WO2018003340A1 - 画像取得方法、画像取得装置、プログラム及び培養容器 - Google Patents

画像取得方法、画像取得装置、プログラム及び培養容器 Download PDF

Info

Publication number
WO2018003340A1
WO2018003340A1 PCT/JP2017/018777 JP2017018777W WO2018003340A1 WO 2018003340 A1 WO2018003340 A1 WO 2018003340A1 JP 2017018777 W JP2017018777 W JP 2017018777W WO 2018003340 A1 WO2018003340 A1 WO 2018003340A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
outer diameter
cell
focus
image acquisition
Prior art date
Application number
PCT/JP2017/018777
Other languages
English (en)
French (fr)
Inventor
篠田 昌孝
武史 大橋
智也 大沼
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2018524955A priority Critical patent/JPWO2018003340A1/ja
Priority to CN201780039603.4A priority patent/CN109415676A/zh
Priority to EP17819707.5A priority patent/EP3480291A4/en
Priority to AU2017287141A priority patent/AU2017287141B2/en
Priority to US16/312,017 priority patent/US20190331905A1/en
Publication of WO2018003340A1 publication Critical patent/WO2018003340A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/241Devices for focusing
    • G02B21/244Devices for focusing using image analysis techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30024Cell structures in vitro; Tissue sections in vitro
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30072Microarray; Biochip, DNA array; Well plate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30204Marker

