることで、第1及び第2光コネクタアセンブリのうちの一方の光コネクタアセンブリが時計回り方向または反時計回り方向へ回転したときに、他方の光コネクタアセンブリが一方の光コネクタアセンブリと同一の回転角度で回転し、第1及び第2光コネクタアセンブリの回転始点から回転終点までの回転範囲を同一にすることができ、一方の光コネクタアセンブリを回転させることで他方の光コネクタアセンブリを一方の光コネクタアセンブリと同一の位置まで回転させることができる。
 第1歯車を形成した第1ストップリングの後端部と第2歯車を形成した第2ストップリングの後端部と中間歯車とを収容する第1ケーシングを含み、第1ケーシングが第1ストップリングの後端部を回転可能に収容する第1歯車収容部と第2ストップリングの後端部を回転可能に収容する第2歯車収容部と第1及び第2歯車収容部の間に位置して中間歯車を回転可能に収容する中間歯車収容部とを有する二連式の光コネクタプラグは、第1及び第2光コネクタアセンブリのうちの一方の光コネクタアセンブリが時計回り方向または反時計回り方向へ回転すると、その回転力が第1及び第2歯車収容部に回転可能に収容された第1及び第2歯車の一方の歯車から中間歯車収容部に回転可能に収容された中間歯車を介して他方の歯車に伝達されるから、それら収容部に回転可能に収容された歯車を利用することで、他方のコネクタアセンブリを一方の光コネクタアセンブリと同一の方向へ同時に回転させることができる。
 第1及び第2光コネクタアセンブリのうちの少なくとも一方の回転角度を規制する回転角度規制手段を含み、回転角度規制手段によって規制された第1及び第2光コネクタアセンブリの回転始点から回転終点までの回転範囲が半回転である二連式の光コネクタプラグは、回転角度規制手段によって第1及び第2光コネクタアセンブリの回転始点から回転終点までの回転範囲を半回転に規制することで、例えば、二連式の光コネクタプラグの極性を変換する場合、それら光コネクタアセンブリを時計回り方向へ半回転回転させた位置で回転を停止させることで確実かつ正確に極性変換を行うことができ、逆に、時計回り方向へ半回転回転させたそれら光コネクタアセンブリを反時計回り方向へ半回転回転させることで確実かつ正確に二連式の光コネクタプラグの極性を戻すことができる。また、それら光コネクタアセンブリを無制限に回転させることを防ぐことができ、光ファイバの捻れ断線を防ぐことができる。
 二連式の光コネクタプラグは、第1ケーシングが、その前端に開口して第1ストップリングを挿通する第1開口と、第2ストップリングを挿通する第2開口とを有し、回転角度規制手段が、第1及び第2開口のうちの少なくとも一方に作られて開口の径方向内方へ凸となる回転規制凸部と、第1及び第2ストップリングの少なくとも一方の周面に作られてその周面の径方向外方へ凸となる当接凸部とから形成され、当接凸部が回転規制凸部に当接することで第1及び第2光コネクタアセンブリの回転が阻止されるから、開口の径方向内方へ凸となる回転規制凸部と周面の径方向外方へ凸となる当接凸部とを利用することで、それら光コネクタアセンブリの回転角度を規制することがき、例えば、それら光コネクタアセンブリの回転始点から回転終点までの回転範囲を半回転に設定する場合、それら光コネクタアセンブリの回転始点から回転終点までの回転範囲を正確に半回転にすることができる。
 二連式の光コネクタプラグは、回転角度規制手段が、第1歯車と第2歯車との少なくとも一方に作られて歯車の径方向外方へ凸となる当接凸部と、第1ケーシングの第1歯車収容部と第2歯車収容部との少なくとも一方に作られて収容部の径方向内方へ凸となる回転規制凸部とから形成され、当接凸部が回転規制凸部に当接することで第1及び第2光コネクタアセンブリの回転が阻止されるから、歯車の径方向外方へ凸となる当接凸部と歯車収容部の周面の径方向内方へ凸となる回転規制凸部とを利用することで、それら光コネクタアセンブリの回転角度を規制することがき、例えば、それら光コネクタアセンブリの回転始点から回転終点までの回転範囲を半回転に設定する場合、それら光コネクタアセンブリの回転始点から回転終点までの回転範囲を正確に半回転にすることができる。
 第1ケーシングを軸方向へ収容する第2ケーシングを含み、第2ケーシングがその前端に開口する前端開口と第2ケーシングの頂壁から軸方向へ延びていて前端開口から軸方向前方へ露出し、第1及び第2光コネクタアセンブリを光コネクタアダプタに挿入したときに光コネクタアダプタに係脱可能に係合して第1及び第2光コネクタアセンブリの光コネクタアダプタに対する挿入状態を維持する係合ラッチとを有する二連式の光コネクタプラグは、第2ケーシングの頂壁から軸方向へ延びる係合ラッチを利用することで、光コネクタプラグの各ストップリングの光コネクタアダプタに対する挿入状態を維持することができ、光コネクタの光ファイバに対する第1及び第2光ファイバの光接続状態を維持することができる。また、係合ラッチが第1及び第2光コネクタアセンブリの第1及び第2プラグフレームに設置されていると、係合ラッチが邪魔となってそれら光コネクタアセンブリを同一方向に回転させることができないが、係合ラッチが第2ケーシングの頂壁に設置されているから、係合ラッチが邪魔することなくそれら光コネクタアセンブリを同一方向に回転させることができる。
 第2ケーシングがその頂壁に第1ケーシングの頂壁を対向させるとともにその底壁に第1ケーシングの底壁を対向させた状態で第1ケーシングを収容可能であり、または、第2ケーシングがその頂壁に第1ケーシングの底壁を対向させるとともにその底壁に第1ケーシングの頂壁を対向させた状態で第1ケーシングを収容可能である二連式の光コネクタプラグは、例えば、二連式の光コネクタプラグの極性を変換する場合、第1及び第2光コネクタアセンブリのいずれかを回転させることで光コネクタプラグの極性を変換することができる他、第1ケーシングを上下反転させた状態で第2ケーシングに収容することで、二連式の光コネクタプラグの極性を変換することができる。
 第2ケーシングの軸方向後方に位置して第2ケーシングに対して軸方向へスライド可能に連結されたスライダーを含み、第2ケーシングに対してスライダーを軸方向後方へスライドさせる前の状態において係合ラッチの光コネクタアダプタに対する係合状態が維持され、第2ケーシングに対してスライダーを軸方向後方へスライドさせると、スライダーが係合ラッチを下方へ押し下げて係合ラッチの光コネクタアダプタに対する係合状態が解除される二連式の光コネクタプラグは、第2ケーシングに対してスライダーを軸方向後方へスライドさせることで、スライダーが係合ラッチを下方へ押し下げ、係合ラッチの光コネクタアダプタに対する係合状態が解除されるから、スライダーを軸方向後方へスライドさせる操作だけで光コネクタアダプタから光コネクタプラグのそれら光コネクタアセンブリを引き抜くことができ、第1及び第2光コネクタアセンブリの光コネクタアダプタに対する挿入状態を容易に解除することができる。
 スライダーが係合ラッチの上面を軸方向へ摺動可能であってスライダーの前端から軸方向後方へ向かうにつれて下方へ次第に傾斜する斜面を備えた摺動頂壁を有し、第2ケーシングに対してスライダーを軸方向後方へスライドさせると、摺動頂壁の斜面が係合ラッチを下方へ押し下げる二連式の光コネクタプラグは、スライダーを軸方向後方へスライドさせることで、摺動頂壁の斜面が係合ラッチを下方へ次第に押し下げ、係合ラッチの光コネクタアダプタに対する係合状態が解除されるから、スライダーを軸方向後方へスライドさせる操作だけで光コネクタアダプタから光コネクタプラグのそれら光コネクタアセンブリを引き抜くことができ、第1及び第2光コネクタアセンブリの光コネクタアダプタに対する挿入状態を容易に解除することができる。
 本発明に係る二連式の光コネクタプラグの極性変換方法によれば、第1及び第2光コネクタアセンブリのうちの一方の光コネクタアセンブリがその軸を中心に回転始点から回転終点まで半回転回転すると、他方の光コネクタアセンブリがその軸を中心に回転始点から回転終点まで半回転回転することで、二連式の光コネクタプラグの極性が変換されるから、一度の回転操作(ワンアクション)で光コネクタプラグの極性を変換することができ、それら光コネクタアセンブリを別々に回転させて光コネクタプラグの極性を変換する場合と比較して極性変換の手間や時間を省くことができる。
 二連式の光コネクタプラグの極性変換方法は、第1及び第2光コネクタアセンブリのうちの一方の光コネクタアセンブリがその軸を中心に回転始点から回転終点まで半回転すると、それに連動して他方の光コネクタアセンブリがその軸を中心に一方の光コネクタアセンブリと同一の方向へ回転始点から回転終点まで半回転するから、第1及び第2光コネクタアセンブリのうちの一方の光コネクタアセンブリを半回転回転させるだけで、二連式の光コネクタプラグの極性を変換することができる。極性変換方法は、第1及び第2光コネクタアセンブリが同一の方向へ同時に回転するから、一度の回転操作(ワンアクション)で二連式の光コネクタプラグの極性を変換することができ、それら光コネクタアセンブリを別々に回転させて光コネクタプラグの極性を変換する場合と比較して極性変換の手間や時間を省くことができる。
 二連式の光コネクタプラグの極性変換方法は、第1ストップリングの後端部に軸方向へ延びる第1歯車が形成され、第2ストップリングの後端部に軸方向へ延びる第2歯車が形成され、第1歯車と第2歯車との間に介在して軸方向へ延びる中間歯車が第1及び第2歯車に外接し、中間歯車を利用して第1及び第2歯車のうちの一方の歯車の回転力を他方の歯車に伝達しつつ一方の歯車と他方の歯車とを同一の方向へ半回転回転させることができ、第1及び第2光コネクタアセンブリのうちの一方の光コネクタアセンブリを時計回り方向または反時計回り方向へ回転させると、その回転力が第1及び第2歯車の一方の歯車から中間歯車を介して他方の歯車に伝達されるから、それら歯車を利用することで、他方のコネクタアセンブリを一方の光コネクタアセンブリと同一の方向へ同時に半回転回転させることができ、一度の回転操作で二連式の光コネクタプラグの極性を変換することができる。
 第1歯車が形成された第1ストップリングの後端部を回転可能に収容する第1歯車収容部と、第2歯車が形成された第2ストップリングの後端部を回転可能に収容する第2歯車収容部と、第1及び第2歯車収容部の間に位置して中間歯車を回転可能に収容する中間歯車収容部とを有する第1ケーシングを備え、中間歯車収容部に収容された中間歯車を利用して第1及び第2歯車収容部に収容された第1及び第2歯車のうちの一方の歯車の回転力を他方の歯車に伝達しつつ一方の歯車と他方の歯車とを同一の方向へ半回転回転させることで、第1及び第2光コネクタアセンブリが回転始点から回転終点まで半回転回転し、光コネクタプラグの極性が変換される二連式の光コネクタプラグの極性変換方法は、第1及び第2光コネクタアセンブリのうちの一方の光コネクタアセンブリを時計回り方向または反時計回り方向へ回転させると、その回転力が第1及び第2歯車収容部に回転可能に収容された第1及び第2歯車の一方の歯車から中間歯車収容部に回転可能に収容された中間歯車を介して他方の歯車に伝達されるから、それら収容部に回転可能に収容された歯車を利用することで、他方のコネクタアセンブリを一方の光コネクタアセンブリと同一の方向へ同時に半回転回転させることができ、一度の回転操作で二連式の光コネクタプラグの極性を変換することができる。
 第1及び第2光コネクタアセンブリのうちの少なくとも一方の回転角度を規制する回転角度規制手段を含み、回転角度規制手段を利用して第1及び第2光コネクタアセンブリの回転始点から回転終点までの回転範囲を半回転に規制している二連式の光コネクタプラグの極性変換方法は、回転角度規制手段によって第1及び第2光コネクタアセンブリの回転始点から回転終点までの回転範囲を半回転に規制するから、時計回り方向へ半回転回転させた位置でそれら光コネクタアセンブリの回転を停止させることで二連式の光コネクタプラグの極性を確実かつ正確に変換することができ、逆に、時計回り方向へ半回転回転させたそれら光コネクタアセンブリを反時計回り方向へ半回転回転させることで確実かつ正確に二連式の光コネクタプラグの極性を戻すことができる。
 二連式の光コネクタプラグの極性変換方法は、第1ケーシングが、その前端に開口して第1ストップリングを挿通する第1開口と、第2ストップリングを挿通する第2開口とを有し、回転角度規制手段が、第1及び第2開口のうちの少なくとも一方に作られて開口の径方向内方へ凸となる回転規制凸部と、第1及び第2ストップリングの少なくとも一方の周面に作られてその周面の径方向外方へ凸となる当接凸部とから形成され、当接凸部が回転規制凸部に当接することで第1及び第2光コネクタアセンブリの回転が阻止され、第1及び第2光コネクタアセンブリの回転範囲が半回転に規制されているから、開口の径方向内方へ凸となる回転規制凸部と周面の径方向外方へ凸となる当接凸部とを利用することで、それら光コネクタアセンブリの回転角度を正確に半回転に規制することがき、時計回り方向へ半回転回転させた位置でそれら光コネクタアセンブリの回転を停止させることで二連式の光コネクタプラグの極性を確実かつ正確に変換することができるとともに、時計回り方向へ半回転回転させたそれら光コネクタアセンブリを反時計回り方向へ半回転回転させることで確実かつ正確に二連式の光コネクタプラグの極性を戻すことができる。
 二連式の光コネクタプラグの極性変換方法は、回転角度規制手段が、第1歯車と第2歯車との少なくとも一方の周面に作られて歯車の径方向外方へ凸となる当接凸部と、第1ケーシングの第1歯車収容部と第2歯車収容部との少なくとも一方に作られて収容部の径方向内方へ凸となる回転規制凸部とから形成され、当接凸部が回転規制凸部に当接することで第1及び第2光コネクタアセンブリの回転が阻止され、第1及び第2光コネクタアセンブリの回転範囲が半回転に規制されているから、歯車の径方向外方へ凸となる当接凸部と歯車収容部の周面の径方向内方へ凸となる回転規制凸部とを利用することで、それら光コネクタアセンブリの回転角度を正確に半回転に規制することがき、時計回り方向へ半回転回転させた位置でそれら光コネクタアセンブリの回転を停止させることで二連式の光コネクタプラグの極性を確実かつ正確に変換することができるとともに、時計回り方向へ半回転回転させたそれら光コネクタアセンブリを反時計回り方向へ半回転回転させることで確実かつ正確に二連式の光コネクタプラグの極性を戻すことができる。
 第1ケーシングを軸方向へ収容する第2ケーシングを含み、第2ケーシングがその前端に開口する前端開口と第2ケーシングの頂壁から軸方向へ延びていて前端開口から軸方向前方へ露出し、第1及び第2コネクタアセンブリを光コネクタアダプタに挿入したときに光コネクタアダプタに係脱可能に係合して第1及び第2コネクタアセンブリの光コネクタアダプタに対する挿入状態を維持する係合ラッチとを有する二連式の光コネクタプラグの極性変換方法は、第2ケーシングの頂壁から軸方向へ延びる係合ラッチを利用することで、光コネクタプラグの各ストップリングの光コネクタアダプタに対する挿入状態を維持することができ、極性を変換する前または極性を変換した状態で光コネクタの光ファイバに対する第1及び第2光ファイバの光接続状態を維持することができる。また、係合ラッチが第1及び第2光コネクタアセンブリの第1及び第2プラグフレームに設置されていると、係合ラッチが邪魔となってそれら光コネクタアセンブリを同一方向に回転させることができないが、係合ラッチが第2ケーシングの頂壁に設置されているから、係合ラッチが邪魔することなくそれら光コネクタアセンブリを同一方向に回転させることができ、二連式の光コネクタプラグの極性を確実に変換することができる。
 第2ケーシングがその頂壁に第1ケーシングの頂壁を対向させるとともにその底壁に第1ケーシングの底壁を対向させた状態で第1ケーシングを収容可能であり、または、第2ケーシングがその頂壁に第1ケーシングの底壁を対向させるとともにその底壁に第1ケーシングの頂壁を対向させた状態で第1ケーシングを収容可能であり、それによって光コネクタプラグの極性を変換することができる二連式の光コネクタプラグの極性変換方法は、第1及び第2光コネクタアセンブリのいずれかを回転させることでそれら光コネクタアセンブリの極性を変換することができるのみならず、第1ケーシングを上下反転させた状態で第2ケーシングに収容することで、二連式の光コネクタプラグの極性を変換することができる。
