WO2018230178A1 - 情報処理装置、情報処理システム、情報処理方法及びプログラム - Google Patents

情報処理装置、情報処理システム、情報処理方法及びプログラム Download PDF

Info

Publication number
WO2018230178A1
WO2018230178A1 PCT/JP2018/017004 JP2018017004W WO2018230178A1 WO 2018230178 A1 WO2018230178 A1 WO 2018230178A1 JP 2018017004 W JP2018017004 W JP 2018017004W WO 2018230178 A1 WO2018230178 A1 WO 2018230178A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
fertilized egg
unit
evaluation
information processing
Prior art date
Application number
PCT/JP2018/017004
Other languages
English (en)
French (fr)
Inventor
篠田 昌孝
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to EP18816577.3A priority Critical patent/EP3640319A4/en
Priority to BR112019025849-3A priority patent/BR112019025849A2/pt
Priority to JP2019525186A priority patent/JP7215416B2/ja
Priority to US16/619,988 priority patent/US20200110922A1/en
Publication of WO2018230178A1 publication Critical patent/WO2018230178A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • G06V20/693Acquisition
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/06Bioreactors or fermenters specially adapted for specific uses for in vitro fertilization
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/46Means for regulation, monitoring, measurement or control, e.g. flow regulation of cellular or enzymatic activity or functionality, e.g. cell viability
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0681Cells of the genital tract; Non-germinal cells from gonads
    • C12N5/0682Cells of the female genital tract, e.g. endometrium; Non-germinal cells from ovaries, e.g. ovarian follicle cells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/20ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30024Cell structures in vitro; Tissue sections in vitro
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30044Fetus; Embryo

Definitions

  • the present technology relates to an information processing apparatus, an information processing system, an information processing method, and a program used for observing cultured cells.
  • the shape of the fertilized egg after the blastocyst is structurally asymmetric, and the appearance of the fertilized egg varies greatly depending on the observation angle. Therefore, sufficient evaluation cannot be performed only with images taken from one observation angle.
  • An object of the present technology is to provide an information processing apparatus, an information processing system, an information processing method, and a program suitable for evaluating a fertilized egg with high accuracy.
  • an information processing apparatus includes a storage unit, an image acquisition unit, and an evaluation unit.
  • the storage unit stores in advance a plurality of first images obtained by rotating and imaging comparative cells.
  • the image acquisition unit acquires a plurality of second images obtained by rotating and imaging the cells to be evaluated.
  • the evaluation unit evaluates the cell to be evaluated based on a comparison result between the first image and the second image.
  • the comparative cells are rotated and imaged, a plurality of fertilized egg images (first images) captured from different observation angles are stored in the storage unit.
  • a plurality of fertilized egg images (second images) captured from different observation angles can be obtained. Since a plurality of first images and second images captured from all these observation angles are compared to evaluate cells to be evaluated, highly accurate evaluation can be performed.
  • the evaluation unit evaluates the cell to be evaluated based on a comparison result between the first feature amount extracted from the first image and the second feature amount extracted from the second image. Also good.
  • the feature amount is information of a characteristic part of the image. For example, the size, shape, sphericity, blast number (rate) of the fertilized egg, the shape and balance of each blastomere, fragmentation, the size and shape of the ICM ICM cell number, cell density, etc.
  • the storage unit stores an evaluation result for the first image associated with the first image, compares the first image with the second image, and compares the first image with the first image.
  • a determination unit that determines whether or not the second image matches, and the determination unit determines that the first image and the second image match each other when the first image and the second image match.
  • a granting unit that gives the evaluation result associated with the first image determined to be coincident to the second image, and the evaluation unit gives each of the plurality of second images.
  • the evaluation result that is given the most may be used as the evaluation for the cells to be evaluated.
  • the evaluation result associated with the first image that matches the second image is set as the evaluation result of the second image, and the largest number of evaluation results given to each of the plurality of second images is given.
  • the evaluated result can be used as an evaluation for the cell to be evaluated.
  • the evaluation result for the first image which is an image of a fertilized egg for comparison, is a finding by an evaluator such as a culture person, for example, and is an evaluation result of the growth stage or quality evaluation result of the fertilized egg determined by the evaluator. is there. Therefore, the evaluation of the fertilized egg to be evaluated can be performed accurately and easily without the presence of an evaluator. Moreover, since evaluation can be performed without the presence of an evaluator, it is effective for evaluating a large amount of fertilized eggs.
  • a calculation unit that calculates a ratio of an evaluation result that is given most among evaluation results given to each of the plurality of second images, and whether or not the numerical value of the ratio calculated by the calculation unit is stable
  • a determination control unit that controls the determination unit to compare the first image and the second image until it is determined that the numerical value of the ratio is stable.
  • the comparison process of the first image and the second image is performed until the numerical value of the ratio of the most frequently given evaluation result among the evaluation results given to each of the plurality of second images is stabilized. Highly accurate evaluation can be performed.
  • a rotation control unit that controls a rotation mechanism that rotates the cells may be further included.
  • the rotation control unit may control the rotation mechanism so as to rotate the evaluation target cell when the determination control unit determines that the numerical value of the ratio is stable.
  • the evaluation unit may evaluate the growth stage of the cell to be evaluated.
  • the evaluation unit may evaluate the quality of the cell to be evaluated. In this way, the cell growth stage and quality can be evaluated.
  • An information processing system includes a culture vessel, an imaging unit, an image acquisition unit, a rotation mechanism, a storage unit, an image acquisition unit, and an evaluation unit.
  • the culture container has a plurality of accommodating portions in which cells are accommodated.
  • the imaging unit images the cell.
  • the said image acquisition part acquires the image of the said cell imaged by the said imaging part.
  • the rotation mechanism rotates the cells in the accommodating portion.
  • storage part preserve
  • the image acquisition unit acquires a plurality of second images obtained by imaging the cells to be evaluated rotated by the rotation mechanism by the imaging unit.
  • the evaluation unit evaluates the cell to be evaluated based on a comparison result between the first image and the second image.
  • An information processing method rotates and images a cell to be evaluated to acquire a plurality of second images, rotates and images a comparative cell, and acquires a plurality of first images acquired in advance.
  • the second images are compared, and the cells to be evaluated are evaluated based on the comparison result.
  • the program according to the present technology includes a step of rotating and imaging a cell to be evaluated to obtain a plurality of second images, a plurality of first images obtained by rotating and imaging a comparative cell and acquired in advance,
  • the computer is caused to execute a step of comparing the second image and a step of evaluating the cell to be evaluated based on the comparison result.
  • FIG. 5 is a schematic diagram showing a configuration of an observation system according to first to fourth embodiments. It is a block diagram which shows the observation system shown in FIG.
  • FIG. 6 is a schematic plan view of a rotating device that constitutes a part of the observation system shown in FIG. 5.
  • FIG. 6 is a schematic view of the vicinity of a rotating device that constitutes a part of the observation system shown in FIG. 5.
  • FIG. 6 is a diagram for explaining the drive timing of the vibration element provided in the rotating device when creating the learning database of the observation system shown in FIG. 5 and when evaluating the fertilized egg. It is a figure explaining an example of the rotation pattern of the fertilized egg rotated by the rotation apparatus of the observation system shown in FIG. FIG.
  • FIG. 6 is a diagram for explaining another example of driving timings of the observation illumination device, the camera, and the rotation device when acquiring an image of a fertilized egg when creating the learning database of the observation system shown in FIG. 5. It is a flowchart explaining the evaluation method of the fertilized egg of evaluation object using the observation system shown in FIG. It is a figure explaining the drive timing of the observation illumination apparatus at the time of image acquisition of the fertilized egg of the evaluation object using the observation system shown in FIG. 5, a camera, and a rotation apparatus. It is a flowchart explaining the detail of the step of the comparison in the flowchart of FIG. 14, determination, and provision.
  • FIG. 1 is a plan view of a culture vessel (dish).
  • FIG. 2 is a partially enlarged plan view of the culture vessel.
  • FIG. 5 is a schematic diagram illustrating a state in which the culture container is accommodated in the observation apparatus.
  • the culture vessel 1 is configured to be able to accommodate the culture solution 18 and the cells 16 and is light-transmitting to the extent that the cells 16 can be imaged from the outside.
  • the number of culture vessels 1 and cells 16 that can be imaged simultaneously is not limited.
  • the cell 16 to be cultured will be described by taking a living organism in the field of animal husbandry and the like, for example, a fertilized egg of a cow as an example (hereinafter referred to as a fertilized egg 16 using the same reference numerals).
  • the cells to be cultured include biological samples taken from living organisms such as stem cells, immune cells, cancer cells, etc. in the field of regenerative medicine, etc., and a growth stage having a shape with high structural asymmetry This technique is effective for cells that require three-dimensional images.
  • the “cell” at least conceptually includes a single cell and an aggregate of a plurality of cells.
  • a single cell or a collection of cells can be an oocyte, egg (egg or ovum), fertilized egg (fertile ovum or zygote), undifferentiated germ cell (blastocyst), embryo (embryo) ) Including (but not limited to) cells observed at one or more stages of the fertilized egg growth process.
  • the culture vessel 1 has a bottom portion 19, an outer wall 11, an inner wall 12, a storage portion 15, and a cell placement convex portion 13.
  • inorganic materials such as metal, glass, silicon, polystyrene resin, polyethylene resin, polypropylene resin, ABS resin, nylon, acrylic resin, fluororesin, polycarbonate resin, polyurethane resin, methylpentene resin, phenol resin
  • organic material such as a melamine resin, an epoxy resin, or a vinyl chloride resin.
  • a transparent culture vessel 1 made of polystyrene resin is used.
  • the case where 36 accommodating portions 15 are arranged in one culture vessel 1 is illustrated as an example, but the number of accommodating portions 15 is not limited thereto. In FIG. 5, the number of accommodating portions 15 of the culture vessel 1 is different from the number of accommodating portions 15 of the culture vessel 1 in FIG.
  • a plurality of storage units 15 are provided, and each storage unit 15 can hold a single cell, here a fertilized egg 16, while being held in a fixed position.
  • liquid is stored in each storage unit 15.
  • “Liquid” is typically a culture solution suitable for culturing cells, and will be described below as a culture solution.
  • a culture solution 18 for culturing the fertilized egg 16 is injected into a region surrounded by the accommodating portion 15 and the inner wall 12. Further, in order to prevent the culture solution 18 from evaporating, oil 17 is injected into the region surrounded by the inner wall 12 so as to cover the culture solution 18.
  • the bottom portion 19 has a circular planar shape, for example.
  • the outer wall 11 and the inner wall 12 are formed concentrically, and the height of the inner wall 12 is lower than the height of the outer wall 11.
  • the cell placement convex portion 13 is disposed at the center of the bottom portion 19 in a region surrounded by the inner wall 12 with a gap from the inner wall 12.
  • the cell placement convex portion 13 has a rectangular planar shape.
  • 36 accommodating portions 15 are arranged in a matrix.
  • the planar shape of the accommodating part 15 has a rectangle, it is not limited to this and may be a circle.