Definitions

  • the present technology relates to an image acquisition device, an image acquisition method, a program, and a culture container that are used to acquire an image by photographing cultured cells.
  • an object of the present technology is to provide an image acquisition device, an image acquisition method, a program, and a culture that are suitable for capturing an image by capturing a change in size due to a change with time of a cell at an appropriate focal position.
  • An image acquisition method includes: An image of the cell in a culture vessel having a recess containing cells is acquired by the imaging unit, Calculate the outer diameter of the cell from the image acquired by the imaging unit, The focus position of the imaging unit is specified from the calculation result of the outer diameter with reference to a table in which a plurality of different focus positions of the imaging unit and the outer diameter of the cell are associated with each other.
  • the focus position is specified from the outer diameter of the cell
  • the image of the cell can be easily acquired by the imaging unit at the focus position. That is, by determining the outer diameter from a two-dimensional image of a substantially circular cell by regarding a cell, for example, a fertilized egg as a substantially spherical shape, the center position of the substantially spherical cell is determined, and the center position of this cell is imaged.
  • the focus position at the time of acquisition. Then, by creating in advance a table in which a plurality of different focus positions, in other words, a plurality of focus positions having different focus depth directions and the outer diameter of the cell are associated with each other, the calculated cell is referred to this table.
  • the focus position can be specified from the outer diameter of the lens.
  • the focus position is the lowest position of the recess as a reference position, in a direction perpendicular to the horizontal plane, The position is moved upward by the same length as the radius determined from the calculated outer diameter of the cell from the reference position.
  • the cell is regarded as a substantially spherical shape, and the radius of the cell can be obtained from the outer diameter of the substantially circular cell viewed from above. Then, the focus position can be set so that the focus position is located at the center of the substantially spherical cell by setting the position moved upward from the reference position by the same length as the radius as the focus position.
  • the image of the cell is acquired by the imaging unit, the outer diameter of the cell is calculated from the image acquired by the imaging unit, and the calculation result of the outer diameter is obtained by referring to the table.
  • a focus position of the imaging unit is specified, and an image of the cell is acquired by the imaging unit at the specified focus position.
  • the focus position of the imaging unit is specified based on the cell outer diameter calculation result, and the cell image is acquired at the specified focus position.
  • the cell can be imaged at a focus position suitable for the size of the cell at that time, and the state of cell growth can be acquired as a clear image.
  • the culture container has a plurality of focus adjustments that are arranged outside the recesses at positions higher than the lowest position of the recesses and lower than the highest position of the recesses so that their heights are different from each other. It also has a mark for After specifying the focus position by referring to the table, the focus position of the imaging unit is specified using the focus adjustment mark at any time, and the cell image is detected by the imaging unit at the specified focus position. To get.
  • the focus position at the time of image acquisition of the first cell is identified by referring to the table, and the focus position at the time of subsequent image acquisition is specified using the focus adjustment mark provided in the culture vessel. You may go. Since the cell growth curve draws substantially the same curve, a change in cell size due to a change with time can be assumed to some extent. Therefore, the elapsed time and the focus adjustment mark can be associated with each other based on the cell growth curve. Therefore, the focus position can be specified by referring to the table at the time of the first cell image acquisition, and thereafter the focus position can be specified using the focus adjustment mark.
  • the cell outer diameter calculation step is performed at the time of image acquisition using the table, but the cell outer diameter calculation step may not be performed at the time of image acquisition using the focus adjustment mark.
  • the outer diameter calculation step needs to be performed at least once.
  • the cell outer diameter calculation step may be performed every time the image is acquired, or may be performed at any time without being performed every time the image is acquired.
  • the imaging unit Prior to acquisition of the cell image, the imaging unit is calibrated with reference to the focus adjustment mark of the culture vessel, The focus position of the imaging unit is specified in consideration of the calibration result.
  • the culture vessel has a plurality of the recesses for individually storing a plurality of the cells, Acquisition of the image of the cell by the imaging unit is performed by collectively imaging the plurality of cells for each of a plurality of different focus positions in the table, From the image results obtained for each of a plurality of different focus positions, select one image for outer diameter calculation for each cell, The outer diameter of the cell is calculated from the image selected for the outer diameter calculation.
  • one image for outer diameter calculation may be selected for each cell from these images.
  • An image acquisition method includes: A plurality of cells disposed in the recesses in which the cells are stored and outside the recesses, the positions being higher than the lowest position of the recesses and lower than the highest position of the recesses.
  • An image of the cell in the culture vessel having the focus adjustment mark of the image acquisition unit Calculate the outer diameter of the cell from the image acquired by the imaging unit, Based on the outer diameter calculation result, one focus adjustment mark is selected from the plurality of focus adjustment marks, The image of the cell is acquired by the imaging unit with the focus adjustment mark as a focus position.
  • the focus position is specified from the outer diameter of the cell, the image of the cell can be easily acquired by the imaging unit at the focus position. That is, the center position of a substantially spherical cell is determined by determining the outer diameter from a two-dimensional image of a substantially round cell by regarding the cell as a substantially spherical shape, and the center position of this cell is the focus at the time of image acquisition. Position. Since the cell growth curve draws substantially the same curve, a change in cell size due to a change with time can be assumed to some extent. Therefore, the elapsed time and the focus adjustment mark can be associated with each other based on the cell growth curve. Therefore, the focus position can be specified from the calculated outer diameter of the cell using the focus adjustment mark provided on the culture vessel.
  • the focus position of the imaging unit is specified based on the cell outer diameter calculation result, and the cell image is acquired at the specified focus position.
  • the cell can be imaged at a focus position suitable for the size of the cell at that time, and the state of cell growth can be easily acquired as a clear image.
  • every arbitrary period includes a continuous case, for example, while continuously photographing cells with a video camera, the outer diameter calculation based on the photographed image, the focus position based on the outer diameter calculation result
  • the image acquisition at the specified and specified focus position can be repeated continuously.
  • the culture vessel has a plurality of the recesses for individually storing a plurality of the cells, Acquisition of the image of the cell by the imaging unit is performed by collectively imaging the plurality of cells for each focus adjustment mark, From the image results acquired for each focus adjustment mark, select one image for outer diameter calculation for each cell, The outer diameter of the cell is calculated from an image selected for the outer diameter calculation.
  • one image for calculating the outer diameter may be selected for each cell from these images.
  • An image acquisition device includes: An imaging unit for imaging the cells in a culture vessel having a recess containing cells; A calculation unit that calculates the outer diameter of the cell from the image acquired by the imaging unit; A specific unit that specifies a focus position of the imaging unit from a calculation result of the outer diameter with reference to a table in which the focus position of the imaging unit and the outer diameter of the cell are associated with each other. .
  • the focus position is specified from the outer diameter of the cell, the image of the cell can be easily acquired by the imaging unit at the focus position.
  • An image acquisition device A plurality of cells disposed in the recesses in which the cells are stored and outside the recesses, the positions being higher than the lowest position of the recesses and lower than the highest position of the recesses.
  • An imaging unit for imaging the cells in the culture vessel having a focus adjustment mark;
  • a calculation unit that calculates the outer diameter of the cell from the image acquired by the imaging unit;
  • a specifying unit for specifying one focus adjustment mark from the plurality of focus adjustment marks based on the outer diameter calculation result.
  • the focus position is specified from the outer diameter of the cell, the image of the cell can be easily acquired by the imaging unit at the focus position.
  • the apparatus further comprises a culture apparatus that accommodates the culture container. Thereby, the change of the magnitude
  • a program is: An image acquisition unit that acquires an image of the cell in a culture vessel having a recess in which the cell is captured, which is imaged by the imaging unit; Based on the acquired cell image, a calculation unit for calculating the outer diameter of the cell; A program for causing an information processing device to function as a specifying unit that specifies a focus position of the imaging unit based on the calculation result,
  • the specifying unit refers to a table in which different focus positions of the imaging unit and the outer diameter of the cell are associated with each other, based on a calculation result of the outer diameter by the calculation unit. Specify the focus position.
  • a program is as follows: The height of each other is higher than the lowest position of the concave portion and lower than the highest position of the concave portion outside the concave portion captured by the imaging unit and containing the cells.
  • An image acquisition unit for acquiring an image of the cells in the culture vessel having a plurality of focus adjustment marks arranged differently; Based on the acquired cell image, a calculation unit for calculating the outer diameter of the cell;
  • a program for causing an information processing device to function as a specifying unit that specifies a focus position of the imaging unit based on the calculation result, The specifying unit specifies one focus adjustment mark from the plurality of focus adjustment marks based on a calculation result of the outer diameter by the calculation unit.
  • the culture container is: A recess group consisting of a plurality of recesses in which a plurality of cells are individually accommodated; Outside the recess group, a plurality of focus adjustment marks disposed at positions higher than the lowest position of the recess and lower than the highest position of the recess so that their heights are different from each other. Have.
  • the focus position of the imaging unit can be specified using the focus adjustment mark when acquiring an image of the cells in the culture vessel.
  • the focus position can be easily specified in accordance with the growth of the cell in the technology for acquiring the image of the cell.
  • FIG. 1st Embodiment It is a top view of the culture container which concerns on 1st Embodiment. It is sectional drawing of the culture container shown in FIG. It is an enlarged view of the area
  • FIG. 1 is a plan view of a culture vessel (dish), and FIG. 2 is a cross-sectional view of the culture vessel.
  • FIG. 3 is a partially enlarged view of the culture vessel, and is an enlarged view of a region surrounded by a one-dot chain line A in FIG.
  • FIG. 4 is an enlarged view of the central portion of the culture vessel.
  • the XYZ axis coordinates are illustrated with the depth direction of the culture vessel 1 when the culture vessel 1 is placed on the horizontal plane as the Z axis and the horizontal plane as the XY plane. The same applies to the XYZ axis coordinates shown in FIG.
  • the “cell” at least conceptually includes a single cell and an aggregate of a plurality of cells.
  • the “cell” includes at least an unfertilized egg cell (egg), a fertilized egg, and an embryo of an organism each having a three-dimensional (three-dimensional) shape.
  • egg unfertilized egg cell
  • a fertilized egg will be described as an example of cells accommodated in the culture vessel 1 below.
  • the culture vessel 1 has a bottom portion 19, an outer wall 11, an inner wall 12, a recess (well) 15, and a cell placement convex portion 13.
  • inorganic materials such as metal, glass, silicon, polystyrene resin, polyethylene resin, polypropylene resin, ABS resin, nylon, acrylic resin, fluororesin, polycarbonate resin, polyurethane resin, methylpentene resin, phenol resin It can be formed using an organic material such as a melamine resin, an epoxy resin, or a vinyl chloride resin.
  • a transparent culture vessel 1 made of polystyrene resin is used.
  • the diameter of the culture vessel 1 having a circular planar shape is about 38 mm
  • the diameter of the circular region of the planar shape surrounded by the inner wall 12 is about 8 mm
  • the cell placement convex portion 13 having a rectangular plane is about 3 mm.
  • X It has a size of about 3 mm.
  • the actual dimensions and scales are illustrated differently.
  • each recess 15 can hold a single cell, here a fertilized egg 16, and can be held in a fixed position.
  • liquid is accommodated in each recess 15.
  • “Liquid” is typically a culture solution suitable for culturing cells, and will be described below as a culture solution.
  • a culture solution 18 for culturing the fertilized egg 16 is injected into the region surrounded by the recess 15 and the inner wall 12. Further, in order to prevent the culture solution 18 from evaporating, oil 17 is injected into the region surrounded by the inner wall 12 so as to cover the culture solution 18.
  • the bottom 19 has a circular planar shape.
  • the outer wall 11 and the inner wall 12 are formed concentrically.
  • the height of the inner wall 12 is formed lower than the height of the outer wall 11.
  • the cell placement convex portion 13 is disposed at the center of the bottom portion 19 in a region surrounded by the inner wall 12 with a gap from the inner wall 12.
  • the cell placement convex portion 13 has a rectangular planar shape.
  • the cell placement convex portion 13 is provided outside the concave portion group composed of a plurality of, here, nine concave portions 15 in a 3 ⁇ 3 arrangement and these nine concave portions 15.
  • a step-like focus adjustment step 14 and identification marks A 1, A 2, A 3, B 1, B 2, B 3, C 1, C 2, C 3 are provided for each of the recesses 15 so that a plurality of the recesses 15 can be identified.
  • the focus adjustment step 14 has six steps and is provided on one side of the rectangular cell placement convex portion 13 so that the step gradually decreases from the center of the cell placement convex portion 13 to the outside. Is provided.
  • the depth e of the focus adjustment step 14 is preferably such that the planar shape of the opening is the same as the diameter a of the circular recess 15.
  • the recess 15 is provided such that the distance between the centers of the adjacent recesses 15 is 400 ⁇ m.
  • the recessed part 15 should just be a shape and a magnitude
  • the recess 15 has a planar shape (XY planar shape) of the opening of the recess 15 as viewed from above, and has a circular shape with a diameter of 280 ⁇ m, and the cross section faces the bottom 19. Thus, it has a substantially trapezoidal shape so that the opening is slightly smaller.
  • the depth b of the recess 15 is 280 ⁇ m.
  • Focus adjustment marks 141a to 141f are provided at the respective steps of the focus adjustment step 14.
  • the focus adjustment marks 141a to 141f are provided at a position where the lowest position of the recess 15 is the reference position 10 and is higher in the Z-axis direction than the reference position 10 and lower than the highest position of the recess 15. It has been.
  • the focus adjustment marks 141a to 141f have different heights from the reference position 10.
  • the focus adjustment mark 141a located on the lowermost side is in a direction perpendicular to the horizontal plane (Z-axis direction). It is arranged so as to be located at a position moved upward by 50 ⁇ m from the reference position 10.
  • d indicates the distance between the reference position 10 and the focus adjustment mark 141a in the Z-axis direction, and is 50 ⁇ m.
  • a focus adjustment step 14 is provided so that the focus adjustment marks 141a to 141f are arranged at equal intervals of 15 ⁇ m between adjacent focus adjustment marks in the Z-axis direction.
  • the distance c between adjacent focus adjustment marks in the Z-axis direction corresponds to the step height of the stepped focus adjustment step 14.
  • the depth e of the horizontal plane of each step of the step-like focus adjustment step 14 is 280 ⁇ m.
  • the size of the fertilized egg immediately after fertilization is confirmed is about 100 ⁇ m.
  • the focus is adjusted by moving the reference position 10 upward by 50 ⁇ m, which is the radius of the fertilized egg. What is necessary is just to make it the position of the mark 141a become a focus position.
  • the substantially spherical cells include eggs, fertilized eggs, laboratory animals such as mice, domestic animals such as cows and pigs, pet animals such as dogs and cats, eggs such as humans, and fertilized eggs. This technique is suitable for acquiring images of these cells.
  • the focus adjustment marks 141a to 141f may be formed by sticking with a seal or the like, for example, those colored in black or the like may be used, and the shape may be a symbol or a pattern. In addition, the mark shapes or colors may be different so that the focus adjustment marks 141a to 141f can be identified. Further, instead of a seal type, an embedding type may be used, and a depression may be provided in each step of the focus adjustment step 14, and for example, a colored resin may be embedded therein to form the focus adjustment marks 141a to 141f. .
  • the focus adjustment marks 141a to 141f may be formed by printing.
  • a recess or a protrusion made of the same material as the culture vessel may be provided.
  • the shape, size, color, and material of the focus adjustment marks 141a to 141f are not affected by the image acquisition of the fertilized egg 16 and the observation of the fertilized egg 16, and can be various as long as they do not affect the culture medium 18. Selectable.
  • the focus adjustment marks 141a to 141f are provided, for example, by being attached to the culture vessel 1, but these focus adjustment marks 141a to 141f are not attached and the focus adjustment step 14 itself is focused. It may be made to function as an adjustment mark, and the focus adjustment mark includes steps having different heights. Since the culture vessel 1 is transparent, it is easy to adjust the focus by providing easy-to-identify focus adjustment marks 141 a to 141 f at each step of the focus adjustment step 14.
  • the focus adjustment step 14 is provided outside the recess group composed of the plurality of recesses 15, compared to the case where the focus adjustment step is provided between the recesses 15.
  • the number of the concave portions 15 provided on the upper surface of the convex portion 13 can be ensured to the maximum.
  • FIG. 5 is a diagram illustrating the configuration of the image acquisition apparatus.
  • the image acquisition device 2 includes a culture device 21, a light source 24, a camera 25 as an imaging unit, a temperature / humidity control unit 26, an information processing device 22, a display device 23, and a stage. 27.
  • the culture apparatus 21 is a chamber that accommodates the culture container 1 in which the fertilized egg 16 is accommodated and cultures the fertilized egg 16.
  • the culture container 1 is held horizontally in the culture apparatus 21.
  • the light source 24 emits light that irradiates the culture container 1 when the fertilized egg 16 in the culture container 1 is imaged by the camera 25.
  • the camera 25 images the fertilized egg 16 in the culture vessel 1 and is arranged in the culture apparatus 21.
  • the camera 25 includes a lens barrel including a lens group movable in the optical axis direction (Z-axis direction), a CMOS (Complementary Metal Oxide Semiconductor), a CCD (Charge Coupled Device), and the like that captures subject light passing through the lens barrel. It has a solid-state image sensor and a drive circuit for driving them.
  • the camera 25 may be installed in the culture vessel 1 so as to be movable in the Z-axis direction and the horizontal plane direction (XY plane direction) in the drawing. Further, the camera 25 may be configured to be able to capture not only a still image but also a continuous image (video).
  • the temperature / humidity control unit 26 controls the temperature / humidity in the culture apparatus 21 and creates an environment suitable for culturing the fertilized egg 16.
  • the temperature / humidity control unit 26 is disposed in the culture apparatus 21.
  • the information processing apparatus 22 is configured by a computer having a CPU, an internal memory, and the like.
  • the information processing device 22 calculates the outer diameter of the fertilized egg 16 from the image information acquired by the camera 25 and specifies the focus position of the camera 25 suitable for acquiring the image of the fertilized egg 16 from the calculation result. Further, the information processing device 22 causes the display device 23 to display an image of the fertilized egg 16. In addition, the captured image is stored in a recording device.
  • the display device 23 displays an image acquired by the camera 25 and the like.
  • the stage 27 is for placing the culture vessel 1 and holds the culture vessel 1 horizontally in the culture apparatus 21.
  • FIG. 6 is a diagram illustrating a configuration of the image acquisition system 3. As illustrated in FIG. 6, the image acquisition system 3 includes a camera 25, an information processing device 22, and a display device 23.
  • the information processing apparatus 22 includes an image acquisition unit 221, an outer diameter calculation unit 223, a focus position specification unit 224, an imaging control unit 226, a display control unit 225, and a storage unit 222.
  • the image acquisition unit 221, the outer diameter calculation unit 223, the focus position specification unit 224, and the imaging control unit 226 store a program recorded in a ROM that is an example of a non-transitory computer-readable recording medium. This is realized by being loaded into the CPU and executed by the CPU.
  • the image acquisition unit 221 acquires image information captured by the camera 25 from the camera 25.
  • the outer diameter calculator 223 calculates the outer diameter of the fertilized egg 16 from the image acquired by the camera 25.
  • the focus position specifying unit 224 specifies the focus position of the camera 25 from the calculation result of the outer diameter of the fertilized egg 16. Specifically, referring to a focus table in which a plurality of different focus positions of the camera 25 created in advance and the outer diameter of the fertilized egg 16 are associated, the calculation result of the outer diameter of the fertilized egg 16 and the focus table The focus position corresponding to the outer diameter is specified by comparing the diameters.
  • the focus table is created so that the positions at the heights of 50 ⁇ m, 65 ⁇ m, 80 ⁇ m, 95 ⁇ m, 110 ⁇ m, and 125 ⁇ m along the Z-axis direction from the reference position 10 are the focus positions.
  • the center of the fertilized egg having a diameter of 100 ⁇ m to 250 ⁇ m can be imaged as the focus position. That is, it is assumed that the fertilized egg 16 is substantially spherical, and the focus position is set at a position moved from the reference position 10 of the culture vessel 1 in the Z-axis direction by the same length as the radius of the fertilized egg 16.
  • the focus position on the focus table can be set.
  • the imaging control unit 226 outputs a focus position information signal to the camera 25 based on the focus position information specified by the focus position specifying unit 224.
  • the camera 25 has a camera position control unit 251.
  • the camera position control unit 251 sets the focus position of the camera 25 based on the focus position information signal from the imaging control unit 226.
  • the setting of the focus position may be performed by adjusting the lens position of the camera 25, or may be performed by adjusting the position of the stage 27 on which the culture vessel 1 is placed.
  • the number of steps at the focus position can be adjusted according to the growth rate of the fertilized egg 16 and the number of observation days, and may be a very large number of steps, or may be about two to three steps.
  • the display control unit 225 outputs an image information signal for causing the display device 23 to display the image acquired by the image acquisition unit 221 to the display device 23.