 第1ケーシングを第2ケーシングから軸方向前方へ引き出し、第1及び第2光コネクタアセンブリのうちの一方の光コネクタアセンブリをその軸を中心に回転始点から回転終点まで半回転回転させることで、他方の光コネクタアセンブリをその軸を中心に回転始点から回転終点まで半回転回転させるとともに、第2ケーシングを半回転回転させ、第2ケーシングの頂壁に第1ケーシングの底壁が対向するとともに第2ケーシングの底壁に第1ケーシングの頂壁が対向するように第1ケーシングを第2ケーシングに収容し、それによって二連式の光コネクタプラグの極性を変換することができる二連式の光コネクタプラグの極性変換方法は、第1及び第2光コネクタアセンブリのいずれかを回転させることでそれら光コネクタアセンブリの極性を変換することができるのみならず、第1ケーシングを上下反転させた状態で第2ケーシングに収容することで、二連式の光コネクタプラグの極性を変換することができる。
 本発明に係る第1及び第2フェルールのフェルール研磨方法によれば、二連式の光コネクタプラグの使用状態から第1及び第2光コネクタアセンブリが1/4回転した状態で、第1及び第2フェルールを光ファイバフェルール研磨機を利用して同時に斜め研磨するから、第1及び第2フェルールを別々に斜め研磨することによる手間や時間を省くことができ、迅速かつ効率的にフェルールを斜め研磨することができる。
 フェルール研磨方法は、第1及び第2光コネクタアセンブリのうちの一方の光コネクタアセンブリがその軸を中心に回転始点から1/4回転すると、それに連動して他方の光コネクタアセンブリがその軸を中心に一方の光コネクタアセンブリと同一の方向へ回転始点から1/4回転するから、一度の回転操作(ワンアクション)で第1及び第2光コネクタアセンブリを同一の方向へ同時に1/4回転させることができ、光ファイバフェルール研磨機を利用して第1及び第2フェルールを同時に斜め研磨することができる。フェルール研磨方法は、第1及び第2光コネクタアセンブリを別々に回転させて第1及び第2フェルールを別々に斜め研磨することによる手間や時間を省くことができ、迅速かつ効率的にフェルールを斜め研磨することができる。
 第1ストップリングの後端部に軸方向へ延びる第1歯車が形成され、第2ストップリングの後端部に軸方向へ延びる第2歯車が形成され、第1歯車と第2歯車との間に介在して軸方向へ延びる中間歯車が第1及び第2歯車に外接し、中間歯車を利用して第1及び第2歯車のうちの一方の歯車の回転力を他方の歯車に伝達しつつ一方の歯車と他方の歯車とを同一の方向へ1/4回転させ、その状態で第1及び第2フェルールを同時に斜め研磨するフェルール研磨方法は、第1及び第2光コネクタアセンブリのうちの一方の光コネクタアセンブリが時計回り方向または反時計回り方向へ回転すると、その回転力が第1及び第2歯車の一方の歯車から中間歯車を介して他方の歯車に伝達されるから、それら歯車を利用することで、他方のコネクタアセンブリを一方の光コネクタアセンブリと同一の方向へ同時に1/4回転させることができ、光ファイバフェルール研磨機を利用して第1及び第2フェルールを同時に斜め研磨することができる。
 第1歯車が形成された第1ストップリングの後端部を回転可能に収容する第1歯車収容部と、第2歯車が形成された第2ストップリングの後端部を回転可能に収容する第2歯車収容部と、第1及び第2歯車収容部の間に位置して中間歯車を回転可能に収容する中間歯車収容部とを有する第1ケーシングを備え、中間歯車収容部に収容された中間歯車を利用して第1及び第2歯車収容部に収容された第1及び第2歯車のうちの一方の歯車の回転力を他方の歯車に伝達しつつ一方の歯車と他方の歯車とを同一の方向へ1/4回転させ、その状態で第1及び第2フェルールを同時に斜め研磨するフェルール研磨方法は、第1及び第2光コネクタアセンブリのうちの一方の光コネクタアセンブリが時計回り方向または反時計回り方向へ回転すると、その回転力が第1及び第2歯車収容部に回転可能に収容された第1及び第2歯車の一方の歯車から中間歯車収容部に回転可能に収容された中間歯車を介して他方の歯車に伝達されるから、それら収容部に回転可能に収容された歯車を利用することで、他方のコネクタアセンブリを一方の光コネクタアセンブリと同一の方向へ同時に1/4回転させることができ、光ファイバフェルール研磨機を利用して第1及び第2フェルールを同時に斜め研磨することができる。
一例として示す二連式の光コネクタプラグの斜視図。 二連式の光コネクタプラグの上面図。 二連式の光コネクタプラグの側面図。 二連式の光コネクタプラグの正面図。 二連式の光コネクタプラグの分解斜視図。 図4のI-I線矢視断面図。 図4のII-II線矢視断面図。 図4のIII-III線矢視断面図。 第1及び第2プラグフレームの斜視図。 図9のIV-IV線矢視断面図。 第1及び第2ストップリングの斜視図。 第1及び第2ストップリングの斜視図。 中間歯車の斜視図。 一例として示す第1ケーシングの斜視図。 2つに分離した状態で示す第1ケーシングの内面図。 第1ケーシングの外面図。 第2ケーシングの上面図。 第2ケーシングの正面図。 図17のV-V線矢視断面図。 スライダーの斜視図。 スライダーの正面図。 図21のVI-VI線矢視断面図。 第1及び第2光コネクタアセンブリを回転させる手順を説明する斜視図。 図23から続く手順を説明する斜視図。 図24から続く手順を説明する斜視図。 第1及び第2光コネクタアセンブリを半回転(180度)回転させた後の斜視図。 他の一例として示す二連式の光コネクタプラグの斜視図。 図27の二連式の光コネクタプラグの上面図。 図27の二連式の光コネクタプラグの側面図。 図27の二連式の光コネクタプラグの正面図。 図27の二連式の光コネクタプラグの分解斜視図。 図30のVII-VII線矢視断面図。 図30のVIII-VIII線矢視断面図。 図30のIX-IX線矢視断面図。 他の一例として示す第1及び第2プラグフレームの斜視図。 図35のX-X線矢視断面図。 図35のXI-XI線矢視断面図。 他の一例として示す第1及び第2ストップリングの斜視図。 他の方向から示す第1及び第2ストップリングの斜視図。 他の一例として示す第1ケーシングの斜視図。 2つに分離した状態で示す図40の第1ケーシングの内面図。 図40の第1ケーシングの外面図。 他の一例として示す第2ケーシングの上面図。 図43の第2ケーシングの正面図。 図43のXII-XII線矢視断面図。 他の一例として示すスライダーの斜視図。 図46のスライダーの正面図。 図47のXIII-XIII線矢視断面図。 第1及び第2光コネクタアセンブリを1/4(90度)回転させた後の上面図。 第1及び第2光コネクタアセンブリを1/4(90度)回転させた後の側面図。 図25の上面図に示す第1及び第2フェルールの部分拡大図。 図26の側面図に示す第1フェルールの部分拡大図。 光ファイバフェルール研磨ホルダに設置した状態で示す光コネクタプラグの上面図。 光ファイバフェルール研磨ホルダに設置した状態で示す光コネクタプラグの側面図。 図53のXIV-XIV線矢視断面図。 第1及び第2キャピラリを研磨した後の光コネクタプラグの側面図。 図32の側面図に示す第1フェルールの部分拡大図。 第1及び第2キャピラリを研磨した後の光コネクタプラグの上面図。 図34の上面図に示す第1及び第2フェルールの部分拡大図。
 一例として示す二連式の光コネクタプラグ10Aの斜視図である図1等の添付の図面を参照し、本発明にかかる二連式の光コネクタプラグ及び二連式の光コネクタプラグにおける極性変換方法の詳細を説明すると、以下のとおりである。なお、図2は、二連式の光コネクタプラグ10Aの上面図であり、図3は、二連式の光コネクタプラグ10Aの側面図である。図4は、二連式の光コネクタプラグ10Aの正面図であり、図5は、二連式の光コネクタプラグ10Aの分解斜視図である。図6は、図4のI-I線矢視断面図であり、図7は、図4のII-II線矢視断面図である。図8は、図4のIII-III線矢視断面図である。図1~図3では、軸方向を矢印A、径方向(横方向または上下方向)を矢印Bで示し、周り方向を矢印Cで示す。
 二連式の光コネクタプラグ10Aは、光コネクタアダプタ(図示せず)に取り付けることで光ファイバどうしの光接続に使用される。光コネクタプラグ10Aは、第1光コネクタアセンブリ11a及び第2光コネクタアセンブリ11bと、第1歯車12a及び第2歯車12bと、中間歯車13と、第1ケーシング14a及び第2ケーシング15aと、スライダー16a及びカシメリング17と、ブーツ18とから形成されている。光コネクタプラグ10Aは、図5の分解斜視図に示すように、第1及び第2光コネクタアセンブリ11a,11bの軸方向後方に第1及び第2ケーシング14a,15aとスライダー16aとが並び、スライダー16aの軸方向後方にカシメリング17とブーツ18とが並んでいる。
 第1光コネクタアセンブリ11aは、軸方向へ延びる第1フェルール19aと、第1フェルール19aを収容する第1プラグフレーム20aと、第1プラグフレーム20aに係入する第1ストップリング21aと、第1ばね22a(コイルスプリング)とを有する。第1フェルール19aは、軸方向へ延びる第1キャピラリ23aと、軸方向へ延びる円筒状に成形された第1スリーブ28aとから形成されている。第1キャピラリ23aには、少なくとも1本の第1光ファイバ24aが保持されている。
 第1キャピラリ23aは、軸方向へ長い略円柱状に成形され、その軸方向先端に第1光ファイバ24の端面が露出する先端面25を有するとともに、先端面25の端面外径域に面取り部26を有する。なお、面取り部26の形状には、角面や丸面等の形状があるが、いずれの形状であってもよい。先端面25は、径方向へ垂直に延びる垂直な面である。面取り部26は、先端面25から軸方向後方に向かうにつれて径方向外方へ次第に傾斜している。
 第1キャピラリ23aは、ジルコニア等のセラミックス材料、プラスチック材料、結晶化ガラスやホウケイ酸ガラス、石英等のガラス材料等から作られている。なお、図示の第1キャピラリ23aには、ジルコニアから作られたジルコニアキャピラリが使用されている。第1キャピラリ23aの外径は、1.2485mm~1.2495mmである。第1キャピラリ23a(フェルール)の内部には、軸方向へ延びる第1光ファイバ挿入孔27が穿孔されている。第1光ファイバ24aは、第1キャピラリ23aに穿孔された光ファイバ挿入孔27に挿入されている。
 第1スリーブ28aは、第1キャピラリ23a(第1フェルール19a)の軸方向後方に連結されている。第1スリーブ28aの軸方向後方には、第1光ファイバ24aの外周全域を被覆して軸方向へ延びる第1心線カバー29a(PTFEチューブ)が連結されている。第1スリーブ28aの前端には、その径が第1キャピラリ23aや第1心線カバー29aのそれよりも大きい多角筒状の第1フランジ30aが一体に成形されている。第1スリーブ28aや第1フランジ30aは、ステンレスや真鍮、鉄鋼等の金属材料、または、合成樹脂材料から作られている。第1スリーブ28aの内部には、第1キャピラリ23aを挿入保持するキャピラリ挿入孔31と、第1光ファイバ24aを内蔵している第1光ファイバ心線を挿入保持する心線挿入孔32とが穿孔されている。
 第1スリーブ28aのキャピラリ挿入孔31には第1キャピラリ23aの後端部が挿入され、第1キャピラリ23aの後端部が第1スリーブ28aのキャピラリ挿入孔31に固定保持されている。第1スリーブ28aの心線挿入孔32には第1光ファイバ心線の一端部が挿入され、第1光ファイバ心線の一端部が第1スリーブ28aの心線挿入孔32に固定保持されている。なお、第1スリーブ28aの軸方向の断面形状は図示の円筒状に限定されず、軸方向へ長い角筒状であってもよい。
 図9は、第1及び第2プラグフレーム20a,20bの斜視図であり、図10は、図9のIV-IV線矢視断面図である。第1プラグフレーム20aは、合成樹脂材料から作られ、中空の略四角柱状に成形されている。第1プラグフレーム20aは、上下方向へ離間対向して軸方向へ延びる頂壁33及び底壁34と、横方向へ離間対向して軸方向へ延びる両側壁35,36とを有する。第1プラグフレーム20aの軸方向前方における頂壁33には、軸方向へ延びる案内凸部37が形成され、第1プラグフレーム20aの軸方向後方における各壁33~36には、第2ケーシング15の後記する頂壁66の前端の係合爪72が係合する係合凹部38aが形成されている。第1プラグフレーム20aの軸方向後方における側壁35,36には、略四角形の嵌合開口39が穿孔されている。
 第1プラグフレーム20aには、それら壁33~36に囲繞されて軸方向へ延びるフェルール収容スペース40が画成され、第1キャピラリ23aの先端部が露出する前端露出口41が開口しているとともに、第1フェルール19aを挿入する後端挿入口42が開口している。第1プラグフレーム20aの前端露出口41の軸方向後方には、フェルール収容スペース40の内周面から径方向内方へ当接部43が延びている。当接部43には、第1スリーブ28aの第1フランジ30aが当接する。第1スリーブ28aの第1フランジ30aが当接部43に当接することで、第1プラグフレーム20aに対する第1スリーブ28aの軸方向前方へのそれ以上の移動が阻止される。
 図11は、第1及び第2ストップリング21a,21bの斜視図であり、図12は、他の方向から示す第1及び第2ストップリング21a,21bの斜視図である。第1ストップリング21aは、金属材料または合成樹脂材料から作られ、略円筒状に成形されて軸方向へ延びている。第1ストップリング21aは、軸方向前方に位置する前端部44(前端筒部)と、軸方向前方に位置する後端部46(後端筒部)と、前端部44及び後端部46の間に延びる中間部45(中間筒部)とを有する。第1ストップリング21aの前端部44には、第1光ファイバ心線が露出する心線露出口47が開口し、後端部46には、第1光ファイバ心線を挿入する心線挿入口48が開口している。
 第1ストップリング21aの中間部45の外周面(周面)には、径方向外方へ凸となる嵌合凸部49が形成されている。嵌合凸部49は、第1プラグフレーム20aの側壁35,36に穿孔された嵌合開口39に嵌合する。嵌合凸部49が嵌合開口39に嵌合することで、第1ストップリング21aが第1プラグフレーム20aに連結される。嵌合凸部49の軸方向後方における第1ストップリング21aの中間部45の外周面(周面)には、径方向外方へ凸となる当接凸部50(回転角度規制手段)が形成されている。当接凸部50は、第1ケーシング14aの後記する第1開口55aに形成された回転規制凸部57に対向する外周面に作られている。
 第1ばね22aは、第1フェルール19aと第1ストップリング21aとの間に設置され、第1心線カバー29aに挿通されて軸方向へ延びている。第1ばね22aは、その前端が第1スリーブ28aの第1フランジ30aに当接し、その後端が第1ストップリング21aの前端部44に当接している。第1ばね22aは、第1フェルール19aを軸方向前方へ付勢する。第1歯車12aは、第1ストップリング21aの後端部46に形成されて軸方向へ延びている。
 第2光コネクタアセンブリ11bは、第1光コネクタアセンブリ11aに隣接し、第1光コネクタアセンブリ11aに並行して軸方向へ延びている。第2光コネクタアセンブリ11bは、軸方向へ延びる第2フェルール19bと、第2フェルール19bを収容する第2プラグフレーム20bと、第2プラグフレーム20bに係入する第2ストップリング21bと、第2ばね22b(コイルスプリング)とを有する。第2フェルール19bは、軸方向へ延びる第2キャピラリ23bと、軸方向へ延びる円筒状に成形された第2スリーブ28bとから形成されている。第2キャピラリ23bには、少なくとも1本の第2光ファイバ24bが保持されている。
 第2キャピラリ23bは、第1キャピラリ23aの横方向に隣接し、第1キャピラリ23aに並行して軸方向へ延びている。第2キャピラリ23bは、軸方向へ長い略円柱状に成形され、その軸方向先端に第2光ファイバ24の端面が露出する先端面25を有するとともに、先端面25の端面外径域に面取り部26を有する。先端面25は、径方向へ垂直に延びる垂直の面であり、面取り部26の形状は、第1キャピラリ23aのそれと同一である。第2キャピラリ23b(フェルール)の内部には、軸方向へ延びる光ファイバ挿入孔27が穿孔されている。第2光ファイバ24bは、第2キャピラリ23bに穿孔された光ファイバ挿入孔27に挿入されている。第2キャピラリ23bの材質や外径は、第1キャピラリ23aのそれらと同一である。