  • FIG. 3 shows the general growth stage of the fertilized egg 16 from day 1 to day 10 after fertilization.
  • FIG. 3A shows a 1-cell fertilized egg 1601 on the first day on which fertilization is confirmed.
  • a two-cell fertilized egg 1602 is obtained by dividing into two as shown in FIG.
  • the fertilized egg 16 becomes a 4-cell stage fertilized egg 1603 in order on the third day of fertilization, as shown in FIGS. 3 (c), 3 (d), and 3 (e).
  • the number of cells increases, such as a fertilized egg 1604 at the 8-cell stage on the fourth day of fertilization and a fertilized egg 1605 at the 16-cell stage on the fifth day of fertilization.
  • the cells are brought into close contact with each other, becoming an early morula 1606 on the 5th to 6th days of fertilization as shown in FIG. 3 (f), and as shown in FIG. 3 (g) on the 6th day of fertilization with the morula embryo 1607.
  • a gap is formed in the cytoplasm, forming a blastocoel, and becomes an early blastocyst 1608 as shown in FIG. 3 (h) on the seventh day of fertilization.
  • a complete blastocyst 1609 is obtained as shown in FIG. 3 (i).
  • the inner cell mass 161 Inner Cell Mass, hereinafter referred to as ICM
  • the trophectoderm 162 Trophectoderm, hereinafter referred to as TE
  • the transparent body 163 that forms the outline of the fertilized egg is recognized.
  • the transparent body 163 is thinned, and the fertilized egg becomes an expanded blastocyst 1610 on the 8th to 9th days of fertilization, and on the 9th day of fertilization, the blastocyst escapes from the transparent body and the blastocyst 1611 is fertilized. On day 9-10, the expanded escape blastocyst 1612 is obtained.
  • the fertilized egg 16 has relatively high structural symmetry from fertilization to the growth stage of the morula 1607, and its appearance does not change greatly depending on the observation angle.
  • the fertilized egg 16 in the growth stage of the 2-cell stage and the 4-cell stage differs in appearance depending on the observation angle, but in these cell stages, the number of blastomeres is small. The state of is relatively easy to understand.
  • FIG. 4 is a schematic view of an image obtained by imaging the fertilized egg 16 in the growth stage after the complete blastocyst 1609 from a plurality of angles.
  • FIG. 4A shows an image obtained by imaging the fertilized egg 16 from the front or the back surface when the ICM 161 is located at the front center of the fertilized egg 16. As shown in FIG. 4A, an image in which a substantially circular ICM 161 is located at the center of the fertilized egg 16 is obtained.
  • FIG. 4D shows an image obtained by imaging the fertilized egg 16 from the lateral direction. As shown in FIG. 4D, an image in which an ICM 161 having a substantially inferior arc shape is located at the end in the fertilized egg 16 is obtained.
  • the ICM 161 is an image located in the shape of a substantially ellipse at the end in the fertilized egg 16.
  • the information processing system of the present technology is particularly effective for evaluating a fertilized egg at a growth stage in which the appearance of the fertilized egg varies greatly depending on the observation direction, and can perform highly accurate evaluation.
  • an observation system as an information processing system of the present technology will be described.
  • observation system as an information processing system according to the present technology
  • data of a plurality of first images picked up by rotating fertilized eggs for comparison at all growth stages are stored in advance in a learning database as a storage unit as learning data.
  • a plurality of second images obtained by rotating the fertilized egg to be evaluated using the observation system in which the learning database is created are acquired.
  • the information on the second image and the information on the first image stored in the learning database are compared, and the fertilized egg to be evaluated is evaluated.
  • an image of a fertilized egg for comparison, which is learning data is referred to as a first image
  • an image of a fertilized egg to be evaluated is referred to as a second image
  • a feature amount extracted from the first image is referred to as a first feature amount
  • a feature amount extracted from the second image is referred to as a second feature amount.
  • an observation system having a learning database in which learning data is stored is referred to as an observation system at the time of evaluation as necessary, and is distinguished from an observation system at the time of creating a learning database.
  • the observation system includes a rotation mechanism that rotates a fertilized egg for comparison and a fertilized egg to be evaluated.
  • image data obtained by rotating the fertilized egg at each growth stage is acquired as learning data and stored in the learning database.
  • the learning data stored in the learning database is data for comparison when evaluating a fertilized egg to be evaluated.
  • the image of the fertilized egg (first image) serving as learning data can be obtained by rotating the fertilized egg by a rotation mechanism and being imaged by a camera as an imaging unit.
  • An image of a fertilized egg imaged from a plurality of observation directions is acquired by rotating and imaging the fertilized egg.
  • the learning data includes a first image of a plurality of fertilized eggs acquired by imaging from a plurality of observation directions within a certain image acquisition period, a first feature amount, a growth stage code, and a quality of the fertilized egg. It is configured by associating ranks and the like.
  • the feature amount is information of a characteristic part of the image. For example, the size, shape, sphericity, blast number (rate) of the fertilized egg, the shape and balance of each blastomere, fragmentation, the size and shape of the ICM ICM cell number, cell density, etc.
  • the growth stage code and the quality rank are observations made by an evaluator, such as a culture technician, on an image of a fertilized egg and performed on the fertilized egg, and are an evaluation result given to the fertilized egg to be observed by the evaluator.
  • the growth stage code represents the growth stage of the fertilized egg
  • the quality rank represents the quality of the fertilized egg.
  • the growth stage refers to the 1-cell stage, 2-cell stage, 4-cell stage, 8-cell stage, 16-cell stage, early morula, morula, early blastocyst, complete blastocyst, Extended blastocyst, escaped blastocyst, and extended escape blastocyst.
  • the growth stage of the 1 cell stage 1601 is the growth stage code 1
  • the growth stage from the 1 cell stage 1602 to the 16 cell stage 1605 is the growth stage code 2
  • the growth stage of the early morula 1606 is the growth stage code 3
  • the morula is 1607 is the growth stage code 4
  • the growth stage code 5 is the growth stage of the initial blastocyst 1608
  • the growth stage code 6 is the growth stage of the complete blastocyst 1609
  • the growth stage code is the growth stage of the expanded blastocyst 1610 7.
  • the growth stage code 8 is the growth stage of the escaped blastocyst 1611
  • the growth stage code 9 is the growth stage of the extended escape blastocyst 1612.
  • the growth stage is expressed and stored as a growth stage code.
  • Quality rank is the quality evaluation result of the fertilized egg made by the evaluator.
  • the evaluation criteria for quality evaluation differ depending on the stage of growth of the fertilized egg. For example, in the 4-8 cell stage, it is classified into three ranks A to C based on evaluation criteria such as the number of splits (rate) of fertilized eggs, the shape and balance of blastomeres, and the ratio of fragmentation. In the blastocyst stage, the number of ICM cells, the cell density of ICM, etc. are classified into three ranks A to C based on evaluation criteria. In the learning database, the quality is expressed and stored in quality ranks A to C.
  • Evaluation of fertilized eggs to be evaluated is performed using learning data stored in the learning database of the observation system at the time of evaluation.
  • the observation system a plurality of fertilized egg images (second images) obtained by rotating the fertilized egg to be evaluated and picked up from a plurality of observation directions are acquired.
  • the acquired second image is compared with the first image.
  • the evaluation result associated with the first image determined to match the second image is the match determination. It is given to the used second image.
  • the evaluation results include a growth stage code (growth stage) and a quality rank (quality).
  • the evaluation result given most among the evaluation results assigned to each of the plurality of second images is the evaluation for the fertilized egg to be evaluated.
  • Images of a plurality of fertilized eggs to be evaluated (second images) imaged from a plurality of observation directions within a certain image acquisition period, position information of a storage unit in which the fertilized eggs are stored, imaging date and time, The imaging conditions, the second feature amount, the evaluation result of the fertilized egg to be evaluated, and the like are associated with each other and stored in an analysis result database as a storage unit of the observation system.
  • FIG. 5 is a schematic diagram showing an observation system.
  • FIG. 6 is a block diagram showing the configuration of the observation system.
  • the observation system includes one or a plurality of culture containers 1 placed on a dish holder. It may be configured to be able to observe a large number of fertilized eggs at a time by placing them individually in an observation system.
  • the observation system 2 includes an observation device 21, an information processing device 22, a display device 23, an input device 29, and a rotation device 340.
  • the rotation device 340 as a rotation mechanism includes an eccentric rotation motor (reference numerals 311 to 313 and 321 to 323 shown in FIG. 7) and a control device 341 as a plurality of vibrators.
  • the control device 341 receives a signal from a rotation control unit 228, which will be described later, and controls the driving of each eccentric rotation motor.
  • Rotating device 340 emits vibration and applies vibration to culture vessel 1.
  • the rotation device 340 is disposed in the observation device 21. Details of the rotating device 340 will be described later.
  • the observation device 21 accommodates the culture container 1 in which the fertilized egg 16 is accommodated, and observes the fertilized egg 16.
  • the culture container 1 is held horizontally in the observation apparatus 21, and each fertilized egg 16 is accommodated in each accommodation portion 15 of the culture container 1.
  • an observation illumination apparatus 24, a camera 25, a temperature / humidity / gas control unit 26, and a stage 27 are arranged.
  • the observation illumination device 24 emits light that irradiates the culture container 1 when the fertilized egg 16 in the culture container 1 is imaged by the camera 25.
  • the timing of lighting (on) and non-lighting (off) of the light of the observation illumination device 24 is controlled based on an imaging trigger signal from an imaging control unit 226 of the information processing device 22 described later.
  • a camera 25 (hereinafter referred to as the camera 25 using the same reference numeral) as an imaging unit is a visible light camera including an image sensor such as a CMOS (Complementary Metal-Oxide Semiconductor) sensor or a CCD (Charge Coupled Device) sensor. Consists of. An infrared (IR) camera, a change camera, or the like may be used instead of or in addition to the visible light camera.
  • CMOS Complementary Metal-Oxide Semiconductor
  • CCD Charge Coupled Device
  • the camera 25 images the fertilized egg 16 in the culture vessel 1 and is arranged in the observation device 21.
  • the camera 25 includes a lens barrel including a lens group movable in the optical axis direction (Z-axis direction), a CMOS (Complementary Metal Oxide Semiconductor), a CCD (Charge Coupled Device), and the like that captures subject light passing through the lens barrel. It has a solid-state image sensor as an image sensor and a drive circuit for driving them.
  • the camera 25 may be installed in the culture vessel 1 so as to be movable in the Z-axis direction and the horizontal plane direction (XY plane direction) in the drawing.
  • the camera 25 may be configured to capture not only a still image but also a continuous image (video).
  • the number of times of imaging, the timing of imaging, and the like are controlled by an imaging control unit 226 of the information processing apparatus 22 described later.
  • the temperature / humidity / gas control unit 26 controls the temperature / humidity / gas in the observation apparatus 21 and creates an environment suitable for culturing the fertilized egg 16.
  • the gas include nitrogen, oxygen, and carbon dioxide.
  • the input device 29 is connected to the information processing device 22 and is an operation device for inputting a user operation.