  • the storage unit 222 stores the image information acquired by the image acquisition unit 221 and the like.
  • the outer diameter is calculated for each fertilized egg 16, and the focus position is specified based on the outer diameter calculation result.
  • the case of using the culture container 1 provided with the focus adjustment marks 141a to 141f is taken as an example.
  • the image acquisition method of the present embodiment is performed using a culture container without the focus adjustment marks. It is also possible to acquire an image.
  • FIG. 7 is a flowchart of the image acquisition method.
  • fertilized eggs 16 that have been confirmed to be fertilized are placed one by one in the recess 15 of the culture vessel 1, and the culture solution 18 is then pipetted into the recess 15 and the region surrounded by the inner wall 12. Thereafter, oil 17 is injected into a region surrounded by the inner wall 12 so as to cover the culture solution 18.
  • FIG. 5 it mounts horizontally on the stage 27 in the culture apparatus 21. At this time, a transparent lid made of the same material as that of the culture vessel 1 (not shown) may be placed on the culture vessel 1 as necessary.
  • the image acquisition of the fertilized egg 16 is performed in a state where the culture container 1 containing the fertilized egg 16 is held in the culture apparatus 21. Next, light is emitted from the light source 24 from the lower part of the culture vessel 1, and the focus position is determined according to the outer diameter of the fertilized egg (S101). Next, the fertilized egg 16 is imaged by the camera 25 located at the top of the culture vessel 1 (S102).
  • the captured image of the fertilized egg 16 is acquired by the image acquisition unit 221 as shown in FIG.
  • the outer diameter calculation unit 223 calculates the outer diameter of the fertilized egg 16 based on the image of the fertilized egg 16 acquired by the image acquisition unit 221 (S103). Details of the outer diameter calculation method will be described later.
  • the focus position specifying unit 224 specifies the focus position of the camera 25 from the outer diameter calculation result of the fertilized egg 16 calculated by the outer diameter calculating unit 223 with reference to a focus table prepared in advance ( S104).
  • the focus table is obtained by associating a plurality of different focus positions of the camera 25 with the outer diameter of the fertilized egg 16.
  • the fertilized egg 16 is regarded as a substantially spherical shape, and the radius of the fertilized egg 16 is obtained from the outer diameter of the substantially circular fertilized egg 16 viewed from above. And, by setting the position moved from the reference position 10 at the lowest position of the concave portion 15 of the culture vessel 1 with which the fertilized egg 16 is in contact as much as this radius in the upward direction (Z-axis direction), as the focus position, It can be set so that the focus position is located at the center of the substantially spherical fertilized egg 16.
  • the focus table is created in advance by associating the outer diameter of the fertilized egg 16 with the focus position located at a position shifted from the reference position 10 by the radius determined from the outer diameter of the fertilized egg 16. Therefore, the focus position can be specified by collating the focus table with the outer diameter calculation result.
  • the imaging control unit 226 outputs a focus position information signal to the camera position control unit 251 so that the focus position of the camera 25 becomes the focus position specified by the focus position specifying unit 224 (S105).
  • the camera position control unit 251 adjusts the focus position by moving the lens position or the stage of the camera based on the focus position information signal from the imaging control unit 226 (S106).
  • the fertilized egg 16 is imaged at the specified focus position (S107), the image acquisition unit 221 acquires the captured image, and the storage unit 222 records the acquired image (S108).
  • the display control unit 225 causes the display device 23 to display the image acquired by the image acquisition unit 221.
  • the image of the fertilized egg 16 acquired in S107 is obtained by taking the center of the fertilized egg 16 as a focus position.
  • steps S101 to S108 are performed for each fertilized egg 16, and an image of each fertilized egg 16 is acquired.
  • an image is acquired by performing these steps S101 to S108 at an arbitrary time, for example, at predetermined intervals such as every 10 minutes or every other day, or continuously. Thereby, the state of growth of the fertilized egg 16 can be observed. Moreover, you may acquire an image in real time as needed, and you may make it display the state of a fertilized egg on the display apparatus 23, and may observe it at any time.
  • FIG. 8 is a flowchart of the outer diameter calculation method.
  • 9 and 10 are diagrams for explaining the outer diameter calculation method.
  • description will be given with reference to the flowchart of FIG.
  • the clarification filter processing is performed on the original image of the fertilized egg 16 obtained by focusing on the outer diameter of the fertilized egg 16 (S1031).
  • a 3 ⁇ 3 pixel filter matrix shown in FIG. 9A or 5B or a 5 ⁇ 5 pixel filter matrix shown in FIG. 9C can be used.
  • 9 pixels including 8 pixels around one pixel A are added to 9 pixels shown in FIG. 9A or 9B.
  • a value obtained by multiplying and adding the numerical values shown in the filter row example is used as the density value of one pixel A, and the same calculation is performed for all the pixels. Since the filter matrix shown in FIG. 9 has a positive median value and a negative value around it, the calculation result shows a large difference in density value between adjacent pixels. Therefore, the change in the concentration value at the contour portion or the like becomes large, and the contour of the fertilized egg 16 is coordinated.
  • edge extraction filter processing is performed on the annular image clarified by the clarification filter processing (S1032).
  • the edge extraction filter extracts an edge portion or outline of an image. Since the density difference in the contour portion changes abruptly, if the adjacent pixel values are subtracted, the density value difference increases, so that it can be extracted as a contour.
  • the contour image can be obtained by performing the edge extraction filter process on the sharpened annular image.
  • Each pixel of the contour image is represented by a density value from 0 to 255.
  • the average value Th of the density values is calculated for all the pixels of the contour image (S1033). However, pixels with a density value of 0 are excluded from the average value calculation. Then, binarization processing is performed by setting the average value Th as a threshold value, pixels having a density value larger than this as white (density value 255), and pixels having a density value smaller than this as black (density value 0). Then, a binarized image is obtained (S1034).
  • the search is performed in order from the four corners of the binarized image toward the center coordinates, the edge of the outer circle contour is detected (S1035), and the detected coordinates are stored.
  • the center coordinates here are, for example, the coordinates (100, 100) when the pixel is 200 ⁇ 200.
  • An equation of a circle passing through any three points among the four points on the outer circle obtained as described above is obtained by a conventionally known method.
  • outer circle information including the center coordinate position and radius of the outer circle can be calculated, and the outer diameter can be calculated.
  • the fertilized egg 16 is regarded as a substantially spherical shape, and the focus position for imaging the fertilized egg 16 is specified from the outer diameter calculation result of the fertilized egg 16, so that the focus position is adjusted. Easy. In addition, it does not take a long time to adjust the focus each time an image of the fertilized egg 16 that grows every day, improves work efficiency, and improves image quality by acquiring images by adjusting the focus position individually by different persons. There is no variation.
  • the focus position is specified from the outer diameter calculation result of the fertilized egg 16 with reference to the focus table.
  • the focus position is specified using the culture container 1 having the focus adjustment mark described above based on the outer diameter calculation result of the fertilized egg 16.
  • the culture vessel 1 and the image acquisition device 2 have the same configuration as in the first embodiment, description thereof is omitted.
  • the culture vessel 1 provided with the focus adjustment marks 141a to 141f described in the first embodiment is used.
  • FIG. 6 is a diagram illustrating a configuration of the image acquisition system 4.
  • the image acquisition system 4 includes a camera 25, an information processing device 22, and a display device 23.
  • the information processing apparatus 22 includes an image acquisition unit 221, an outer diameter calculation unit 223, a focus position specification unit 324, an imaging control unit 226, a display control unit 225, and a storage unit 222.
  • the image acquisition unit 221, the outer diameter calculation unit 223, the focus position specification unit 324, and the imaging control unit 226 store programs stored in a ROM that is an example of a non-transitory computer-readable recording medium. This is realized by being loaded into the CPU and executed by the CPU.
  • the focus position specifying unit 324 specifies the focus position of the camera 25 based on the calculation result of the outer diameter of the fertilized egg 16. Specifically, the radius of the fertilized egg 16 is obtained from the outer diameter calculation result of the fertilized egg 16. Then, any of the focus adjustment marks 141a to 141f at the height moved from the reference position 10 of the culture vessel 1 by the radius in the upward direction (Z-axis direction) or at the closest height is set to the focus position. As specified.
  • FIG. 11 is a flowchart of the image acquisition method according to this embodiment.
  • fertilized eggs 16 that have been confirmed to be fertilized are placed one by one in the recess 15 of the culture vessel 1, and the culture solution 18 is then pipetted into the recess 15 and the region surrounded by the inner wall 12. Thereafter, oil 17 is injected into a region surrounded by the inner wall 12 so as to cover the culture solution 18.
  • the culture vessel 1 is placed horizontally in the culture device 21 as shown in FIG.
  • the image acquisition of the fertilized egg 16 is performed in a state where the culture container 1 containing the fertilized egg 16 is held in the culture apparatus 21. Next, light from the light source 24 is irradiated from the lower part of the culture vessel 1, and the focus position is determined according to the outer diameter of the fertilized egg (S201). Next, the fertilized egg 16 is imaged by the camera 25 located at the top of the culture vessel 1 (S202).
  • the captured image of the fertilized egg 16 is acquired by the image acquisition unit 221 as shown in FIG.
  • the outer diameter calculation unit 223 calculates the outer diameter of the fertilized egg 16 based on the image of the fertilized egg 16 acquired by the image acquisition unit 221 (S203).
  • the outer diameter calculation method is the same as the method described in the first embodiment.
  • the focus position specifying unit 324 obtains the radius of the fertilized egg 16 from the outer diameter calculation result of the fertilized egg 16. Then, one step of the focus adjustment step 14 which is at the height moved from the reference position 10 of the culture vessel 1 by the radius along the Z-axis direction in the drawing or at the highest height. Is selected, and the focus adjustment mark attached to the step is specified as the focus position (S204).
  • the fertilized egg 16 is regarded as a substantially spherical shape, and the radius of the fertilized egg 16 is obtained from the outer diameter of the substantially circular fertilized egg 16 viewed from above. Then, the position moved from the reference position 10 of the recess 15 of the culture vessel 1 in contact with the fertilized egg 16 in the upward direction by the same length as this radius along the Z direction is set as the focus position, so that a substantially spherical fertilization is performed. The focus position is set at the center of the egg 16.
  • the imaging control unit 226 adjusts the focus position of the camera 25 so as to be the focus position specified by the focus position specifying unit 324 (S205).
  • the fertilized egg 16 is imaged at the specified focus position (S206)
  • the image acquisition unit 221 acquires the captured image
  • the storage unit 222 records the acquired image (S207).
  • the display control unit 225 causes the display device 23 to display the image acquired by the image acquisition unit 221.
  • the image of the fertilized egg 16 acquired in S206 is obtained by taking the center of the fertilized egg 16 as a focus position.
  • steps S201 to S207 are performed for each fertilized egg 16, and an image of each fertilized egg 16 is acquired.
  • the image acquisition in these steps S201 to S207 can be performed at a predetermined interval, for example, every 10 minutes, every day, or every arbitrary time such as continuously, and the state of growth of the fertilized egg 16 can be observed. it can.
  • the focus position is specified from the outer diameter calculation result of the fertilized egg 16, and an image is acquired.
  • the outer diameter calculation result is used.
  • the focus position may be specified by a focus adjustment mark provided in the culture vessel 1.
  • the growth curve of the fertilized egg draws almost the same curve, the change in the size of the fertilized egg due to changes over time can be assumed to some extent, so the growth curve of the fertilized egg and the outer diameter of the fertilized egg on the first day immediately after fertilization are determined. Based on this, it is possible to associate the elapsed time with the focus adjustment mark.
  • the diameter of the fertilized egg on the first day immediately after fertilization is 100 ⁇ m, and a growth curve is drawn so that the fertilized egg grows by 15 ⁇ m in one day.
  • the height c of each step of the focus adjustment step 14 in which the focus adjustment marks 141a to 141f are formed is set to 15 ⁇ m, so that the focus position on the first day is focus adjusted.
  • the focus position of the second day is set to the focus adjustment mark 141b
  • the focus position of the third day is set to the focus adjustment mark 141c
  • the focus position of the fourth day is set to the focus adjustment mark 141d. Is possible.
  • steps S201 to S207 may be provided to correct the focus position.
  • the fertilized egg 16 is regarded as a substantially spherical shape, and the focus position for imaging the fertilized egg 16 is specified from the outer diameter of the fertilized egg 16, so that the focus position can be easily adjusted. It is. In addition, a long time is not spent for focus adjustment every time an image of the fertilized egg 16 that grows every day is obtained, work efficiency is improved, and there is no variation in image quality acquired by different persons.
  • the focus position is identified from the outer diameter calculation result of the fertilized egg 16 with reference to the focus table, and this process is performed at any time to acquire an image of the fertilized egg, and the growth of the fertilized egg Was observing.
  • the second embodiment at the time of the first image acquisition, which focus adjustment mark is used as the focus position among the focus adjustment marks 141a to 141f of the culture vessel 1 is specified from the outer diameter calculation result, and thereafter Takes into account the growth curve of the fertilized egg, decides which focus adjustment mark is used at which time, acquires an image of the fertilized egg 16, and observes the growth.
  • the culture vessel 1 and the image acquisition device 2 have the same configuration as in the first embodiment, description thereof is omitted.
  • the culture vessel 1 provided with the focus adjustment marks 141a to 141f described in the first embodiment is used.
  • FIG. 6 is a diagram illustrating a configuration of the image acquisition system 5.
  • the image acquisition system 5 includes a camera 25, an information processing device 22, and a display device 23.
  • the information processing apparatus 22 includes an image acquisition unit 221, an outer diameter calculation unit 223, a focus position specification unit 424, an imaging control unit 226, a display control unit 225, and a storage unit 222.
  • the focus position specifying unit 424 specifies the focus position of the camera 25 from the calculation result of the outer diameter of the fertilized egg 16. Specifically, referring to a table in which a plurality of different focus positions of the camera 25 created in advance and the outer diameter of the fertilized egg 16 are associated, the calculation result of the outer diameter of the fertilized egg 16 and the outer diameter of the table are obtained. The focus position corresponding to the outer diameter is specified by collation. Further, the focus position specifying unit 424 specifies the focus position specified with reference to the focus table and the focus adjustment mark 141 of the culture vessel 1 corresponding to the focus position.
  • the imaging control unit 226 adjusts the focus position of the camera 25 based on the focus position information specified by the focus position specifying unit 424.
  • the fertilized eggs 16 that have been confirmed to be fertilized are individually accommodated in the recesses 15 to prepare the culture container 1 into which the culture solution and oil have been injected.
  • the culture vessel 1 is placed horizontally on the stage 27 in the culture apparatus 21.
  • the image acquisition of the fertilized egg 16 is performed in a state where the culture container 1 containing the fertilized egg 16 is held in the culture apparatus 21. Next, light is emitted from the light source 24 from the lower part of the culture vessel 1, and the focus position is determined using the autofocus function of the camera 25 in accordance with the outer diameter of the fertilized egg. Next, the fertilized egg 16 is imaged by the camera 25 located at the top of the culture vessel 1.
  • the captured image of the fertilized egg 16 is acquired by the image acquisition unit 221 as shown in FIG.
  • the outer diameter calculation unit 223 calculates the outer diameter of the fertilized egg 16 based on the image of the fertilized egg 16 acquired by the image acquisition unit 221.
  • the outer diameter calculation method is the same as the method shown in the first embodiment.
  • the focus position specifying unit 424 refers to the focus table prepared in advance, and determines the focus position of the camera 25 based on the outer diameter calculation result of the fertilized egg 16 calculated by the outer diameter calculation unit 223. Identify.
  • the focus table is obtained by associating a plurality of different focus positions with the outer diameter of the fertilized egg 16. Further, the focus position specifying unit 424 specifies the focus position specified with reference to the focus table and the focus adjustment mark 141 corresponding to the focus position.
  • the imaging control unit 226 controls the focus position of the camera 25 so that the focus position specified by the focus position specifying unit 424 is obtained.
  • the fertilized egg 16 is imaged at the specified focus position, the image acquisition unit 221 acquires the captured image, and the storage unit 222 records the acquired image.
  • the display control unit 225 causes the display device 23 to display the image acquired by the image acquisition unit 221.
  • the first image acquisition of the fertilized egg 16 is completed.
  • the focus position of the camera 25 is specified by the focus adjustment mark 141 of the culture vessel 1. That is, as described in the second embodiment, the growth curve of the fertilized egg 16 draws substantially the same curve, and therefore, a change in the size of the fertilized egg 16 due to a change with time can be assumed to some extent. Therefore, the elapsed time and each focus adjustment mark are determined based on the growth curve of the fertilized egg 16 with reference to the focus adjustment mark 141 of the culture vessel 1 corresponding to the focus position specified at the time of the first image acquisition. Can be associated. Thereby, in the second and subsequent image acquisition, there is no need to perform the outer diameter calculation step of the fertilized egg 16 and the focus position specific step based on the outer diameter calculation result.
  • the above process is performed for each fertilized egg 16. Acquisition of an image can be performed at a predetermined interval, for example, every arbitrary period such as 10 minutes or one day, or continuously, and the state of growth of the fertilized egg 16 can be observed.
  • a method for acquiring the image by determining the focus position from the outer diameter calculation result, and a method for acquiring the image using the focus adjustment marks 141a to 141f of the culture vessel 1 as the focus position, Can be combined to obtain an image.
  • an image processing method is acquired by specifying a focus position for each fertilized egg 16.
  • this embodiment is mainly different from the first embodiment in that a plurality of fertilized eggs 16 are collectively captured for each of a plurality of focus positions and an image is acquired.
  • one image suitable for outer diameter calculation is selected for each fertilized egg 16, and the outer diameter of the fertilized egg is selected from this image.
  • the focus position is specified based on the calculation result of the outer diameter.
  • all nine fertilized eggs 16 accommodated in one culture vessel 1 are collectively imaged.
  • the description is given by way of example, but the present invention is not limited to this.
  • four fertilized eggs 16 may be imaged all at once, one fertilized egg 16 may be imaged, and the number of fertilized eggs 16 entering the imaging field may be arbitrarily changed.
  • the culture vessel 1 and the image acquisition device 2 have the same configuration as in the first embodiment, description thereof is omitted. In this embodiment, it is not necessary to use the culture vessel 1 provided with the focus adjustment marks 141a to 141f described in the first embodiment, and various culture vessels can be used.
  • FIG. 13 is a diagram illustrating a configuration of the image acquisition system 6.
  • the image acquisition system 3 includes a camera 25, an information processing device 22, and a display device 23.
  • the information processing apparatus 22 includes an image acquisition unit 221, an outer diameter calculation image selection unit 227, an outer diameter calculation unit 223, a focus position specifying unit 224, an imaging control unit 226, a display control unit 225, and a storage unit. 222 is provided.
  • the image acquisition unit 221 acquires an image captured by the camera 25 from the camera 25.
  • the outer diameter calculation image selection unit 227 is suitable for outer diameter calculation for each fertilized egg 16 from an image obtained by imaging a plurality of, here nine, fertilized eggs 16 at different focus positions by the camera 25. Select an image.
  • the outer diameter calculation unit 223 calculates the outer diameter of the fertilized egg 16 based on the image selected by the outer diameter calculation image selection unit 227.
  • the focus position specifying unit 224 specifies the focus position of the camera 25 from the calculation result of the outer diameter of the fertilized egg 16. Specifically, referring to a table in which a plurality of different focus positions of the camera 25 created in advance and the outer diameter of the fertilized egg 16 are associated, the calculation result of the outer diameter of the fertilized egg 16 and the outer diameter of the table are obtained. The focus position corresponding to the outer diameter is specified by collation.
  • the imaging control unit 226 adjusts the focus position of the camera 25 based on the focus position information specified by the focus position specifying unit 224.
  • the display control unit 225 outputs an image information signal for causing the display device 23 to display the image acquired by the image acquisition unit 221 to the display device 23.
  • the storage unit 222 stores the image information acquired by the image acquisition unit 221.
  • FIG. 12 is a flowchart of a method for acquiring an image for selecting an image for outer diameter calculation.
  • the case of using the culture container 1 provided with the focus adjustment marks 141a to 141f is taken as an example.
  • the image acquisition method of the present embodiment is performed using a culture container without the focus adjustment marks. It is also possible to acquire an image.
  • the fertilized eggs 16 that have been confirmed to be fertilized are individually accommodated in the recesses 15 to prepare the culture container 1 into which the culture solution and oil have been injected.
  • the culture vessel 1 is placed horizontally on the stage 27 in the culture apparatus 21.
  • the image acquisition of the fertilized egg 16 is performed in a state where the culture container 1 containing the fertilized egg 16 is held in the culture apparatus 21.
  • light is emitted from the light source 24 from the lower part of the culture vessel 1 and focused at one focus position among a plurality of different focus positions on the focus table (S301), and the nine fertilized eggs 16 are batch-cameraed.
  • the image is picked up by 25 (S302).
  • the captured image is recorded in the storage unit 222 (S303).
  • the focus table is obtained by associating a plurality of different predetermined focus positions with the outer diameter of the fertilized egg 16.
  • the process returns to S301 to focus at a focus position where imaging has not been completed (S301).
  • the fertilized eggs 16 are collectively imaged by the camera 25 (S302).