 第2スリーブ28bは、第2キャピラリ23b(第2フェルール19b)の軸方向後方に連結されている。第2スリーブ28bの軸方向後方には、第2光ファイバ24bの外周全域を被覆して軸方向へ延びる第2心線カバー29b(PTFEチューブ)が連結されている。第2心線カバー29bは、第1心線カバー29aの横方向に隣接し、第1心線カバー29aに並行して軸方向へ延びている。
 第2スリーブ28bの前端には、その径が第2キャピラリ23bや第2心線カバー29bのそれよりも大きい多角筒状の第2フランジ30bが一体に成形されている。第2フランジは、第1フランジの横方向に隣接している。第2スリーブ28bや第2フランジ30bは、第1スリーブ28aや第1フランジ30aと同様に、ステンレスや真鍮、鉄鋼等の金属材料、または、合成樹脂材料から作られている。第2スリーブ28bの内部には、第2キャピラリ23bを挿入保持するキャピラリ挿入孔31と、第2光ファイバ24bを内蔵している第2光ファイバ心線を挿入保持する心線挿入孔32とが穿孔されている。
 第2スリーブ28bのキャピラリ挿入孔31には第2キャピラリ23bの後端部が挿入され、第2キャピラリ23bの後端部が第2スリーブ28bのキャピラリ挿入孔31に固定保持されている。第2スリーブ28bの心線挿入孔32には第2光ファイバ心線の一端部が挿入され、第2光ファイバ心線の一端部が第2スリーブ28bの心線挿入孔32に固定保持されている。なお、第2スリーブ28bの軸方向の断面形状は図示の円筒状に限定されず、軸方向へ長い角筒状であってもよい。
 第2プラグフレーム20bは、第1プラグフレーム20aの横方向に隣接し、第1プラグフレーム20aに並行して軸方向へ延びている。第2プラグフレーム20bは、第1プラグフレーム20aと同様に、合成樹脂材料から作られ、中空の略四角柱状に成形されている。第2プラグフレーム20bは、上下方向へ離間対向して軸方向へ延びる頂壁33及び底壁34と、横方向へ離間対向して軸方向へ延びる両側壁35,36とを有する。第2プラグフレーム20bの軸方向前方における頂壁33には、軸方向へ延びる案内凸部37が形成され、第2プラグフレーム20bの軸方向後方における各壁33~36には、第2ケーシング15の頂壁66の前端の係合爪72が係合する係合凹部38が形成されている。第2プラグフレーム20bの軸方向後方における側壁35,36には、略四角形の嵌合開口39が穿孔されている。
 第2プラグフレーム20bには、それら壁33~36に囲繞されて軸方向へ延びるフェルール収容スペース40が画成され、第2キャピラリ23bの先端部が露出する前端露出口41が開口しているとともに、第2フェルール19bを挿入する後端挿入口42が開口している。第2プラグフレーム20bの前端露出口41の軸方向後方には、フェルール収容スペース40の内周面から径方向内方へ当接部43が延びている。当接部43には、第2スリーブ28bの第2フランジ30bが当接する。第1スリーブ28bの第1フランジ30bが当接部43に当接することで、第2プラグフレーム20bに対する第2スリーブ28bの軸方向前方へのそれ以上の移動が阻止される。
 第2ストップリング21bは、第1ストップリング21aの横方向に隣接し、第1ストップリング21aに並行して軸方向へ延びている。第2ストップリング21bは、第1ストップリング21aと同様に、金属材料または合成樹脂材料から作られ、略円筒状に成形されている。第2ストップリング21bは、軸方向前方に位置する前端部44(前端筒部)と、軸方向前方に位置する後端部46(後端筒部)と、前端部44及び後端部46の間に延びる中間部45(中間筒部)とを有する。第2ストップリング21bの前端部44には、第2光ファイバ心線が露出する心線露出口47が開口し、後端部46には、第2光ファイバ心線を挿入する心線挿入口48が開口している。
 第2ストップリング21bの中間部45の外周面(周面)には、径方向外方へ凸となる嵌合凸部49が形成されている。嵌合凸部49は、第2プラグフレーム20bの側壁35,36に穿孔された嵌合開口39に嵌合する。嵌合凸部49が嵌合開口39に嵌合することで、第2ストップリング21bが第2プラグフレーム20bに連結される。嵌合凸部49の軸方向後方における第2ストップリング21bの中間部45の外周面(周面)には、径方向外方へ凸となる当接凸部50(回転角度規制手段)が形成されている。当接凸部50は、第1ケーシング14aの後記する第2開口55bに形成された回転規制凸部57aに対向する外周面に作られている。
 第2ばね22bは、第2フェルール19bと第2ストップリング21bとの間に設置され、第2心線カバー29bに挿通されている。第2ばね22bは、第1ばね22aの横方向に隣接し、第1ばね22aに並行して軸方向へ延びている。第2ばね22bは、その前端が第2スリーブ28bの第2フランジ30bに当接し、その後端が第2ストップリング21bの前端部44に当接している。第2ばね22bは、第2フェルール19bを軸方向前方へ付勢する。第2歯車12bは、第2ストップリング21bの後端部46に形成されて軸方向へ延びている。
 図13は、中間歯車13の斜視図である。中間歯車13は、第1歯車12aと第2歯車12bとの間に介在して軸方向へ延びている。中間歯車13は、第1及び第2歯車12a,12bに外接し、第1及び第2歯車12a,12bのうちの一方の歯車の回転力を他方の歯車に伝達しつつ他方の歯車を一方の歯車と同一の方向へ回転させる。なお、第1歯車12aと第2歯車12bと中間歯車13との歯車比は1である。したがって、第1歯車12aが時計回り方向へ1回転すると、中間歯車13が反時計回り方向へ1回転するとともに、第2歯車12bが時計回り方向へ1回転する。逆に、第1歯車12aが反時計回り方向へ1回転すると、中間歯車13が時計回り方向へ1回転するとともに、第2歯車12bが反時計回り方向へ1回転する。
 図14は、2つに分離した状態で示す第1ケーシング14aの斜視図であり、図15は、2つに分離した状態で示す第1ケーシング14aの内面図である。図16は、第1ケーシング14aの外面図である。第1ケーシング14aは、合成樹脂材料から作られて中空に成形されている。第1ケーシング14aは、上下方向へ離間対向して軸方向へ延びる頂壁51及び底壁52と、横方向へ離間対向して軸方向へ延びる両側壁53,54とを有し、その前端に開口して第1ストップリング21aを挿通する第1開口55aと、その前端に開口して第2ストップリング21bを挿通する第2開口55bとを有する。
 第1ケーシング14aの軸方向後方には、カシメリング17を挿通するとともに、ブーツ18を嵌め込む筒部56が連結されている。第1ケーシング14aの第1開口55aには、第1開口55aの径方向内方へ凸となる回転規制凸部57a(回転角度規制手段)が形成され、第2開口55bには、第2開口55bの径方向内方へ凸となる回転規制凸部57a(回転角度規制手段)が形成されている。
 第1ケーシング14aの内部には、それら壁51~54及び仕切壁58に囲繞された第1歯車収容部59と、それら壁51~54及び仕切壁58に囲繞された第2歯車収容部60と、仕切壁58に囲繞されて第1及び第2歯車収容部59,60の間に位置する中間歯車収容部61とが画成されている。第1歯車収容部59には、第1ストップリング21aの後端部46に形成された第1歯車12aが回転可能に収容され、第2歯車収容部60には、第2ストップリング21bの後端部46に形成された第2歯車12bが回転可能に収容されている。中間歯車収容部61には、中間歯車13が回転可能に収容されている。
 第1ケーシング14aでは、第1及び第2歯車12a,12bと中間歯車13とが第1及び第2歯車収容部59,60と中間歯車収容部61とに収容されることで、それら歯車12a,12b,13とが横方向に並びつつ、第1歯車12aと中間歯車13とが外接し、第2歯車12bと中間歯車13とが外接する。第1ケーシング14aは、図5に示すように、上下方向へ2つに分離された各ケーシング14aを連結することで作られている。各ケーシング14aを連結すると、下方のケーシング14aに形成された嵌合爪62が上方のケーシング14aに形成された嵌合孔63に嵌合し、それらケーシング14aが一体になる。
 図17は、第2ケーシング15aの上面図であり、図18は、第2ケーシング15aの正面図である。図19は、図17のV-V線矢視断面図である。第2ケーシング15aは、合成樹脂材料から作られ、上下方向へ離間対向して軸方向へ延びる頂壁64及び底壁65と、横方向へ離間対向して軸方向へ延びる両側壁66,67と、両側壁66,67から上方かつ軸方向へ延びる案内壁68とを有する。第2ケーシング15aは、その前端に開口する前端開口69と、その後端に開口する後端開口70と、その頂壁64に位置する一対の係合ラッチ71とを有する。第2ケーシング15aの頂壁64の前端には、下方へ凸となる係合爪72が形成されている。第2ケーシング15aの頂壁64の中央先端には、軸方向へ延びる係入キー73が形成されている。
 それら係合ラッチ71は、横方向へ所定寸法離間し、互いに並行して軸方向へ直状に延びている。それら係合ラッチ71は、第2ケーシング15aの頂壁64に連結された連結部74と、連結部74から軸方向前方へ延びていて前端開口69から軸方向前方へ所定寸法露出(延出)する自由部75とを有する。自由部75の先端には、係合キー76が形成されている。自由部75は、可撓性を有し、下方へ弾性変形可能である。
 第2ケーシング15aは、その頂壁64に第1ケーシング14aの頂壁51を対向させるとともにその底壁65に第1ケーシング14aの底壁52を対向させた状態で、第1ケーシング14aを収容可能である。逆に、その頂壁64に第1ケーシング14aの底壁52を対向させるとともにその底壁65に第1ケーシング14aの頂壁51を対向させた状態で、第1ケーシング14aを収容可能である。第2ケーシング15aは、第1ケーシング14aを上下反転させた状態で収容することができる。
 図20は、スライダー16aの斜視図であり、図21は、スライダー16aの正面図である。図22は、図21のVI-VI線矢視断面図である。スライダー16aは、合成樹脂材料から作られ、第2ケーシング15aの後端部に連結されるボックス77と、ボックス77の頂部から軸方向前方に延びる摺動頂壁78(摺動プレート)と、摺動頂壁78の両側から下方かつ軸方向へ延びる案内壁79とを有する。スライダー16aは、ボックス77の前端に開口する前端開口80と、ボックス77の後端に開口する後端開口81とを有する。摺動頂壁78の先端部の下面両側には、スライダー16aの前端から軸方向後方へ向かうにつれて下方へ次第に傾斜する一対の斜面82が形成されている。摺動頂壁78の先端部の下面中央には、第2ケーシング15aの頂壁64の係入キー73が係入するキー係入部83が形成されている。
 スライダー16aは、第2ケーシング15aの軸方向後方に位置し、そのボックス77が第2ケーシング15aの後端部の軸方向後方に位置し、第2ケーシング15aに対して軸方向へスライド可能に連結されている。スライダー16aが第2ケーシング15aに連結された状態では、スライダー16aの案内壁79が第2ケーシング15aの案内壁68の内側に位置し、係入キー74がスライダー16aの摺動頂壁78のキー係入部83に係入しているとともに、スライダー16aの摺動頂壁78の斜面82が係合ラッチ71の上面に当接している。
 スライダー16aは、係合ラッチ71の上面を軸方向前方と後方とへ摺動する。第2ケーシング15aに対してスライダー16aを軸方向後方へスライドさせると、スライダー16aの斜面82が係合ラッチ71を下方へ押圧し、斜面82が係合ラッチ71を下方へ押し下げる。
 カシメリング17は、第1ケーシング14aの軸方向後方に位置する筒部56に挿通されている。ブーツ18は、その内周面とカシメリング17の前端部の外周面とが密着するように、カシメリング17を介して第1ケーシング14aの筒部56に嵌め込まれている。なお、第1光ファイバ24aを内蔵している第1光ファイバ心線と第2光ファイバ24bを内蔵している第2光ファイバ心線とが第1ケーシング14aにおいて1つに纏まって光ファイバコード90となり、その光ファイバコード90がカシメリング17に挿通されてカシメリング17の後端から外方へ延出している。
 光コネクタプラグ10Aでは、第1ケーシング14aの第1開口55aに形成された回転規制凸部57a(回転角度規制手段)に第1ストップリング21aの中間部45に形成された当接凸部50(回転角度規制手段)が当接することで、第1光コネクタアセンブリ11a(第1ストップリング21a)の回転が阻止され、第1ケーシング14aの第2開口55bに形成された回転規制凸部57a(回転角度規制手段)に第2ストップリング21bの中間部45に形成された当接凸部50(回転角度規制手段)が当接することで、第2光コネクタアセンブリ11b(第2ストップリング21b)の回転が阻止される。
 第1開口55aや第1開口55bの回転規制凸部57aの形成範囲によって第1及び第2光コネクタアセンブリ11a,11b(第1及び第2ストップリング21a,21b)の回転角度が決まるが、光コネクタプラグ10Aでは、第1及び第2光コネクタアセンブリ11a,11bの回転始点から回転終点までの回転範囲が半回転(回転角度が180度)に規制されている。
 図23は、第1及び第2光コネクタアセンブリ11a,11bを回転させる手順を説明する斜視図であり、図24は、図23から続く手順を説明する斜視図である。図25は、図24から続く手順を説明する斜視図であり、図26は、第1及び第2光コネクタアセンブリ11a,11bを半回転(180度)回転させた後の斜視図である。光コネクタプラグ10Aの第1及び第2光コネクタアセンブリ11a,11bを回転させる手順を説明すると、以下のとおりである。
 第1及び第2プラグフレーム20a,20bに形成された係合凹部38と第2ケーシング15aの頂壁64に形成された係合爪72との係合を解除し、図23に示すように、第1ケーシング14aを第2ケーシング15aから軸方向前方へ引き出す。第1ケーシング14aを第2ケーシング15aから引き出した後、例えば、図23に矢印C1で示すように、第1光コネクタアセンブリ11a(一方の光コネクタアセンブリ)を時計回り方向へ回転させる。
 光コネクタプラグ10Aでは、第1及び第2光コネクタアセンブリ11a,11bのうちの第1光コネクタアセンブリ11a(一方の光コネクタアセンブリ)がその軸を中心に時計回り方向へ回転すると、第1及び第2歯車12a,12bのうちの第1歯車12a(一方の歯車)が時計回り方向へ回転し、第1歯車12aの回転によって中間歯車13が反時計回り方向へ回転する。
 中間歯車13によって第1歯車12aの回転力(回転)が第2歯車12b(他方の歯車)に伝達され、第1歯車12aに連動して第2歯車12bがその軸を中心に第1歯車12aと同一の時計回り方向(同一方向)へ回転し、それによって第2光コネクタアセンブリ11bが時計回り方向へ回転する。それら歯車12a,12b,13の歯車比が1であるから、第1光コネクタアセンブリ11aを時計回り方向へ回転させたときに、第2光コネクタアセンブリ11b(他方の光コネクタアセンブリ)が第1光コネクタアセンブリ11aと同一の回転角度で時計回り方向へ回転する。なお、第2光コネクタアセンブリ11b(一方の光コネクタアセンブリ)を時計回り方向へ回転させると、第1光コネクタアセンブリ11a(他方の光コネクタアセンブリ)が第2光コネクタアセンブリ11bと同一の回転角度で時計回り方向へ回転する。
 第1及び第2歯車収容部59,60に回転可能に収容された第1及び第2歯車12a,12bの回転力が第1及び第2歯車12a,12bの一方の歯車12a,12bから中間歯車収容部61に回転可能に収容された中間歯車13を介して他方の歯車12a,12bに伝達されるから、それら歯車12a,12b,13を利用することで、他方の光コネクタアセンブリ11a,11bを一方の光コネクタアセンブリ11a,11bと同一の方向へ同時に回転させることができる。