  • the input device 29 for example, a trackball, a touch pad, a mouse, a keyboard, or the like can be used.
  • the display device 23 outputs an image like a display.
  • the display device 23 displays information such as an image of the fertilized egg 16, position information of the storage unit in which the fertilized egg 16 is stored, imaging date and time, growth stage (growth stage code), quality (quality rank), and the like. is there.
  • the information processing apparatus 22 includes an image acquisition unit 222, a feature amount extraction unit 230, a determination unit 231, a grant unit 232, an evaluation unit 223, a storage unit 224, and a display control unit 225.
  • the information processing device 22 controls the operation of each block in the observation system 2.
  • the information processing apparatus 22 has hardware necessary for the configuration of the computer, such as a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), HDD (Hard Disk Drive), and the like.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • HDD Hard Disk Drive
  • PC Personal Computer
  • any other computer may be used.
  • the unit 226, the calculation unit 227, the rotation control unit 228, and the determination control unit 229 load a program stored in a ROM, which is an example of a non-transitory computer-readable recording medium, into the RAM. It is realized by executing. And the image acquisition method which concerns on this technique is performed by these functional blocks.
  • the program is installed in the information processing apparatus 22 via various storage media, for example. Alternatively, the program may be installed via the Internet or the like.
  • the image acquisition unit 222 acquires image information of a fertilized egg imaged by the camera 25 from the camera 25. By fixing the imaging angle and imaging a plurality of times while rotating the fertilized egg 16, images of the fertilized egg 16 captured from a plurality of different angles can be acquired.
  • a plurality of images are acquired while the fertilized egg 16 is rotated, but the rotated fertilized eggs 16 may be acquired as a moving image, and an arbitrary plurality of images may be extracted from the acquired moving image. .
  • Both the first image and the second image are acquired by imaging the fertilized egg 16 rotated by the rotating device 340 with the camera 25.
  • the feature amount extraction unit 230 extracts the feature amount of the fertilized egg based on the fertilized egg image acquired by the image acquisition unit 222.
  • the feature amount is information of a characteristic part of the image. For example, the size, shape, sphericity, blast number (rate) of the fertilized egg, the shape and balance of each blastomere, fragmentation, the size and shape of the ICM ICM cell number, cell density, etc.
  • the storage unit 224 includes a learning database 2241 and an analysis result database 2242.
  • the learning database 2241 stores various data such as a first image of a fertilized egg for comparison and a first feature amount as learning data.
  • the analysis result database 2242 stores various data such as the second image and the second feature amount of the fertilized egg to be evaluated.
  • a fertilized egg to be evaluated is evaluated using learning data stored in the learning database 2241.
  • the learning database 2241 as a storage unit extracts the first image obtained by rotating one fertilized egg imaged within a certain image acquisition period and the feature amount extraction. Data in which the first feature value extracted by the unit 230 is associated with the quality rank, the growth stage code, and the like is stored.
  • the learning database 2241 stores fertilized egg data at any growth stage from the 1-cell stage to the expanded escape blastocyst.
  • the analysis result database 2242 as a storage unit includes a plurality of second images obtained by rotating and imaging one fertilized egg to be evaluated within a certain image acquisition period.
  • the evaluation unit 223 evaluates the position information of the storage unit 15 in which the fertilized egg 16 to be evaluated, the imaging date and time, the imaging condition, the second feature amount extracted by the feature amount extraction unit 230, and the evaluation unit 223. Data associated with the growth stage code and quality rank. These data are stored in the analysis result database 2242 in time series for each storage unit 15.
  • the determination unit 231 compares the first image stored in advance in the learning database 2241 of the storage unit 224 with the second image of the fertilized egg to be evaluated. It is determined whether the image and the second image match.
  • the determination unit 231 compares the first feature amount extracted based on the first image with the second feature amount extracted based on the second image, and performs evaluation. It is determined whether or not the second image that is the image of the target fertilized egg 16 matches the first image. The determination result is input to the assigning unit 232.
  • the granting unit 232 gives a growth stage code and a quality rank to the fertilized egg 16 for evaluation based on the determination result of the determining unit 231 in the observation system 2 at the time of evaluation.
  • the adding unit 232 corresponds to the first image determined to match the second image with respect to the second image.
  • a growth stage code (growth stage) and a quality rank (quality evaluation result), which are attached evaluation results, are assigned to the second image.
  • One growth stage code and one quality rank are assigned to one second image.
  • the result given by the grant unit 232 is output to the calculation unit 227.
  • the calculation unit 227 selects each growth stage code from among all the growth stage codes assigned to each of the plurality of second images based on the result given by the grant unit 232. Calculate the share.
  • the calculation result calculated by the calculation unit 227 is output to the evaluation unit 223.
  • the calculation unit 227 calculates the ratio of each quality rank among the quality ranks assigned to each of the plurality of second images based on the result given by the grant unit 232 in the observation system 2 at the time of evaluation. Is calculated.
  • the calculation result calculated by the calculation unit 227 is output to the evaluation unit 223.
  • the evaluation unit 223 uses the growth stage code (growth stage) assigned to each of the plurality of second images of the fertilized egg 16 to be evaluated based on the input calculation result in the observation system 2 at the time of evaluation. It is evaluated that the growth stage code (growth stage) given the most is the growth stage code (growth stage) of the fertilized egg 16 for evaluation.
  • the evaluation unit 223 assigns the highest quality rank among the quality ranks assigned to each of the plurality of second images of the fertilized egg 16 to be evaluated based on the input calculation result in the observation system 2 at the time of evaluation.
  • the determined quality rank is evaluated as the quality rank of the fertilized egg 16 for evaluation.
  • the evaluation unit 223 uses either the growth stage or quality of the fertilized egg 16. It is good also as a structure which evaluates one side.
  • the display control unit 225 causes the display device 23 to display the first image of the fertilized egg 16, an evaluation input field that can be input by the evaluator, and the like.
  • the display control unit 225 acquires the display device 23 by rotating the position information of the storage unit in which the fertilized egg 16 to be evaluated is stored and the fertilized egg 16 to be evaluated.
  • a plurality of second images and a growth stage code (growth stage) or a quality rank (quality evaluation result) evaluated by the evaluation unit 223 are displayed.
  • the imaging control unit 226 outputs a control signal for controlling the number of times of imaging of the fertilized egg 16 and the timing of imaging to the camera 25.
  • the imaging control unit 226 generates an imaging trigger signal that performs imaging at predetermined time intervals. It may be controlled such that the number of images of a fertilized egg at a growth stage with high structural symmetry is reduced and the number of images of a fertilized egg at a growth stage with high structural asymmetry is increased.
  • the rotation control unit 228 outputs a control signal for controlling the drive / stop timing and applied voltage of each of the plurality of eccentric rotation motors provided in the rotation device 340 to be described later to the control device 341. Thereby, the presence / absence and timing of vibration applied to the culture vessel 1 and the direction and intensity of vibration are controlled.
  • Vibration is applied to the culture vessel 1 by driving an eccentric rotation motor provided in the rotation device 340. By applying this vibration, the fertilized egg 16 accommodated in the culture vessel 1 rotates.
  • the fertilized egg 16 can be rotated in a desired direction and rotation amount by adjusting the drive / stop timing and applied voltage of each eccentric rotation motor.
  • the rotation control unit 228 controls the drive / stop timing of the rotation device 340 based on the imaging trigger signal from the imaging control unit 226.
  • the rotation control unit 228 can control the rotation direction and the rotation amount of the fertilized egg 16 by controlling the drive / stop timing of each eccentric rotation motor and the applied voltage.
  • the shape and position of the ICM in the fertilized egg 16 differ depending on the observation angle.
  • the rotation direction and amount of the fertilized egg are controlled so that the position and shape of the ICM become a desired position and shape by adjusting the drive / stop timing of each eccentric rotation motor and the applied voltage. can do. Control of the direction and amount of rotation of the fertilized egg is performed as follows.
  • the rotation control unit 228 detects the shape and position of the ICM 161 by image recognition such as edge detection based on the image of the fertilized egg 16 taken immediately before the fertilized egg 16 is rotated. Based on this, the rotation control unit 228 calculates the rotation direction and the rotation amount of the fertilized egg 16 so that, for example, the ICM 161 shown in FIG. 4A can acquire an image located at the center of the fertilized egg 16.
  • the rotation control unit 228 generates a control signal based on the calculation result and transmits the control signal to the control device 341.
  • the controller 341 controls the driving of each eccentric rotation motor of the rotating device 340, and the fertilized egg 16 rotates. Thereby, an image in which the ICM is located in the center can be acquired.
  • the rotation direction and amount of rotation of the fertilized egg 16 are calculated so that an image of the fertilized egg having the desired ICM shape and position is obtained.
  • a desired image can be acquired by rotating the fertilized egg 16 based on this.
  • the determination control unit 229 determines the end of the comparison process between the first image and the second image.
  • the determination of the end of the comparison process may be arbitrarily set by the user. For example, the user sets the time, the number of comparisons between the first image and the second image, and the like. Alternatively, the time for determining the end of comparison, the number of comparison sheets, and the like may be set in advance.
  • FIG. 7 is a schematic plan view of the rotating device 340
  • FIG. 8 is a partial schematic diagram of the observation system 2 in the vicinity of the rotating device 340.
  • the rotating device 340 includes eccentric rotating motors 311 to 313 and 321 to 323 as six vibration elements and a control device 341.
  • the vibration element in addition to the eccentric rotation motor, a piezoelectric element or the like may be used.
  • the three eccentric rotation motors 321 to 323 are arranged on the outer bottom surface of the culture vessel 1 at positions where the outer periphery of the culture vessel 1 having a circular outer shape is divided into three equal parts.
  • the three eccentric rotation motors 311 to 313 are arranged on the outer surface of the culture vessel 1 at a position where the outer periphery is divided into three equal parts.
  • the eccentric rotation motor 321 is at an intermediate position between the eccentric rotation motor 311 and the eccentric rotation motor 313, and the eccentric rotation motor 322 is intermediate between the eccentric rotation motor 311 and the eccentric rotation motor 312.
  • the eccentric rotation motor 323 is positioned at an intermediate position between the eccentric rotation motor 312 and the eccentric rotation motor 313.
  • the culture vessel 1 vibrates by controlling the driving of the eccentric rotation motors 311 to 313 and 321 to 323, respectively. By this vibration, the fertilized egg 16 accommodated in the culture vessel 1 rotates.
  • the vibration frequency (the number of rotations of the motor) is controlled, and the strength of the vibration is controlled.
  • the six eccentric rotation motors 311 to 313 and 321 to 32 at different positions, it is possible to give vibration in a desired direction to the culture vessel 1.
  • the culture vessel 1 can be vibrated in desired strength and direction. Thereby, the rotation direction and rotation amount of the fertilized egg 16 are controlled.
  • the culture vessel 1 provided with the rotating device 340 is placed on the stage 27.
  • the fertilized egg 16 accommodated in the culture vessel 1 can be imaged by a camera 25 arranged on the upper part of the stage 27.
  • an observation illumination device 24 is disposed below the stage 27. The observation illumination device 24 irradiates the fertilized egg 16 in the culture container 1 with light.