  • the captured image is recorded in the storage unit 222 (S303). S301 to S303 are repeated until imaging of all the focus positions in the focus table is completed.
  • the storage unit 222 may selectively record, for example, a trimmed image, an outer diameter calculation, and an optimum focus value among the captured images of each fertilized egg 16.
  • the outer diameter calculation image selection unit 227 selects one image suitable for outer diameter calculation from the obtained six images for each fertilized egg 16.
  • a selection method for example, the one having the sharpest contour edge is selected.
  • the contour portion of the fertilized egg is detected in each of the six images, and it is determined that the sharpest edge of the contour portion is in focus and is selected.
  • the outer diameter calculation unit 223 calculates the outer diameter of the fertilized egg 16 based on the selected image of the fertilized egg 16 (S103).
  • the outer diameter calculation method is the same as the method shown in the first embodiment.
  • the focus position specifying unit 224 specifies the focus position of the camera 25 based on the outer diameter calculation result of the fertilized egg 16 calculated by the outer diameter calculating unit 223 with reference to a previously created focus table. (S104).
  • the focus table is obtained by associating a plurality of different focus positions of the camera 25 with the outer diameter of the fertilized egg 16.
  • the imaging control unit 226 controls the focus position of the camera 25 so as to be the focus position specified by the focus position specifying unit 224 (S105).
  • the fertilized egg 16 is imaged at the specified focus position (S106)
  • the image acquisition unit 221 acquires the captured image
  • the storage unit 222 records the acquired image (S107).
  • the display control unit 225 causes the display device 23 to display the image acquired by the image acquisition unit 221.
  • steps S103 to S107 are performed for each fertilized egg 16, the fertilized egg 16 is imaged at the specified focus position, and images of all fertilized eggs 16 are acquired.
  • Step S301 to S304 one image suitable for outer diameter calculation from the obtained six images is 1 Step S103 to S107 are performed, and an image of the fertilized egg 16 is acquired. Thereby, the state of growth of the fertilized egg 16 can be observed.
  • imaging at the focus position corresponding to the slowest growth of the fertilized egg that is, the outer diameter smaller than the fertilized egg having the smaller outer diameter
  • imaging at the focus position corresponding to the slowest growth of the fertilized egg that is, the outer diameter smaller than the fertilized egg having the smaller outer diameter
  • unnecessary imaging can be reduced and damage to the fertilized egg due to light irradiation during imaging can be reduced.
  • the outer diameter calculation image selection unit 227 selects one image having the sharpest edge as an image suitable for outer diameter calculation, and calculates the outer diameter based on the image selected by the outer diameter calculation unit 223.
  • the outer diameter calculation image selection unit 227 selects one image having the sharpest edge as an image suitable for outer diameter calculation, and calculates the outer diameter based on the image selected by the outer diameter calculation unit 223.
  • it is not limited to this.
  • the outer diameters are calculated based on these images, respectively.
  • the calculation result may be averaged and used as an outer diameter for specifying the focus position.
  • the difference of an image is calculated by the adjacent pairs (5 pairs) of six images obtained for each fertilized egg 16, and the luminance difference image having the largest luminance difference in the outer peripheral portion of the fertilized egg 16 of the difference image.
  • the outer diameter may be calculated by using the contour size of the fertilized egg extracted from as the diameter of the fertilized egg 16.
  • an image difference is calculated between adjacent pairs (5 pairs) of six images obtained for each fertilized egg 16, and the contour size of the fertilized egg 16 obtained from the difference image is the smallest image. May be the diameter of the fertilized egg. This is because the size of the fertilized egg appears to be larger when the focus is out of focus. Therefore, if the smallest image is selected, it is considered that the fertilized egg matches the size of the fertilized egg.
  • FIG. 13 is a diagram illustrating a configuration of the image acquisition system 7.
  • the image acquisition system 3 includes a camera 25, an information processing device 22, and a display device 23.
  • the information processing apparatus 22 includes an image acquisition unit 221, an outer diameter calculation image selection unit 227, an outer diameter calculation unit 223, a focus position specifying unit 324, an imaging control unit 226, a display control unit 225, and a storage unit. 222 is provided.
  • the image acquisition unit 221 acquires an image captured by the camera 25 from the camera 25.
  • the outer diameter calculation image selection unit 227 calculates the outer diameter for each fertilized egg 16 from a plurality of, here nine, images of the fertilized eggs 16 at different focus positions captured by the camera 25. Select a suitable image.
  • the outer diameter calculation unit 223 calculates the outer diameter of the fertilized egg 16 based on the image selected by the outer diameter calculation image selection unit 227.
  • the focus position specifying unit 324 obtains the radius of the fertilized egg 16 from the outer diameter calculation result of the fertilized egg 16. Then, in the drawing, the step located at the height moved by the radius along the Z-axis direction from the reference position 10 of the culture vessel 1 or the closest height of the steps 14 for focus adjustment. One is selected and the focus adjustment mark attached to the step is specified as the focus position.
  • the imaging control unit 226 adjusts the focus position of the camera 25 based on the focus position information specified by the focus position specifying unit 324.
  • the display control unit 225 outputs an image information signal for causing the display device 23 to display the image acquired by the image acquisition unit 221 to the display device 23.
  • the storage unit 222 stores the image information acquired by the image acquisition unit 221.
  • FIG. 14 is a flowchart of a method for acquiring an image for selecting an image for outer diameter calculation.
  • the fertilized eggs 16 that have been confirmed to be fertilized are individually accommodated in the recesses 15 to prepare the culture container 1 into which the culture solution and oil have been injected.
  • the image acquisition of the fertilized egg 16 is performed in a state where the culture container 1 containing the fertilized egg 16 is held in the culture apparatus 21. Next, light is emitted from the light source 24 from the lower part of the culture vessel 1, and one of the focus adjustment marks 141 formed on the culture vessel 1, for example, the focus adjustment mark 141a is focused as a focus position (S401). )
  • Nine fertilized eggs 16 are collectively imaged by the camera 25 (S402).
  • the captured image is recorded in the storage unit 222 (S403).
  • the process returns to S401 to focus on the focus adjustment mark 141b that has not been imaged as a focus position (S401).
  • the nine fertilized eggs 16 are collectively imaged by the camera 25 (S402).
  • the captured image is recorded in the storage unit 222 (S403).
  • S401 to S403 are repeated until imaging of all the focus adjustment marks 141a to 141f is completed.
  • the storage unit 222 may selectively record, for example, a trimmed image, an outer diameter calculation, and an optimum focus value among the captured images of each fertilized egg 16.
  • the outer diameter calculation image selection unit 227 selects one image suitable for outer diameter calculation from the obtained six images for each fertilized egg 16.
  • the same method as in the fourth embodiment can be used.
  • the outer diameter calculation unit 223 calculates the outer diameter of the fertilized egg 16 based on the selected image of the fertilized egg 16 (S203).
  • the outer diameter calculation method is the same as the method shown in the first embodiment.
  • the focus position specifying unit 324 obtains the radius of the fertilized egg 16 from the outer diameter calculation result of the fertilized egg 16. Then, in the drawing, the step located at the height moved by the radius along the Z-axis direction from the reference position 10 of the culture vessel 1 or the closest height of the steps 14 for focus adjustment. One is selected, and the focus adjustment mark 141 attached to the step is specified as the focus position (S204).
  • the imaging control unit 226 controls the focus position of the camera 25 so as to be the focus position specified by the focus position specifying unit 324 (S205).
  • the fertilized egg 16 is imaged at the specified focus position (S206)
  • the image acquisition unit 221 acquires the captured image
  • the storage unit 222 records the acquired image (S207).
  • the display control unit 225 causes the display device 23 to display the image acquired by the image acquisition unit 221.
  • steps S203 to S207 are performed for each fertilized egg 16, the fertilized egg 16 is imaged at the specified focus position, and images of all fertilized eggs 16 are acquired.
  • one image suitable for outer diameter calculation is obtained from the obtained six images at any time, for example, at predetermined intervals such as 10 minutes or 1 day, or continuously, in steps S401 to S404 described above.
  • the process of selecting, the process of S203 to S207 is performed, and the image of the fertilized egg 16 is acquired. Thereby, the state of growth of the fertilized egg 16 can be observed.
  • FIG. 15 is a flowchart of a method for acquiring an image for selecting an image for outer diameter calculation including a calibration step.
  • a description will be given according to the flowchart of FIG.
  • the fertilized eggs 16 that have been confirmed to be fertilized are individually accommodated in the recesses 15 to prepare the culture container 1 into which the culture solution and oil have been injected.
  • the light from the light source 24 is irradiated from the lower part of the culture vessel 1 to focus at one focus position among a plurality of different focus positions on the focus table (S502), and the nine fertilized eggs 16 are collectively collected.
  • An image is taken by the camera 25 (S503).
  • the captured image is recorded in the storage unit 222 (S504).
  • the focus table is obtained by associating a plurality of different predetermined focus positions with the outer diameter of the fertilized egg 16.
  • the outer diameter calculation image selection unit 227 selects one image suitable for outer diameter calculation from the obtained six images for each fertilized egg 16.
  • the selection method is the same as in the fourth embodiment.
  • the outer diameter calculation unit 223 calculates the outer diameter of the fertilized egg 16 based on the selected image of the fertilized egg 16.
  • the outer diameter calculation method is the same as the method shown in the first embodiment.
  • the focus position specifying unit 224 refers to a focus table prepared in advance, and takes into account the calibration result recorded in the storage unit 222, so that the fertilized egg 16 calculated by the outer diameter calculation unit 223 is obtained.
  • the focus position of the camera 25 is specified based on the outer diameter calculation result.
  • the focus table is obtained by associating a plurality of different focus positions of the camera 25 with the outer diameter of the fertilized egg 16.
  • the imaging control unit 226 controls the focus position of the camera 25 so that the focus position specified by the focus position specifying unit 224 is obtained.
  • the fertilized egg 16 is imaged at the specified focus position, the image acquisition unit 221 acquires the captured image, and the storage unit 222 records the acquired image.
  • the display control unit 225 causes the display device 23 to display the image acquired by the image acquisition unit 221.
  • the focus adjustment step 14 of the culture vessel 1 can be used for calibration, and the focus adjustment accuracy is improved.
  • the embryo cultivator may periodically take out the culture vessel 1 from the culture apparatus 21 and perform microscopic observation.
  • the culture vessel 1 is returned to the culture apparatus 21 after removal, calibration is performed again using the focus adjustment step 14 of the culture vessel 1, thereby reducing the focus shift caused by the re-installation.
  • the image acquisition device 2 for observing a fertilized egg has the culture container 1 and the camera 25 installed in the culture device 21 and the information processing device 22 installed outside the culture device 21. It is not limited to.
  • the culture vessel 1, the camera 323, and the information processing device 322 may be installed in the culture device 31.
  • FIG. 16 shows a configuration of an image acquisition device 8 according to the seventh embodiment.
  • the image acquisition device 8 includes a culture device 31, a camera / information processing device integrated unit 32, and a temperature / humidity control unit 36.
  • the image acquisition device 8 can be connected to the cloud server 37 via a network.
  • the portable terminal 38 and the personal computer 39 can be connected to the cloud server 37 via a network.
  • the culture apparatus 31 is a chamber that accommodates the culture container 1 in which the fertilized egg 16 is accommodated and cultures the fertilized egg 16.
  • the culture container 1 is held horizontally in the culture apparatus 31.
  • the camera / information processing device unit 32 is installed in the culture device 31.
  • the camera / information processing unit 32 includes a camera 323 serving as an imaging unit, a light source 321, an information processing device 322, and a communication unit 325.
  • the light source 321 for irradiating the fertilized egg 16 is arranged at the upper part, not the lower part of the culture apparatus 1.
  • the light source 321 emits light that irradiates the culture container 1 when the fertilized egg 16 in the culture container 1 is imaged by the camera 323.
  • the camera 323 images the fertilized egg 16 in the culture vessel 1.
  • the camera 323 is movable in the Z-axis direction in the drawing, that is, in the focus depth direction, and is fixed so as not to move in the horizontal plane direction.
  • the information processing device 322 calculates the outer diameter of the fertilized egg 16 from the image information acquired by the camera 323, and specifies the focus position of the camera 323 suitable for acquiring the image of the fertilized egg 16 from the calculation result. Further, the information processing device 322 outputs the image data of the fertilized egg 16 to the cloud server 37 via the communication unit 325 and the network.
  • the temperature / humidity control unit 36 controls the temperature / humidity in the culturing apparatus 31 and creates an environment suitable for culturing the fertilized egg 16.
  • the temperature / humidity control unit 36 is installed in the culture apparatus 31.
  • the communication unit 325 receives the image data signal of the fertilized egg 16 stored in the information processing device 322, and outputs it to the cloud server 37 via the network.
  • the cloud server 37 stores image data of the fertilized egg 16.
  • the personal computer 39 and the portable terminal 38 including the display unit 39a and the information processing unit 39b receive and display the image data of the fertilized egg 16 from the cloud server 37 via the network by the operation of the user who operates them.
  • FIG. 17 is a flowchart showing a first image acquisition method according to the eighth embodiment. This will be described with reference to the flowchart of FIG.
  • the culture vessel 1 containing the fertilized egg 16 is placed on the stage 27 in the culture apparatus 21.
  • the focus position is set to an approximate focus position using the focus adjustment marks 141a to 141f. Then you can make adjustments.
  • the center position of the fertilized egg is near the position moved 50 ⁇ m upward along the Z-axis direction from the reference position 10, that is, the focus adjustment mark 141a. It is assumed that it is near the position. Accordingly, the focus position can be adjusted after the approximate focus position is determined using the focus adjustment mark 141a while viewing the image.
  • the fertilized egg 16 is imaged by the camera 25 located at the top of the culture vessel 1 (S602).
  • the captured image of the fertilized egg 16 is acquired by the image acquisition unit 221.
  • the outer diameter calculation unit 223 calculates the outer diameter of the fertilized egg 16 based on the image of the fertilized egg 16 acquired by the image acquisition unit 221 (S603).
  • the outer diameter calculation method is the same as the method shown in the first embodiment.
  • the focus position specifying unit 224 specifies the focus position of the camera 25 from the outer diameter calculation result of the fertilized egg 16 calculated by the outer diameter calculating unit 223 with reference to a focus table prepared in advance ( S604).
  • the focus table is obtained by associating a plurality of different focus positions of the camera 25 with the outer diameter of the fertilized egg 16.
  • the imaging control unit 226 outputs a focus position information signal to the camera position control unit 251 so that the focus position of the camera 25 becomes the focus position specified by the focus position specifying unit 224 (S605).
  • the camera position control unit 251 adjusts the focus position by moving the lens position or the stage of the camera based on the focus position information signal from the imaging control unit 226 (S606).
  • the fertilized egg 16 is imaged at the specified focus position (S607), the image acquisition unit 221 acquires the captured image, and the storage unit 222 records the acquired image (S608).
  • the display control unit 225 causes the display device 23 to display the image acquired by the image acquisition unit 221.
  • the image of the fertilized egg 16 acquired in S607 is obtained by taking the center of the fertilized egg 16 as a focus position.
  • steps S601 to S608 are performed for each fertilized egg 16, and the first image of each fertilized egg 16 is acquired.
  • the second and subsequent images are acquired by performing the steps S101 to S108 shown in FIG. 7 at an arbitrary time, for example, at predetermined intervals such as every 10 minutes or every other day, or continuously. Thereby, the state of growth of the fertilized egg 16 can be observed. Moreover, you may acquire an image in real time as needed, and you may make it display the state of a fertilized egg on the display apparatus 23, and may observe it at any time.
  • the focus position can be set by the observer only at the first (first) image acquisition.
  • a focus position is set by an observer only at the time of the first image acquisition, and image acquisition after the 2nd time is a figure. You may perform through the process shown in 11. FIG. In this case, at the time of the first image acquisition, after the focus position is set by the observer, steps S202 to S207 shown in FIG. 11 are performed.
  • this technique can also take the following structures. (1) An image of the cell in a culture container having a recess containing cells is acquired by an imaging unit, Calculate the outer diameter of the cell from the image acquired by the imaging unit, Referring to a previously prepared table in which a plurality of different focus positions of the imaging unit are associated with the outer diameter of the cell, the focus position of the imaging unit is specified from the calculation result of the outer diameter Method.
  • An image acquisition method for specifying a focus position of an imaging unit and acquiring an image of the cell by the imaging unit at the specified focus position (4) The image acquisition method according to (1) or (2) above,
  • the culture container has a plurality of focus adjustments that are arranged outside the recesses at positions higher than the lowest position of the recesses and lower than the highest position of the recesses so that their heights are different from each other. It also has a mark for After specifying the focus position by referring to the table, the focus position of the imaging unit is specified using the focus adjustment mark at any time, and the cell image is detected by the imaging unit at the specified focus position. Get image acquisition method.
  • the culture container has a plurality of focus adjustments that are arranged outside the recesses at positions higher than the lowest position of the recesses and lower than the highest position of the recesses so that their heights are different from each other. It also has a mark for Prior to acquisition of the cell image, the imaging unit is calibrated with reference to the focus adjustment mark of the culture vessel, The image acquisition method is performed in which the focus position of the imaging unit is specified in consideration of the calibration result.
  • the culture vessel has a plurality of the recesses for individually storing a plurality of the cells
  • Acquisition of the image of the cell by the imaging unit is performed by collectively imaging the plurality of cells for each of a plurality of different focus positions in the table, From the image results obtained for each of a plurality of different focus positions, select one image for outer diameter calculation for each cell, The outer diameter of the cell is calculated from an image selected for the outer diameter calculation.
  • (7) Arranged so that the heights of the recesses in which the cells are stored and the recesses are higher than the lowest position of the recesses and lower than the highest position of the recesses.
  • An image of the cell in the culture vessel having a plurality of focus adjustment marks is obtained by the imaging unit, Calculate the outer diameter of the cell from the image acquired by the imaging unit, Based on the outer diameter calculation result, one focus adjustment mark is selected from the plurality of focus adjustment marks, An image acquisition method of acquiring an image of the cell by the imaging unit with the focus adjustment mark as a focus position.
  • the image acquisition method according to (7) above For each arbitrary period, calculate the outer diameter of the cell from the image obtained by the imaging unit, identify one focus adjustment mark from the plurality of focus adjustment marks based on the calculation result of the outer diameter, An image acquisition method using the focus adjustment mark as a focus position.
  • the culture vessel has a plurality of the recesses for individually storing a plurality of the cells, Acquisition of the image of the cell by the imaging unit is performed by collectively imaging the plurality of cells for each focus adjustment mark, From the image results acquired for each focus adjustment mark, select one image for outer diameter calculation for each cell, The outer diameter of the cell is calculated from an image selected for the outer diameter calculation.
  • an imaging unit that images the cells in the culture container having a recess in which the cells are accommodated;
  • a calculation unit that calculates the outer diameter of the cell from the image acquired by the imaging unit;
  • a specific unit that specifies a focus position of the imaging unit from a calculation result of the outer diameter with reference to a table in which the focus position of the imaging unit and the outer diameter of the cell are associated with each other.
  • Image acquisition device Arranged so that the heights of the recesses containing the cells are different from the recesses at positions higher than the lowest position of the recesses and lower than the highest position of the recesses.
  • An imaging unit that images the cells in the culture vessel having a plurality of focus adjustment marks, A calculation unit that calculates the outer diameter of the cell from the image acquired by the imaging unit;
  • An image acquisition apparatus comprising: a specifying unit that specifies one focus adjustment mark from the plurality of focus adjustment marks based on the outer diameter calculation result. (12) The image acquisition device according to (10) or (11) above, An image acquisition device further comprising a culture device for accommodating the culture vessel.
  • An image acquisition unit that acquires an image of the cell in the culture container having a recess in which the cell is captured, which is captured by the imaging unit; Based on the acquired cell image, a calculation unit for calculating the outer diameter of the cell; A program for causing an information processing device to function as a specifying unit that specifies a focus position of the imaging unit based on the calculation result,
  • the specifying unit refers to a table in which different focus positions of the imaging unit and the outer diameter of the cell are associated with each other, based on a calculation result of the outer diameter by the calculation unit.
  • a program that identifies the focus position.
  • a program for causing an information processing device to function as a specifying unit that specifies a focus position of the imaging unit based on the calculation result, The specifying unit specifies one focus adjustment mark from the plurality of focus adjustment marks based on a calculation result of the outer diameter by the calculation unit.
  • a recess group consisting of a plurality of recesses in which a plurality of cells are individually accommodated; Outside the recess group, a plurality of focus adjustment marks disposed at positions higher than the lowest position of the recess and lower than the highest position of the recess so that their heights are different from each other.
  • a culture container having.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Image Processing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