 また、それら歯車12a,12b,13の歯車比が1であるから、第1及び第2光コネクタアセンブリ11a,11bのうちの一方の光コネクタアセンブリ11a,11bが回転したときに、他方の光コネクタアセンブリ11a,11bが一方の光コネクタアセンブリ11a,11bと同一の回転角度で回転し、第1及び第2光コネクタアセンブリ11a,11bの回転始点から回転終点までの回転範囲を同一にすることができ、一方の光コネクタアセンブリ11a,11bを回転させることで他方の光コネクタアセンブリ11a,11bを一方の光コネクタアセンブリ11a,11bと同一の位置まで回転させることができる。
 図23の状態から第1及び第2光コネクタアセンブリ11a,11bを時計回り方向へ半回転(180度)回転(回転始点から回転終点まで半回転回転)させると、第1ケーシング14aの第1開口55aに形成された回転規制凸部57a(回転角度規制手段)に第1ストップリング21aの中間部45に形成された当接凸部50(回転角度規制手段)が当接するとともに、第1ケーシング14aの第2開口55bに形成された回転規制凸部57a(回転角度規制手段)に第2ストップリング21bの中間部45に形成された当接凸部50(回転角度規制手段)が当接し、第1及び第2光コネクタアセンブリ11a,11bの時計回り方向への回転が停止する。
 第1及び第2光コネクタアセンブリ11a,11bを時計回り方向へ半回転(180度)回転させて図24の状態にした後、図24に矢印C2で示すように、第2ケーシング15a(スライダー16aを含む)を時計回り方向(または、反時計回り方向)へ半回転(180度)回転させる。第2ケーシング15aを半回転(180度)回転させると、図25に示すように、第2ケーシング15aの頂壁64が第1ケーシング14aの底壁52の側に位置し、第2ケーシング15aの底壁65が第1ケーシング14aの頂壁51の側に位置する。
 次に、第2ケーシング15aを第1ケーシング14aに向かって前後方向前方へ移動させ、第2ケーシング15aの頂壁64に第1ケーシング14aの底壁52が対向するとともに第2ケーシング15aの底壁65に第1ケーシング14aの頂壁51が対向するように、第1ケーシング14aを第2ケーシング15aの内部に収容し、係合凹部38と係合爪72とを係合させる。図1の状態から第1及び第2光コネクタアセンブリ11a,11bを時計回り方向へ同時に半回転(180度)回転させて図26の状態にすることで、二連式の光コネクタプラグ10Aの極性が変換される極性変換方法が実施される。
 二連式の光コネクタプラグ10Aの極性を変換した後、図26の状態において、係合凹部38と係合爪72との係合を解除し、第1ケーシング14aを第2ケーシング15aから軸方向前方へ引き出し、第2光コネクタアセンブリ11b(一方の光コネクタアセンブリ)を反時計回り方向へ回転させる。第1及び第2光コネクタアセンブリ11a,11bのうちの第2光コネクタアセンブリ11b(一方の光コネクタアセンブリ)がその軸を中心に反時計回り方向へ回転すると、第1及び第2歯車12a,12bのうちの第2歯車12b(一方の歯車)が反時計回り方向へ回転し、第2歯車12bの回転によって中間歯車13が時計回り方向へ回転する。
 中間歯車13によって第2歯車12bの回転力(回転)が第1歯車12a(他方の歯車)に伝達され、第2歯車12bに連動して第1歯車12aがその軸を中心に第2歯車12bと同一の反時計回り方向へ回転し、それによって第1光コネクタアセンブリ11aが反時計回り方向へ回転する。それら歯車の歯車比が1であるから、第2光コネクタアセンブリ11bを反時計回り方向へ回転させたときに、第1光コネクタアセンブリ11aが第2光コネクタアセンブリ11bと同一の回転角度で反時計回り方向へ回転する。なお、第1光コネクタアセンブリ11a(一方の光コネクタアセンブ)を反時計回り方向へ回転させると、第2光コネクタアセンブリ11b(他方の光コネクタアセンブリ)が第1光コネクタアセンブリ11aと同一の回転角度で反時計回り方向へ回転する。
 第1及び第2光コネクタアセンブリ11a,11bを反時計回り方向へ半回転(180度)回転させると、回転規制凸部57a(回転角度規制手段)に当接凸部50(回転角度規制手段)が当接し、第1及び第2光コネクタアセンブリ11a,11bの反時計回り方向への回転が停止する。第1及び第2光コネクタアセンブリ11a,11bを反時計回り方向へ半回転(180度)回転させた後、第2ケーシング15a(スライダー16aを含む)を反時計回り方向(または、時計回り方向)へ半回転(180度)回転させる。第2ケーシング15aを半回転(180度)回転させると、第2ケーシング15aの頂壁64が第1ケーシング14aの頂壁51の側に位置し、第2ケーシング15aの底壁65が第1ケーシング14aの底壁52の側に位置する。
 次に、第2ケーシング15aを第1ケーシング14aに向かって前後方向前方へ移動させ、第2ケーシング15aの頂壁64に第1ケーシング14aの頂壁51が対向するとともに第2ケーシング15aの底壁65に第1ケーシング14aの底壁52が対向するように、第1ケーシング14aを第2ケーシング15aの内部に収容し、係合凹部38と係合爪72とを係合させる。図26の状態から第1及び第2光コネクタアセンブリ11a,11bを反時計回り方向へ同時に半回転(180度)回転させて図1の状態にすることで、二連式の光コネクタプラグ10Aの極性が変換される極性変換方法が実施される。
 極性変換方法を実施することで、第1及び第2光コネクタアセンブリ11a,11bのうちの一方の光コネクタアセンブリ11a,11bをその軸を中心に回転始点から回転終点まで半回転(180度)回転させると、それに連動して他方の光コネクタアセンブリ11a,11bがその軸を中心に一方の光コネクタアセンブリ11a,11bと同一の方向へ回転始点から回転終点まで半回転(180度)回転することで、図1の状態から図26の状態に二連式の光コネクタプラグ10Aの極性を変換可能であり、図26の状態から図1の状態に二連式の光コネクタプラグ10Aの極性を変換可能である。
 図27は、他の一例として示す二連式の光コネクタプラグ10Bの斜視図であり、図28は、二連式の光コネクタプラグ10Bの上面図である。図29は、二連式の光コネクタプラグ10Bの側面図であり、図30は、二連式の光コネクタプラグ10Bの正面図である。図31は、二連式の光コネクタプラグ10Bの分解斜視図であり、図32は、図30のVII-VII線矢視断面図であり、図33は、図30のVIII-VIII線矢視断面図である。図34は、図30のIX-IX線矢視断面図である。
 図35は、第1及び第2プラグフレーム20c,20dの斜視図であり、図36は、図35のX-X線矢視断面図である。図37は、図35のXI-XI線矢視断面図であり、図38は、第1及び第2ストップリング21c,21dの斜視図である。図39は、他の方向から示す第1及び第2ストップリング21c,21dの斜視図である。図27~図29では、軸方向を矢印A、径方向(横方向または上下方向)を矢印Bで示し、周り方向を矢印Cで示す。
 二連式の光コネクタプラグ10Bは、光コネクタプラグ10Aと同様に、光コネクタアダプタ(図示せず)に取り付けることで光ファイバどうしの光接続に使用される。光コネクタプラグ10Bは、第1光コネクタアセンブリ11c及び第2光コネクタアセンブリ11dと、第1歯車12c及び第2歯車12dと、中間歯車13と、第1ケーシング14b及び第2ケーシング15bと、スライダー16b及びカシメリング17と、ブーツ18と、パイプ91とから形成されている。光コネクタプラグ10Bは、図31の分解斜視図に示すように、第1及び第2光コネクタアセンブリ11a,11bの軸方向後方に第1及び第2ケーシング14b,15bとパイプ91とスライダー16bとが並び、スライダー16の軸方向後方にカシメリング17とブーツ18とが並んでいる。
 第1光コネクタアセンブリ11cは、軸方向へ延びる第1フェルール19aと、第1フェルール19aを収容する第1プラグフレーム20cと、第1プラグフレーム20cに係入する第1ストップリング21cと、第1ばね22a(コイルスプリング)とを有する。第1フェルール19a及び第1ばね22aは、光コネクタプラグ10Aのそれらと同一である。
 第1プラグフレーム20cは、合成樹脂材料から作られ、中空の略四角柱状に成形されている。第1プラグフレーム20cは、上下方向へ離間対向して軸方向へ延びる頂壁33及び底壁34と、横方向へ離間対向して軸方向へ延びる両側壁35,36とを有する。第1プラグフレーム20cの軸方向前方における頂壁33には、軸方向へ延びる案内凸部37が形成され、第1プラグフレーム20cの軸方向後方における各壁33~36には、第1ケーシング14bの後記する第1開口55aに形成された開口凸部57bが嵌入する嵌入凹部38bが形成されている。
 第1プラグフレーム20cには、それら壁33~36に囲繞されて軸方向へ延びるフェルール収容スペース40が画成され、第1キャピラリ23aの先端部が露出する前端露出口41が開口しているとともに、第1フェルール19aを挿入する後端挿入口42が開口している。第1プラグフレーム20cの前端露出口41の軸方向後方には、フェルール収容スペース40の内周面から径方向内方へ当接部43が延びている。
 当接部43には、第1スリーブ28aの第1フランジ30aが当接する。第1スリーブ28aの第1フランジ30aが当接部43に当接することで、第1プラグフレーム20cに対する第1スリーブ28aの軸方向前方へのそれ以上の移動が阻止される。第1プラグフレーム20cの後端挿入口42近傍のそれら壁33~36には、それら壁33~36の径方向外方へ凸となる当接フランジ92が形成されている。当接フランジ92は、第1ケーシング14bの第1開口55aの前端縁に摺動可能に当接する。
 第1ストップリング21cは、金属材料または合成樹脂材料から作られ、略円筒状に成形されて軸方向へ延びている。第1ストップリング21cは、軸方向前方に位置する前端部44(前端筒部)と、軸方向前方に位置する後端部46(後端筒部)と、前端部44及び後端部46の間に延びる中間部45(中間筒部)とを有する。第1ストップリング21cの前端部44には、第1光ファイバ心線が露出する心線露出口47が開口し、後端部46には、第1光ファイバ心線を挿入する心線挿入口48が開口している。
 第1ストップリング21cは、その前端部44と中間部45とが第1プラグフレーム20cの後端挿入口42から第1プラグフレーム20cの内部に圧入され、前端部44及び中間部45の外周面が第1プラグフレーム20cの内周面に密着している。第1ストップリング21cは、第1プラグフレーム20cに抜脱不能に接続され、第1プラグフレーム20cの回転にともなって回転する。
 第1ばね22aは、第1フェルール19aと第1ストップリング21cとの間に設置され、第1心線カバー29aに挿通されて軸方向へ延びている。第1ばね22aは、その前端が第1スリーブ28aの第1フランジ30aに当接し、その後端が第1ストップリング21cの前端部44に当接している。第1ばね22aは、第1フェルール19aを軸方向前方へ付勢する。第1歯車12cは、第1ストップリング21cの後端部46に形成されて軸方向へ延びている。第1歯車12cには、その径方向外方へ凸となる当接凸部93(回転規制手段)が形成されている。当接凸部93は、第1歯車12cの歯よりも径方向外方へ突出している。
 第2光コネクタアセンブリ11dは、軸方向へ延びる第2フェルール19bと、第2フェルール19bを収容する第2プラグフレーム20dと、第2プラグフレーム20dに係入する第2ストップリング21dと、第2ばね22b(コイルスプリング)とを有する。第2フェルール19b及び第2ばね22bは、光コネクタプラグ10Aのそれらと同一である。
 第2プラグフレーム20dは、合成樹脂材料から作られ、中空の略四角柱状に成形されている。第2プラグフレーム20dは、上下方向へ離間対向して軸方向へ延びる頂壁33及び底壁34と、横方向へ離間対向して軸方向へ延びる両側壁35,36とを有する。第2プラグフレーム20dの軸方向前方における頂壁33には、軸方向へ延びる案内凸部37が形成され、第2プラグフレーム20dの軸方向後方における各壁33~36には、第1ケーシング14bの第2開口55bに形成された開口凸部57bが嵌入する嵌入凹部38bが形成されている。
 第2プラグフレーム20dには、それら壁33~36に囲繞されて軸方向へ延びるフェルール収容スペース40が画成され、第2キャピラリ23bの先端部が露出する前端露出口41が開口しているとともに、第2フェルール19bを挿入する後端挿入口42が開口している。第2プラグフレーム20dの前端露出口41の軸方向後方には、フェルール収容スペース40の内周面から径方向内方へ当接部43が延びている。
 当接部43には、第2スリーブ28bの第2フランジ30bが当接する。第2スリーブ28bの第2フランジ30bが当接部43に当接することで、第2プラグフレーム20dに対する第2スリーブ28bの軸方向前方へのそれ以上の移動が阻止される。第2プラグフレーム20dの後端挿入口42近傍のそれら壁33~36には、それら壁33~36の径方向外方へ凸となる当接フランジ92が形成されている。当接フランジ92は、第1ケーシング14bの第2開口55bの前端縁に摺動可能に当接する。
 第2ストップリング21dは、第1ストップリング21cの横方向に隣接し、第1ストップリング21cに並行して軸方向へ延びている。第2ストップリング21dは、金属材料または合成樹脂材料から作られ、略円筒状に成形されて軸方向へ延びている。第2ストップリング21dは、軸方向前方に位置する前端部44(前端筒部)と、軸方向前方に位置する後端部46(後端筒部)と、前端部44及び後端部46の間に延びる中間部45(中間筒部)とを有する。第2ストップリング21dの前端部44には、第2光ファイバ心線が露出する心線露出口47が開口し、後端部46には、第2光ファイバ心線を挿入する心線挿入口48が開口している。
 第2ストップリング21dは、その前端部44と中間部45とが第2プラグフレーム20dの後端挿入口42から第2プラグフレーム20dの内部に圧入され、前端部44及び中間部45の外周面が第2プラグフレーム20dの内周面に密着している。第2ストップリング21dは、第2プラグフレーム20dに抜脱不能に接続され、第2プラグフレーム20dの回転にともなって回転する。
 第2ばね22bは、第2フェルール19bと第2ストップリング21dとの間に設置され、第2心線カバー29bに挿通されて軸方向へ延びている。第2ばね22bは、その前端が第2スリーブ28bの第2フランジ30bに当接し、その後端が第2ストップリング21dの前端部44に当接している。第2ばね22bは、第2フェルール19bを軸方向前方へ付勢する。第2歯車12dは、第2ストップリング21dの後端部46に形成されて軸方向へ延びている。第2歯車12dには、その径方向外方へ凸となる当接凸部93(回転規制手段)が形成されている。当接凸部93は、第2歯車12dの歯よりも径方向外方へ突出している。
 中間歯車13は、光コネクタプラグ10Aのそれと同一である(図13参照)。中間歯車13は、第1歯車12cと第2歯車12dとの間に介在して第1及び第2歯車12c,12dに外接し、第1及び第2歯車12c,12dのうちの一方の歯車の回転力を他方の歯車に伝達しつつ他方の歯車を一方の歯車と同一の方向へ回転させる。第1歯車12cと第2歯車12dと中間歯車13との歯車比は1である。第1歯車12cが時計回り方向へ1回転すると、中間歯車13が反時計回り方向へ1回転するとともに、第2歯車12dが時計回り方向へ1回転する。逆に、第1歯車12cが反時計回り方向へ1回転すると、中間歯車13が時計回り方向へ1回転するとともに、第2歯車12dが反時計回り方向へ1回転する。
 図40は、2つに分離した状態で示す第1ケーシング14bの斜視図であり、図41は、2つに分離した状態で示す第1ケーシング14bの内面図である。図42は、第1ケーシング14bの頂壁51の外面図である。なお、第1ケーシング14bの底壁52の外面図は図42と同一に表れる。第1ケーシング14bは、合成樹脂材料から作られて中空に成形されている。第1ケーシング14bは、上下方向へ離間対向して軸方向へ延びる頂壁51及び底壁52と、横方向へ離間対向して軸方向へ延びる両側壁53,54とを有し、その前端に開口して第1ストップリング21cを挿入する第1開口55aと、その前端に開口して第2ストップリング21dを挿入する第2開口55bとを有する。