  • FIG. 9 is a flowchart for creating the learning database 2241.
  • FIG. 10 is a diagram for explaining the driving timings of the observation illumination device, the camera, and the rotation device when an image of a fertilized egg is acquired when creating a learning database.
  • FIG. 11 is a diagram illustrating the drive timing of the eccentric rotation motors 311 to 313 and 321 to 323 provided in the rotation device 340.
  • FIG. 12 is a schematic diagram illustrating how the fertilized egg 16 rotates by driving the rotating device 340.
  • Image acquisition of the fertilized egg 16 for comparison is performed in a state where the culture container 1 containing the fertilized egg 16 is held in the observation device 21.
  • the image acquisition process of the fertilized egg 16 is sequentially performed for each fertilized egg 16 accommodated in each of the plurality of accommodating units 15 of the culture container 1.
  • the image acquisition process for example, 15 minutes is set as one image acquisition period, and data related to a plurality of first images acquired by imaging one fertilized egg 16 in one image acquisition period is stored as one learning data in the database. Saved.
  • the learning data includes the first characteristic amount of the fertilized egg, the growth stage code and the quality rank, which are the findings of the cultivator, etc., and the fertilized egg imaged from a plurality of observation angles acquired within one image acquisition period.
  • the first image is associated with the data.
  • the image acquisition of the fertilized egg 16 is performed continuously for n periods, with one image acquisition period being 15 minutes.
  • one image acquisition period light irradiation by the observation illumination device 24 is repeatedly turned on and off, and light irradiation is intermittently performed on the fertilized egg 16.
  • the time for one image acquisition period is not limited to 15 minutes, and can be set arbitrarily.
  • imaging of the fertilized egg 16 by the camera 25 is performed within a period of light irradiation by the observation illumination device 24.
  • the rotating device 340 is driven when both the observation illumination device 24 and the camera 25 are on. That is, the fertilized egg 16 in a rotating state is imaged by the camera 25.
  • the fertilized eggs 16 can be imaged from a plurality of different observation angles.
  • the timing of driving the eccentric rotation motors 311 to 313 and 321 to 323 of the rotating device 340 that rotates the fertilized egg 16 will be described. As shown in FIG. 11, in the present embodiment, driving of the eccentric rotation motors 311 to 313 arranged on the side surface of the culture vessel 1 and driving of the eccentric rotation motors 321 to 323 arranged on the bottom surface of the culture vessel 1 are alternately performed. To do.
  • the timing of driving the eccentric rotation motors 311 to 313 and the driving of the eccentric rotation motors 321 to 323 are not limited to this.
  • An example of driving conditions of the rotating device 340 and the number of times of imaging by the camera 25 will be given.
  • An eccentric rotation motor having a rated rotation speed of about 4000 rpm is used, only the eccentric rotation motors 321 to 323 are driven, and a DC voltage of 1 V is applied to the eccentric rotation motors 321 to 323.
  • the fertilized egg 16 in the container 15 rotates once in about 1 second.
  • the fertilized egg 16 that rotates once per second is imaged by a camera 25 that can image 30 frames per second. Thereby, the rotation image of 60 pieces of fertilized eggs 16 can be acquired in 2 seconds.
  • this driving condition for example, as shown in FIG. 12 (A), the fertilized eggs 16 in the accommodating portion 15 rotate in substantially the same rotation direction and rotation amount.
  • an eccentric rotation motor having a rated rotation speed of about 4000 rpm is used, only the eccentric rotation motors 311 to 313 are driven, and a DC voltage of 1 V is applied to the eccentric rotation motors 311 to 313.
  • the fertilized egg 16 in the container 15 rotates once in about 1 second.
  • the fertilized eggs 16 in the storage unit 15 rotate in substantially the same rotation direction and rotation amount.
  • the fertilized egg 16 that rotates once per second can be imaged by the camera 25 that can capture 30 frames per second in the same manner as described above to obtain 60 rotated images of the fertilized egg 16 per second. it can.
  • the state which the fertilized egg 16 is rotating is imaged with the camera 25 here, it is not limited to this.
  • the fertilized egg 16 in a stationary state after rotation may be imaged.
  • the image acquisition of the fertilized egg 16 is performed continuously for n periods, with one image acquisition period being 15 minutes.
  • Light irradiation by the observation illumination device 24 is performed repeatedly on and off, and light irradiation is performed intermittently. By intermittently irradiating light in this way, damage to the fertilized egg due to light irradiation can be reduced.
  • the imaging of the fertilized egg 16 by the camera 25 is performed within the period of light irradiation by the observation illumination device 24.
  • the rotating device 340 is driven when both the observation illumination device 24 and the camera 25 are off. That is, after imaging the stationary fertilized egg 16 with the camera 25, the rotation device 340 is driven to rotate the fertilized egg 16, and the stationary fertilized egg 16 after rotation is imaged and rotated. Repeat.
  • FIG. 9 shows processing performed within one image acquisition period.
  • the fertilized eggs 16 for comparison that have been confirmed to be fertilized are placed one by one in the accommodating portion 15 of the culture container 1, and then the culture solution 18 is pipetted into the region surrounded by the accommodating portion 15 and the inner wall 12. To do. Thereafter, oil 17 is injected into a region surrounded by the inner wall 12 so as to cover the culture solution 18.
  • the culture vessel 1 is placed horizontally on the stage 27 in the observation device 21 as shown in FIG.
  • a transparent lid made of the same material as that of the culture vessel 1 may be placed on the culture vessel 1 as necessary.
  • an observation trigger signal is output from the image capturing control unit 226 (S102). Based on the observation trigger signal, the illumination of the observation illumination device 24 is turned on at the timing shown in FIG. 10 (S103), the rotation device 340 is driven (S104), and imaging by the camera 25 is performed (S105).
  • the image acquisition unit 222 acquires the first image of the fertilized egg 16 captured by the camera 25, and the learning database 2241 stores the acquired first image (S106).
  • the image acquisition unit 222 performs image preprocessing on the acquired image of the fertilized egg 16, such as image normalization, adjustment of the position of the fertilized egg 16, shape enhancement filter, and the like, and a recording unit 224 may store the first image on which this preprocessing has been performed.
  • the imaging control unit 226 determines whether or not to end imaging (S107). In the present embodiment, 15 minutes is set as one image acquisition period, and data for the one image acquisition period is stored as one data. Therefore, when 15 minutes have elapsed from the start of image shooting, imaging for one image acquisition period is performed. Is determined to end.
  • the imaging control unit 226 determines no in S107, returns to S103, and repeats steps S103 to S106. If 15 minutes have passed and imaging for one image acquisition period has ended, the imaging control unit 226 determines yes in S107, and proceeds to S108.
  • the feature amount extraction unit 230 acquires the first feature amount of the fertilized egg 16 based on the plurality of first images of the fertilized egg 16 for one image acquisition period acquired by the image acquisition unit 222 and subjected to preprocessing. Is extracted (S108).
  • An evaluator such as a culture person looks at the first image of the plurality of fertilized eggs 16 imaged within one image acquisition period, evaluates the growth stage of the fertilized egg 16, and assigns a growth stage code to the fertilized egg 16. . Furthermore, the evaluator evaluates the quality of the fertilized egg 16 based on the evaluation conditions determined in advance for each growth stage, and assigns a quality rank to the fertilized egg 16. In this manner, the evaluator evaluates the fertilized egg 16 and assigns a growth stage code and a quality rank as findings (S109).
  • the learning database 2241 associates the image of one fertilized egg 16 captured within one image acquisition period, the first feature amount of the fertilized egg 16, the growth stage code, and the quality rank.
  • the learned data is stored (S110).
  • the above steps S101 to S110 are repeated, and images of the fertilized egg 16 for comparison for n periods are acquired with 15 minutes as one image acquisition period. Thereby, an image (first image) obtained from a plurality of observation angles of the fertilized egg 16 for comparison at any growth stage is acquired.
  • the first image of the fertilized egg for comparison captured from a plurality of observation angles captured during each image acquisition period is associated with the feature amount (first feature amount), the growth stage code, and the quality rank of the image.
  • it is stored in the learning database 2241 as learning data.
  • FIG. 14 is a flowchart of an evaluation method using the observation system 2 having the learning database 2241 in which learning data is stored.
  • FIG. 15 is a diagram for explaining the drive timing of the observation illumination device, the camera, and the rotation device when acquiring an image of a fertilized egg using the observation system 2.
  • FIG. 16 is a flowchart showing details of the steps of comparing, determining, and giving a fertilized egg image in the flowchart shown in FIG.
  • the fertilized egg 16 is rotated by rotating the fertilized egg 16 using the rotating device 340 in the same manner as the image acquisition performed at the time of creating the learning database described above.
  • the rotating device 340 By picking up images, images picked up from a plurality of observation angles are acquired.
  • the image acquisition process is performed continuously for n periods, for example, with 15 minutes as one image acquisition period, as in the case of creating the learning database.
  • Light irradiation by the observation illumination device 24 is performed by alternately repeating lighting (on) and non-lighting (off), and light irradiation is performed intermittently.
  • the imaging by the camera 25 and the driving of the rotating device 340 are also alternately turned on and off in accordance with the lighting and non-lighting by the observation illumination device 24.
  • the imaging of the fertilized egg 16 by the camera 25 is performed within the period of light irradiation by the observation illumination device 24.
  • the rotating device 340 is driven when both the observation illumination device 24 and the camera 25 are on. That is, the fertilized egg 16 in a rotating state is imaged by the camera 25.
  • Deep learning analysis of the second image of the fertilized egg 16 to be evaluated acquired by the camera 25 is performed when all of the observation illumination device 24, the camera 25, and the rotation device 340 are off.
  • the deep learning analysis is performed every time the image is captured by the camera 25 and is performed a plurality of times within one image acquisition period.
  • the timing of driving the eccentric rotation motors 311 to 313 and 321 to 323 of the rotating device 340 that rotates the fertilized egg 16 is the same as the driving of the rotating device 340 at the time of creating the learning database described above.
  • the rotating device 340 may be driven when both the observation illumination device 24 and the camera 25 are in an off state, and the fertilized egg 16 in a stationary state after rotation may be photographed.
  • the image acquisition of the fertilized egg 16 is performed continuously for n periods, with one image acquisition period being 15 minutes.
  • Light irradiation by the observation illumination device 24 is performed repeatedly on and off, and light irradiation is performed intermittently.
  • the imaging of the fertilized egg 16 by the camera 25 is performed within the period of light irradiation by the observation illumination device 24.
  • the rotating device 340 is driven when both the observation illumination device 24 and the camera 25 are off. That is, after imaging the stationary fertilized egg 16 with the camera 25, the rotation device 340 is driven to rotate the fertilized egg 16, and the stationary fertilized egg 16 after rotation is imaged and rotated. Repeat.
  • the deep learning analysis is performed after the rotation of the rotation device 340 is stopped and when the observation illumination device 24 and the camera 25 are both in the off state.
  • FIG. 14 shows processing performed within one image acquisition period.