【課題】細胞の経時変化による大きさの変化を適切な焦点位置で撮像し画像を取得するのに適した画像取得装置、画像取得方法、プログラム及び培養容器を提供する。 【解決手段】画像取得方法は、細胞が収容された凹部を有する培養容器内の前記細胞の画像を撮像部により取得し、前記撮像部によって取得した画像から前記細胞の外径を算出し、予め作成された前記撮像部の互いに異なる複数のフォーカス位置と前記細胞の外径とが対応づけられたテーブルを参照して、前記外径の算出結果から前記撮像部のフォーカス位置を特定する。

Description

画像取得方法、画像取得装置、プログラム及び培養容器
 本技術は、培養細胞を撮影して画像を取得するのに用いられる画像取得装置、画像取得方法、プログラム及び培養容器に関する。
 近年、不妊治療や家畜の繁殖等の細胞培養分野において研究が行われている。
 例えば体外受精による受精卵の成長を観察する場合、複数の受精卵を個々に保持する複数の凹部からなるウェルを備えた培養容器に受精卵を収容し、これをインキュベータ内で成長させて観察する。受精卵の成長の経時変化を観察する際、受精卵をカメラにより撮像して画像を取得する(例えば、特許文献1参照)。
特開2016-96747号公報
 受精卵は9日程度で約100μmから約250μmまで大きく成長するため、日々成長していく受精卵を撮像するのにカメラのフォーカス位置を合わせるのは手間がかかり難しい。例えば観察撮影画像の輝度や光位相等でフォーカスを合わせるオートフォーカス機能もあるが、受精卵の場合、その直径が100μm程と大きいため、オートフォーカス機能がうまく動作しない。
 以上のような事情に鑑み、本技術の目的は、細胞の経時変化による大きさの変化を適切な焦点位置で撮像し画像を取得するのに適した画像取得装置、画像取得方法、プログラム及び培養容器を提供することにある。
 本技術の一実施形態に係る画像取得方法は、
 細胞が収容された凹部を有する培養容器内の前記細胞の画像を撮像部により取得し、
 前記撮像部によって取得した画像から前記細胞の外径を算出し、
 予め作成された前記撮像部の互いに異なる複数のフォーカス位置と前記細胞の外径とが対応づけられたテーブルを参照して、前記外径の算出結果から前記撮像部のフォーカス位置を特定する。
 本形態によれば、細胞の外径からフォーカス位置を特定するので、容易にそのフォーカス位置で撮像部により細胞の画像を取得することができる。すなわち、細胞、例えば受精卵を略真球形とみなすことにより略真円形の細胞の二次元画像から外径を求めることによって略真球形の細胞の中心位置を決定し、この細胞の中心位置を画像取得時のフォーカス位置とする。そして異なる複数のフォーカス位置、換言すると、フォーカス深度方向が異なる複数のフォーカス位置と細胞の外径とを対応づけしたテーブルを予め作成しておくことにより、このテーブルを参照して、算出された細胞の外径からフォーカス位置を特定することができる。
 前記撮像部による前記細胞の画像の取得は、前記培養容器を水平面に配置して上部から行ない、前記フォーカス位置は、前記凹部の最も低い位置を基準位置とし、前記水平面に対し垂直な方向に、前記基準位置から前記算出された前記細胞の外径から求められる半径と同じ長さ分、上方向に移動した位置にある。
 このように、細胞を略真球形とみなし、上部からみた略真円形の細胞の外径から細胞の半径を求めることができる。そして、基準位置から、この半径と同じ長さ分上方向に移動した位置をフォーカス位置とすることにより、略真球形の細胞の中心にフォーカス位置が位置するように設定することができる。
 任意の時期毎に、前記撮像部により前記細胞の画像を取得し、前記撮像部によって取得された画像から前記細胞の外径を算出し、前記テーブルを参照して前記外径の算出結果から前記撮像部のフォーカス位置を特定し、前記特定されたフォーカス位置で前記撮像部により前記細胞の画像を取得する。
 このように、例えば5分間隔や1日間隔といった任意の時期毎に、細胞の外径算出結果を基に撮像部のフォーカス位置を特定して、その特定されたフォーカス位置で細胞の画像を取得することにより、そのときそのときの細胞の大きさに適したフォーカス位置で細胞を撮像することができ、細胞の成長の様子を鮮明な画像として取得できる。
 前記培養容器は、前記凹部の外に、前記凹部の最も低い位置よりも高く、かつ、前記凹部の最も高い位置よりも低い位置に、互いの高さが異なるように配置された複数のフォーカス調整用マークを更に有し、
 前記テーブルの参照によるフォーカス位置特定後は、任意の時期毎に、前記フォーカス調整用マークを用いて前記撮像部のフォーカス位置を特定し、前記特定されたフォーカス位置で前記撮像部により前記細胞の画像を取得する。
 このように、1回目の細胞の画像取得時のフォーカス位置の特定をテーブルの参照により行い、それ以降の画像取得時のフォーカス位置の特定は、培養容器に設けられたフォーカス調整用マークを利用して行ってもよい。細胞の成長曲線はほぼ同じ曲線を描くため、経時変化による細胞の大きさの変化はある程度想定できるので、細胞の成長曲線を基に経過時間とフォーカス調整用マークとを対応づけさせることができる。したがって、1回目の細胞の画像取得時でテーブル参照によりフォーカス位置を特定し、その後は、フォーカス調整用マークを用いてフォーカス位置を特定することができる。この場合、テーブルを用いた画像取得の際に細胞の外径算出工程を行うが、フォーカス調整用マークを用いた画像取得の際は細胞の外径算出工程を行わなくてもよく、培養容器内の細胞の成長の観察中、外径算出工程は最低1度だけ行えばよい。尚、フォーカス調整用マークを用いた画像取得の際、画像取得の度に毎回細胞の外径算出工程を行ってもよいし、画像取得の度に毎回行わず、任意の時に行ってもよい。
 前記細胞の画像の取得よりも前に、前記培養容器の前記フォーカス調整用マークを基準として前記撮像部をキャリブレーションし、
 前記撮像部のフォーカス位置の特定は、前記キャリブレーション結果を加味して行われる。
 このように、培養容器のフォーカス調整用マークを用いてキャリブレーションすることにより、フォーカス調整の精度が向上する。
 前記培養容器は複数の前記細胞を個々に収容する複数の前記凹部を有し、
 前記撮像部による前記細胞の画像の取得は、前記テーブルにある互いに異なる複数のフォーカス位置毎に前記複数の細胞を一括して撮像して行い、
 前記互いに異なる複数のフォーカス位置毎に取得された画像結果から、前記細胞毎に前記外径算出用の画像を1つ選択し、
 前記細胞の外径の算出は、前記外径算出用に選択した画像から算出する。
 このように、複数のフォーカス位置毎に複数の細胞を一括撮像して画像を取得したのち、これらの画像から、細胞毎に外径算出用の画像を1つ選択してもよい。
 本技術の他の実施形態に係る画像取得方法は、
 細胞が収容された凹部と、前記凹部の外に、前記凹部の最も低い位置よりも高く、かつ、前記凹部の最も高い位置よりも低い位置に、互いの高さが異なるように配置された複数のフォーカス調整用マークとを有する培養容器内の前記細胞の画像を撮像部により取得し、
 前記撮像部によって取得した画像から前記細胞の外径を算出し、
 前記外径算出結果を基に前記複数のフォーカス調整用マークから1のフォーカス調整用マークを選択し、
 前記フォーカス調整用マークをフォーカス位置として前記撮像部により前記細胞の画像を取得する。
 本形態によれば、細胞の外径からフォーカス位置を特定するので、容易にそのフォーカス位置で撮像部により細胞の画像を取得することができる。すなわち、細胞を略真球形とみなすことにより略真円形の細胞の二次元画像から外径を求めることによって略真球形の細胞の中心位置を決定し、この細胞の中心位置を画像取得時のフォーカス位置とする。細胞の成長曲線はほぼ同じ曲線を描くため、経時変化による細胞の大きさの変化はある程度想定できるので、細胞の成長曲線を基に経過時間とフォーカス調整用マークとを対応づけさせることができる。したがって、培養容器に設けたフォーカス調整用マークを用いて、算出された細胞の外径からフォーカス位置を特定することができる。
 任意の時期毎に、前記撮像部により得られる画像から前記細胞の外径を算出し、前記外径の算出結果を基に前記複数のフォーカス調整用マークから1のフォーカス調整用マークを特定し、前記フォーカス調整用マークをフォーカス位置とする。
 このように、例えば5分間隔や1日間隔といった任意の時期毎に、細胞の外径算出結果を基に撮像部のフォーカス位置を特定して、その特定されたフォーカス位置で細胞の画像を取得することにより、そのときそのときの細胞の大きさに適したフォーカス位置で細胞を撮像することができ、容易に細胞の成長の様子を鮮明な画像として取得できる。
 ここで、任意の時期毎は連続的な場合も含み、例えば、ビデオカメラで細胞を連続的に撮影しながら、撮影画像を基にした外径算出、外径算出結果を基にしたフォーカス位置の特定、特定されたフォーカス位置での画像取得を連続して繰り返すこともできる。
 前記培養容器は複数の前記細胞を個々に収容する複数の前記凹部を有し、
 前記撮像部による前記細胞の画像の取得は、前記フォーカス調整用マーク毎に前記複数の細胞を一括して撮像して行い、
 前記フォーカス調整用マーク毎に取得された画像結果から、前記細胞毎に前記外径算出用の画像を1つ選択し、
 前記細胞の外径の算出は、前記外径算出用に選択した画像から算出する
 画像取得方法。
 このように、複数のフォーカス調整用マーク毎に複数の細胞を一括撮像して画像を取得したのち、これらの画像から、細胞毎に外径算出用の画像を1つ選択してもよい。
 本技術の一実施形態に係る画像取得装置は、
 細胞が収容された凹部を有する培養容器内の前記細胞を撮像する撮像部と、
 前記撮像部によって取得された画像から前記細胞の外径を算出する算出部と、
 予め作成された前記撮像部のフォーカス位置と前記細胞の外径とが対応づけられたテーブルを参照して、前記外径の算出結果から前記撮像部のフォーカス位置を特定する特定部と
 を具備する。
 本形態によれば、細胞の外径からフォーカス位置を特定するので、容易にそのフォーカス位置で撮像部により細胞の画像を取得することができる。
 本技術の他の実施形態に係る画像取得装置は、
 細胞が収容された凹部と、前記凹部の外に、前記凹部の最も低い位置よりも高く、かつ、前記凹部の最も高い位置よりも低い位置に、互いの高さが異なるように配置された複数のフォーカス調整用マークとを有する培養容器内の前記細胞を撮像する撮像部と、
 前記撮像部によって取得された画像から前記細胞の外径を算出する算出部と、
 前記外径算出結果を基に前記複数のフォーカス調整用マークから1のフォーカス調整用マークを特定する特定部と
 を具備する。
 本形態によれば、細胞の外径からフォーカス位置を特定するので、容易にそのフォーカス位置で撮像部により細胞の画像を取得することができる。
 前記培養容器を収容する培養装置を更に具備する。
 これにより、培養装置内で培養容器内の細胞の経時変化による大きさの変化を観察することができる。
 本技術の一実施形態に係るプログラムは、
 撮像部により撮像された、細胞が収容された凹部を有する培養容器内の前記細胞の画像を取得する画像取得部と、
 前記取得した細胞の画像に基づき、前記細胞の外径を算出する算出部と、
 前記算出結果に基づき、前記撮像部のフォーカス位置を特定する特定部
 として情報処理装置を機能させるプログラムであって、
 前記特定部は、予め作成された前記撮像部の互いに異なるフォーカス位置と前記細胞の外径とが対応づけられたテーブルを参照して、前記算出部による前記外径の算出結果から前記撮像部のフォーカス位置を特定する。
 本技術の他の実施形態に係るプログラムは、
 撮像部により撮像された、細胞が収容された凹部と、前記凹部の外に、前記凹部の最も低い位置よりも高く、かつ、前記凹部の最も高い位置よりも低い位置に、互いの高さが異なるように配置された複数のフォーカス調整用マークとを有する培養容器内の前記細胞の画像を取得する画像取得部と、
 前記取得した細胞の画像に基づき、前記細胞の外径を算出する算出部と、
 前記算出結果に基づき、前記撮像部のフォーカス位置を特定する特定部
 として情報処理装置を機能させるプログラムであって、
 前記特定部は、前記算出部による前記外径の算出結果を基に前記複数のフォーカス調整用マークから1のフォーカス調整用マークを特定する。
 本技術の一実施形態に係る培養容器は、
 複数の細胞が個々に収容される複数の凹部からなる凹部群と、
 前記凹部群の外に、前記凹部の最も低い位置よりも高く、かつ、前記凹部の最も高い位置よりも低い位置に、互いの高さが異なるように配置された複数のフォーカス調整用マークと
 を有する。
 本形態によれば、培養容器内の細胞の画像取得の際に、撮像部のフォーカス位置をフォーカス調整用マークを用いて特定することができる。
 以上のように、本技術によれば、細胞の画像取得する技術において、細胞の成長に合わせて容易にフォーカス位置を特定することができる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
第1の実施形態に係る培養容器の平面図である。 図1に示す培養容器の断面図である。 図2に示す培養容器の一点鎖線で囲まれた領域Aの拡大図である。 図1に示す培養容器の中央部分の拡大図である。 第1の実施形態に係る画像取得装置の構成を示す図である。 第1及び第2の実施形態に係る画像取得装置の画像取得システムを示すブロック図である。 第1の実施形態に係る画像取得方法のフローチャートである。 第1の実施形態に係る外径算出方法のフローチャートである。 第1の実施形態に係る外径算出方法を説明するための図である。 第1の実施形態に係る外径算出方法を説明するための図である。 第2の実施形態に係る画像取得方法のフローチャートである。 第4の実施形態に係る外径算出用画像を選択するための画像を取得する方法の示すフローチャートである。 第4及び第5の実施形態に係る画像取得装置の画像取得システムを示すブロック図である。 第5の実施形態に係る外径算出用画像を選択するための画像を取得する方法を示すフローチャートである。 第6の実施形態に係るキャリブレーション工程を含む外径算出用の画像を選択するための画像を取得する方法のフローチャートである。 第7の実施形態に係る画像取得装置の構成を示す図である。 第8の実施形態に係る1回目の画像取得方法のフローチャートである。
 以下、本技術に係る実施形態を、図面を参照しながら説明する。
 (第1の実施形態)
 〈培養容器の構成〉
 図1は培養容器(ディッシュ)の平面図、図2は培養容器の断面図である。図3は培養容器の部分拡大図であり、図2の一点鎖線Aで囲まれた領域の拡大図である。図4は培養容器の中央部分の拡大図である。
 図1~図4において、培養容器1を水平面に載置したときの培養容器1の深さ方向をZ軸、水平面をXY平面として、XYZ軸座標を図示しており、後述する図5及び図16に図示されるXYZ軸座標も同様である。
 本明細書において、「細胞」は、単一の細胞と、複数の細胞の集合体とを少なくとも概念的に含む。「細胞」は、一例として、何れも立体的な(3次元的な)形状を有する、生物の未受精の卵細胞(卵子)、受精卵、胚を少なくとも含む。本実施形態及び後述する実施形態においては、培養容器1に収容される細胞として受精卵を例にあげて以下説明する。
 図1及び図2に示すように、培養容器1は、底部19と、外壁11と、内壁12と、凹部(ウェル)15と、細胞配置用凸部13とを有する。
 培養容器1には、例えば金属、ガラス、シリコン等の無機材料や、ポリスチレン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ABS樹脂、ナイロン、アクリル樹脂、フッ素樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、メチルペンテン樹脂、フェノール樹脂、メラミン樹脂、エポキシ樹脂、塩化ビニル樹脂等の有機材料を用いて形成することができる。本実施形態においては、ポリスチレン樹脂からなる透明の培養容器1を用いている。
 平面形状(XY平面形状)が円形の培養容器1の直径は約38mm、内壁12で囲まれた平面形状が円形の領域の直径は約8mm、平面が矩形の細胞配置用凸部13は約3mm×約3mmの大きさを有している。本実施形態では、形状の説明をわかりやすくするため、便宜上、実際の寸法と縮尺を異ならせて図示している。
 凹部15は複数設けられており、各凹部15は、1個の細胞、ここでは受精卵16を収容しつつ一定の位置に留めることが可能である。また、各凹部15には、受精卵16以外に液体が収容される。「液体」は、典型的には、細胞を培養するのに適した培養液であり、以下、培養液として説明する。図2に示すように、凹部15内及び内壁12に囲まれた領域には、受精卵16を培養するための培養液18が注入されている。更に、この培養液18の蒸発を防止するために、内壁12に囲まれた領域には、培養液18を覆うようにオイル17が注入されている。
 底部19は平面形状が円形を有している。外壁11と内壁12は同心円状に形成されている。内壁12の高さは外壁11の高さよりも低く形成されている。
 細胞配置用凸部13は、底部19の中央部に、内壁12に囲まれた領域に内壁12と間隙をおいて配置される。細胞配置用凸部13は、平面形状が矩形を有している。
 図1~図4に示すように、細胞配置用凸部13には、複数、ここでは3×3の配列で9つの凹部15と、これら9つの凹部15からなる凹部群の外に設けられた階段状のフォーカス調整用段差14と、凹部15毎に複数の凹部15を識別可能にするための識別マークA1、A2、A3、B1、B2、B3、C1、C2、C3が設けられている。フォーカス調整用段差14は6段の段差を有し、矩形の細胞配置用凸部13の一辺に設けられ、細胞配置用凸部13の中央から外に向かって段差が段々に低くなっていくように設けられている。フォーカス調整用段差14の奥行eは、開口の平面形状が円形の凹部15の直径aと同じ程度が好適である。
 凹部15は、隣り合う凹部15の中心間距離が400μmとなるように設けられている。凹部15は、観察する受精卵16を収容可能な形状及び大きさであればよい。図3に示すように、本実施形態においては、凹部15は、上部からみた凹部15の開口の平面形状(XY平面形状)が、直径aが280μmの円形であり、断面は、底部19に向かって開口がやや小さくなるように略台形状を有している。凹部15の深さbは280μmである。
 フォーカス調整用段差14の各段にはフォーカス調整用マーク141a~141fが設けられている。フォーカス調整用マーク141a~141fは、凹部15の最も低い位置を基準位置10として、この基準位置10よりもZ軸方向における高さが高く、かつ、凹部15の最も高い位置よりも低い位置に設けられている。各フォーカス調整用マーク141a~141fは、基準位置10からの高さが互いに異なる。
 培養容器1をその開口部を上側にして水平面(XY平面)に載置したときに、最も下側に位置するフォーカス調整用マーク141aは、この水平面に対し垂直な方向(Z軸方向)に、基準位置10から50μm、上方向に移動した位置に位置するように配置される。図3上、dは、基準位置10とフォーカス調整用マーク141aとのZ軸方向における距離を示し、50μmである。
 更に、フォーカス調整用マーク141a~141fが、Z軸方向における互いに隣り合うフォーカス調整用マーク間距離cが等間隔に15μmの距離で配置されるように、フォーカス調整用段差14が設けられている。Z軸方向における互いに隣り合うフォーカス調整用マーク間距離cは、階段状のフォーカス調整用段差14の段差高さに相当する。また、階段状のフォーカス調整用段差14の各段差の水平面の奥行eは280μmである。
 培養容器1を用いて受精卵16を培養する場合、受精が確認された直後の受精卵の大きさは約100μmである。この受精卵を略真球形とみなし、例えばこの受精卵の中心にフォーカス位置がくるように調整するには、基準位置10から受精卵の半径である50μm分上部に移動させた位置、すなわちフォーカス調整用マーク141aの位置がフォーカス位置となるようにすればよい。
 ここで、略真球形の細胞としては、例えば卵子、受精卵等があり、マウスなどの実験動物、ウシ、ブタ等の家畜動物、イヌ、ネコ等のペット動物、ヒトなどの卵子、受精卵があげられ、これらの細胞の画像取得に本技術が好適である。
 フォーカス調整用マーク141a~141fは、シール等で貼りつけて形成してもよく、例えば黒色等に着色したものを用いることができ、その形状は記号や模様であってもよい。また、各フォーカス調整用マーク141a~141fが識別できるように、マーク形状を異ならせたり、色を異ならせたりしてもよい。
 また、シールタイプではなく、埋め込みタイプにしてもよく、フォーカス調整用段差14の各段差に窪みを設けてそこに例えば着色した樹脂などを埋め込んでフォーカス調整用マーク141a~141fを形成してもよい。
 また、印刷によりフォーカス調整用マーク141a~141fを形成してもよい。
 あるいは、フォーカス調整用段差14の段差毎にフォーカス調整用マーク141a~141fとして、部分的に窪みや、培養容器と同じ材質の凸部を設けてもよい。
 フォーカス調整用マーク141a~141fの形状、大きさ、色、材質は、受精卵16の画像取得や受精卵16の観察に影響されず、また培養液18に影響を及ぼさないものであれば、種々選択可能である。
 本実施形態においては、培養容器1に例えば貼りつけてフォーカス調整用マーク141a~141fを設けているが、こういったフォーカス調整用マーク141a~141fを貼りつけず、フォーカス調整用段差14自体をフォーカス調整用マークとして機能させてもよく、フォーカス調整用マークは高さの異なる段差も含む。
 尚、培養容器1は透明であるため、フォーカス調整用段差14の各段差に、識別容易なフォーカス調整用マーク141a~141fを設けることによりフォーカス調整しやすくなる。
 本実施形態の培養容器1は、複数の凹部15からなる凹部群の外に、フォーカス調整用段差14が設けられているため、凹部15の間にフォーカス調整用段差が設けられる場合と比較して、凸部13の上面に設けられる凹部15の数を最大限に確保することができる。
 〈画像取得装置の構成〉
 次に、上述の培養容器1を用いて、該培養容器1内の受精卵16の画像を取得する画像取得装置について説明する。尚、本実施形態においては、フォーカス調整用マークを備えた培養容器を用いた場合を例に挙げているが、フォーカス調整用マークのない培養容器を用いることもできる。
 図5は、画像取得装置の構成を示す図である。
 図5に示すように、画像取得装置2は、培養装置21と、光源24と、撮像部としてのカメラ25と、温度・湿度制御部26と、情報処理装置22と、表示装置23と、ステージ27を具備する。
 培養装置21は、受精卵16が収容された培養容器1を収容し、受精卵16を培養するチャンバである。培養容器1は、培養装置21内で水平に保持される。
 光源24は、培養容器1内の受精卵16をカメラ25により撮像する際に、培養容器1に対して照射する光を発する。
 カメラ25は、培養容器1内の受精卵16を撮像するものであり、培養装置21内に配置される。カメラ25は、光軸方向(Z軸方向)に移動可能なレンズ群を含む鏡筒と、鏡筒を通過する被写体光を撮像するCMOS(Complementary Metal Oxide Semiconductor)、CCD(Charge Coupled Device)等の固体撮像素子と、これらを駆動する駆動回路等を有する。なおカメラ25は、図上Z軸方向および水平面方向(XY平面方向)に移動可能に培養容器1内に設置されてもよい。また、カメラ25は、静止画像だけでなく、連続画像(ビデオ)を撮影することが可能に構成されてもよい。
 温度・湿度制御部26は、培養装置21内の温度・湿度を制御するものであり、受精卵16の培養に適した環境をつくる。温度・湿度制御部26は、培養装置21内に配置される。
 情報処理装置22は、CPU、内部メモリ等を有するコンピュータで構成される。情報処理装置22は、カメラ25により取得した画像情報から受精卵16の外径を算出し、その算出結果から受精卵16の画像取得に適したカメラ25のフォーカス位置を特定する。また、情報処理装置22は、表示装置23に受精卵16の画像を表示させる。また、撮像された画像は、記録装置に保存される。
 表示装置23は、カメラ25により取得された画像等を表示するものである。
 ステージ27は、培養容器1が載置されるものであり、培養装置21内で培養容器1を水平に保持する。
 〈画像取得システムの構成〉
 次に、上述の画像取得装置2における画像取得システムについて説明する。
 図6は、画像取得システム3の構成を示す図である。
 図6に示すように、画像取得システム3は、カメラ25と、情報処理装置22と、表示装置23とを具備する。
 情報処理装置22は、画像取得部221と、外径算出部223と、フォーカス位置特定部224と、撮像制御部226と、表示制御部225と、記憶部222を具備する。
 画像取得部221と、外径算出部223と、フォーカス位置特定部224と、撮像制御部226とは、非一過性のコンピュータ読み取り可能な記録媒体の一例であるROMに記録されたプログラムをRAMにロードしてCPUが実行することにより実現される。
 画像取得部221は、カメラ25によって撮像された画像情報をカメラ25から取得する。
 外径算出部223は、カメラ25によって取得された画像から受精卵16の外径を算出する。
 フォーカス位置特定部224は、受精卵16の外径の算出結果からカメラ25のフォーカス位置を特定する。具体的には、予め作成されたカメラ25の複数の異なるフォーカス位置と受精卵16の外径とが対応づけられたフォーカステーブルを参照し、受精卵16の外径の算出結果とフォーカステーブルの外径を照合して、外径に対応するフォーカス位置を特定する。
 本実施形態においては、例えば基準位置10からZ軸方向に沿って、50μm、65μm、80μm、95μm、110μm、125μmの高さにある位置がフォーカス位置となるように、フォーカステーブルは作成される。これにより、直径が100μm~250μmの受精卵の中心をフォーカス位置として撮像することができる。すなわち、受精卵16を略球形とみなし、培養容器1の基準位置10からZ軸方向に、受精卵16の半径と同じ長さ分上方向に移動した位置にフォーカス位置が設定されることを想定してフォーカステーブル上のフォーカス位置を設定することができる。
 撮像制御部226は、フォーカス位置特定部224により特定されたフォーカス位置情報を基に、フォーカス位置情報信号をカメラ25に出力する。