 第1ケーシング14bの頂壁51の略中央には、後記する第2ケーシング15bの頂壁64の略中央に形成された係入凸部96や第2ケーシング15bの底壁65の略中央に形成された係入凸部96が係入する係入凹部94が形成されている。第1ケーシング14bの底壁52の略中央には、第2ケーシング15bの頂壁64の略中央に形成された係入凸部96や第2ケーシング15bの底壁65の略中央に形成された係入凸部96が係入する係入凹部94が形成されている(図42参照)。
 第1ケーシング14bの第1開口55aには、第1開口55aの径方向内方へ凸となる開口凸部57bが形成され、第2開口55bには、第2開口55bの径方向内方へ凸となる開口凸部57bが形成されている。第1ケーシング14bの内部には、それら壁51~54及び仕切壁58に囲繞された第1歯車収容部59と、それら壁51~54及び仕切壁58に囲繞された第2歯車収容部60と、仕切壁58に囲繞されて第1及び第2歯車収容部59,60の間に位置する中間歯車収容部61とが画成されている。
 第1歯車収容部59には、第1ストップリング21cの後端部46に形成された第1歯車12cが回転可能に収容されている。第2歯車収容部60には、第2ストップリング21dの後端部46に形成された第2歯車12dが回転可能に収容されている。中間歯車収容部61には、中間歯車13が回転可能に収容されている。第1ケーシング14bでは、第1及び第2歯車12c,12dと中間歯車13とが第1及び第2歯車収容部59,60と中間歯車収容部61とに収容されることで、それら歯車12c,12d,13とが横方向に並びつつ、第1歯車12cと中間歯車13とが外接し、第2歯車12dと中間歯車13とが外接する。
 第1歯車収容部59(第1ケーシング14bの内周面)には、収容部59の径方向内方へ凸となる回転規制凸部95(回転角度規制手段)が形成されている。第1歯車12cに形成された当接凸部93が第1歯車収容部59の回転規制凸部95に当接することで、第1ストップリング21c(第1プラグフレーム20c)の回転が阻止される。第2歯車収容部60(第1ケーシング14bの内周面)には、収容部60の径方向内方へ凸となる回転規制凸部95(回転角度規制手段)が形成されている。第2歯車12dに形成された当接凸部93が第2歯車収容部60の回転規制凸部95に当接することで、第2ストップリング21d(第2プラグフレーム20d)の回転が阻止される。
 第1歯車収容部59や第2歯車収容部60に対する回転規制凸部95の形成位置によって第1及び第2光コネクタアセンブリ11c,11d(第1及び第2ストップリング21c,21d)の回転角度が決まるが、光コネクタプラグ10Bでは、第1及び第2光コネクタアセンブリ11c,11dの回転始点から回転終点までの回転範囲が半回転(回転角度が180度)に規制されている。
 第1ケーシング14bは、図40に示すように、上下方向へ2つに分離された各ケーシング14bを連結することで作られている。各ケーシング14bを連結すると、下方のケーシング14bに形成された嵌合爪62が上方のケーシング14bに形成された嵌合孔63に嵌合し、それらケーシング14bが一体になる。パイプ91は、その前端部が第1ケーシング14bの後端部に嵌め込まれている。
 図43は、第2ケーシング15bの上面図であり、図44は、第2ケーシング15bの正面図である。図45は、図43のXII-XII線矢視断面図である。第2ケーシング15bは、合成樹脂材料から作られ、上下方向へ離間対向して軸方向へ延びる頂壁64及び底壁65と、横方向へ離間対向して軸方向へ延びる両側壁66,67と、両側壁66,67から上方かつ軸方向へ延びる案内壁68とを有する。
 第2ケーシング15bは、その前端に開口する前端開口69と、その後端に開口する後端開口70と、その頂壁64に位置する一対の係合ラッチ71とを有する。第2ケーシング15bの頂壁64の略中央には、その内周面から径方向内方へ凸となる係入凸部96が形成され、第2ケーシング15bの底壁65の略中央には、その内周面から径方向内方へ凸となる係入凸部96が形成されている。第2ケーシング15aの頂壁64の中央先端には、軸方向へ延びる係入キー73が形成されている。
 それら係合ラッチ71は、横方向へ所定寸法離間し、互いに並行して軸方向へ直状に延びている。それら係合ラッチ71は、第2ケーシング15bの頂壁64に連結された連結部74と、連結部74から軸方向前方へ延びていて前端開口69から軸方向前方へ所定寸法露出(延出)する自由部75とを有する。自由部75の先端には、係合キー76が形成されている。自由部75は、可撓性を有し、下方へ弾性変形可能である。
 第2ケーシング15bは、その頂壁64に第1ケーシング14bの頂壁51を対向させるとともにその底壁65に第1ケーシング14bの底壁52を対向させた状態で、第1ケーシング14bを収容可能である。逆に、その頂壁64に第1ケーシング14bの底壁52を対向させるとともにその底壁65に第1ケーシング14bの頂壁51を対向させた状態で、第1ケーシング14bを収容可能である。第2ケーシング15bは、第1ケーシング14bを上下反転させた状態で収容することができる。
 図46は、スライダー16bの斜視図であり、図47は、スライダー16bの正面図である。図48は、図47のXIII-XIII線矢視断面図である。スライダー16bは、合成樹脂材料から作られ、第2ケーシング15bの後端部に連結されるボックス77と、ボックス77の頂部から軸方向前方に延びる摺動頂壁78(摺動プレート)と、摺動頂壁78の両側から下方かつ軸方向へ延びる案内壁79とを有する。スライダー16bは、ボックス77の前端に開口する前端開口80と、ボックス77の後端に開口する後端開口81とを有する。摺動頂壁78の先端部の下面両側には、スライダー16bの前端から軸方向後方へ向かうにつれて下方へ次第に傾斜する一対の斜面82が形成されている。摺動頂壁78の先端部の下面中央には、第2ケーシング15bの頂壁64の係入キー73が係入するキー係入部83が形成されている。
 スライダー16bは、第2ケーシング15bの軸方向後方に位置し、そのボックス77が第2ケーシング15bの後端部の軸方向後方に位置し、第2ケーシング15bに対して軸方向へスライド可能に連結されている。スライダー16bが第2ケーシング15bに連結された状態では、スライダー16bの案内壁79が第2ケーシング15bの案内壁68の内側に位置し、係入キー74がスライダー16bの摺動頂壁78のキー係入部83に係入しているとともに、スライダー16bの摺動頂壁78の斜面82が係合ラッチ71の上面に当接している。
 スライダー16bは、係合ラッチ71の上面を軸方向前方と後方とへ摺動する。第2ケーシング15bに対してスライダー16bを軸方向後方へスライドさせると、スライダー16bの斜面82が係合ラッチ71を下方へ押圧し、斜面82が係合ラッチ71を下方へ押し下げる。
 カシメリング17は、第1ケーシング14bの後端部に嵌め込まれたパイプ91の軸方向後方に位置し、その内周面がパイプ91の外周面に密着するように、その前端部がパイプ91の後端部に嵌め込まれているとともに、ブーツ18の内部に挿入されている。ブーツ18は、その前端部の内周面がカシメリング17の前端部の外周面に密着し、パイプ91及びカシメリング17を介して第1ケーシング14bに連結されている。なお、第1光ファイバ24aを内蔵している第1光ファイバ心線と第2光ファイバ24bを内蔵している第2光ファイバ心線とが第1ケーシング14aにおいて1つに纏まって光ファイバコード90となり、その光ファイバコード90がカシメリング17に挿通されてカシメリング17の後端から外方へ延出している。
 光コネクタプラグ10Bの第1及び第2光コネクタアセンブリ11c,11dを回転させる手順は、光コネクタプラグ10Aのそれと略同一であるが、その手順を簡単に説明すると以下のとおりである。第2ケーシング15bを支持しつつ第1ケーシング14bを軸方向前方へ押圧し、第1ケーシング14bの頂壁51及び底部52に形成された係入凹部94と第2ケーシング15bの頂壁64及び底壁65に形成された係入凸部96との係合を解除し、第1ケーシング14bを第2ケーシング15bから軸方向前方へ引き出す。第1ケーシング14bを第2ケーシング15bから引き出した後、例えば、第1光コネクタアセンブリ11c(一方の光コネクタアセンブリ)を時計回り方向へ回転させる(図23参照)。
 光コネクタプラグ10Bでは、第1光コネクタアセンブリ11c(一方の光コネクタアセンブリ)がその軸を中心に時計回り方向へ回転すると、第1歯車12c(一方の歯車)が時計回り方向へ回転し、第1歯車12cの回転によって中間歯車13が反時計回り方向へ回転する。中間歯車13によって第1歯車12cの回転力(回転)が第2歯車12d(他方の歯車)に伝達され、第1歯車12cに連動して第2歯車12dがその軸を中心に第1歯車12cと同一の時計回り方向(同一方向)へ回転し、それによって第2光コネクタアセンブリ11dが時計回り方向へ回転する。
 それら歯車12c,12d,13の歯車比が1であるから、第1光コネクタアセンブリ11cを時計回り方向へ回転させたときに、第2光コネクタアセンブリ11d(他方の光コネクタアセンブリ)が第1光コネクタアセンブリ11cと同一の回転角度で時計回り方向へ回転する。光コネクタプラグ10Bでは、それら歯車12c,12d,13を利用することで、他方の光コネクタアセンブリ11c,11dを一方の光コネクタアセンブリ11c,11dと同一の方向へ同時に回転させることができる。また、それら歯車12c,12d,13の歯車比が1であるから、第1及び第2光コネクタアセンブリ11c,11dの回転始点から回転終点までの回転範囲を同一にすることができ、一方の光コネクタアセンブリ11c,11dを回転させることで他方の光コネクタアセンブリ11c,11dを一方の光コネクタアセンブリ11c,11dと同一の位置まで回転させることができる。
 第1及び第2光コネクタアセンブリ11c,11dを時計回り方向へ半回転(180度)回転(回転始点から回転終点まで半回転回転)させると、第1ケーシング14bの第1及び第2歯車収容部59,60に形成された回転規制凸部95(回転角度規制手段)に第1及び第2歯車12c,12dに形成された当接凸部93(回転角度規制手段)が当接し、第1及び第2光コネクタアセンブリ11c,11dの時計回り方向への回転が停止する。
 第1及び第2光コネクタアセンブリ11c,11dを時計回り方向へ半回転(180度)回転させた後、第2ケーシング15b(スライダー16bを含む)を時計回り方向(または、反時計回り方向)へ半回転(180度)回転させる(図24参照)。第2ケーシング15bを半回転(180度)回転させると、第2ケーシング15bの頂壁64が第1ケーシング14bの底壁52の側に位置し、第2ケーシング15bの底壁65が第1ケーシング14bの頂壁51の側に位置する。
 次に、第2ケーシング15bを第1ケーシング14bに向かって前後方向前方へ移動させ、第2ケーシング15bの頂壁64に第1ケーシング14bの底壁52が対向するとともに第2ケーシング15bの底壁65に第1ケーシング14bの頂壁51が対向するように、第1ケーシング14bを第2ケーシング15bの内部に圧入(収容)し、第2ケーシング15bの頂壁64及び底壁65の係入凸部96を第1ケーシング14bの頂壁51及び底部52の係入凹部94に係入する。第1及び第2光コネクタアセンブリ11c,11dを時計回り方向へ同時に半回転(180度)回転させることで、二連式の光コネクタプラグ10Bの極性が変換される極性変換方法が実施される。
 二連式の光コネクタプラグ10Bの極性を変換した後、係入凹部94と係入凸部96との係合を解除し、第1ケーシング14bを第2ケーシング15bから軸方向前方へ引き出し、第2光コネクタアセンブリ11d(一方の光コネクタアセンブリ)を反時計回り方向へ回転させる。第2光コネクタアセンブリ11d(一方の光コネクタアセンブリ)がその軸を中心に反時計回り方向へ回転すると、第2歯車12d(一方の歯車)が反時計回り方向へ回転し、第2歯車12dの回転によって中間歯車13が時計回り方向へ回転する。中間歯車13によって第2歯車12dの回転力(回転)が第1歯車12c(他方の歯車)に伝達され、第2歯車12dに連動して第1歯車12cがその軸を中心に第2歯車12dと同一の反時計回り方向へ回転し、それによって第1光コネクタアセンブリ11cが反時計回り方向へ回転する。
 それら歯車の歯車比が1であるから、第2光コネクタアセンブリ11dを反時計回り方向へ回転させたときに、第1光コネクタアセンブリ11cが第2光コネクタアセンブリ11dと同一の回転角度で反時計回り方向へ回転する。第1及び第2光コネクタアセンブリ11c,11dを反時計回り方向へ半回転(180度)回転(回転始点から回転終点まで半回転回転)させると、回転規制凸部95(回転角度規制手段)に当接凸部93(回転角度規制手段)が当接し、第1及び第2光コネクタアセンブリ11c,11dの反時計回り方向への回転が停止する。
 第1及び第2光コネクタアセンブリ11c,11dを反時計回り方向へ半回転(180度)回転させた後、第2ケーシング15b(スライダー16bを含む)を反時計回り方向(または、時計回り方向)へ半回転(180度)回転させる。第2ケーシング15bを半回転回転させると、第2ケーシング15bの頂壁64が第1ケーシング14bの頂壁51の側に位置し、第2ケーシング15bの底壁65が第1ケーシング14bの底壁52の側に位置する。
 次に、第2ケーシング15bを第1ケーシング14bに向かって前後方向前方へ移動させ、第2ケーシング15bの頂壁64に第1ケーシング14bの頂壁51が対向するとともに第2ケーシング15bの底壁65に第1ケーシング14bの底壁52が対向するように、第1ケーシング14bを第2ケーシング15bの内部に圧入(収容)し、係入凸部96を係入凹部94に係入する。第1及び第2光コネクタアセンブリ11c,11dを反時計回り方向へ同時に半回転(180度)回転させることで、二連式の光コネクタプラグ10Bの極性が変換される極性変換方法が実施される。
 極性変換方法を実施することで、第1及び第2光コネクタアセンブリ11c,11dのうちの一方の光コネクタアセンブリ11c,11dをその軸を中心に回転始点から回転終点まで半回転(180度)回転させると、それに連動して他方の光コネクタアセンブリ11c,11dがその軸を中心に一方の光コネクタアセンブリ11c,11dと同一の方向へ回転始点から回転終点まで半回転(180度)回転することで、二連式の光コネクタプラグ10Bの極性を変換可能である。
 それら二連式の光コネクタプラグ10A,Bを光コネクタアダプタに連結するには、第1及び第2光コネクタアセンブリ11a,11bまたは第1及び第2光コネクタアセンブリ11c,11dを光コネクタアダプタの挿入開口から光コネクタアダプタの内部に挿入する。第1及び第2光コネクタアセンブリ11a,11bや第1及び第2光コネクタアセンブリ11c,11dを光コネクタアダプタに挿入すると、第2ケーシング15の頂壁66から軸方向前方へ延びるそれら係合ラッチ71の自由部75が光コネクタアダプタに進入し、係合ラッチ71の自由部75の係合キー76が光コネクタアダプタのキー係合部に係合し、第1及び第2光コネクタアセンブリ11a,11bや第1及び第2光コネクタアセンブリ11c,11dの光コネクタアダプタに対する挿入状態が維持される。
 係合ラッチ71の自由部75の係合キー76が光コネクタアダプタのキー係合部に係合させた状態では、第2ケーシング16a,16bに対してスライダー15a,15bが軸方向後方へスライドしていない。第2ケーシング16a,16bに対してスライダー15a,15bを軸方向後方へスライドさせる前の状態では、係合ラッチ71の光コネクタアダプタに対する係合状態が維持される。光コネクタプラグ10と光コネクタアダプタとの連結を解除するには、係合ラッチ71の自由部75の係合キー76を光コネクタアダプタのキー係合部に係合させた状態からスライダー15aまたはスライダー15bを軸方向後方へスライドさせる。