  • fertilized eggs 16 that have been confirmed to be fertilized are placed one by one in the accommodating portion 15 of the culture container 1, and then the culture solution 18 is pipetted into the accommodating portion 15 and the region surrounded by the inner wall 12. Thereafter, oil 17 is injected into a region surrounded by the inner wall 12 so as to cover the culture solution 18.
  • the culture vessel 1 is placed horizontally on the stage 27 in the observation device 21 as shown in FIG.
  • a transparent lid made of the same material as that of the culture vessel 1 may be placed on the culture vessel 1 as necessary.
  • an observation trigger signal is output from the image capturing control unit 226 (S202). Based on the observation trigger signal, the illumination of the observation illumination device 24 is turned on at the timing shown in FIG. 15 (S203), the rotation device 340 is driven (S204), and imaging by the camera 25 is performed (S205).
  • the image acquisition unit 222 acquires the second image of the fertilized egg 16 captured by the camera 25.
  • the acquired second image is stored in the analysis result database 2242 as a storage unit (S206).
  • the image acquisition unit 222 performs image preprocessing on the acquired second image of the fertilized egg 16, such as image normalization, position adjustment of the fertilized egg 16, and shape enhancement filter.
  • the analysis result database 2242 may store the second image on which the preprocessing has been performed.
  • the feature amount extraction unit 230 extracts the second feature amount of the second image based on the second image of the fertilized egg 16 to be evaluated, which is acquired by the image acquisition unit 222 and subjected to preprocessing ( S207).
  • the determination unit 231 compares the first image stored in the learning database 2241 with the second image stored in the analysis result database 2242, and the two match. It is determined whether or not. More specifically, the determination unit 231 compares the first feature amount and the second feature amount, and determines whether or not the first image and the second image match (S301).
  • the assigning unit 232 assigns the growth stage code and the quality rank to the second image based on the determination result by the determining unit 231 (S302). Specifically, when the determination unit 231 determines that the first image and the second image match, the assigning unit 232 is associated with the first image determined to match the second image. The growth stage code and the quality rank that are being assigned are assigned to the second image. Such comparison, determination, and assignment are performed for each second image, and a growth stage code and a quality rank are assigned to each of the plurality of second images.
  • the calculation unit 227 calculates the proportion of each growth stage code among the growth stage codes assigned to each of the plurality of second images by the grant unit 232 (S303).
  • the calculation result calculated by the calculation unit 227 is output to the evaluation unit 223.
  • the determination control unit 229 determines whether or not to end the comparison process between the first image and the second image (S209).
  • 15 minutes is set as one image acquisition period, and data for the one image acquisition period is stored as one data. Therefore, imaging for one image acquisition period is performed when 15 minutes have passed since the start of image shooting. A determination is made to end, in other words, to end the comparison process.
  • the determination control unit 229 determines to continue the comparison process, and determines “no” in S209. If the determination of no is made in S209, the process returns to S203, and steps S203 to S208 are repeated.
  • the determination control unit 229 determines yes in S209, and proceeds to S210.
  • the end of the comparison process is determined based on the time of one image acquisition period.
  • the comparison process is based on the number of comparisons between the first image and the second image. You may go to In this case, when the set comparison number is reached when 15 minutes of the 1/15 image acquisition period has not elapsed, imaging of the fertilized egg to be evaluated within the image acquisition period is stopped halfway. You may do it. When the imaging is stopped, the irradiation of light by the observation illumination device is also stopped. Thereby, the irradiation time of the light to the fertilized egg 16 can be shortened, and the influence of the light on the fertilized egg can be suppressed.
  • the evaluation unit 223 is provided with the largest number of growth stage codes assigned to each of the plurality of second images based on the calculation result calculated by the calculation unit 227.
  • the growth stage code is evaluated as the growth stage code of the fertilized egg 16 to be evaluated in one image acquisition period (S210).
  • the evaluated growth stage code is given to the fertilized egg 16 to be evaluated.
  • the calculation unit 227 targets the second image to which the same growth stage code as the growth stage code given to the fertilized egg 16 to be evaluated is targeted, and the second image to be the target.
  • the ratio of the quality rank associated with the first image determined to match is calculated (S211).
  • the calculation result calculated by the calculation unit 227 is output to the evaluation unit 223.
  • the evaluation unit 223 determines the quality rank assigned most among the quality ranks assigned to each of the plurality of target second images as the quality of the fertilized egg 16 for evaluation.
  • the rank is evaluated (S212).
  • the evaluated quality rank is given to the fertilized egg 16 to be evaluated.
  • the second image of the fertilized egg 16 to be evaluated which is imaged within one image acquisition period in S208 to S212, is subjected to deep learning analysis.
  • the analysis result database 2242 stores the positional information, the imaging date and time, the imaging condition of the storage unit 15 in which the fertilized egg 16 to be evaluated is stored, The second feature amount extracted by the feature amount extraction unit 230, a plurality of fertilized egg images (second images) captured from the plurality of observation directions acquired by the image acquisition unit 222, and an evaluation by the evaluation unit 223
  • the growth stage codes, quality ranks, and the like are associated with each other and stored for each storage unit 15 (S213).
  • the above S201 to S213 are repeated, and the data of the fertilized egg 16 to be evaluated for n periods is acquired with 15 minutes as one image acquisition period.
  • the second image acquired in each image acquisition period is associated with the second feature value, the position information of the storage unit 15, the imaging date and time, the imaging condition, the growth stage code, the quality rank, etc. Are stored in the analysis result database 2242 in time series.
  • the observation system 2 it is possible to grow the fertilized egg 16 to be evaluated on the basis of the learning data stored in the learning database 2241 without the need for observation by the evaluator.
  • the stage and quality can be accurately evaluated, and a highly accurate evaluation is possible.
  • the evaluation of the fertilized egg 16 to be evaluated can be performed without observation by the evaluator, which is effective for evaluating a large number of fertilized eggs.
  • the calculation unit 227 determines that the ratio of the second image determined as the growth stage code 4 is 3%, the ratio of the second image determined as the growth stage code 5 is 95%, and the growth stage code.
  • the proportion of the second image determined to be 6 is calculated as 2%.
  • the evaluation unit 223 evaluates, based on the calculation result, the growth stage code 5 that is given most among the growth stages assigned to the second images of the plurality of fertilized eggs 16 to be evaluated. It is assumed that the fertilized egg 16 is growing.
  • the calculation unit 227 targets these 950 second images to which the same growth stage code 5 as the evaluation result given to the fertilized egg 16 to be evaluated is assigned.
  • the ratio of each quality rank is calculated. Assuming that among 950 second images to which the growth stage code 5 is assigned, assuming that 893 are A rank, 38 are B rank, and 19 are C rank, the calculation unit 227 calculates the ratio of A rank Is 94%, B rank is 4%, and C rank is 2%.
  • the evaluation unit 223 is provided with the largest number of the growth stages given to the second image to which the growth stage code 5 of the fertilized egg 16 to be evaluated is given based on the calculation result. It is assumed that the quality rank A is the quality of the fertilized egg 16 for evaluation.
  • the fertilized egg image data is acquired by rotating the comparative fertilized egg at the time of creating the learning database. It can be acquired as data.
  • the fertilized egg image is acquired by rotating the fertilized egg for evaluation, so the data of the fertilized egg to be evaluated viewed from any observation angle is acquired as the evaluation data. can do.
  • the evaluation of the fertilized egg to be evaluated can be performed with high accuracy. Can be.
  • the fertilized egg to be evaluated is a fertilized egg after the growth stage of a blastocyst with high structural asymmetry, and is a fertilized egg that looks significantly different depending on the observation angle, by using the observation system according to the present technology, The growth stage and quality of the fertilized egg to be evaluated can be more accurately evaluated, and the evaluation accuracy is increased.
  • the deep learning analysis is performed for each imaging by the camera, but the present invention is not limited to this.
  • one deep learning analysis may be performed after imaging by a plurality of cameras within one image acquisition period.
  • the image acquisition of the fertilized egg 16 is performed continuously for n periods, with one image acquisition period being 15 minutes.
  • Light irradiation by the observation illumination device 24 is performed by alternately turning on and off, and light irradiation is performed intermittently.
  • the imaging by the camera 25 and the driving of the rotating device 340 are also alternately turned on and off in accordance with the lighting and non-lighting by the observation illumination device 24.
  • the imaging of the fertilized egg 16 by the camera 25 is performed within the period of light irradiation by the observation illumination device 24.
  • the rotating device 340 is driven when both the observation illumination device 24 and the camera 25 are on. That is, the fertilized egg 16 in a rotating state can be imaged by the camera 25.
  • Deep learning analysis of the second image of the fertilized egg 16 to be evaluated acquired by the camera 25 is performed when all of the observation illumination device 24, the camera 25, and the rotation device 340 are off.
  • the second images acquired by imaging with a plurality of cameras within one image acquisition period are collectively analyzed by one deep learning analysis.
  • the end of the comparison process between the first image and the second image is determined based on, for example, the time set in advance by the user, the number of images to be compared, or the like.
  • the present invention is not limited to this.
  • FIGS. 6 and 19 to 21 Another example of determination of the end of the comparison process will be described with reference to FIGS. 6 and 19 to 21.
  • FIG. The same reference numerals are given to the same configurations as those in the above-described embodiment, and the description will be omitted.
  • an example in which a fertilized egg in a rotating state is imaged will be described.
  • FIG. 6 is a block diagram showing the configuration of the observation system in the present embodiment.
  • FIG. 19 is a flowchart illustrating a method for evaluating a fertilized egg using the observation system during evaluation in the present embodiment.
  • FIG. 20 is a diagram for explaining the end of the comparison process.
  • FIG. 21 is a flowchart illustrating details of image acquisition, comparison, determination, and assignment steps in the flowchart of FIG.
  • the information processing apparatus 1022 of the observation system 1002 includes an image acquisition unit 222, a feature amount extraction unit 230, a determination unit 231, a grant unit 232, an evaluation unit 223, a storage unit 224, A display control unit 225, an imaging control unit 226, a calculation unit 227, a rotation control unit 228, and a determination control unit 1229 are provided.
  • the determination control unit 1229 determines the end of the comparison process between the first image and the second image.
  • the determination control unit 1229 determines whether or not the numerical value of the ratio of the growth stage most frequently assigned among the growth stages assigned to each of the second images calculated by the calculation unit 227 is stable.
  • the determination unit 231 is controlled to compare the first image and the second image until it is determined that the numerical value of is stable.
  • the determination control unit 1229 determines that the numerical value of the ratio is stable, the determination control unit 1229 controls the determination unit 231 to end the comparison process. If the determination control unit 1229 determines that the numerical value of the ratio is fluctuating and is not stable, the determination control unit 1229 controls the determination unit 231 to continue the comparison process.
  • FIG. 20 The evaluation method of the fertilized egg 16 in this embodiment will be described with reference to FIG.
  • the horizontal axis indicates the number of sheets to be compared between the first image and the second image
  • the vertical axis indicates the ratio of the growth stage that is given most.
  • FIG. 19 shows processing performed within one image acquisition period.