 カメラ25はカメラ位置制御部251を有する。カメラ位置制御部251は撮像制御部226からのフォーカス位置情報信号を基にカメラ25のフォーカス位置を設定する。フォーカス位置の設定は、カメラ25のレンズ位置を調整することにより行ってもよいし、あるいは、培養容器1が載置されるステージ27の位置を調整することにより行ってもよい。
 また、フォーカス位置のステップ数は、受精卵16の発育速度や観察日数により調整可能であり、非常に多くのステップ数としてもよいし、2~3段程度のステップ数でもよい。
 表示制御部225は、画像取得部221で取得された画像を表示装置23に表示させるための画像情報信号を表示装置23に出力する。
 記憶部222は、画像取得部221で取得された画像情報等を記憶する。
 〈画像取得方法〉
 次に、上述の画像取得装置2による画像取得方法について図5~図7を用いて説明する。
 本実施形態においては、個々の受精卵16毎に、外径を算出し、この外径算出結果に基づいてフォーカス位置を特定している。
 尚、本実施形態においては、フォーカス調整用マーク141a~141fを備えた培養容器1を用いた場合を例に挙げるが、フォーカス調整用マークのない培養容器を用いて、本実施形態の画像取得方法により画像を取得することもできる。
 図7は画像取得方法のフローチャートである。
 まず、受精が確認された受精卵16を1つずつ培養容器1の凹部15にいれた後、培養液18を凹部15内及び内壁12に囲まれた領域内にピペットで注入する。その後、培養液18を覆うように内壁12に囲まれた領域内にオイル17を注入する。
 次に、図5に示すように培養装置21内のステージ27に水平に載置する。このとき必要に応じて、培養容器1に、図示しない培養容器1と同様の材質でできた透明の蓋が載せられてもよい。
 受精卵16の画像取得は、受精卵16を収容した培養容器1を培養装置21内に保持した状態で行われる。
 次に、培養容器1の下部から光源24から光を照射し、受精卵の外径に合わせてフォーカス位置を決定する(S101)。
 次に、培養容器1の上部に位置したカメラ25により受精卵16を撮像する(S102)。
 撮像された受精卵16の画像は、図6に示すように、画像取得部221により取得される。次に、外径算出部223は、画像取得部221が取得した受精卵16の画像に基づき、受精卵16の外径を算出する(S103)。外径算出方法の詳細については後述する。
 次に、フォーカス位置特定部224は、予め作成されているフォーカステーブルを参照して、外径算出部223にて算出された受精卵16の外径算出結果からカメラ25のフォーカス位置を特定する(S104)。フォーカステーブルは、カメラ25の互いに異なる複数のフォーカス位置と受精卵16の外径とが対応づけられたものである。
 本実施形態では、受精卵16を略真球形とみなし、上部からみた略真円形の受精卵16の外径から受精卵16の半径を求めている。そして、受精卵16が接する培養容器1の凹部15の最も低い位置にある基準位置10から、この半径と同じ長さ分上方向(Z軸方向)に移動した位置をフォーカス位置とすることにより、略真球形の受精卵16の中心にフォーカス位置が位置するように設定することができる。
 フォーカステーブルは、受精卵16の外径と、基準位置10から受精卵16の外径から求めた半径分の長さ移動した位置に位置するフォーカス位置とが対応づけされて予め作成されている。したがって、フォーカステーブルと外径算出結果を照合することにより、フォーカス位置を特定することができる。
 次に、撮像制御部226は、カメラ25のフォーカス位置がフォーカス位置特定部224で特定されたフォーカス位置となるようにフォーカス位置情報信号をカメラ位置制御部251に出力する(S105)。
 次に、カメラ位置制御部251は、撮像制御部226からのフォーカス位置情報信号に基づいて、カメラのレンズ位置又はステージを移動させてフォーカス位置を調整する(S106)。
 次に、特定されたフォーカス位置で受精卵16を撮像し(S107)、画像取得部221は撮像された画像を取得し、記憶部222は取得された画像を記録する(S108)。表示制御部225は、画像取得部221で取得された画像を表示装置23に表示させる。
 S107で取得される受精卵16の画像は、受精卵16の中心をフォーカス位置として撮像して得たものである。
 これらの工程S101~S108を、受精卵16毎に行い、各受精卵16の画像を取得する。
 そして、任意の時期毎、例えば10分間隔や1日おきといった所定の間隔毎、もしくは連続的に、これらS101~S108の工程を行うことによって画像を取得する。これにより、受精卵16の成長の様子を観察することができる。また、必要に応じてリアルタイムに画像を取得してもよく、表示装置23上に受精卵の様子を表示させて随時観察するようにしてもよい。
 次に、上述した画像取得方法のS103での受精卵の外径算出方法について、図8~図10を用いて説明する。
 図8は外径算出方法のフローチャートである。図9及び図10は外径算出方法を説明するための図である。以下、図8のフローチャートに従って説明する。
 受精卵16の外径にあわせてフォーカスされて取得された受精卵16の原画像に鮮明化フィルタ処理を施す(S1031)。
 鮮明化フィルタ処理には、例えば図9(a)または(b)に示す3×3画素のフィルタ行列や図9(c)に示す5×5画素のフィルタ行列を用いることができる。図9(a)または(b)に示す3×3画素のフィルタ行列を用いる場合、ある1つの画素Aの周りの8個の画素を含む9個の画素に図9(a)又は(b)のフィルタ行例に示す数値を掛けて加算した値を、その1つの画素Aの濃度値とし、すべての画素について同様の計算を行う。図9に示すフィルタ行列は中央値がプラスでその周りをマイナスとしているので、計算結果は隣り合う画素の濃度値の差が大きくなる。そのため、輪郭部分などでの濃度値の変化が大きくなり、受精卵16の輪郭が協調される。このように鮮明化フィルタ処理を施すことにより受精卵16の外円を際立たせた環状画像を得ることができる。
 次に、鮮明化フィルタ処理により鮮明化された環状画像にエッジ抽出フィルタ処理を施す(S1032)。エッジ抽出フィルタは画像のエッジ部即ち輪郭を抜き出すものである。輪郭部分での濃度差は急激に変化しているので、隣同士の画素値を引き算すると濃度値の差が大きくなるため輪郭として取り出すことができる。
 このように鮮明化環状画像にエッジ抽出フィルタ処理を施すことにより輪郭画像を得ることができる。輪郭画像の各画素は0~255の濃度値で表される。
 次に、輪郭画像の全画素について濃度値の平均値Thを算出する(S1033)。ただし、濃度値が0の画素は平均値計算から除外する。そして、平均値Thをしきい値として、これより大きい濃度値を持つ画素を白(濃度値255)とし、またこれより小さい濃度値を有する画素を黒(濃度値0)として2値化処理をし、2値化画像を得る(S1034)。
 次に、図10に示すように、2値化画像の4隅より順番に中心座標に向かってサーチしていき、外円の輪郭のエッジを検出し(S1035)、検出したところの座標を記憶させる。このようにして、外円上の4点の座標を求める。なお、ここでの中心座標は例えば画素が200×200の場合は座標(100、100)の位置となる。上述のように求められた外円上の4点のうち任意の3点を通る円の方程式を従来知られた方法で求める。その結果、外円の中心座標位置と半径からなる外円情報を算出することができ、外径を算出することができる。
 以上のように、本実施形態においては、受精卵16を略真球形とみなし、受精卵16の外径算出結果から受精卵16を撮像するためのフォーカス位置を特定するので、フォーカス位置の調整が容易である。また、日々成長する受精卵16の画像取得のたびにフォーカス調整に長い時間を費やすことがなく、作業効率が向上し、異なる人間が個々にフォーカス位置を調整して画像取得することによる画像品質のばらつきがない。
 (第2の実施形態)
 次に、第2の実施形態に係る画像取得装置及び画像処理方法について説明する。
 第1の実施形態においてはフォーカステーブルを参照して受精卵16の外径算出結果からフォーカス位置を特定していた。これに対し、本実施形態においては、受精卵16の外径算出結果を基に上述のフォーカス調整用マークを備える培養容器1を用いてフォーカス位置を特定している。以下、第1の実施形態と同様の構成については同様の符号を付し、詳細な説明は省略し、主に異なる点について説明する。
 培養容器1及び画像取得装置2は、第1の実施形態と同様の構成のため、説明を省略する。尚、本実施形態では、第1の実施形態で説明したフォーカス調整用マーク141a~141fを備えた培養容器1を用いる。
 〈画像取得システムの構成〉
 次に、画像取得装置2における画像取得システムについて説明する。
 図6は、画像取得システム4の構成を示す図である。
 図6に示すように、画像取得システム4は、カメラ25と、情報処理装置22と、表示装置23とを具備する。
 情報処理装置22は、画像取得部221と、外径算出部223と、フォーカス位置特定部324と、撮像制御部226と、表示制御部225と、記憶部222を具備する。
 画像取得部221と、外径算出部223と、フォーカス位置特定部324と、撮像制御部226とは、非一過性のコンピュータ読み取り可能な記録媒体の一例であるROMに記録されたプログラムをRAMにロードしてCPUが実行することにより実現される。
 フォーカス位置特定部324は、受精卵16の外径の算出結果を基にカメラ25のフォーカス位置を特定する。具体的には、受精卵16の外径算出結果から受精卵16の半径を求める。そして、培養容器1の基準位置10から上方向(Z軸方向)にこの半径分移動させた高さにある、或いは、最も近い高さにあるフォーカス調整用マーク141a~141fのいずれかをフォーカス位置として特定する。
 〈画像取得方法〉
 次に、上述の画像取得装置2による画像取得方法について図5、図6、図11を用いて説明する。
 本実施形態においては、個々の受精卵16毎に、外径を算出し、この外径算出結果に基づいてフォーカス位置を特定している。
 図11は本実施形態に係る画像取得方法のフローチャートである。
 まず、受精が確認された受精卵16を1つずつ培養容器1の凹部15にいれた後、培養液18を凹部15内及び内壁12に囲まれた領域内にピペットで注入する。その後、培養液18を覆うように内壁12に囲まれた領域内にオイル17を注入する。
 次に、培養容器1を図5に示すように培養装置21内に水平に載置する。
 受精卵16の画像取得は、受精卵16を収容した培養容器1を培養装置21内に保持した状態で行われる。
 次に、培養容器1の下部から光源24からの光を照射し、受精卵の外径に合わせてフォーカス位置を決定する(S201)。
 次に、培養容器1の上部に位置したカメラ25により受精卵16を撮像する(S202)。
 撮像された受精卵16の画像は、図6に示すように、画像取得部221により取得される。次に、外径算出部223は、画像取得部221が取得した受精卵16の画像に基づき、受精卵16の外径を算出する(S203)。外径算出方法は、第1の実施形態で説明した方法と同様である。
 次に、フォーカス位置特定部324は、受精卵16の外径算出結果から受精卵16の半径を求める。そして、培養容器1の基準位置10から、図面上、Z軸方向にそって上部にこの半径分移動させた高さにある、或いは、最も高い高さにあるフォーカス調整用段差14の1つの段差を選択し、この段差に付されているフォーカス調整用マークをフォーカス位置として特定する(S204)。
 本実施形態では、受精卵16を略真球形とみなし、上部からみた略真円形の受精卵16の外径から受精卵16の半径を求めている。そして、受精卵16が接する培養容器1の凹部15の基準位置10から、Z方向に沿ってこの半径と同じ長さ分上方向に移動した位置をフォーカス位置とすることにより、略真球形の受精卵16の中心にフォーカス位置が位置するように設定される。
 次に、撮像制御部226は、フォーカス位置特定部324で特定されたフォーカス位置となるように、カメラ25のフォーカス位置を調整する(S205)。
 次に、特定されたフォーカス位置で受精卵16を撮像し(S206)、画像取得部221は撮像された画像を取得し、記憶部222は取得された画像を記録する(S207)。表示制御部225は、画像取得部221で取得された画像を表示装置23に表示させる。
 S206で取得される受精卵16の画像は、受精卵16の中心をフォーカス位置として撮像して得たものである。
 これらの工程S201~S207を、受精卵16毎に行い、各受精卵16の画像を取得する。これらの工程S201~S207による画像の取得は、所定の間隔、例えば10分間毎や1日毎、もしくは連続的といった任意の時期毎に行うことができ、受精卵16の成長の様子を観察することができる。また、必要に応じてリアルタイムに画像を取得してもよく、表示装置23上に受精卵の様子を表示させて随時観察するようにしてもよい。
 あるいは、1回目のみ、S201~S207の工程を行って、受精卵16の外径算出結果からフォーカス位置を特定して画像取得し、それ以降の受精卵16の画像取得では、外径算出結果によるフォーカス位置の特定はせずに、培養容器1に設けられているフォーカス調整用マークによるフォーカス位置の特定をしてもよい。
 すなわち、受精卵の成長曲線はほぼ同じ曲線を描くため、経時変化による受精卵の大きさの変化はある程度想定できるので、受精卵の成長曲線と受精直後の1日目の受精卵の外径を基に、経過時間とフォーカス調整用マークとを対応づけさせることができる。
 仮に、受精直後の1日目の受精卵の直径を100μmとし、1日で受精卵が15μmずつ大きく成長するように成長曲線を描く場合を想定する。1日毎に画像取得する場合、フォーカス調整用マーク141a~141fが形成されているフォーカス調整用段差14の各段差の高さcは15μmに設定されているため、1日目のフォーカス位置をフォーカス調整用マーク141aに、2日目のフォーカス位置をフォーカス調整用マーク141bに、3日目のフォーカス位置をフォーカス調整用マーク141cに、4日目のフォーカス位置をフォーカス調整マーク141dに、というように設定することが可能である。この場合、2日目以降は、S201~S207のような外径算出結果を基にフォーカス位置を設定する工程は不要となり、フォーカス位置の調整の必要がなく、容易に受精卵の成長の様子を画像で観察することができる。尚、途中、例えば4日目などに、フォーカス位置の補正のために、S201~S207のような工程を設けても、もちろん構わない。
 以上のように、本実施形態においては、受精卵16を略真球形とみなし、受精卵16の外径から、受精卵16を撮像するためのフォーカス位置を特定するので、フォーカス位置の調整が容易である。また、日々成長する受精卵16の画像取得のたびにフォーカス調整に長い時間を費やすことがなく、作業効率が向上し、異なる人間が行うことによる取得する画像品質のばらつきがない。
 (第3の実施形態)
 次に、第3の実施形態に係る画像処理方法について説明する。
 第1の実施形態においてはフォーカステーブルを参照して受精卵16の外径算出結果からフォーカス位置を特定し、この工程を任意の時期毎に行って受精卵の画像を取得し、受精卵の成長を観察していた。第2の実施形態においては、1回目の画像取得時に、外径算出結果から培養容器1のフォーカス調整用マーク141a~141fのうちどのフォーカス調整用マークをフォーカス位置として用いるかを特定し、それ以降は、受精卵の成長曲線を考慮し、どの時期にどのフォーカス調整用マークを用いるかを決定して、受精卵16の画像を取得し、成長を観察していた。
 これに対し、本実施形態においては、上述のフォーカス調整用マークを備える培養容器1を用いて、1回目の画像取得では第1の実施形態に示すフォーカステーブルを用いて特定したフォーカス位置で画像を取得し、それ以降の画像取得では第2の実施形態に示す培養容器1のフォーカス調整用マークをフォーカス位置として用いて画像を取得する。尚、上述の実施形態と同様の構成については同様の符号を付し説明を省略し、主に異なる点について説明する。
 培養容器1及び画像取得装置2は、第1の実施形態と同様の構成のため、説明を省略する。尚、本実施形態では、第1の実施形態で説明したフォーカス調整用マーク141a~141fを備えた培養容器1を用いる。
 〈画像取得システムの構成〉
 次に、画像取得装置2における画像取得システムについて説明する。
 図6は、画像取得システム5の構成を示す図である。
 図6に示すように、画像取得システム5は、カメラ25と、情報処理装置22と、表示装置23とを具備する。
 情報処理装置22は、画像取得部221と、外径算出部223と、フォーカス位置特定部424と、撮像制御部226と、表示制御部225と、記憶部222を具備する。
 フォーカス位置特定部424は、受精卵16の外径の算出結果からカメラ25のフォーカス位置を特定する。具体的には、予め作成されたカメラ25の複数の異なるフォーカス位置と受精卵16の外径とが対応づけられたテーブルを参照し、受精卵16の外径の算出結果とテーブルの外径を照合して、外径に対応するフォーカス位置を特定する。更に、フォーカス位置特定部424は、フォーカステーブルを参照して特定されたフォーカス位置と、このフォーカス位置に対応する培養容器1のフォーカス調整用マーク141を特定する。
 撮像制御部226は、フォーカス位置特定部424により特定されたフォーカス位置情報を基に、カメラ25のフォーカス位置を調整する。
 〈画像取得方法〉
 次に、画像取得方法について図6を用いて説明する。
 本実施形態においては、個々の受精卵16毎に、外径を算出し、この外径算出結果に基づいてフォーカス位置を特定している。
 まず、受精が確認された受精卵16が個々に凹部15に収容され、培養液及びオイルが注入された培養容器1を準備する。培養容器1を培養装置21内のステージ27上に水平に載置する。
 受精卵16の画像取得は、受精卵16を収容した培養容器1を培養装置21内に保持した状態で行われる。
 次に、培養容器1の下部から光源24から光を照射し、受精卵の外径に合わせて、カメラ25のオートフォーカス機能を用いて、フォーカス位置を決定する。
 次に、培養容器1の上部に位置したカメラ25により受精卵16を撮像する。
 撮像された受精卵16の画像は、図6に示すように、画像取得部221により取得される。次に、外径算出部223は、画像取得部221が取得した受精卵16の画像に基づき、受精卵16の外径を算出する。外径算出方法の第1の実施形態に示した方法と同様である。
 次に、フォーカス位置特定部424は、予め作成されているフォーカステーブルを参照して、外径算出部223にて算出された受精卵16の外径算出結果を基に、カメラ25のフォーカス位置を特定する。フォーカステーブルは、互いに異なる複数のフォーカス位置と受精卵16の外径とが対応づけられたものである。更に、フォーカス位置特定部424は、フォーカステーブルを参照して特定されたフォーカス位置と、このフォーカス位置に対応するフォーカス調整用マーク141を特定する。
 次に、撮像制御部226は、フォーカス位置特定部424で特定されたフォーカス位置となるように、カメラ25のフォーカス位置を制御する。
 次に、特定されたフォーカス位置で受精卵16を撮像し、画像取得部221は撮像された画像を取得し、記憶部222は取得された画像を記録する。表示制御部225は、画像取得部221で取得された画像を表示装置23に表示させる。
 以上により1回目の受精卵16の画像取得が終了する。
 2回目以降の受精卵16の画像取得では、カメラ25のフォーカス位置は、培養容器1のフォーカス調整用マーク141で特定される。すなわち、第2の実施形態でも説明をしたように、受精卵16の成長曲線はほぼ同じ曲線を描くため、経時変化による受精卵16の大きさの変化はある程度想定できる。したがって、1回目の画像取得の際に特定されたフォーカス位置に対応した培養容器1のフォーカス調整用マーク141を基準として、受精卵16の成長曲線を基に経過時間と各フォーカス調整用マークとを対応づけさせることができる。
 これにより2回目以降の画像取得では、受精卵16の外径算出工程及び外径算出結果に基づくフォーカス位置の特定の工程を行う必要がない。
 以上の工程を、受精卵16毎に行う。画像の取得は、所定の間隔、例えば10分間や1日等の任意の時期毎、もしくは連続的に行うことができ、受精卵16の成長の様子を観察することができる。
 以上のように、フォーカステーブルを参照して外径算出結果からフォーカス位置を決定して画像を取得する方法と、培養容器1のフォーカス調整用マーク141a~141fをフォーカス位置として画像を取得する方法とを組み合わせて、画像を取得することができる。
 (第4の実施形態)
 次に、第4の実施形態に係る画像処理方法について説明する。
 第1の実施形態においては、受精卵16毎にフォーカス位置を特定して画像を取得していた。これに対し、本実施形態においては、複数のフォーカス位置毎に複数の受精卵16を一括して撮像して画像を取得する点が、第1の実施形態と主に異なる。本実施形態では、複数のフォーカス位置毎に一括して撮像した画像を処理することにより、受精卵16毎に、外径算出に適した画像を1つ選択し、この画像から受精卵の外径算出をし、この外径算出結果を基にフォーカス位置を特定している。
 なお、本実施形態においては、カメラ25による外径算出に適した画像を選択するための撮像では、1つの培養容器1に収容される9個すべての受精卵16が一括して撮像する場合を例にあげて説明するが、これに限定されない。例えば受精卵16を4個一括して撮像してもよいし、受精卵16を1個撮像してもよく、撮像視野に入る受精卵16の数を任意に変更してもよい。
 以下、第1の実施形態と同様の構成については同様の符号を付し、詳細な説明は省略する。
 培養容器1及び画像取得装置2は、第1の実施形態と同様の構成のため、説明を省略する。尚、本実施形態では、第1の実施形態で説明したフォーカス調整用マーク141a~141fを備えた培養容器1を用いなくてもよく、種々の培養容器を用いることができる。
 〈画像取得システムの構成〉
 次に、上述の画像取得装置2における画像取得システムについて説明する。
 図13は、画像取得システム6の構成を示す図である。
 図13に示すように、画像取得システム3は、カメラ25と、情報処理装置22と、表示装置23とを具備する。
 情報処理装置22は、画像取得部221と、外径算出用画像選択部227と、外径算出部223と、フォーカス位置特定部224と、撮像制御部226と、表示制御部225と、記憶部222を具備する。
 画像取得部221は、カメラ25によって撮像された画像をカメラ25から取得する。
 外径算出用画像選択部227は、カメラ25により異なるフォーカス位置毎に、一括して複数、ここでは9個の受精卵16を撮像した画像から、受精卵16毎に、外径算出用に適した画像を選択する。
 外径算出部223は、外径算出用画像選択部227で選択された画像を基に受精卵16の外径を算出する。
 フォーカス位置特定部224は、受精卵16の外径の算出結果からカメラ25のフォーカス位置を特定する。具体的には、予め作成されたカメラ25の複数の異なるフォーカス位置と受精卵16の外径とが対応づけられたテーブルを参照し、受精卵16の外径の算出結果とテーブルの外径を照合して、外径に対応するフォーカス位置を特定する。
 撮像制御部226は、フォーカス位置特定部224により特定されたフォーカス位置情報を基に、カメラ25のフォーカス位置を調整する。
 表示制御部225は、画像取得部221で取得された画像を表示装置23に表示させるための画像情報信号を表示装置23に出力する。
 記憶部222は、画像取得部221で取得された画像情報を記憶する。
 〈画像取得方法〉
 次に、画像取得方法について図7、図12及び図13を用いて説明する。
 図12は、外径算出用の画像を選択するための画像を取得する方法のフローチャートである。
 尚、本実施形態においては、フォーカス調整用マーク141a~141fを備えた培養容器1を用いた場合を例に挙げるが、フォーカス調整用マークのない培養容器を用いて、本実施形態の画像取得方法により画像を取得することもできる。
 まず、受精が確認された受精卵16が個々に凹部15に収容され、培養液及びオイルが注入された培養容器1を準備する。培養容器1を培養装置21内のステージ27上に水平に載置する。
 受精卵16の画像取得は、受精卵16を収容した培養容器1を培養装置21内に保持した状態で行われる。
 次に、培養容器1の下部から光源24から光を照射し、フォーカステーブルにある複数の異なるフォーカス位置のうち1のフォーカス位置でフォーカスし(S301)、9個の受精卵16を一括してカメラ25により撮像する(S302)。撮像された画像は記憶部222に記録される(S303)。フォーカステーブルは、互いに異なる複数の所定のフォーカス位置と受精卵16の外径とが対応づけられたものである。
 次に、フォーカステーブルにある複数の所定のフォーカス位置毎に撮像が終了していなければ(S304 No)、S301に戻って、撮像が終了していないフォーカス位置でフォーカスし(S301)、9個の受精卵16を一括してカメラ25により撮像する(S302)。撮像された画像は記憶部222に記録される(S303)。フォーカステーブルにあるすべてのフォーカス位置の撮像が終了するまで、S301~S303は繰り返される。尚、記憶部222には、例えば、各受精卵16の撮影画像のうちトリミング、外径算出、フォーカス値の最適なものが選択的に記録されてもよい。
 フォーカステーブルにあるすべてのフォーカス位置毎の撮像が終了すると(S304 Yes)、外径算出用の画像を選択するための画像の取得が終了する。これにより、例えばフォーカステーブルに6つのフォーカス位置がある場合は、1つの受精卵16につき6枚の画像が得られる。
 次に、外径算出用画像選択部227は、受精卵16毎に、得られた6枚の画像から外径算出に適した画像を1つ選択する。選択方法としては、例えば輪郭エッジが一番鋭いものを選択する。具体的には、6枚の画像それぞれで受精卵の輪郭部分を検出して、その輪郭部分のエッジが一番鋭いものが、ピントがあっているものと判断し、それを選択する。
 次に、外径算出部223は、選択された受精卵16の画像に基づき、受精卵16の外径を算出する(S103)。外径算出方法は第1の実施形態に示す方法と同様である。
 次に、フォーカス位置特定部224は、予め作成されているフォーカステーブルを参照して、外径算出部223にて算出された受精卵16の外径算出結果を基にカメラ25のフォーカス位置を特定する(S104)。フォーカステーブルは、カメラ25の互いに異なる複数のフォーカス位置と受精卵16の外径とが対応づけられたものである。