 スライダー15aやスライダー15bを軸方向後方へスライドさせると、スライダー15a,15bの摺動頂壁78の斜面82がそれら係合ラッチ71を下方へ押し下げ、それによって係合ラッチ71の自由部75の係合キー76が光コネクタアダプタのキー係合部の下方に移動し、係合キー76が光コネクタアダプタのキー係合部から外れ、光コネクタアダプタのキー係合部に対する係合ラッチ71の自由部75の係合キー76の係合状態が解除される。光コネクタアダプタのキー係合部に対する係合ラッチ71の自由部75の係合キー76の係合状態が解除されることで、第1及び第2光コネクタアセンブリ11a,11bや第1及び第2光コネクタアセンブリ11c,11dを光コネクタアダプタの内部から引き抜くことができる。
 それら二連式の光コネクタプラグ10A,10Bは、第1及び第2光コネクタアセンブリ11a,11bまたは第1及び第2光コネクタアセンブリ11c,11dのうちの一方の光コネクタアセンブリ11a,11b,11c,11dをその軸を中心に時計回り方向または反時計回り方向へ回転させると、それに連動して他方の光コネクタアセンブリ11a,11b,11c,11dがその軸を中心に一方の光コネクタアセンブリ11a,11b,11c,11dと同一の時計回り方向または反時計回り方向へ同一の回転角度で同時に回転するから、第1及び第2光コネクタアセンブリ11a,11bや第1及び第2光コネクタアセンブリ11c,11dのうちの一方の光コネクタアセンブリ11a,11b,11c,11dを回転させるだけで、他方のコネクタアセンブリ11a,11b,11c,11dを一方の光コネクタアセンブリ11a,11b,11c,11dと同一の方向へ同一の回転角度で同時に回転させることができる。
 二連式の光コネクタプラグ10A,10Bは、第1及び第2光コネクタアセンブリ11a,11bや第1及び第2光コネクタアセンブリ11c,11dが同一の方向へ同一の回転角度で同時に回転するから、一度の回転操作(ワンアクション)で第1及び第2光コネクタアセンブリ11a,11bや第1及び第2光コネクタアセンブリ11c,11dを同時に回転させることができ、それら光コネクタアセンブリ11a,11bやそれら第1及び第2光コネクタアセンブリ11c,11dを別々に回転させる場合と比較して手間や時間を省くことができる。
 二連式の光コネクタプラグ10A,10B(極性変換方法)は、回転角度規制手段(当接凸部50及び回転規制凸部57a、当接凸部93及び回転規制凸部95)によって第1及び第2光コネクタアセンブリ11a,11bや第1及び第2光コネクタアセンブリ11c,11dの回転始点から回転終点までの回転角度を半回転(180度)に規制し、例えば、それら光コネクタアセンブリ11a,11bやそれら第1及び第2光コネクタアセンブリ11c,11dの極性を変換する場合、時計回り方向へ半回転(180度)回転させた位置で回転を停止させることで、光コネクタプラグ10A,10Bの極性を確実かつ正確に変換することができ、逆に、時計回り方向へ半回転(180度)回転させたそれら光コネクタアセンブリ11a,11bやそれら第1及び第2光コネクタアセンブリ11c,11dを反時計回り方向へ半回転(180度)回転させることで、光コネクタプラグ10A,10Bの極性を確実かつ正確に戻すことができる。
 二連式の光コネクタプラグ10A,10Bは、例えば、それら光コネクタアセンブリ11a,11bやそれら第1及び第2光コネクタアセンブリ11c,11dの極性を変換する場合、第1及び第2光コネクタアセンブリ11a,11bのいずれかまたは第1及び第2光コネクタアセンブリ11c,11dのいずれかを回転させることでそれら光コネクタアセンブリ11a,11bやそれら第1及び第2光コネクタアセンブリ11c,11dの極性を変換することができる他、第1ケーシング14a,14bを上下反転させた状態で第2ケーシング15a,15bに収容することで、それら光コネクタアセンブリ11a,11bやそれら第1及び第2光コネクタアセンブリ11c,11dの極性を変換することができる。
 二連式の光コネクタプラグ10A,10Bの極性変換方法は、第1及び第2光コネクタアセンブリ11a,11bまたは第1及び第2光コネクタアセンブリ11c,11dのうちの一方の光コネクタアセンブリ11a,11b,11c,11dをその軸を中心に回転始点から回転終点まで半回転(180度)回転させると、それに連動して他方の光コネクタアセンブリ11a,11b,11c,11dがその軸を中心に一方の光コネクタアセンブリ11a,11b,11c,11dと同一の方向へ回転始点から回転終点まで半回転(180度)回転するから、第1及び第2光コネクタアセンブリ11a,11bや第1及び第2光コネクタアセンブリ11c,11dのうちの一方の光コネクタアセンブリ11a,11b,11c,11dを半回転(180度)回転させるだけで、二連式の光コネクタプラグ10A,10Bの極性を変換することができる。
 極性変換方法は、第1及び第2光コネクタアセンブリ11a,11bが同一の方向へ同時に回転し、または、第1及び第2光コネクタアセンブリ11c,11dが同一の方向へ同時に回転するから、一度の回転操作(ワンアクション)で光コネクタプラグ10Aや光コネクタプラグ10Bの極性を変換することができ、それら光コネクタアセンブリ11a,11bや第1及び第2光コネクタアセンブリ11c,11dを別々に回転させて光コネクタプラグ10A,10Bの極性を変換する場合と比較して極性変換の手間や時間を省くことができる。
 図49は、第1及び第2光コネクタアセンブリ11a,11bを1/4(90度)回転させた後の上面図であり、図50は、第1及び第2光コネクタアセンブリ11a,11bを1/4(90度)回転させた後の側面図である。図51は、図49の上面図に示す第1及び第2フェルール19a,19bの部分拡大図であり、図52は、図50の側面図に示す第1フェルール19aの部分拡大図である。それら図(図53~図59を含む)を参照し、本発明にかかるフェルール研磨方法の詳細を説明すると、以下のとおりである。なお、それら図49~図59では、光コネクタプラグ10Aを例としたフェルール研磨方法を図示しているが、光コネクタプラグ10Bを例としたフェルール研磨方法も光コネクタプラグ10Aのそれと同一である。したがって、以下のフェルール研磨方法の説明には、光コネクタプラグ10Bを含めている。
 フェルール研磨方法では、光コネクタプラグ10Aや光コネクタプラグ10Bの第1及び第2フェルール19a,19bのキャピラリ23a,23bを同時に斜め研磨する。図1の状態の光コネクタプラグ10の第1及び第2光コネクタアセンブリ11a,11bのうち、例えば第1光コネクタアセンブリ11a(一方の光コネクタアセンブリ)をその軸を中心に時計回り方向へ1/4(90度)回転させ、または、第1光コネクタアセンブリ11c(一方の光コネクタアセンブリ)をその軸を中心に時計回り方向へ1/4(90度)回転させることで、図49,50に示すように、第1及び第2光コネクタアセンブリ11a,11bや第1及び第2光コネクタアセンブリ11c,11dを時計回り方向へ1/4(90度)回転させる。斜め研磨以前の第1及び第2フェルール19a,19bの先端面25は、図51,52に示すように、径方向へ垂直に延びる垂直な面である。
 第1光コネクタアセンブリ11a(一方の光コネクタアセンブリ)またはや第1光コネクタアセンブリ11c(一方の光コネクタアセンブリ)をその軸を中心に回転始点から時計回り方向へ1/4(90度)回転させると、第1歯車12a(一方の歯車)または第1歯車12c(一方の歯車)が時計回り方向へ回転し、第1歯車12aや第1歯車12cの回転によって中間歯車13が反時計回り方向へ回転する。中間歯車13によって第1歯車12aや第1歯車12cの回転力(回転)が第2歯車12b(他方の歯車)や第2歯車12d(他方の歯車)に伝達され、第1歯車12a,12cに連動して第2歯車12b,12dがその軸を中心に第1歯車12a,12cと同一の時計回り方向へ回転し、それによって第2光コネクタアセンブリ11bや第2光コネクタアセンブリ11dが回転始点から時計回り方向へ1/4(90度)回転する。
 図53は、光ファイバフェルール研磨ホルダ84に設置した状態で示す光コネクタプラグ10A,10Bの上面図であり、図54は、光ファイバフェルール研磨ホルダ84に設置した状態で示す光コネクタプラグ10A,10Bの側面図である。図55は、図53のXIV-XIV線矢視断面図である。図53~図55では、光ファイバフェルール研磨機86を部分的に示す。図55では、光ファイバフェルール研磨ホルダ84及び光ファイバフェルール研磨機86のみを断面で示す。
 第1及び第2光コネクタアセンブリ11a,11bまたは第1及び第2光コネクタアセンブリ11c,11dを時計回り方向へ1/4(90度)回転させた状態で、図53,54に示すように、公知の光ファイバフェルール研磨ホルダ84に光コネクタプラグ10Aや光コネクタプラグ10Bを設置する。または、第1及び第2光コネクタアセンブリ11a,11bや第1及び第2光コネクタアセンブリ11c,11dが時計回り方向へ1/4(90度)回転した状態に組み立てられた光コネクタプラグ10Aや光コネクタプラグ10Bを光ファイバフェルール研磨ホルダ84に設置する。光コネクタプラグ10Aは、第1及び第2光コネクタアセンブリ11a,11bが光ファイバフェルール研磨ホルダ84の固定凹部85に挿脱可能に挿入固定され、光コネクタプラグ10Bは、第1及び第2光コネクタアセンブリ11c,11dが光ファイバフェルール研磨ホルダ84の固定凹部85に挿脱可能に挿入固定されている。
 光コネクタプラグ10Aの第1及び第2光コネクタアセンブリ11a,11bが光ファイバフェルール研磨ホルダ84の固定凹部85に固定され、または、光コネクタプラグ10Bの第1及び第2光コネクタアセンブリ11c,11dが光ファイバフェルール研磨ホルダ84の固定凹部85に固定されると、垂直軸L1に対して光コネクタプラグ10の軸線L2が所定角度傾斜し、光ファイバフェルール研磨ホルダ84に光コネクタプラグ10Aや光コネクタプラグ10Bが傾斜した状態で設置される。なお、光ファイバフェルール研磨ホルダ84に1つの光コネクタプラグ10A,10Bが設置された状態を図示しているが、実際には、光ファイバフェルール研磨ホルダ84に複数の固定凹部85が環状に並び、それら固定凹部85に光コネクタプラグ10A,10Bが固定され、複数の光コネクタプラグ10A,10Bが一度に研磨される。
 光ファイバフェルール研磨ホルダ84に光コネクタプラグ10Aや光コネクタプラグ10Bを設置した後、光ファイバフェルール研磨ホルダ84を公知の光ファイバフェルール研磨機86に設置する。光ファイバフェルール研磨ホルダ84を光ファイバフェルール研磨機86に設置すると、図55に示すように、第1フェルール19aの第1キャピラリ23aが光ファイバフェルール研磨機86のラバーパッド87に取り付けられた研磨フィルム88に傾斜した状態で当接(接触)するとともに、第2フェルール19bの第2キャピラリ23bが研磨フィルム88に傾斜した状態で当接(接触)する。研磨フィルム88には、第1及び第2キャピラリ23a,23bの先端面25及び面取り部26が当接する。
 光ファイバフェルール研磨ホルダ84を光ファイバフェルール研磨機86に設置した後、光ファイバフェルール研磨機86を稼働させると、光ファイバフェルール研磨機86の研磨ディスク89が自転公転運動を開始し、ラバーパッド87に取り付けられた研磨フィルム88によって第1及び第2キャピラリ23a,23bの先端面25及び面取り部26が斜めに研磨される。
 図56は、第1及び第2キャピラリ23a,23bを研磨した後の光コネクタプラグ10A,10Bの側面図であり、図57は、図56の側面図に示す第1フェルール19aの部分拡大図である。光ファイバフェルール研磨機86によって第1及び第2キャピラリ23a,23bの先端面25及び面取り部26を研磨した後、光ファイバフェルール研磨ホルダ84の固定凹部85から光コネクタプラグ10Aの第1及び第2光コネクタアセンブリ11a,11bや光コネクタプラグ10Bの第1及び第2光コネクタアセンブリ11c,11dを引き抜き、光ファイバフェルール研磨ホルダ84から光コネクタプラグ10Aや光コネクタプラグ10Bを取り外す。
 斜めに研磨された第1キャピラリ23aの先端面25及び面取り部26は、図56,57に示すように、第1プラグフレーム20aや第1プラグフレーム20cの頂壁33から底壁34に向かって底壁34に次第に近づくように傾斜し、斜めに研磨された第2キャピラリ23bの先端面25及び面取り部26は、第2プラグフレーム20bや第2プラグフレーム20dの頂壁33から底壁34に向かって底壁34に次第に近づくように傾斜している。
 図58は、第1及び第2キャピラリ23a,23bを研磨した後の光コネクタプラグ10Aや光コネクタプラグ10Bの上面図であり、図59は、図58の上面図に示す第1及び第2フェルール19a,19bの部分拡大図である。第1及び第2キャピラリ23a,23bを研磨した後、図56の状態から例えば第2光コネクタアセンブリ11b(一方の光コネクタアセンブリ)や第2光コネクタアセンブリ11d(一方の光コネクタアセンブリ)をその軸を中心に反時計回り方向へ1/4(90度)回転させることで、第1及び第2光コネクタアセンブリ11a,11bや第1及び第2光コネクタアセンブリ11c,11dを反時計回り方向へ1/4(90度)回転させる。
 第2光コネクタアセンブリ11b(一方の光コネクタアセンブリ)や第2光コネクタアセンブリ11d(一方の光コネクタアセンブリ)をその軸を中心に反時計回り方向へ1/4(90度)回転させると、第2歯車12b(一方の歯車)や第2歯車12d(一方の歯車)が反時計回り方向へ回転し、第2歯車12b,12dの回転によって中間歯車13が時計回り方向へ回転する。中間歯車13によって第2歯車12b,12dの回転力(回転)が第1歯車12a(他方の歯車)や第1歯車12c(他方の歯車)に伝達され、第2歯車12b,12dに連動して第1歯車12a,12cがその軸を中心に第2歯車12bと同一の反時計回り方向へ回転し、それによって第1光コネクタアセンブリ11a(他方の光コネクタアセンブリ)や第1光コネクタアセンブリ11c(他方の光コネクタアセンブリ)が反時計回り方向へ1/4(90度)回転する。
 図56の状態から第1及び第2光コネクタアセンブリ11a,11bを反時計回り方向へ1/4(90度)回転させると、光コネクタプラグ10Aが図1の状態に戻り、光コネクタプラグ10Bが図の状態に戻る。斜めに研磨された第1キャピラリ23aの先端面25及び面取り部26は、図59に示すように、第1プラグフレーム20aの一方の側壁36から他方の側壁35に向かって側壁35に次第に近づくように傾斜し、斜めに研磨された第2キャピラリ23bの先端面25及び面取り部26は、第2プラグフレーム20bの一方の側壁36から他方の側壁35に向かって側壁35に次第に近づくように傾斜している。図59の光コネクタプラグ10A,10Bでは、第1及び第2キャピラリ23a,23bが同一の方向へ斜めに傾斜している。
 第1及び第2フェルール19a,19bのフェルール研磨方法は、第1及び第2光コネクタアセンブリ11a,11bまたは第1及び第2光コネクタアセンブリ11c,11dのうちの一方の光コネクタアセンブリ11a,11b,11c,11dをその軸を中心に回転始点から1/4(90度)回転させると、それに連動して他方の光コネクタアセンブリ11a,11b,11c,11dがその軸を中心に一方の光コネクタアセンブリ11a,11b,11c,11dと同一の方向へ回転始点から1/4(90度)回転するから、一度の回転操作(ワンアクション)で第1及び第2光コネクタアセンブリ11a,11b,11c,11dを同一の方向へ同時に1/4(90度)回転させることができ、第1及び第2光コネクタアセンブリ11a,11b,11c,11dを1/4(90度)回転させた状態で光ファイバフェルール研磨機86を利用して第1及び第2キャピラリ23a,23bを研磨することで、第1及び第2フェルール19a,19bを同時に斜め研磨することができる。
 フェルール研磨方法は、第1及び第2光コネクタアセンブリ11a,11bや第1及び第2光コネクタアセンブリ11c,11dを別々に回転させて第1及び第2フェルール19a,19bを別々に斜め研磨することによる手間や時間を省くことができ、迅速かつ効率的に第1及び第2フェルール19a,19bを斜め研磨することができる。