  • image acquisition, comparison, determination, and provision are performed (S401). Specifically, as shown in FIG. 21, the rotating device 340 is driven (S501), and the fertilized egg 16 to be evaluated rotates.
  • the rotating fertilized egg 16 is imaged by the camera 25 (S502).
  • the imaged second image of the fertilized egg 16 is stored in the analysis result database 2242 (S503).
  • Feature amount extraction unit 230 extracts a second feature amount based on the captured second image of fertilized egg 16 (S504).
  • the determination unit 231 is extracted based on the first feature amount extracted based on the first image stored in the learning database 2241 and the second image stored in the analysis result database 2242.
  • the second feature amount is compared.
  • the determination unit 231 compares the first feature value and the second feature value, and determines whether the first image and the second image match (S505).
  • the assigning unit 232 assigns the growth stage code and the quality rank to the second image based on the determination result by the determining unit 231 (S506). Specifically, when the determination unit 231 determines that the first image and the second image match, the assigning unit 232 is associated with the first image determined to match the second image. The growth stage code and the quality rank that are being assigned are assigned to the second image. Thereby, the growth stage code and the quality rank are assigned to each of the plurality of second images.
  • the calculation unit 227 calculates the proportion of each growth stage code among the growth stage codes assigned to each of the plurality of second images by the grant unit 232 (S507).
  • the calculation result calculated by the calculation unit 227 is output to the determination control unit 1229.
  • the determination control unit 1229 determines whether or not the numerical value of the ratio occupied by the growth stage most frequently assigned among the growth stages assigned to each second image is stable (S ⁇ b> 402). .
  • determination control determines that the numerical value is not stable and the comparison process is continued (no). If NO is determined in S402, the process returns to S401, and steps S501 to S507 are repeated, and image acquisition, comparison, determination, and assignment are repeated.
  • the determination control unit 1229 makes a determination that the numerical value is stable and ends the comparison process (yes). If it is determined Yes in S402, the comparison process ends, and the process proceeds to S403.
  • the fertilized egg to be evaluated within the image acquisition period is determined. Imaging is stopped halfway. At the same time as the imaging is stopped, the irradiation of light by the observation illumination device is also stopped. Thereby, the irradiation time of the light to the fertilized egg 16 can be shortened, and the influence of the light on the fertilized egg can be suppressed.
  • the evaluation unit 223 uses the growth stage code assigned most to each of the plurality of second images as the evaluation target fertilized egg 16. (S403).
  • the evaluated growth stage code is given to the fertilized egg 16 to be evaluated.
  • the calculation unit 227 targets the second image to which the same growth stage code as the determined growth stage code is assigned, and sets the first image determined to match the target second image.
  • the ratio of the associated quality rank is calculated (S404).
  • the calculation result calculated by the calculation unit 227 is output to the evaluation unit 223.
  • the evaluation unit 223 uses the highest quality rank assigned to each of the plurality of second images of the fertilized egg 16 to be evaluated as the fertilization for evaluation. It is assumed that the quality rank is the egg 16 (S405). The evaluated quality rank is given to the fertilized egg 16 to be evaluated.
  • the second image of the fertilized egg 16 to be evaluated is subjected to deep learning analysis in S401 to S405.
  • the analysis result database 2242 stores the positional information, the imaging date and time, the imaging condition of the storage unit 15 in which the fertilized egg 16 to be evaluated is stored, Second feature amount extracted by the feature amount extraction unit 230, images of a plurality of fertilized eggs captured from a plurality of observation directions acquired by the image acquisition unit 222 within one image acquisition period, and evaluation by the evaluation unit 223
  • the growth stage codes, quality ranks, and the like are associated with each other and stored for each storage unit 15 (S406).
  • the comparison process may be terminated when the numerical value of the ratio of the growth stage most frequently assigned among the growth stages assigned to each second image is stable. Thereby, evaluation with higher accuracy can be performed.
  • the end of the comparison process is determined based on, for example, the time set in advance by the user, the number of images to be compared, and the like, but is not limited thereto.
  • still another example of the determination of the end of the comparison process will be described with reference to FIGS. 6 and 21 to 23.
  • FIG. The same reference numerals are given to the same configurations as those in the above-described embodiment, and the description will be omitted.
  • an example in which a fertilized egg in a rotating state is imaged will be described.
  • FIG. 6 is a block diagram showing the configuration of the observation system in the present embodiment.
  • FIG. 22 is a flowchart illustrating a method for evaluating a fertilized egg using the observation system according to this embodiment.
  • FIG. 23 is a diagram for explaining the end of the comparison process.
  • FIG. 21 is a flowchart for explaining details of image acquisition, comparison, determination, and assignment steps in the flowchart of FIG.
  • the information processing apparatus 2022 of the observation system 2002 includes an image acquisition unit 222, a feature amount extraction unit 230, a determination unit 231, a grant unit 232, an evaluation unit 223, a storage unit 224, A display control unit 225, an imaging control unit 226, a calculation unit 227, a rotation control unit 2228, and a determination control unit 2229 are provided.
  • the determination control unit 2229 determines the end of the comparison process between the second image acquired by imaging the fertilized egg rotated under a certain rotation condition and the first image.
  • the determination control unit 2229 determines whether or not the numerical value of the ratio of the growth stage assigned most among the growth stages assigned to each of the second images calculated by the calculation unit 227 is stable.
  • the determination unit 231 is controlled to compare the first image and the second image until it is determined that the numerical value of is stable.
  • the determination unit 231 ends the comparison process between the second image acquired by imaging the fertilized egg rotated under a certain rotation condition and the first image. To control.
  • the determination control unit 2229 determines that the numerical value of the ratio is fluctuating and is not stable, the determination control unit 2229 determines to continue the comparison process.
  • the determination control unit 2229 determines to end the comparison process between the second image acquired by imaging the fertilized egg rotated under a certain rotation condition and the first image, the fertilized egg 16 is detected under a different rotation condition.
  • a control signal is output to the rotation control unit 2228 so as to rotate.
  • the rotation control unit 2228 receives the control signal from the determination control unit 2229, and outputs a control signal for controlling the drive / stop timing and applied voltage of each of the plurality of eccentric rotation motors provided in the rotation device 340 to the control device 341. .
  • the rotation control unit 2228 can control the rotation direction and the rotation amount of the fertilized egg 16.
  • the rotating device 340 is sequentially driven under three types of driving conditions, and the fertilized egg 16 to be evaluated is rotated under three different types of rotating conditions. A plurality of images of the fertilized egg 16 rotated under different rotation conditions are acquired.
  • the horizontal axis indicates the number of sheets to be compared between the first image and the second image
  • the vertical axis indicates the ratio of the growth stage that is given most.
  • image acquisition, comparison, determination, and provision are performed (S601). Specifically, as shown in FIG. 21, the rotating device 340 is driven under the first driving condition (S501), and the fertilized egg 16 to be evaluated rotates under the first rotating condition.
  • the rotating fertilized egg 16 is imaged by the camera 25 (S502).
  • the imaged second image of the fertilized egg 16 is stored in the analysis result database 2242 (S503).
  • Feature amount extraction unit 230 extracts a second feature amount based on the captured second image of fertilized egg 16 (S504).
  • the determination unit 231 is extracted based on the first feature amount extracted based on the first image stored in the learning database 2241 and the second image stored in the analysis result database 2242.
  • the second feature amount is compared.
  • the determination unit 231 compares the first feature value and the second feature value, and determines whether the first image and the second image match (S505).
  • the assigning unit 232 assigns the growth stage code and the quality rank to the second image based on the determination result by the determining unit 231 (S506). Specifically, when the determination unit 231 determines that the first image and the second image match, the assigning unit 232 is associated with the first image determined to match the second image. The growth stage code and the quality rank that are being assigned are assigned to the second image. Thereby, the growth stage code and the quality rank are assigned to each of the plurality of second images.
  • the calculation unit 227 calculates the proportion of each growth stage code among the growth stage codes assigned to each of the plurality of second images by the grant unit 232 (S507).
  • the calculation result calculated by the calculation unit 227 is output to the determination control unit 2229.
  • the determination control unit 2229 determines whether or not the numerical value of the ratio occupied by the growth stage most frequently assigned among the growth stages assigned to each second image is stable (S ⁇ b> 602). .
  • the unit 2229 determines that the numerical value is not stable and the comparison process is continued (no). If it is determined to be no in S602, the process returns to S601, and steps S501 to S507 are repeated, and image acquisition, comparison, determination, and assignment are repeated.
  • the determination control unit 2229 determines that the numerical value is stable and ends the comparison process (yes). If it is determined Yes in S602, the comparison process ends, and the process proceeds to S603.
  • the rotating device 340 is driven under the second driving condition (S501), and the fertilized egg 16 to be evaluated rotates under the second rotating condition.
  • the second driving condition is different from the first driving condition.
  • the second rotation condition is different from the first rotation condition.
  • the determination control unit 2229 determines whether or not the numerical value of the ratio occupied by the growth stage most frequently assigned among the growth stages assigned to each second image is stable (S ⁇ b> 604). .
  • determination control The unit 2229 determines that the numerical value is not stable and the comparison process is continued (no). If it is determined to be no in S604, the process returns to S603, and steps S501 to S507 are repeated, and image acquisition, comparison, determination, and assignment are repeated.
  • the determination control unit 2229 determines that the numerical value is stable and ends the comparison process (yes). If it is determined “yes” in S604, the comparison process ends, and the process proceeds to S605.
  • the rotating device 340 is driven under the third driving condition (S501), and the fertilized egg 16 to be evaluated rotates under the third rotating condition.
  • the third driving condition is different from the first and second driving conditions.
  • the third rotation condition is different from the first and second rotation conditions.
  • the determination control unit 2229 determines whether or not the numerical value of the ratio occupied by the growth stage most frequently assigned to the second images is stable (S ⁇ b> 606). .
  • the unit 2229 determines that the numerical value is not stable and the comparison process is continued (no). If it is determined to be no in S606, the process returns to S605, and steps S501 to S507 are repeated, and image acquisition, comparison, determination, and assignment are repeated.
  • the determination control unit 2229 determines that the numerical value is stable and ends the comparison process (yes). If it is determined “yes” in S606, the comparison process ends, and the process proceeds to S607.
  • the types of rotation conditions are not limited to three, and can be arbitrarily set.
  • the evaluation unit 223 uses the growth stage code assigned most to each of the plurality of second images as the evaluation target fertilized egg 16. (S607).
  • the evaluated growth stage code is given to the fertilized egg 16 to be evaluated.
  • the calculation unit 227 targets the second image to which the same growth stage code as the determined growth stage code is assigned, and sets the first image determined to match the target second image.
  • the ratio of the quality rank associated is calculated (S608).
  • the calculation result calculated by the calculation unit 227 is output to the evaluation unit 223.
  • the evaluation unit 223 uses the highest quality rank assigned to each of the plurality of second images of the fertilized egg 16 to be evaluated as the fertilization for evaluation. It is assumed that the quality rank is the egg 16 (S609). The evaluated quality rank is given to the fertilized egg 16 to be evaluated.