 次に、撮像制御部226は、フォーカス位置特定部224で特定されたフォーカス位置となるように、カメラ25のフォーカス位置を制御する(S105)。
 次に、特定されたフォーカス位置で受精卵16を撮像し(S106)、画像取得部221は撮像された画像を取得し、記憶部222は取得された画像を記録する(S107)。表示制御部225は、画像取得部221で取得された画像を表示装置23に表示させる。
 これらの工程S103~S107を受精卵16毎に行い、特定されたフォーカス位置で受精卵16を撮像し、すべての受精卵16の画像を取得する。
 そして、任意の時期毎、例えば10分間や1日といった所定の間隔毎、もしくは、連続的に、上述のS301~S304の工程、取得された6枚の画像から外径算出に適した画像を1つ選択する工程、S103~S107の工程を行い、受精卵16の画像の取得をする。これにより、受精卵16の成長の様子を観察することができる。
 なお、9個の受精卵16の一括撮像の際に、受精卵の成長の一番遅い、すなわち、外径が小さい受精卵よりも小さい外径に対応したフォーカス位置での撮像は、次回以降は行わないようにしてもよい。これにより、不要な撮像を減らすことができ、撮像時の光照射による受精卵のダメージを低減することができる。
 本実施形態では、外径算出用画像選択部227で輪郭エッジが一番鋭いものを外径算出に適した画像として1枚選択し、外径算出部223で選択した画像を基に外径算出を行っているが、これに限定されない。
 例えば、受精卵16毎に得られた6枚の画像のうち、輪郭エッジの鋭い画像を数枚、例えば2~3枚選択し、これらの画像を基にそれぞれ外径を算出し、この外径算出結果を平均してフォーカス位置を特定するための外径として用いてもよい。
 また、受精卵16毎に得られた6枚の画像の隣り合うペア同士(5ペア)で画像の差分を計算し、その差分画像の受精卵16の外周部分の輝度差が最も大きい輝度差画像から抽出される受精卵の輪郭のサイズをその受精卵16の直径として外径算出してもよい。
 また、受精卵16毎に得られた6枚の画像の隣り合うペア同士(5ペア)で画像の差分を計算し、その差分画像で得られた受精卵16の輪郭のサイズが一番小さい画像を受精卵の直径としてもよい。これは、ピントがぼけると受精卵のサイズが大きめにでると考えられるので、一番小さいサイズの画像が選択すれば、受精卵のサイズにあっていると考えられる。
 (第5の実施形態)
 次に、第5の実施形態に係る画像処理方法について説明する。
 第4の実施形態においては、フォーカステーブルにあるフォーカス位置毎に、一括して9個の受精卵を撮像した。これに対し、本実施形態においては、培養容器1を用いてフォーカス調整用マーク141a~141f毎に、一括して9個の受精卵を撮像する。以下、上述の実施形態と同様の構成については同様の符号を付し、詳細な説明は省略する。
 培養容器1及び画像取得装置2は、第1の実施形態と同様の構成のため、説明を省略する。
 〈画像取得システムの構成〉
 次に、上述の画像取得装置2における画像取得システムについて説明する。
 図13は、画像取得システム7の構成を示す図である。
 図13に示すように、画像取得システム3は、カメラ25と、情報処理装置22と、表示装置23とを具備する。
 情報処理装置22は、画像取得部221と、外径算出用画像選択部227と、外径算出部223と、フォーカス位置特定部324と、撮像制御部226と、表示制御部225と、記憶部222を具備する。
 画像取得部221は、カメラ25によって撮像された画像をカメラ25から取得する。
 外径算出用画像選択部227は、カメラ25により撮像された異なるフォーカス位置毎に、一括して複数、ここでは9個の受精卵16の画像から、受精卵16毎に、外径算出用に適した画像を選択する。
 外径算出部223は、外径算出用画像選択部227で選択された画像を基に受精卵16の外径を算出する。
 フォーカス位置特定部324は、受精卵16の外径算出結果から受精卵16の半径を求める。そして、培養容器1の基準位置10から、図面上、Z軸方向にそって上部にこの半径分移動させた高さにある、或いは、フォーカス調整用段差14のうち最も近い高さにある段差を1つ選択し、この段差に付されているフォーカス調整用マークをフォーカス位置として特定する。
 撮像制御部226は、フォーカス位置特定部324により特定されたフォーカス位置情報を基に、カメラ25のフォーカス位置を調整する。
 表示制御部225は、画像取得部221で取得された画像を表示装置23に表示させるための画像情報信号を表示装置23に出力する。
 記憶部222は、画像取得部221で取得された画像情報を記憶する。
 〈画像取得方法〉
 次に、画像取得方法について図11、図13及び図14を用いて説明する。
 図14は、外径算出用の画像を選択するための画像を取得する方法のフローチャートである。
 まず、受精が確認された受精卵16が個々に凹部15に収容され、培養液及びオイルが注入された培養容器1を準備する。
 受精卵16の画像取得は、受精卵16を収容した培養容器1を培養装置21内に保持した状態で行われる。
 次に、培養容器1の下部から光源24から光を照射し、培養容器1に形成されているフォーカス調整用マーク141のうちの1つ、例えばフォーカス調整用マーク141aをフォーカス位置としてフォーカスし(S401)、9個の受精卵16を一括してカメラ25により撮像する(S402)。撮像された画像は記憶部222に記録される(S403)。
 次に、フォーカス調整用マーク141a~141f毎に撮像が終了していなければ(S404 No)、S401に戻って、撮像が終了していないフォーカス調整用マーク141bをフォーカス位置としてフォーカスし(S401)、9個の受精卵16を一括してカメラ25により撮像する(S402)。撮像された画像は記憶部222に記録される(S403)。フォーカス調整用マーク141a~141fすべての撮像が終了するまで、S401~S403は繰り返される。尚、記憶部222には、例えば、各受精卵16の撮影画像のうちトリミング、外径算出、フォーカス値の最適なものが選択的に記録されてもよい。
 フォーカス調整用マーク141a~141f毎の撮像がすべて終了すると(S404 Yes)、外径算出用の画像を選択するための画像の取得が終了する。これにより、6つのフォーカス調整用マーク141a~141f毎の、9個の受精卵16が一括して撮像された画像が得られる。したがって、1つの受精卵16につき6枚の画像が得られる。
 次に、外径算出用画像選択部227は、受精卵16毎に、得られた6枚の画像から外径算出に適した画像を1つ選択する。選択方法としては、第4の実施形態と同様の方法を用いることができる。
 次に、外径算出部223は、選択された受精卵16の画像に基づき、受精卵16の外径を算出する(S203)。外径算出方法は第1の実施形態に示す方法と同様である。
 次に、フォーカス位置特定部324は、受精卵16の外径算出結果から受精卵16の半径を求める。そして、培養容器1の基準位置10から、図面上、Z軸方向にそって上部にこの半径分移動させた高さにある、或いは、フォーカス調整用段差14のうち最も近い高さにある段差を1つ選択し、この段差に付されているフォーカス調整用マーク141をフォーカス位置として特定する(S204)。
 次に、撮像制御部226は、フォーカス位置特定部324で特定されたフォーカス位置となるように、カメラ25のフォーカス位置を制御する(S205)。
 次に、特定されたフォーカス位置で受精卵16を撮像し(S206)、画像取得部221は撮像された画像を取得し、記憶部222は取得された画像を記録する(S207)。表示制御部225は、画像取得部221で取得された画像を表示装置23に表示させる。
 これらのS203~S207の工程を受精卵16毎に行い、特定されたフォーカス位置で受精卵16を撮像し、すべての受精卵16の画像を取得する。
 そして、任意の時期毎、例えば10分間や1日といった所定の間隔毎、もしくは連続的に、上述のS401~S404の工程、取得された6枚の画像から外径算出に適した画像を1つ選択する工程、S203~S207の工程を行い、受精卵16の画像の取得をする。これにより、受精卵16の成長の様子を観察することができる。
 なお、9個の受精卵16の一括撮像の際に、受精卵の成長の一番遅い、すなわち、外径が小さい受精卵に対応したフォーカス調整用マークでの撮像は、次回以降は行わないようにしてもよい。これにより、不要な撮像を減らすことができ、撮像時の光照射による受精卵おダメージを低減することができる。
 (第6の実施形態)
 上述の培養容器1のフォーカス調整用段差14を用いてキャリブレーションし、その後、画像取得の工程を行ってもよい。本実施形態では、第4の実施形態で説明した一括撮像工程の前にキャリブレーション工程を行った場合を例にあげて説明する。
 図15は、キャリブレーション工程を含む外径算出用の画像を選択するための画像を取得する方法のフローチャートである。以下、図15のフローチャートに従って説明する。
 まず、受精が確認された受精卵16が個々に凹部15に収容され、培養液及びオイルが注入された培養容器1を準備する。
 次に、培養容器1のフォーカス調整用段差14を基準にしてキャリブレーションを行う(S501)。キャリブレーションの結果は使用するカメラ25固有のデータとして記憶部222に記録される。
 次に、培養容器1の下部から光源24からの光を照射し、フォーカステーブルにある複数の異なるフォーカス位置のうち1のフォーカス位置でフォーカスし(S502)、9個の受精卵16を一括してカメラ25により撮像する(S503)。撮像された画像は記憶部222に記録される(S504)。フォーカステーブルは、互いに異なる複数の所定のフォーカス位置と受精卵16の外径とが対応づけられたものである。
 次に、フォーカステーブルにある複数の所定のフォーカス位置毎に撮像が終了していなければ(S505 No)、S502に戻って、撮像が終了していないフォーカス位置でフォーカスし(S502)、9個の受精卵16を一括してカメラ25により撮像する(S503)。撮像された画像は記憶部222に記録される。フォーカステーブル分の撮像が終了するまで、S502~S505は繰り返される。
 フォーカステーブルにある複数の所定のフォーカス位置毎に撮像が終了すると(S505 Yes)、外径算出用の画像を選択するための画像の取得が終了する。これにより、例えばフォーカステーブルが6つある場合は、1つの受精卵16につき6枚の画像が得られる。
 次に、外径算出用画像選択部227は、受精卵16毎に、得られた6枚の画像から外径算出に適した画像を1つ選択する。選択方法は、第4の実施形態と同様である。
 次に、外径算出部223は、選択された受精卵16の画像に基づき、受精卵16の外径を算出する。外径算出方法は第1の実施形態に示す方法と同様である。
 次に、フォーカス位置特定部224は、予め作成されているフォーカステーブルを参照し、記憶部222に記録されているキャリブレーション結果を加味して、外径算出部223にて算出された受精卵16の外径算出結果に基づいて、カメラ25のフォーカス位置を特定する。フォーカステーブルは、カメラ25の互いに異なる複数のフォーカス位置と受精卵16の外径とが対応づけられたものである。
 次に、撮像制御部226は、フォーカス位置特定部224で特定されたフォーカス位置となるように、カメラ25のフォーカス位置を制御する。
 次に、特定されたフォーカス位置で受精卵16を撮像し、画像取得部221は撮像された画像を取得し、記憶部222は取得された画像を記録する。表示制御部225は、画像取得部221で取得された画像を表示装置23に表示させる。
 このように、培養容器1のフォーカス調整用段差14をキャリブレーションに用いることもでき、フォーカス調整の精度が向上する。
 また、受精卵16の観察において、定期的に胚培養士が培養装置21から培養容器1を取り出して顕微鏡観察を行うことがある。取り出し後、培養装置21内へ培養容器1を戻した際に再度培養容器1のフォーカス調整用段差14を用いてキャリブレーションを行うことで、再設置に伴うフォーカスのずれを低減することができる。
 (第7の実施形態)
 次に、第7の実施形態として、上述の画像取得装置2とは異なる構成の画像取得装置について説明する。尚、画像取得装置の構成はこれらに限定されるものではない。
 上述の実施形態において、受精卵を観察する画像取得装置2は、培養装置21内に培養容器1とカメラ25を設置し、情報処理装置22を培養装置21の外に設置しているが、これに限定されない。例えば、図16に示すように、培養装置31内に培養容器1、カメラ323及び情報処理装置322を設置してもよい。
 図16は、第7の実施形態に係る画像取得装置8の構成を示す。
 図16に示すように、画像取得装置8は、培養装置31と、カメラ・情報処理装置一体型ユニット32と、温度・湿度制御部36とを具備する。画像取得装置8は、ネットワークを介してクラウドサーバ37と接続可能となっている。更に、携帯端末38と、パソコン39は、ネットワークを介してクラウドサーバ37と接続可能となっている。
 培養装置31は、受精卵16が収容された培養容器1を収容し、受精卵16を培養するチャンバである。培養容器1は、培養装置31内で水平に保持される。
 カメラ・情報処理装置ユニット32は、培養装置31内に設置される。
 カメラ・情報処理装置ユニット32は、撮像部としてのカメラ323と、光源321と、情報処理装置322と、通信部325とを有する。本実施形態では、受精卵16に照射する光の光源321を培養装置1の下部ではなく上部に配置している。
 光源321は、培養容器1内の受精卵16をカメラ323により撮像する際に、培養容器1に対して照射する光を発する。
 カメラ323は、培養容器1内の受精卵16を撮像するものである。カメラ323は、図上Z軸方向、すなわちフォーカス深度方向に移動可能となっており、水平面方向には移動しないように固定されている。
 情報処理装置322は、カメラ323により取得した画像情報から受精卵16の外径を算出し、その算出結果から受精卵16の画像取得に適したカメラ323のフォーカス位置を特定する。また、情報処理装置322は、通信部325及びネットワークを介して、クラウドサーバ37に受精卵16の画像データを出力する。
 温度・湿度制御部36は、培養装置31内の温度・湿度を制御するものであり、受精卵16の培養に適した環境をつくる。温度・湿度制御部36は、培養装置31内に設置される。
 通信部325は、情報処理装置322に記憶された受精卵16の画像データ信号を受け取り、ネットワークを介してクラウドサーバ37に対して出力する。
 クラウドサーバ37は、受精卵16の画像データを記憶する。
 表示部39aと情報処理部39bとからなるパソコン39、携帯端末38は、それらを操作するユーザの操作によって、ネットワークを介してクラウドサーバ37から受精卵16の画像データを受け取り表示させる。
 (第8の実施形態)
 第1の実施形態においては、図7のS101の工程で受精卵16の外径にあわせてフォーカスをしているが、1回目の画像取得時のみ、表示装置23に受精卵16の画像を映し出し、その画像を見ながら観察者がフォーカス位置をあわせてもよい。そして、2回目以降の画像取得では、図7の工程を経て画像取得してもよい。以下、第8の実施形態として、表示装置23の画像を見ながら1回目の画像取得を行う場合について説明する。
 図17は、第8実施形態にかかわる1回目の画像取得方法を示すフローチャートである。
 図17のフローチャートに従って説明する。
 まず、受精卵16が収容された培養容器1を培養装置21内のステージ27上に載置する。
 次に、培養容器1の下部から光源24から光を照射し、カメラ25により受精卵16を撮像し、撮像した画像を表示装置23に表示する。観察者は、表示装置23に表示される受精卵16の画像を見ながら、フォーカスをあわせ、カメラ25の初期フォーカス位置を設定する(S601)。
 ここで、画像を見ながらのフォーカス合わせの際、培養容器として上述したフォーカス調整用マーク141a~141fを備える培養容器1を用いる場合、フォーカス調整用マーク141a~141fを用いておよそのフォーカス位置に設定してから調整していくこともできる。
 例えば、受精直後の受精卵の直径はおよそ100μm程度であるので、この受精卵の中心位置は基準位置10からZ軸方向にそって上方向に50μm移動した位置付近、すなわちフォーカス調整用マーク141aの位置付近にあると想定される。したがって、画像を見ながら、フォーカス調整用マーク141aを用いておよそのフォーカス位置を決めた後、フォーカス位置を調整していくことができる。
 次に、培養容器1の上部に位置したカメラ25により受精卵16を撮像する(S602)。
 撮像された受精卵16の画像は、画像取得部221により取得される。次に、外径算出部223は、画像取得部221が取得した受精卵16の画像に基づき、受精卵16の外径を算出する(S603)。外径算出方法は第1の実施形態に示した方法と同様である。
 次に、フォーカス位置特定部224は、予め作成されているフォーカステーブルを参照して、外径算出部223にて算出された受精卵16の外径算出結果からカメラ25のフォーカス位置を特定する(S604)。フォーカステーブルは、カメラ25の互いに異なる複数のフォーカス位置と受精卵16の外径とが対応づけられたものである。
 次に、撮像制御部226は、カメラ25のフォーカス位置がフォーカス位置特定部224で特定されたフォーカス位置となるようにフォーカス位置情報信号をカメラ位置制御部251に出力する(S605)。
 次に、カメラ位置制御部251は、撮像制御部226からのフォーカス位置情報信号に基づいて、カメラのレンズ位置又はステージを移動させてフォーカス位置を調整する(S606)。
 次に、特定されたフォーカス位置で受精卵16を撮像し(S607)、画像取得部221は撮像された画像を取得し、記憶部222は取得された画像を記録する(S608)。表示制御部225は、画像取得部221で取得された画像を表示装置23に表示させる。
 S607で取得される受精卵16の画像は、受精卵16の中心をフォーカス位置として撮像して得たものである。
 これらの工程S601~S608を、受精卵16毎に行い、1回目の各受精卵16の画像を取得する。
 そして、任意の時期毎、例えば10分間隔や1日おきといった所定の間隔毎、もしくは連続的に、図7に示すS101~S108の工程を行うことによって、2回目以降の画像を取得する。これにより、受精卵16の成長の様子を観察することができる。また、必要に応じてリアルタイムに画像を取得してもよく、表示装置23上に受精卵の様子を表示させて随時観察するようにしてもよい。
 このように、初回(1回目)の画像取得時のみ観察者によってフォーカス位置を設定することもできる。
 ここでは、第1の実施形態の変形例として説明したが、同様に、第2の実施形態においても、初回の画像取得時のみ観察者によってフォーカス位置を設定し、2回目以降の画像取得は図11に示す工程を経て行ってもよい。この場合、初回の画像取得時に、観察者によるフォーカス位置設定後、図11に示すS202~S207の工程を行う。
 以上、本技術の各実施形態及び各変形例について説明したが、本技術は上述の実施形態にのみ限定されるものではなく、本技術の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
 なお、本技術は以下のような構成もとることができる。
 (1)細胞が収容された凹部を有する培養容器内の前記細胞の画像を撮像部により取得し、
 前記撮像部によって取得した画像から前記細胞の外径を算出し、
 予め作成された前記撮像部の互いに異なる複数のフォーカス位置と前記細胞の外径とが対応づけられたテーブルを参照して、前記外径の算出結果から前記撮像部のフォーカス位置を特定する
 画像取得方法。
 (2)上記(1)に記載の画像取得方法であって、
 前記撮像部による前記細胞の画像の取得は、前記培養容器を水平面に配置して上部から行ない、
 前記フォーカス位置は、前記凹部の最も低い位置を基準位置とし、前記水平面に対し垂直な方向に、前記基準位置から前記算出された前記細胞の外径から求められる半径と同じ長さ分、上方向に移動した位置にある
 画像取得方法。
 (3)上記(1)又は(2)に記載の画像取得方法であって、
 任意の時期毎に、前記撮像部により前記細胞の画像を取得し、前記撮像部によって取得された画像から前記細胞の外径を算出し、前記テーブルを参照して前記外径の算出結果から前記撮像部のフォーカス位置を特定し、前記特定されたフォーカス位置で前記撮像部により前記細胞の画像を取得する
 画像取得方法。
 (4)上記(1)又は(2)に記載の画像取得方法であって、
 前記培養容器は、前記凹部の外に、前記凹部の最も低い位置よりも高く、かつ、前記凹部の最も高い位置よりも低い位置に、互いの高さが異なるように配置された複数のフォーカス調整用マークを更に有し、
 前記テーブルの参照によるフォーカス位置特定後は、任意の時期毎に、前記フォーカス調整用マークを用いて前記撮像部のフォーカス位置を特定し、前記特定されたフォーカス位置で前記撮像部により前記細胞の画像を取得する
 画像取得方法。
 (5)上記(1)から(4)のいずれか1項に記載の画像取得方法であって、
 前記培養容器は、前記凹部の外に、前記凹部の最も低い位置よりも高く、かつ、前記凹部の最も高い位置よりも低い位置に、互いの高さが異なるように配置された複数のフォーカス調整用マークを更に有し、
 前記細胞の画像の取得よりも前に、前記培養容器の前記フォーカス調整用マークを基準として前記撮像部をキャリブレーションし、
 前記撮像部のフォーカス位置の特定は、前記キャリブレーション結果を加味して行われる
 画像取得方法。
 (6)上記(1)から(5)のいずれか1項に記載の画像取得方法であって、
 前記培養容器は複数の前記細胞を個々に収容する複数の前記凹部を有し、
 前記撮像部による前記細胞の画像の取得は、前記テーブルにある互いに異なる複数のフォーカス位置毎に前記複数の細胞を一括して撮像して行い、
 前記互いに異なる複数のフォーカス位置毎に取得された画像結果から、前記細胞毎に前記外径算出用の画像を1つ選択し、
 前記細胞の外径の算出は、前記外径算出用に選択した画像から算出する
 画像取得方法。
 (7)細胞が収容された凹部と、前記凹部の外に、前記凹部の最も低い位置よりも高く、かつ、前記凹部の最も高い位置よりも低い位置に、互いの高さが異なるように配置された複数のフォーカス調整用マークとを有する培養容器内の前記細胞の画像を撮像部により取得し、
 前記撮像部によって取得した画像から前記細胞の外径を算出し、
 前記外径算出結果を基に前記複数のフォーカス調整用マークから1のフォーカス調整用マークを選択し、
 前記フォーカス調整用マークをフォーカス位置として前記撮像部により前記細胞の画像を取得する
 画像取得方法。
 (8)上記(7)に記載の画像取得方法であって、
 任意の時期毎に、前記撮像部により得られる画像から前記細胞の外径を算出し、前記外径の算出結果を基に前記複数のフォーカス調整用マークから1のフォーカス調整用マークを特定し、前記フォーカス調整用マークをフォーカス位置とする
 画像取得方法。
 (9)上記(7)又は(8)に記載の画像取得方法であって、
 前記培養容器は複数の前記細胞を個々に収容する複数の前記凹部を有し、
 前記撮像部による前記細胞の画像の取得は、前記フォーカス調整用マーク毎に前記複数の細胞を一括して撮像して行い、
 前記フォーカス調整用マーク毎に取得された画像結果から、前記細胞毎に前記外径算出用の画像を1つ選択し、
 前記細胞の外径の算出は、前記外径算出用に選択した画像から算出する
 画像取得方法。
 (10)細胞が収容された凹部を有する培養容器内の前記細胞を撮像する撮像部と、
 前記撮像部によって取得された画像から前記細胞の外径を算出する算出部と、
 予め作成された前記撮像部のフォーカス位置と前記細胞の外径とが対応づけられたテーブルを参照して、前記外径の算出結果から前記撮像部のフォーカス位置を特定する特定部と
 を具備する画像取得装置。
 (11)細胞が収容された凹部と、前記凹部の外に、前記凹部の最も低い位置よりも高く、かつ、前記凹部の最も高い位置よりも低い位置に、互いの高さが異なるように配置された複数のフォーカス調整用マークとを有する培養容器内の前記細胞を撮像する撮像部と、
 前記撮像部によって取得された画像から前記細胞の外径を算出する算出部と、
 前記外径算出結果を基に前記複数のフォーカス調整用マークから1のフォーカス調整用マークを特定する特定部と
 を具備する画像取得装置。
 (12)上記(10)又は(11)に記載の画像取得装置であって、
 前記培養容器を収容する培養装置を更に具備する
 画像取得装置。
 (13)撮像部により撮像された、細胞が収容された凹部を有する培養容器内の前記細胞の画像を取得する画像取得部と、
 前記取得した細胞の画像に基づき、前記細胞の外径を算出する算出部と、
 前記算出結果に基づき、前記撮像部のフォーカス位置を特定する特定部
 として情報処理装置を機能させるプログラムであって、
 前記特定部は、予め作成された前記撮像部の互いに異なるフォーカス位置と前記細胞の外径とが対応づけられたテーブルを参照して、前記算出部による前記外径の算出結果から前記撮像部のフォーカス位置を特定する
 プログラム。
 (14)撮像部により撮像された、細胞が収容された凹部と、前記凹部の外に、前記凹部の最も低い位置よりも高く、かつ、前記凹部の最も高い位置よりも低い位置に、互いの高さが異なるように配置された複数のフォーカス調整用マークとを有する培養容器内の前記細胞の画像を取得する画像取得部と、
 前記取得した細胞の画像に基づき、前記細胞の外径を算出する算出部と、
 前記算出結果に基づき、前記撮像部のフォーカス位置を特定する特定部
 として情報処理装置を機能させるプログラムであって、
 前記特定部は、前記算出部による前記外径の算出結果を基に前記複数のフォーカス調整用マークから1のフォーカス調整用マークを特定する
 プログラム。
 (15)複数の細胞が個々に収容される複数の凹部からなる凹部群と、
 前記凹部群の外に、前記凹部の最も低い位置よりも高く、かつ、前記凹部の最も高い位置よりも低い位置に、互いの高さが異なるように配置された複数のフォーカス調整用マークと
 を有する培養容器。
 1…培養容器
 2、8…画像取得装置
 10…基準位置
 14…細胞回転装置
 15…凹部
 16…受精卵
 21、31…培養装置
 25、323…カメラ
 141a~141f…フォーカス調整用マーク
 221…画像取得部
 223…外径算出部
 224、324、424…フォーカス位置特定部