Claims (25)

  1.  第1光ファイバを保持して軸方向へ延びる第1フェルールを収容する第1プラグフレーム、前記第1プラグフレームに係入する第1ストップリング、前記第1フェルールと前記第1ストップリングとの間に設置されて該第1フェルールを軸方向前方へ付勢する第1ばねを有する第1光コネクタアセンブリと、第2光ファイバを保持して軸方向へ延びる第2フェルールを収容する第2プラグフレーム、前記第2プラグフレームに係入する第2ストップリング、前記第2フェルールと前記第2ストップリングとの間に設置されて該第2フェルールを軸方向前方へ付勢する第2ばねを有して前記第1光コネクタアセンブリに並行する第2光コネクタアセンブリとを備えた二連式の光コネクタプラグにおいて、
     前記二連式の光コネクタプラグは、前記第1及び第2光コネクタアセンブリのうちの一方の光コネクタアセンブリがその軸を中心に回転すると、それに連動して他方の光コネクタアセンブリがその軸を中心に一方の光コネクタアセンブリと同一の方向へ回転することを特徴とする二連式の光コネクタプラグ。
  2.  請求項1に記載の二連式の光コネクタプラグにおいて、
     軸方向へ延びる第1歯車が、前記第1ストップリングの後端部に形成され、軸方向へ延びる第2歯車が、前記第2ストップリングの後端部に形成され、前記二連式の光コネクタプラグが、前記第1歯車と前記第2歯車との間に介在して軸方向へ延びていて前記第1及び第2歯車に外接し、前記第1及び第2歯車のうちの一方の歯車の回転力を他方の歯車に伝達しつつ他方の歯車を一方の歯車と同一の方向へ回転させる中間歯車を含むことを特徴とする二連式の光コネクタプラグ。
  3.  第1光ファイバを保持して軸方向へ延びる第1フェルールを収容する第1プラグフレーム、前記第1プラグフレームに係入する第1ストップリング、前記第1フェルールと前記第1ストップリングとの間に設置されて該第1フェルールを軸方向前方へ付勢する第1ばねを有する第1光コネクタアセンブリと、第2光ファイバを保持して軸方向へ延びる第2フェルールを収容する第2プラグフレーム、前記第2プラグフレームに係入する第2ストップリング、前記第2フェルールと前記第2ストップリングとの間に設置されて該第2フェルールを軸方向前方へ付勢する第2ばねを有して前記第1光コネクタアセンブリに並行する第2光コネクタアセンブリとを備えた二連式の光コネクタプラグにおいて、
     前記二連式の光コネクタプラグが、前記第1及び第2光コネクタアセンブリのうちの一方の光コネクタアセンブリの回転力を他方の光コネクタアセンブリに伝達する歯車を備え、前記二連式の光コネクタプラグは、前記第1及び第2光コネクタアセンブリのうちの一方の光コネクタアセンブリがその軸を中心に回転すると、前記歯車によって前記一方の光コネクタアセンブリの回転に連動して他方の光コネクタアセンブリがその軸を中心に回転することを特徴とする二連式の光コネクタプラグ。
  4.  請求項3に記載の二連式の光コネクタプラグにおいて、
     前記歯車が、前記第1ストップリングの後端部に形成されて軸方向へ延びる第1歯車と、前記第2ストップリングの後端部に形成されて軸方向へ延びる第2歯車と、前記第1歯車と前記第2歯車との間に介在して軸方向へ延びていて前記第1及び第2歯車に外接し、前記第1及び第2歯車のうちの一方の歯車の回転力を他方の歯車に伝達しつつ他方の歯車を一方の歯車と同一の方向へ回転させる中間歯車とから形成されていることを特徴とする二連式の光コネクタプラグ。
  5.  請求項2または請求項4に記載の二連式の光コネクタプラグにおいて、
     前記二連式の光コネクタプラグでは、前記第1歯車と前記第2歯車と前記中間歯車との歯車比が1であることを特徴とする二連式の光コネクタプラグ。
  6.  請求項5に記載の二連式の光コネクタプラグにおいて、
     前記二連式の光コネクタプラグが、前記第1歯車を形成した前記第1ストップリングの後端部と前記第2歯車を形成した前記第2ストップリングの後端部と前記中間歯車とを収容する第1ケーシングを含み、前記第1ケーシングが、前記第1ストップリングの後端部を回転可能に収容する第1歯車収容部と、前記第2ストップリングの後端部を回転可能に収容する第2歯車収容部と、前記第1及び第2歯車収容部の間に位置して前記中間歯車を回転可能に収容する中間歯車収容部とを有することを特徴とする二連式の光コネクタプラグ。
  7.  請求項6に記載の二連式の光コネクタプラグにおいて、
     前記二連式の光コネクタプラグが、前記第1及び第2光コネクタアセンブリのうちの少なくとも一方の回転角度を規制する回転角度規制手段を含み、前記第1ケーシングが、その前端に開口して前記第1ストップリングを挿通する第1開口と、前記第2ストップリングを挿通する第2開口とを有し、前記回転角度規制手段が、前記第1及び第2開口のうちの少なくとも一方に作られて開口の径方向内方へ凸となる回転規制凸部と、前記第1及び第2ストップリングの少なくとも一方の周面に作られて該周面の径方向外方へ凸となる当接凸部とから形成され、前記二連式の光コネクタプラグでは、前記当接凸部が前記回転規制凸部に当接することで前記第1及び第2光コネクタアセンブリの回転が阻止され、前記回転角度規制手段によって規制された前記第1及び第2光コネクタアセンブリの回転始点から回転終点までの回転範囲が半回転であることを特徴とする二連式の光コネクタプラグ。
  8.  請求項6に記載の二連式の光コネクタプラグにおいて、
     前記二連式の光コネクタプラグが、前記第1及び第2光コネクタアセンブリのうちの少なくとも一方の回転角度を規制する回転角度規制手段を含み、前記回転角度規制手段が、前記第1歯車と前記第2歯車との少なくとも一方に作られて該歯車の径方向外方へ凸となる当接凸部と、前記第1ケーシングの第1歯車収容部と第2歯車収容部との少なくとも一方に作られて該収容部の径方向内方へ凸となる回転規制凸部とから形成され、前記二連式の光コネクタプラグでは、前記当接凸部が前記回転規制凸部に当接することで前記第1及び第2光コネクタアセンブリの回転が阻止され、前記回転角度規制手段によって規制された前記第1及び第2光コネクタアセンブリの回転始点から回転終点までの回転範囲が半回転であることを特徴とする二連式の光コネクタプラグ。
  9.  請求項6ないし請求項8いずれかに記載の二連式の光コネクタプラグにおいて、
     前記二連式の光コネクタプラグが、前記第1ケーシングを軸方向へ収容する第2ケーシングを含み、前記第2ケーシングが、その前端に開口する前端開口と、前記第2ケーシングの頂壁から軸方向へ延びていて前記前端開口から軸方向前方へ露出し、前記第1及び第2コネクタアセンブリを光コネクタアダプタに挿入したときに前記光コネクタアダプタに係脱可能に係合して該第1及び第2コネクタアセンブリの該光コネクタアダプタに対する挿入状態を維持する係合ラッチとを有することを特徴とする二連式の光コネクタプラグ。
  10.  請求項9に記載の二連式の光コネクタプラグにおいて、
     前記第2ケーシングが、その頂壁に前記第1ケーシングの頂壁を対向させるとともにその底壁に該第1ケーシングの底壁を対向させた状態で、該第1ケーシングを収容可能であり、または、その頂壁に前記第1ケーシングの底壁を対向させるとともにその底壁に該第1ケーシングの頂壁を対向させた状態で、該第1ケーシングを収容可能であることを特徴とする二連式の光コネクタプラグ。
  11.  請求項9または請求項10に記載の二連式の光コネクタプラグにおいて、
     前記二連式の光コネクタプラグが、前記第2ケーシングの軸方向後方に位置して該第2ケーシングに対して軸方向へスライド可能に連結されたスライダーを含み、前記二連式の光コネクタプラグでは、前記第2ケーシングに対して前記スライダーを軸方向後方へスライドさせる前の状態において前記係合ラッチの前記光コネクタアダプタに対する係合状態が維持され、前記第2ケーシングに対して前記スライダーを軸方向後方へスライドさせると、該スライダーが前記係合ラッチを下方へ押し下げて該係合ラッチの前記光コネクタアダプタに対する係合状態が解除されることを特徴とする二連式の光コネクタプラグ。
  12.  請求項11に記載の二連式の光コネクタプラグにおいて、
     前記スライダーが、前記係合ラッチの上面を軸方向へ摺動可能であって、該スライダーの前端から軸方向後方へ向かうにつれて下方へ次第に傾斜する斜面を備えた摺動頂壁を有し、前記二連式の光コネクタプラグでは、前記第2ケーシングに対して前記スライダーを軸方向後方へスライドさせると、前記摺動頂壁の斜面が前記係合ラッチを下方へ押し下げることを特徴とする二連式の光コネクタプラグ。
  13.  第1光ファイバを保持して軸方向へ延びる第1フェルールを収容する第1プラグフレーム、前記第1プラグフレームに係入する第1ストップリング、前記第1フェルールと前記第1ストップリングとの間に設置されて該第1フェルールを軸方向前方へ付勢する第1ばねを有する第1光コネクタアセンブリと、第2光ファイバを保持して軸方向へ延びる第2フェルールを収容する第2プラグフレーム、前記第2プラグフレームに係入する第2ストップリング、前記第2フェルールと前記第2ストップリングとの間に設置されて該第2フェルールを軸方向前方へ付勢する第2ばねを有して前記第1光コネクタアセンブリに並行する第2光コネクタアセンブリとを備えた二連式の光コネクタプラグの極性を変換する極性変換方法において、
     前記極性変換方法は、前記第1及び第2光コネクタアセンブリのうちの一方の光コネクタアセンブリがその軸を中心に回転始点から回転終点まで半回転回転すると、それに連動して他方の光コネクタアセンブリがその軸を中心に一方の光コネクタアセンブリと同一の方向へ回転始点から回転終点まで半回転回転し、それによって前記二連式の光コネクタプラグの極性が変換されることを特徴とする二連式の光コネクタプラグの極性変換方法。
  14.  請求項13に記載の二連式の光コネクタプラグの極性変換方法において、
     前記二連式の光コネクタプラグでは、前記第1ストップリングの後端部に軸方向へ延びる第1歯車が形成され、前記第2ストップリングの後端部に軸方向へ延びる第2歯車が形成され、前記第1歯車と前記第2歯車との間に介在して軸方向へ延びる中間歯車が前記第1及び第2歯車に外接し、前記極性変換方法が、前記中間歯車を利用して前記第1及び第2歯車のうちの一方の歯車の回転力を他方の歯車に伝達しつつ一方の歯車と他方の歯車とを同一の方向へ半回転回転させることで、前記第1及び第2光コネクタアセンブリが回転始点から回転終点まで半回転回転し、前記二連式の光コネクタプラグの極性が変換されることを特徴とする二連式の光コネクタプラグの極性変換方法。
  15.  第1光ファイバを保持して軸方向へ延びる第1フェルールを収容する第1プラグフレーム、前記第1プラグフレームに係入する第1ストップリング、前記第1フェルールと前記第1ストップリングとの間に設置されて該第1フェルールを軸方向前方へ付勢する第1ばねを有する第1光コネクタアセンブリと、第2光ファイバを保持して軸方向へ延びる第2フェルールを収容する第2プラグフレーム、前記第2プラグフレームに係入する第2ストップリング、前記第2フェルールと前記第2ストップリングとの間に設置されて該第2フェルールを軸方向前方へ付勢する第2ばねを有して前記第1光コネクタアセンブリに並行する第2光コネクタアセンブリとを備えた二連式の光コネクタプラグの極性を変換する極性変換方法において、
     前記二連式の光コネクタプラグが、前記第1及び第2光コネクタアセンブリのうちの一方の光コネクタアセンブリの回転力を他方の光コネクタアセンブリに伝達する歯車を備え、前記極性変換方法は、前記第1及び第2光コネクタアセンブリのうちの一方の光コネクタアセンブリがその軸を中心に回転始点から回転終点まで半回転回転すると、前記歯車によって前記一方の光コネクタアセンブリの回転に連動して他方の光コネクタアセンブリがその軸を中心に回転始点から回転終点まで半回転回転し、それによって前記二連式の光コネクタプラグの極性が変換されることを特徴とする二連式の光コネクタプラグの極性変換方法。
  16.  請求項15に記載の二連式の光コネクタプラグの極性変換方法において、
     前記歯車が、前記第1ストップリングの後端部に形成されて軸方向へ延びる第1歯車と、前記第2ストップリングの後端部に形成されて軸方向へ延びる第2歯車と、前記第1歯車と前記第2歯車との間に介在して軸方向へ延びていて前記第1及び第2歯車に外接し、前記第1及び第2歯車のうちの一方の歯車の回転力を他方の歯車に伝達しつつ他方の歯車を一方の歯車と同一の方向へ回転させる中間歯車とから形成され、前記極性変換方法が、前記中間歯車を利用して前記第1及び第2歯車のうちの一方の歯車の回転力を他方の歯車に伝達しつつ一方の歯車と他方の歯車とを同一の方向へ半回転回転させることで、前記第1及び第2光コネクタアセンブリが回転始点から回転終点まで半回転回転し、前記二連式の光コネクタプラグの極性が変換されることを特徴とする二連式の光コネクタプラグの極性変換方法。
  17.  請求項14または請求項16に記載の二連式の光コネクタプラグの極性変換方法において、
     前記二連式の光コネクタプラグが、前記第1歯車が形成された前記第1ストップリングの後端部を回転可能に収容する第1歯車収容部と、前記第2歯車が形成された前記第2ストップリングの後端部を回転可能に収容する第2歯車収容部と、前記第1及び第2歯車収容部の間に位置して前記中間歯車を回転可能に収容する中間歯車収容部とを有する第1ケーシングを備え、前記極性変換方法では、前記中間歯車収容部に収容された前記中間歯車を利用して前記第1及び第2歯車収容部に収容された前記第1及び第2歯車のうちの一方の歯車の回転力を他方の歯車に伝達しつつ一方の歯車と他方の歯車とを同一の方向へ半回転回転させることで、前記第1及び第2光コネクタアセンブリが回転始点から回転終点まで半回転回転し、前記二連式の光コネクタプラグの極性が変換されることを特徴とする二連式の光コネクタプラグの極性変換方法。
  18.  請求項17に記載の二連式の光コネクタプラグの極性変換方法において、
     前記二連式の光コネクタプラグが、前記第1及び第2光コネクタアセンブリのうちの少なくとも一方の回転角度を規制する回転角度規制手段を含み、前記第1ケーシングが、その前端に開口して前記第1ストップリングを挿通する第1開口と、前記第2ストップリングを挿通する第2開口とを有し、前記回転角度規制手段が、前記第1及び第2開口のうちの少なくとも一方に作られて開口の径方向内方へ凸となる回転規制凸部と、前記第1及び第2ストップリングの少なくとも一方の周面に作られて該周面の径方向外方へ凸となる当接凸部とから形成され、前記極性変換方法では、前記当接凸部が前記回転規制凸部に当接することで前記第1及び第2光コネクタアセンブリの回転が阻止され、該第1及び第2光コネクタアセンブリの回転範囲が半回転に規制されていることを特徴とする二連式の光コネクタプラグの極性変換方法。
  19.  請求項17に記載の二連式の光コネクタプラグの極性変換方法において、
     前記二連式の光コネクタプラグが、前記第1及び第2光コネクタアセンブリのうちの少なくとも一方の回転角度を規制する回転角度規制手段を含み、前記回転角度規制手段が、前記第1歯車と前記第2歯車との少なくとも一方の周面に作られて該歯車の径方向外方へ凸となる当接凸部と、前記第1ケーシングの第1歯車収容部と第2歯車収容部との少なくとも一方に作られて該収容部の径方向内方へ凸となる回転規制凸部とから形成され、前記極性変換方法では、前記当接凸部が前記回転規制凸部に当接することで前記第1及び第2光コネクタアセンブリの回転が阻止され、該第1及び第2光コネクタアセンブリの回転範囲が半回転に規制されていることを特徴とする二連式の光コネクタプラグの極性変換方法。
  20.  請求項18または請求項19いずれかに記載の二連式の光コネクタプラグの極性変換方法において、
     前記二連式の光コネクタプラグが、前記第1ケーシングを軸方向へ収容する第2ケーシングを含み、前記第2ケーシングが、その前端に開口する前端開口と、前記第2ケーシングの頂壁から軸方向へ延びていて前記前端開口から軸方向前方へ露出し、前記第1及び第2コネクタアセンブリを光コネクタアダプタに挿入したときに前記光コネクタアダプタに係脱可能に係合して該第1及び第2コネクタアセンブリの該光コネクタアダプタに対する挿入状態を維持する係合ラッチとを有することを特徴とする二連式の光コネクタプラグの極性変換方法。
  21.  請求項20に記載の二連式の光コネクタプラグの極性変換方法において、
     前記第2ケーシングが、その頂壁に前記第1ケーシングの頂壁を対向させるとともにその底壁に該第1ケーシングの底壁を対向させた状態で、該第1ケーシングを収容可能であり、または、その頂壁に前記第1ケーシングの底壁を対向させるとともにその底壁に該第1ケーシングの頂壁を対向させた状態で、該第1ケーシングを収容可能であり、それによって前記二連式の光コネクタプラグの極性を変換することができることを特徴とする二連式の光コネクタプラグの極性変換方法。
  22.  請求項21に記載の二連式の光コネクタプラグの極性変換方法において、
     前記極性変換方法が、前記第1ケーシングを前記第2ケーシングから軸方向前方へ引き出し、前記第1及び第2光コネクタアセンブリのうちの一方の光コネクタアセンブリをその軸を中心に回転始点から回転終点まで半回転回転させることで、他方の光コネクタアセンブリをその軸を中心に回転始点から回転終点まで半回転回転させるとともに、前記第2ケーシングを半回転回転させ、前記第2ケーシングの頂壁に前記第1ケーシングの底壁が対向するとともに該第2ケーシングの底壁に該第1ケーシングの頂壁が対向するように該第1ケーシングを該第2ケーシングに収容し、それによって前記二連式の光コネクタプラグの極性を変換することができることを特徴とする二連式の光コネクタプラグの極性変換方法。
  23.  第1光ファイバを保持して軸方向へ延びる第1フェルールを収容する第1プラグフレーム、前記第1プラグフレームに係入する第1ストップリング、前記第1フェルールと前記第1ストップリングとの間に設置されて該第1フェルールを軸方向前方へ付勢する第1ばねを有する第1光コネクタアセンブリと、第2光ファイバを保持して軸方向へ延びる第2フェルールを収容する第2プラグフレーム、前記第2プラグフレームに係入する第2ストップリング、前記第2フェルールと前記第2ストップリングとの間に設置されて該第2フェルールを軸方向前方へ付勢する第2ばねを有して前記第1光コネクタアセンブリに並行する第2光コネクタアセンブリとを備えた二連式の光コネクタプラグの前記第1及び第2フェルールを斜め研磨するフェルール研磨方法において、
     前記フェルール研磨方法は、前記第1及び第2光コネクタアセンブリのうちの一方の光コネクタアセンブリがその軸を中心に回転始点から1/4回転すると、それに連動して他方の光コネクタアセンブリがその軸を中心に一方の光コネクタアセンブリと同一の方向へ回転始点から1/4回転し、前記二連式の光コネクタプラグの使用状態から前記第1及び第2光コネクタアセンブリが1/4回転した状態で、前記第1及び第2フェルールを光ファイバフェルール研磨機を利用して同時に斜め研磨することを特徴とするフェルール研磨方法。
  24.  請求項23に記載のフェルール研磨方法において、
     前記二連式の光コネクタプラグでは、前記第1ストップリングの後端部に軸方向へ延びる第1歯車が形成され、前記第2ストップリングの後端部に軸方向へ延びる第2歯車が形成され、前記第1歯車と前記第2歯車との間に介在して軸方向へ延びる中間歯車が前記第1及び第2歯車に外接し、前記フェルール研磨方法は、前記中間歯車を利用して前記第1及び第2歯車のうちの一方の歯車の回転力を他方の歯車に伝達しつつ一方の歯車と他方の歯車とを同一の方向へ1/4回転させ、その状態で前記第1及び第2フェルールを同時に斜め研磨することを特徴とするフェルール研磨方法。
  25.  請求項24に記載のフェルール研磨方法において、
     前記二連式の光コネクタプラグが、前記第1歯車が形成された前記第1ストップリングの後端部を回転可能に収容する第1歯車収容部と、前記第2歯車が形成された前記第2ストップリングの後端部を回転可能に収容する第2歯車収容部と、前記第1及び第2歯車収容部の間に位置して前記中間歯車を回転可能に収容する中間歯車収容部とを有する第1ケーシングを備え、前記フェルール研磨方法が、前記中間歯車収容部に収容された前記中間歯車を利用して前記第1及び第2歯車収容部に収容された前記第1及び第2歯車のうちの一方の歯車の回転力を他方の歯車に伝達しつつ一方の歯車と他方の歯車とを同一の方向へ1/4回転させ、その状態で前記第1及び第2フェルールを同時に斜め研磨することを特徴とするフェルール研磨方法。
PCT/JP2017/023507 2016-06-29 2017-06-27 二連式の光コネクタプラグ及び二連式の光コネクタプラグの極性変換方法並びにフェルール研磨方法 WO2018003776A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780001762.5A CN107801412B (zh) 2016-06-29 2017-06-27 双联式光纤连接插头和双联式光纤连接插头极性转换方法以及套箍研磨方法
US15/828,443 US10042126B2 (en) 2016-06-29 2017-12-01 Ferrule polishing method of duplex optical connector plug
US15/828,441 US10042129B2 (en) 2016-06-29 2017-12-01 Duplex optical connector plug and polarity reversal method of duplex optical connector plug