  • the second image of the fertilized egg 16 to be evaluated is subjected to deep learning analysis in S601 to S609.
  • the analysis result database 2242 stores the positional information, the imaging date and time, the imaging condition of the storage unit 15 in which the fertilized egg 16 to be evaluated is stored, Second feature amount extracted by the feature amount extraction unit 230, images of a plurality of fertilized eggs captured from a plurality of observation directions acquired by the image acquisition unit 222 within one image acquisition period, and evaluation by the evaluation unit 223
  • the growth stage codes, quality ranks, and the like are associated with each other and stored for each storage unit 15 (S610).
  • the second image of the fertilized egg that has been rotated under different rotation conditions is acquired, and the growth stage that has been given the most among the growth stages that have been assigned to the second image acquired under each rotation condition.
  • the comparison process may be terminated. Thereby, evaluation with higher accuracy can be performed.
  • the fertilized egg 16 is rotated using a rotating device that uses vibration.
  • the fertilized egg 16 is rotated using a rotating device that uses a water flow.
  • injecting (injecting) a fluid into the culture solution in the storage unit of the culture container a flow is generated in the culture solution in the storage unit, and the fertilized egg 16 is rotated.
  • This embodiment is mainly different from the above-described embodiment in that a culture vessel having a rotation mechanism for rotating a fertilized egg by generating a flow in a culture solution is used instead of a vibration device.
  • a configuration different from the above-described embodiment will be mainly described, and the same configuration as the above-described embodiment may be denoted by the same reference numeral and description thereof may be omitted.
  • FIG. 24 is a schematic diagram showing the configuration of the observation system.
  • FIG. 25 is a block diagram illustrating a configuration of the observation system.
  • FIG. 26 is a partially enlarged view of the vicinity of the accommodating portion of the culture vessel.
  • FIG. 27 is a diagram illustrating a configuration in the vicinity of the rotation unit of the observation system.
  • the observation system 3002 includes an observation device 3021, an information processing device 3022, a display device 23, and an input device 29.
  • an observation illumination apparatus 24, a camera 25 as an imaging unit, a temperature / humidity / gas control unit 26, a stage 27, and a culture vessel 3040 having a rotation mechanism are arranged.
  • the culture vessel 3040 having a rotation mechanism includes a rotation unit 30401 as a rotation mechanism, a storage unit 3015 for storing the fertilized egg 16, and a micro flow channel (water flow channel) 30403.
  • the rotation unit 30401 is controlled by the micro flow path control unit 30402.
  • the rotating unit 30401 rotates the fertilized egg 16 by generating a flow in the culture solution 18 in the storage unit 3015 that stores the fertilized egg 16.
  • the micro flow path control unit 30402 controls the ejection of the fluid into the storage unit 3015, and generates a flow in the culture solution 18 by ejecting the fluid.
  • the water flow channel 30403 is a channel that is connected to each storage unit 3015 and through which the fluid for supplying the fluid into each storage unit 3015 passes.
  • the storage unit 3015 can store a liquid and can be held at a fixed position while storing one cell in the liquid, like the storage unit 15 of the culture container 1 of the above-described embodiment.
  • “Liquid” is typically a culture solution suitable for culturing cells, and is described herein as a culture solution.
  • the rotating unit 30401 includes a pump P, an X-axis rotation valve Vx, a Y-axis rotation valve Vy, a Z-axis rotation valve Vz, a first X-axis outlet X1 (first output port), A second X-axis outlet X2 (second output port), a first Y-axis outlet Y1 (first output port), a second Y-axis outlet Y2 (second output port), and The first Z-axis outlet Z1 (first output port) and the second Z-axis outlet Z2 (second output port).
  • the X axis, the Y axis, and the Z axis mean three orthogonal axes, and do not mean the horizontal direction and the vertical direction.
  • a first X-axis jet port X1, a second X-axis jet port X2, a first Y-axis jet port Y1, a second Y-axis jet port Y2, and a first X-axis jet port X1, Z-axis outlet Z1 and second Z-axis outlet Z2 are formed (when there are a plurality of accommodating portions 3015, each of the ejecting ports is formed uniquely for each of the accommodating portions 3015).
  • the second Z-axis outlet Z2 generates a flow in the culture solution in the storage unit 3015 by ejecting (injecting) fluid into the culture solution in the storage unit 3015.
  • the “fluid” is typically the same liquid as the culture solution in the storage unit 3015, but may be a liquid or gas different from the culture solution in the storage unit 3015.
  • the pump P includes a first X-axis outlet X1, a second X-axis outlet X2, a first Y-axis outlet Y1, a second Y-axis outlet Y2, and a first Z-axis outlet.
  • the outlet Z1 and the second Z-axis outlet Z2 are connected to each other through a flow path, and the culture solution is supplied to these outlets.
  • a part of each flow path (portion side, not pump side) is formed in the wall surface of the accommodating portion 3015 (if there are a plurality of accommodating portions 3015, each of the accommodating portions 3015 has its own characteristic. , Each flow path is formed).
  • An X-axis rotation valve Vx is provided in a flow path that connects the pump P to the first X-axis outlet X1 and the second X-axis outlet X2.
  • a Y-axis rotation valve Vy is provided in a flow path that connects the pump P to the first Y-axis outlet Y1 and the second Y-axis outlet Y2.
  • a Z-axis rotation valve Vz is provided in a flow path that connects the pump P to the first Z-axis nozzle Z1 and the second Z-axis nozzle Z2.
  • the microchannel control unit 30402 controls the ejection speed and the ejection amount of the culture solution ejected from each ejection port of the rotation unit 30401 based on a control signal transmitted from the rotation control unit 3228 described later.
  • the information processing apparatus 3022 includes an image acquisition unit 222, a feature amount extraction unit 230, a determination unit 231, a grant unit 232, an evaluation unit 223, a storage unit 224, a display control unit 225, and an imaging control unit 226. , A calculation unit 227, a rotation control unit 3228, and a determination control unit 2229.
  • the information processing apparatus 3022 controls the operation of each block in the observation system 3002.
  • the unit 226, the calculation unit 227, the rotation control unit 3228, and the determination control unit 2229 cause the CPU to load a program stored in the ROM, which is an example of a non-transitory computer-readable recording medium, into the RAM. It is realized by executing. And the image acquisition method and evaluation method which concern on this technique are performed by these functional blocks.
  • the rotation control unit 3228 receives the drive signal from the determination control unit 2229 and transmits a control signal to the rotation device 340 so as to operate the rotation unit 30401 when the fertilized egg 16 is photographed.
  • the rotation control unit 3228 can control the rotation direction and the rotation amount of the fertilized egg 16 so that a desired image of the fertilized egg 16 can be obtained.
  • the rotation control unit 3228 receives a drive signal from the determination control unit 2229, and transmits a control signal to the micro-channel control unit 30402 so as to operate the rotation unit 30401.
  • the rotation control unit 3228 can control the rotation direction and the rotation amount of the fertilized egg 16 so that a desired image of the fertilized egg 16 can be obtained.
  • the shape and position of the ICM 161 in the fertilized egg 16 of the fertilized egg 16 in the growth stage after the complete blastocyst 1609 differ depending on the observation direction.
  • the ICM 161 wants to obtain an image located at the center of the fertilized egg 16
  • the fertilized egg 16 can be rotated as follows to obtain an image of the fertilized egg 16 located at the center of the ICM 161.
  • the rotation control unit 3228 detects the shape and position of the ICM 161 by image recognition such as edge detection based on the image of the fertilized egg 16 taken immediately before the fertilized egg 16 is rotated. Based on this, the rotation control unit 3228 calculates the rotation direction and amount of rotation of the fertilized egg 16 so that the ICM 161 is positioned at the center of the fertilized egg 16.
  • the fertilized egg 16 may be rotated by the rotation unit 20401 according to the calculated rotation direction and rotation amount.
  • the micro flow path control unit 30402 Based on the control signal from the rotation control unit 3228, the micro flow path control unit 30402 individually controls the flow of the culture solution generated at each of the ejection ports X1, X2, Y1, Y2, Z1, and Z2 of the rotation unit 30401. Thus, the direction and amount of rotation of the fertilized egg 16 are controlled. Specifically, the micro-channel control unit 30402 controls the opening and closing of the X-axis rotation valve Vx on the basis of a control signal from the rotation control unit 3228, whereby the first X-axis outlet X1 and the second X-axis outlet X1. The ejection speed and ejection amount of the culture solution ejected from the X-axis ejection port X2 are controlled.
  • the micro flow path control unit 30402 controls the opening and closing of the Y-axis rotation valve Vy based on the control signal from the rotation control unit 3228, so that the first Y-axis outlet Y1 and the second Y-axis outlet Y2 are controlled.
  • the ejection speed and ejection volume of the ejected culture solution are controlled.
  • the micro-channel control unit 30402 controls the opening and closing of the Z-axis rotation valve Vz based on the control signal from the rotation control unit 3228, so that the first Z-axis outlet Z1 and the second Z-axis outlet Z2 are controlled.
  • the ejection speed and ejection volume of the ejected culture solution are controlled.
  • the fertilized egg 16 may be rotated by generating a flow in the culture solution in the storage unit by ejecting (injecting) the fluid into the culture solution in the storage unit of the culture vessel.
  • the observation container 21 for observing a fertilized egg has the culture container 1 and the camera 25 installed therein, and the information processing apparatus 22 is installed outside the observation apparatus 21, but is not limited thereto.
  • an information processing apparatus 5022 may be installed in the observation apparatus 5021.
  • FIG. 28 shows a configuration of an observation system 5002 according to the sixth embodiment.
  • the observation system 5002 includes an observation device 5021, and the observation device 5021 can be connected to the cloud server 5037 via a network. Further, the portable terminal 5038 and the personal computer 5039 serving as display devices can be connected to the cloud server 5037 via a network.
  • a camera / information processing apparatus integrated unit 5032 and a temperature / humidity / gas control unit 5036 are installed, and the culture vessel 1 is accommodated.
  • the camera / information processing device integrated unit 5032 includes a camera 5025 as an imaging unit, an observation illumination device 5024, an information processing device 5022, and a communication unit 5023.
  • the observation illumination device 5024 for irradiating the fertilized egg 16 is arranged above the culture vessel 1 instead of below it.
  • the observation illumination device 5024 emits light that irradiates the culture vessel 1 when the fertilized egg 16 in the culture vessel 1 is imaged by the camera 5025.
  • the camera 5025 images the fertilized egg 16 in the culture container 1.
  • the information processing apparatus described in the above embodiments can be applied to the information processing apparatus 5022.
  • the information processing apparatus 5022 acquires an image of the fertilized egg 16 at each growth stage. Further, for the fertilized egg 16 at the growth stage after the complete blastocyst, for example, the fertilized egg is rotated while the fertilized egg 16 is rotated. The image of the fertilized egg 16 captured from a plurality of angles is acquired by imaging 16.