Claims (15)

  1.  細胞が収容された凹部を有する培養容器内の前記細胞の画像を撮像部により取得し、
     前記撮像部によって取得した画像から前記細胞の外径を算出し、
     予め作成された前記撮像部の互いに異なる複数のフォーカス位置と前記細胞の外径とが対応づけられたテーブルを参照して、前記外径の算出結果から前記撮像部のフォーカス位置を特定する
     画像取得方法。
  2.  請求項1に記載の画像取得方法であって、
     前記撮像部による前記細胞の画像の取得は、前記培養容器を水平面に配置して上部から行ない、
     前記フォーカス位置は、前記凹部の最も低い位置を基準位置とし、前記水平面に対し垂直な方向に、前記基準位置から前記算出された前記細胞の外径から求められる半径と同じ長さ分、上方向に移動した位置にある
     画像取得方法。
  3.  請求項2に記載の画像取得方法であって、
     任意の時期毎に、前記撮像部により前記細胞の画像を取得し、前記撮像部によって取得された画像から前記細胞の外径を算出し、前記テーブルを参照して前記外径の算出結果から前記撮像部のフォーカス位置を特定し、前記特定されたフォーカス位置で前記撮像部により前記細胞の画像を取得する
     画像取得方法。
  4.  請求項2に記載の画像取得方法であって、
     前記培養容器は、前記凹部の外に、前記凹部の最も低い位置よりも高く、かつ、前記凹部の最も高い位置よりも低い位置に、互いの高さが異なるように配置された複数のフォーカス調整用マークを更に有し、
     前記テーブルの参照によるフォーカス位置特定後は、任意の時期毎に、前記フォーカス調整用マークを用いて前記撮像部のフォーカス位置を特定し、前記特定されたフォーカス位置で前記撮像部により前記細胞の画像を取得する
     画像取得方法。
  5.  請求項4に記載の画像取得方法であって、
     前記細胞の画像の取得よりも前に、前記培養容器の前記フォーカス調整用マークを基準として前記撮像部をキャリブレーションし、
     前記撮像部のフォーカス位置の特定は、前記キャリブレーション結果を加味して行われる
     画像取得方法。
  6.  請求項2に記載の画像取得方法であって、
     前記培養容器は複数の前記細胞を個々に収容する複数の前記凹部を有し、
     前記撮像部による前記細胞の画像の取得は、前記テーブルにある互いに異なる複数のフォーカス位置毎に前記複数の細胞を一括して撮像して行い、
     前記互いに異なる複数のフォーカス位置毎に取得された画像結果から、前記細胞毎に前記外径算出用の画像を1つ選択し、
     前記細胞の外径の算出は、前記外径算出用に選択した画像から算出する
     画像取得方法。
  7.  細胞が収容された凹部と、前記凹部の外に、前記凹部の最も低い位置よりも高く、かつ、前記凹部の最も高い位置よりも低い位置に、互いの高さが異なるように配置された複数のフォーカス調整用マークとを有する培養容器内の前記細胞の画像を撮像部により取得し、
     前記撮像部によって取得した画像から前記細胞の外径を算出し、
     前記外径算出結果を基に前記複数のフォーカス調整用マークから1のフォーカス調整用マークを選択し、
     前記フォーカス調整用マークをフォーカス位置として前記撮像部により前記細胞の画像を取得する
     画像取得方法。
  8.  請求項7に記載の画像取得方法であって、
     任意の時期毎に、前記撮像部により得られる画像から前記細胞の外径を算出し、前記外径の算出結果を基に前記複数のフォーカス調整用マークから1のフォーカス調整用マークを特定し、前記フォーカス調整用マークをフォーカス位置とする
     画像取得方法。
  9.  請求項8に記載の画像取得方法であって、
     前記培養容器は複数の前記細胞を個々に収容する複数の前記凹部を有し、
     前記撮像部による前記細胞の画像の取得は、前記フォーカス調整用マーク毎に前記複数の細胞を一括して撮像して行い、
     前記フォーカス調整用マーク毎に取得された画像結果から、前記細胞毎に前記外径算出用の画像を1つ選択し、
     前記細胞の外径の算出は、前記外径算出用に選択した画像から算出する
     画像取得方法。
  10.  細胞が収容された凹部を有する培養容器内の前記細胞を撮像する撮像部と、
     前記撮像部によって取得された画像から前記細胞の外径を算出する算出部と、
     予め作成された前記撮像部のフォーカス位置と前記細胞の外径とが対応づけられたテーブルを参照して、前記外径の算出結果から前記撮像部のフォーカス位置を特定する特定部と
     を具備する画像取得装置。
  11.  細胞が収容された凹部と、前記凹部の外に、前記凹部の最も低い位置よりも高く、かつ、前記凹部の最も高い位置よりも低い位置に、互いの高さが異なるように配置された複数のフォーカス調整用マークとを有する培養容器内の前記細胞を撮像する撮像部と、
     前記撮像部によって取得された画像から前記細胞の外径を算出する算出部と、
     前記外径算出結果を基に前記複数のフォーカス調整用マークから1のフォーカス調整用マークを特定する特定部と
     を具備する画像取得装置。
  12.  請求項10に記載の画像取得装置であって、
     前記培養容器を収容する培養装置を更に具備する
     画像取得装置。
  13.  撮像部により撮像された、細胞が収容された凹部を有する培養容器内の前記細胞の画像を取得する画像取得部と、
     前記取得した細胞の画像に基づき、前記細胞の外径を算出する算出部と、
     前記算出結果に基づき、前記撮像部のフォーカス位置を特定する特定部
     として情報処理装置を機能させるプログラムであって、
     前記特定部は、予め作成された前記撮像部の互いに異なるフォーカス位置と前記細胞の外径とが対応づけられたテーブルを参照して、前記算出部による前記外径の算出結果から前記撮像部のフォーカス位置を特定する
     プログラム。
  14.  撮像部により撮像された、細胞が収容された凹部と、前記凹部の外に、前記凹部の最も低い位置よりも高く、かつ、前記凹部の最も高い位置よりも低い位置に、互いの高さが異なるように配置された複数のフォーカス調整用マークとを有する培養容器内の前記細胞の画像を取得する画像取得部と、
     前記取得した細胞の画像に基づき、前記細胞の外径を算出する算出部と、
     前記算出結果に基づき、前記撮像部のフォーカス位置を特定する特定部
     として情報処理装置を機能させるプログラムであって、
     前記特定部は、前記算出部による前記外径の算出結果を基に前記複数のフォーカス調整用マークから1のフォーカス調整用マークを特定する
     プログラム。
  15.  複数の細胞が個々に収容される複数の凹部からなる凹部群と、
     前記凹部群の外に、前記凹部の最も低い位置よりも高く、かつ、前記凹部の最も高い位置よりも低い位置に、互いの高さが異なるように配置された複数のフォーカス調整用マークと
     を有する培養容器。
PCT/JP2017/018777 2016-07-01 2017-05-19 画像取得方法、画像取得装置、プログラム及び培養容器 WO2018003340A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018524955A JPWO2018003340A1 (ja) 2016-07-01 2017-05-19 画像取得方法、画像取得装置、プログラム及び培養容器
CN201780039603.4A CN109415676A (zh) 2016-07-01 2017-05-19 图像获取方法、图像获取装置、程序和培养容器
EP17819707.5A EP3480291A4 (en) 2016-07-01 2017-05-19 PHOTOGRAPHING PROCESS, PICTURE DEVICE, PROGRAM AND CULTURAL VESSEL
AU2017287141A AU2017287141B2 (en) 2016-07-01 2017-05-19 Image acquisition method, image acquisition device, program and culture container
US16/312,017 US20190331905A1 (en) 2016-07-01 2017-05-19 Image acquisition method, image acquisition apparatus, program, and culture vessel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016131276 2016-07-01
JP2016-131276 2016-07-01

Publications (1)

Publication Number Publication Date
WO2018003340A1 true WO2018003340A1 (ja) 2018-01-04

Family

ID=60785334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018777 WO2018003340A1 (ja) 2016-07-01 2017-05-19 画像取得方法、画像取得装置、プログラム及び培養容器

Country Status (6)

Country Link
US (1) US20190331905A1 (ja)
EP (1) EP3480291A4 (ja)
JP (1) JPWO2018003340A1 (ja)
CN (1) CN109415676A (ja)
AU (1) AU2017287141B2 (ja)
WO (1) WO2018003340A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021157153A (ja) * 2020-03-30 2021-10-07 澁谷工業株式会社 細胞観察装置及び細胞観察方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112018075406A2 (pt) * 2016-06-15 2019-03-19 Sony Corp aparelho de processamento de informação, sistema de observação, método de observação, e, programa.
KR20190053892A (ko) * 2016-09-14 2019-05-20 브이비씨 홀딩스 엘엘씨 세포 성장을 최적화하기 위해 세포 배양물의 움직임을 제어하기 위한 시스템, 장치 및 방법
WO2018100913A1 (ja) 2016-11-29 2018-06-07 ソニー株式会社 情報処理装置、情報処理方法、プログラム及び観察システム
JPWO2019131626A1 (ja) * 2017-12-28 2020-12-10 オリンパス株式会社 細胞培養制御方法、細胞培養制御装置、細胞培養装置および細胞培養システム

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006003653A (ja) * 2004-06-17 2006-01-05 Olympus Corp 生体試料観察システム
JP2007503323A (ja) * 2003-05-20 2007-02-22 フルイディグム コーポレイション ,マイクロ流体素子およびこれを撮像するための方法および装置
WO2010128670A1 (ja) * 2009-05-08 2010-11-11 株式会社ニコン フォーカス制御装置および培養観察装置
JP2012039929A (ja) * 2010-08-19 2012-03-01 Nikon Corp 受精卵観察の画像処理方法、画像処理プログラム及び画像処理装置、並びに受精卵の製造方法
JP2014090692A (ja) * 2012-11-02 2014-05-19 Dainippon Printing Co Ltd 細胞培養容器および細胞観察方法
JP2015166829A (ja) * 2014-03-04 2015-09-24 富士フイルム株式会社 細胞撮像制御装置および方法並びにプログラム
JP2015194544A (ja) * 2014-03-31 2015-11-05 富士フイルム株式会社 細胞撮像制御装置および方法並びにプログラム
JP2016512959A (ja) * 2013-03-01 2016-05-12 ジェネア・リミテッド 培養サンプル発達モニタリングのための装置、方法およびシステム
JP2016096747A (ja) 2014-11-19 2016-05-30 大日本印刷株式会社 画像処理装置、画像処理プログラム及び画像処理方法、並びに観察対象物の収納容器
JP2016149998A (ja) * 2015-02-19 2016-08-22 大日本印刷株式会社 識別装置、識別方法、プログラム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6993170B2 (en) * 1999-06-23 2006-01-31 Icoria, Inc. Method for quantitative analysis of blood vessel structure
JP2009152827A (ja) * 2007-12-20 2009-07-09 Nikon Corp タイムラプス画像の画像処理方法、画像処理プログラム及び画像処理装置
JP4724854B2 (ja) * 2009-02-09 2011-07-13 大日本印刷株式会社 細胞培養容器
JP6595156B2 (ja) * 2014-03-04 2019-10-23 富士フイルム株式会社 細胞画像取得装置および方法並びにプログラム
US20190162712A1 (en) * 2016-06-21 2019-05-30 Sony Corporation Information processing apparatus, information processing method, and program
JP2018022216A (ja) * 2016-08-01 2018-02-08 ソニー株式会社 情報処理装置、情報処理方法、及びプログラム
WO2018100917A1 (ja) * 2016-11-30 2018-06-07 ソニー株式会社 情報処理装置、観察システム、情報処理方法及びプログラム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007503323A (ja) * 2003-05-20 2007-02-22 フルイディグム コーポレイション ,マイクロ流体素子およびこれを撮像するための方法および装置
JP2006003653A (ja) * 2004-06-17 2006-01-05 Olympus Corp 生体試料観察システム
WO2010128670A1 (ja) * 2009-05-08 2010-11-11 株式会社ニコン フォーカス制御装置および培養観察装置
JP2012039929A (ja) * 2010-08-19 2012-03-01 Nikon Corp 受精卵観察の画像処理方法、画像処理プログラム及び画像処理装置、並びに受精卵の製造方法
JP2014090692A (ja) * 2012-11-02 2014-05-19 Dainippon Printing Co Ltd 細胞培養容器および細胞観察方法
JP2016512959A (ja) * 2013-03-01 2016-05-12 ジェネア・リミテッド 培養サンプル発達モニタリングのための装置、方法およびシステム
JP2015166829A (ja) * 2014-03-04 2015-09-24 富士フイルム株式会社 細胞撮像制御装置および方法並びにプログラム
JP2015194544A (ja) * 2014-03-31 2015-11-05 富士フイルム株式会社 細胞撮像制御装置および方法並びにプログラム
JP2016096747A (ja) 2014-11-19 2016-05-30 大日本印刷株式会社 画像処理装置、画像処理プログラム及び画像処理方法、並びに観察対象物の収納容器
JP2016149998A (ja) * 2015-02-19 2016-08-22 大日本印刷株式会社 識別装置、識別方法、プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3480291A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021157153A (ja) * 2020-03-30 2021-10-07 澁谷工業株式会社 細胞観察装置及び細胞観察方法
JP7502606B2 (ja) 2020-03-30 2024-06-19 澁谷工業株式会社 細胞観察装置及び細胞観察方法

Also Published As

Publication number Publication date
AU2017287141A1 (en) 2019-01-17
US20190331905A1 (en) 2019-10-31
EP3480291A1 (en) 2019-05-08
CN109415676A (zh) 2019-03-01
EP3480291A4 (en) 2019-07-03
JPWO2018003340A1 (ja) 2019-04-25
AU2017287141B2 (en) 2020-06-18

Similar Documents

Publication Publication Date Title
WO2018003340A1 (ja) 画像取得方法、画像取得装置、プログラム及び培養容器
US9189677B2 (en) Recording medium having observation program recorded therein and observation apparatus
JP6595156B2 (ja) 細胞画像取得装置および方法並びにプログラム
WO2012115153A1 (ja) 細胞評価方法、細胞培養方法、細胞評価装置、インキュベータ、細胞評価プログラム、コロニー分類プログラム、幹細胞の培養方法、幹細胞評価装置および幹細胞評価プログラム
CN103642688A (zh) 用于监测和/或培养显微对象的设备、系统和方法
EP2781591A1 (en) A tray, a system and a method for monitoring and culturing of a cell culture
MX2013014806A (es) Dispositivo de exploracion para explorar epecimienes de planta.
CN106133503B (zh) 球状体评价方法以及球状体评价装置
JP5876453B2 (ja) 培養品質評価方法
JP2022190082A (ja) 細胞コロニー採集システム
JP6173950B2 (ja) 細胞撮像制御装置および方法並びにプログラム
JP5516108B2 (ja) 観察装置、観察方法、及びプログラム
CN105828051A (zh) 一种小型昆虫行为实时监控系统及其应用
KR20150137047A (ko) 동물플랑크톤 계수용 시스템 및 방법
WO2018100917A1 (ja) 情報処理装置、観察システム、情報処理方法及びプログラム
US20150329814A1 (en) Apparatus for long-term uninterrupted safe culturing of embryos, biological specimens in a controlled environment having improved imaging capabilities
JPWO2018230178A1 (ja) 情報処理装置、情報処理システム、情報処理方法及びプログラム
JP2012039929A (ja) 受精卵観察の画像処理方法、画像処理プログラム及び画像処理装置、並びに受精卵の製造方法
US11921102B2 (en) Compact optical imaging system for cell culture monitoring
US20240169523A1 (en) Cell counting method, machine learning model construction method and recording medium
US20220318575A1 (en) System for determining the effect of active ingredients on acariformes, insects and other organisms in an assay plate containing wells
EP4211654A1 (en) Method and device for determining a value of a camera parameter
WO2016088243A1 (ja) 判定装置、観察システム、観察方法、そのプログラム、細胞の製造方法、および細胞
CN205647827U (zh) 一种小型昆虫行为实时监控系统
US20220267703A1 (en) Device for observing a living cell or a set of living cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17819707

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018524955

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017287141

Country of ref document: AU

Date of ref document: 20170519

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017819707

Country of ref document: EP

Effective date: 20190201