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016129334 2016-06-29
JP2016-129334 2016-06-29
JP2017016754A JP6173629B1 (ja) 2016-06-29 2017-02-01 二連式の光コネクタプラグ及び二連式の光コネクタプラグの極性変換方法並びにフェルール研磨方法
JP2017-016754 2017-02-01

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/828,443 Continuation US10042126B2 (en) 2016-06-29 2017-12-01 Ferrule polishing method of duplex optical connector plug
US15/828,441 Continuation US10042129B2 (en) 2016-06-29 2017-12-01 Duplex optical connector plug and polarity reversal method of duplex optical connector plug

Publications (1)

Publication Number Publication Date
WO2018003776A1 true WO2018003776A1 (ja) 2018-01-04

Family

ID=59505185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023507 WO2018003776A1 (ja) 2016-06-29 2017-06-27 二連式の光コネクタプラグ及び二連式の光コネクタプラグの極性変換方法並びにフェルール研磨方法

Country Status (4)

Country Link
US (2) US10042126B2 (ja)
JP (1) JP6173629B1 (ja)
CN (1) CN107801412B (ja)
WO (1) WO2018003776A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021131444A (ja) * 2020-02-19 2021-09-09 住友電工オプティフロンティア株式会社 光コネクタ
JP2021528703A (ja) * 2018-06-28 2021-10-21 ダイアモンド・ソシエテ・アノニムDiamond Sa 光プラグイン接続のためのコネクタ部
CN113568109A (zh) * 2021-06-30 2021-10-29 华为技术有限公司 双芯连接器及连接系统

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6173629B1 (ja) * 2016-06-29 2017-08-02 株式会社精工技研 二連式の光コネクタプラグ及び二連式の光コネクタプラグの極性変換方法並びにフェルール研磨方法
WO2018142677A1 (ja) * 2017-01-31 2018-08-09 Seiオプティフロンティア株式会社 光コネクタ及びコネクタ付き光ファイバ
US10620384B2 (en) 2017-05-25 2020-04-14 Senko Advanced Components, Inc. Adjustable polarity fiber optic connector assemblies with push-pull tabs
US10830963B2 (en) 2017-11-17 2020-11-10 Commscope Technologies Llc Fiber optic connector locking feature
US11002923B2 (en) * 2017-11-21 2021-05-11 Senko Advanced Components, Inc. Fiber optic connector with cable boot release having a two-piece clip assembly
US11409054B2 (en) * 2018-05-11 2022-08-09 Us Conec Ltd. Method and apparatus for assembling uniboot fiber optic connectors
USD879039S1 (en) * 2018-06-07 2020-03-24 Advanced-Connectek Inc. Optical fiber connector
US11237342B2 (en) 2018-06-28 2022-02-01 Senko Advanced Components, Inc. Adjustable polarity fiber optic connector assembly with shortened rotatable boot assembly
JP7084266B2 (ja) * 2018-09-20 2022-06-14 三和電気工業株式会社 Lc用ユニブーツプラグコネクタ
JP2020134948A (ja) * 2019-02-25 2020-08-31 サンワ エレクトロニクス ユーエスエー コーポレイション 可逆光コネクタ、並びに関連するデバイス、システム及び方法
US10935736B2 (en) * 2019-02-25 2021-03-02 Leviton Manufacturing Co., Inc. Rotary clip for duplex polarity change
CN110376684A (zh) * 2019-07-31 2019-10-25 新确精密科技(深圳)有限公司 一种极性可变的光纤连接器
CN110433404B (zh) * 2019-08-13 2020-08-14 尚华 一种波长转换装置
EP4028810A4 (en) * 2019-09-13 2023-10-11 US Conec, Ltd POLISHED ANGLED MULTIPLE FERRULE CONNECTOR WITH SIMPLIFIED POLARITY REVERSAL
US11448833B2 (en) 2019-11-15 2022-09-20 Ortronics, Inc. Angle polishing systems and methods for multi-ferrule optical connectors
EP4062216A4 (en) * 2019-11-20 2023-12-20 Senko Advanced Components Inc. REVERSIBLE FIBER OPTICAL CONNECTOR
CN210742557U (zh) * 2019-11-27 2020-06-12 惠州市飞博康实业有限公司 Sc可换极性联合尾套
TWI747170B (zh) * 2020-02-20 2021-11-21 立佳興業股份有限公司 光學連接器
TWI750865B (zh) * 2020-02-21 2021-12-21 劉美妙 光學連接器與光學連接器模組及其操作方法
JP6892710B1 (ja) * 2020-03-11 2021-06-23 株式会社精工技研 二連式の光コネクタプラグ
US11719892B2 (en) 2020-07-13 2023-08-08 Us Conec Ltd. Small form factor fiber optic connector with crossed angle polished ferrules and polishing cap therefor
US11934017B2 (en) 2021-03-02 2024-03-19 Corning Research & Development Corporation Polarity changeable optical connector
JP7028489B1 (ja) 2021-06-08 2022-03-02 株式会社精工技研 光ファイバフェルール研磨用ホルダーおよび光ファイバフェルール研磨装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060269194A1 (en) * 2005-05-27 2006-11-30 Luther James P Fiber optic connector having keyed ferrule holder
US20100220961A1 (en) * 2009-02-27 2010-09-02 De Jong Michael Duplex Fiber Optic Assemblies Suitable for Polarity Reversal and Methods Therefor
US20140169727A1 (en) * 2011-05-04 2014-06-19 The Siemon Company Fiber Optic Connector With Polarity Change
JP2014516172A (ja) * 2011-06-06 2014-07-07 パンドウィット・コーポレーション 光ファイバーコネクタのためのデュプレックスクリップアセンブリ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07159651A (ja) * 1993-12-10 1995-06-23 Totoku Electric Co Ltd 端面研磨フェルールおよびその製造方法
JP3066739B2 (ja) * 1996-07-15 2000-07-17 セイコーインスツルメンツ株式会社 汎用光コネクタ及びベーシックプラグ
DE10342908A1 (de) * 2003-09-17 2005-04-28 Krone Gmbh Gehäuse für Glasfaser- Steckverbinder und Verfahren zum Verlegen von Glasfaserkabeln
TWM474924U (zh) * 2013-09-27 2014-03-21 Fiberon Technologies Inc 具空間角位置換之光學連接器
US9678283B1 (en) * 2016-01-15 2017-06-13 Senko Advanced Components, Inc. Fiber optic connector assemblies with adjustable polarity
US9946035B2 (en) * 2016-04-11 2018-04-17 Leviton Manufacturing Co., Inc. Fiber optic connector
US9625658B1 (en) * 2016-04-12 2017-04-18 Jyh Eng Technology Co., Ltd. Communication connector with alterable polarity
JP6173629B1 (ja) * 2016-06-29 2017-08-02 株式会社精工技研 二連式の光コネクタプラグ及び二連式の光コネクタプラグの極性変換方法並びにフェルール研磨方法
CN106918869B (zh) * 2017-04-17 2018-10-26 深圳市飞博康光通讯技术有限公司 一种lc双联连接器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060269194A1 (en) * 2005-05-27 2006-11-30 Luther James P Fiber optic connector having keyed ferrule holder
US20100220961A1 (en) * 2009-02-27 2010-09-02 De Jong Michael Duplex Fiber Optic Assemblies Suitable for Polarity Reversal and Methods Therefor
US20140169727A1 (en) * 2011-05-04 2014-06-19 The Siemon Company Fiber Optic Connector With Polarity Change
JP2014516172A (ja) * 2011-06-06 2014-07-07 パンドウィット・コーポレーション 光ファイバーコネクタのためのデュプレックスクリップアセンブリ

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021528703A (ja) * 2018-06-28 2021-10-21 ダイアモンド・ソシエテ・アノニムDiamond Sa 光プラグイン接続のためのコネクタ部
JP7412364B2 (ja) 2018-06-28 2024-01-12 ダイアモンド・ソシエテ・アノニム 光プラグイン接続のためのコネクタ部
US11977263B2 (en) 2018-06-28 2024-05-07 Neutrik Ag Connector part for an optical plug-in connection
JP2021131444A (ja) * 2020-02-19 2021-09-09 住友電工オプティフロンティア株式会社 光コネクタ
JP7365931B2 (ja) 2020-02-19 2023-10-20 住友電工オプティフロンティア株式会社 光コネクタ
CN113568109A (zh) * 2021-06-30 2021-10-29 华为技术有限公司 双芯连接器及连接系统
CN113568109B (zh) * 2021-06-30 2022-09-16 华为技术有限公司 双芯连接器及连接系统

Also Published As

Publication number Publication date
JP2018010274A (ja) 2018-01-18
US20180088283A1 (en) 2018-03-29
JP6173629B1 (ja) 2017-08-02
US10042129B2 (en) 2018-08-07
CN107801412B (zh) 2019-04-23
US10042126B2 (en) 2018-08-07
CN107801412A (zh) 2018-03-13
US20180088288A1 (en) 2018-03-29

Similar Documents

Publication Publication Date Title
JP6173629B1 (ja) 二連式の光コネクタプラグ及び二連式の光コネクタプラグの極性変換方法並びにフェルール研磨方法
JP2019028425A (ja) 光コネクタプラグおよび二連式の光コネクタプラグ
JP3641201B2 (ja) 光コネクタプラグ
JP4792043B2 (ja) プッシュ−プッシュ式挿入/引抜き機構、mt型コネクタ、及びシャッタ付きアダプタを備える多芯光ファイバ相互接続システム、並びにその使用方法
KR101411779B1 (ko) 현상 장치, 현상 카트리지, 회전력 전달 부품 및 전자 사진 화상 형성 장치
JP4743724B2 (ja) 防水コネクタ、及び、この防水コネクタを用いた防水装置
US20230258875A1 (en) Fiber Connector Plug Assembly, Fiber Connector Assembly, and Communication Device
EP3879320B1 (en) Duplex optical connector plug
JP5702884B1 (ja) 光コネクタプラグ
JP2021117497A (ja) 光コネクタ
US6283640B1 (en) Tunable optical fiber buildout
JP4190402B2 (ja) レンズ鏡筒
JP4327063B2 (ja) シャッター付き光コネクタ
JP2004333831A (ja) 光プラグ
JP3912403B2 (ja) 光コンセント
JP3882820B2 (ja) 光ファイバ用配線器具
CN113568109A (zh) 双芯连接器及连接系统
WO2023233714A1 (ja) 光コネクタ、光コネクタアセンブリ、および光接続構造
JP2005128327A (ja) 光コネクタ
JP2005170403A (ja) ノック式スライドケース
JP2013218103A (ja) 光コネクタプラグ
JP6013800B2 (ja) 光ループバックコネクタ
JP3681489B2 (ja) 光コネクタ
CN210814251U (zh) 滤座和具有其的净水机
US20240142715A1 (en) Adapter shutter assembly with shutter retention cap

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17820130

Country of ref document: EP

Kind code of ref document: A1