  • the information processing apparatus 5022 transmits the image of the fertilized egg 16 to the cloud server 5037 via the communication unit 5023 and the network, the positional information on the storage unit in which the fertilized egg 16 is stored, the imaging date and time, Data signals (hereinafter referred to as data signals related to the fertilized egg 16) such as the imaging conditions, the second feature amount of the fertilized egg, the growth stage code, and the observation direction classification code are output.
  • data signals related to the fertilized egg 16 such as the imaging conditions, the second feature amount of the fertilized egg, the growth stage code, and the observation direction classification code are output.
  • the temperature / humidity / gas control unit 5036 controls the temperature / humidity / gas in the observation apparatus 5021 and creates an environment suitable for culturing the fertilized egg 16.
  • the communication unit 5023 receives a data signal related to the fertilized egg 16 from the information processing apparatus 5022 and outputs it to the cloud server 5037 via the network.
  • the cloud server 5037 stores a data signal related to the fertilized egg 16.
  • a personal computer 5039 and a portable terminal 5038 each including the display unit 5039a and the information processing unit 5039b receive and display a data signal related to the fertilized egg 16 from the cloud server 5037 through a network by an operation of a user who operates them.
  • this technique can also take the following structures.
  • a storage unit for preliminarily storing a plurality of first images obtained by rotating and imaging comparative cells;
  • An image acquisition unit that acquires a plurality of second images obtained by rotating and imaging the cells to be evaluated;
  • An information processing apparatus comprising: an evaluation unit that evaluates the cell to be evaluated based on a comparison result between the first image and the second image.
  • the evaluation unit evaluates the cell to be evaluated based on a comparison result between a first feature amount extracted from the first image and a second feature amount extracted from the second image. Processing equipment.
  • the storage unit stores an evaluation result for the first image associated with the first image, A determination unit that compares the first image with the second image and determines whether the first image and the second image match; The evaluation result associated with the first image determined to match the second image when the determination unit determines that the first image and the second image match.
  • a calculation unit that calculates a ratio of an evaluation result that is given most among evaluation results given to each of the plurality of second images; It is determined whether or not the numerical value of the ratio calculated by the calculation unit is stable, and the determination is performed so that the first image and the second image are compared until it is determined that the numerical value of the ratio is stable.
  • An information processing apparatus further comprising: a determination control unit that controls the unit.
  • An information processing apparatus further comprising: a rotation control unit that controls a rotation mechanism that rotates the cell.
  • the rotation control unit controls the rotation mechanism to rotate the evaluation target cell when the determination control unit determines that the numerical value of the ratio is stable.
  • the information processing apparatus is an information processing apparatus that evaluates a growth stage of the cell to be evaluated.
  • the information processing apparatus is information processing apparatus which evaluates the quality of the cell of the said evaluation object.
  • a culture vessel having a plurality of accommodating portions in which cells are accommodated;
  • An imaging unit for imaging the cells;
  • An image acquisition unit for acquiring an image of the cell imaged by the imaging unit;
  • a rotation mechanism for rotating the cells in the accommodating portion;
  • a storage unit for preliminarily storing a first image obtained by imaging the cell for comparison rotated by the rotation mechanism by the imaging unit;
  • An image acquisition unit for acquiring a plurality of second images obtained by imaging the cells to be evaluated rotated by the rotation mechanism by the imaging unit;
  • An information processing system comprising: an evaluation unit that evaluates the cell to be evaluated based on a comparison result between the first image and the second image.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Genetics & Genomics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biotechnology (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Theoretical Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Cell Biology (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Molecular Biology (AREA)
  • Databases & Information Systems (AREA)
  • Pathology (AREA)
  • Reproductive Health (AREA)
  • Multimedia (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】受精卵を高い精度で評価するのに適した情報処理装置、情報処理システム、情報処理方法及びプログラムを提供することにある。 【解決手段】本技術の一形態に係る情報処理装置は、記憶部と、画像取得部と、評価部とを具備する。上記記憶部は、比較用の細胞を回転させ撮像して得られた複数の第1の画像を予め保存する。上記画像取得部は、評価対象の細胞を回転させ撮像して得られた複数の第2の画像を取得する。上記評価部は、上記第1の画像と上記第2の画像との比較結果を基に上記評価対象の細胞を評価する。

Description

情報処理装置、情報処理システム、情報処理方法及びプログラム
 本技術は、培養細胞の観察に用いられる情報処理装置、情報処理システム、情報処理方法及びプログラムに関する。
 近年、不妊治療や家畜の繁殖等の細胞培養分野において研究が行われている。
 例えば体外受精による受精卵の成長を観察する場合、受精卵を保持する収容部を備えた培養容器に受精卵を収容し、成長を観察する。受精卵の成長の経時変化を観察する際、受精卵をカメラにより撮像して画像を取得する(例えば、特許文献1参照)。受精卵の観察においては、受精卵を高い精度で評価することが求められている。
特開2011-192109号公報
 受精卵の撮像画像を用いて受精卵を評価する際、例えば胚盤胞以降の受精卵の形状は構造的に非対称性が高く、観察角度によって受精卵の見え方が大きく異なる。そのため、1つの観察角度から撮像した画像だけでは、十分な評価を行うことができない。
 本技術の目的は、受精卵を高い精度で評価するのに適した情報処理装置、情報処理システム、情報処理方法及びプログラムを提供することにある。
 上記目的を達成するため、本技術の一形態に係る情報処理装置は、記憶部と、画像取得部と、評価部とを具備する。
 上記記憶部は、比較用の細胞を回転させ撮像して得られた複数の第1の画像を予め保存する。
 上記画像取得部は、評価対象の細胞を回転させ撮像して得られた複数の第2の画像を取得する。
 上記評価部は、上記第1の画像と上記第2の画像との比較結果を基に上記評価対象の細胞を評価する。
 このような構成によれば、比較用の細胞を回転させて撮像するので、記憶部には、異なる観察角度から撮像した受精卵の画像(第1の画像)が複数保存される。また評価対象の細胞を回転させて撮像するので、異なる観察角度から撮像した受精卵の画像(第2の画像)を複数得ることができる。これらあらゆる観察角度から撮像した複数の第1の画像と第2の画像を比較して、評価対象の細胞を評価するので、精度の高い評価を行うことができる。
 上記評価部は、上記第1の画像より抽出された第1の特徴量と上記第2の画像より抽出された第2の特徴量との比較結果を基に上記評価対象の細胞を評価してもよい。
 このように画像を基に抽出した特徴量を用いて比較を行うことができる。特徴量は、画像の特徴的な部位の情報であり、例えば受精卵のサイズ、形状、真球度、卵割数(率)、各割球の形態及びそのバランス、フラグメンテーション、ICMのサイズや形状、ICMの細胞数や細胞密度等である。
 上記記憶部には、上記第1の画像に対応づけられた上記第1の画像に対する評価結果が保存され、上記第1の画像と上記第2の画像とを比較し、上記第1の画像と上記第2の画像とが一致するか否かを判定する判定部と、上記判定部により上記第1の画像と上記第2の画像とが一致すると判定されたときに、上記第2の画像に一致すると判定された上記第1の画像に対応づけられた上記評価結果を上記第2の画像に付与する付与部とを更に具備し、上記評価部は、複数の上記第2の画像それぞれに付与された評価結果のうち最も多く付与された評価結果を、上記評価対象の細胞に対する評価としてもよい。
 このように第2の画像と一致した第1の画像に対応づけられている評価結果を第2の画像の評価結果とし、複数の第2の画像それぞれに付与された評価結果のうち最も多く付与された評価結果を評価対象の細胞に対する評価とすることができる。
 比較用の受精卵の画像である第1の画像に対する評価結果は、例えば培養士等の評価者による所見であり、評価者により判定された受精卵の成長段階の評価結果や品質の評価結果である。したがって、評価対象の受精卵に対する評価を、評価者の存在がなくとも正確かつ容易に行うことができる。また、評価者の存在がなくとも評価を行うことができるので、大量の受精卵を評価するのに有効である。
 複数の上記第2の画像それぞれに付与された評価結果のうち最も多く付与された評価結果が占める割合を算出する算出部と、上記算出部により算出された上記割合の数値が安定したか否かを判定し、上記割合の数値が安定したと判定するまで上記第1の画像と上記第2の画像の比較を行うよう上記判定部を制御する判定制御部とを更に具備してもよい。
 このように、複数の第2の画像それぞれに付与された評価結果のうち最も多く付与された評価結果の割合の数値が安定するまで第1の画像と第2の画像の比較処理が行われるので、精度の高い評価を行うことができる。
 上記細胞を回転させる回転機構を制御する回転制御部を更に具備してもよい。
 上記回転制御部は、上記判定制御部により上記割合の数値が安定したと判定されると、上記評価対象の細胞を回転させるよう上記回転機構を制御してもよい。
 これにより、異なる回転条件下で回転させた受精卵の画像を取得することができ、更に精度の高い評価を行うことができる。
 上記評価部は、上記評価対象の細胞の成長段階を評価してもよい。
 上記評価部は、上記評価対象の細胞の品質を評価してもよい。
 このように、細胞の成長段階や品質を評価することができる。
 本技術に係る情報処理システムは、培養容器と、撮像部と、画像取得部と、回転機構と、記憶部と、画像取得部と、評価部とを具備する。
 上記培養容器は、細胞が収容された収容部を複数有する。
 上記撮像部は、上記細胞を撮像する。
 上記画像取得部は、上記撮像部で撮像された上記細胞の画像を取得する。
 上記回転機構は、上記細胞を上記収容部内で回転させる。
 上記記憶部は、上記回転機構により回転させた比較用の上記細胞を上記撮像部により撮像して取得した第1の画像を予め保存する。
 上記画像取得部は、上記回転機構により回転させた評価対象の上記細胞を上記撮像部により撮像し得られた複数の第2の画像を取得する。
 上記評価部は、上記第1の画像と上記第2の画像との比較結果を基に上記評価対象の細胞を評価する。
 本技術に係る情報処理方法は、評価対象の細胞を回転させ撮像して複数の第2の画像を取得し、比較用の細胞を回転させ撮像して予め取得した複数の第1の画像と、上記第2の画像を比較し、上記比較結果を基に上記評価対象の細胞を評価する。
 本技術に係るプログラムは、評価対象の細胞を回転させ撮像して複数の第2の画像を取得するステップと、比較用の細胞を回転させ撮像して予め取得した複数の第1の画像と、上記第2の画像を比較するステップと、上記比較結果を基に上記評価対象の細胞を評価するステップとをコンピュータに実行させる。
 以上のように、本技術によれば、評価対象の受精卵を精度よく評価することができる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
各実施形態に係る培養容器の平面図である。 図1の培養容器の部分拡大平面図である。 受精卵の成長による形状変化を説明する図である。 完全胚盤胞以降の成長段階の受精卵の画像の概略図である。 第1~第4の実施形態に係る観察システムの構成を示す概略図である。 図5に示す観察システムを示すブロック図である。 図5に示す観察システムの一部を構成する回転装置の模式平面図である。 図5に示す観察システムの一部を構成する回転装置付近の模式図である。 図5に示す観察システムの学習用データベース作成時のフローチャートである。 図5に示す観察システムの学習用データベース作成時における受精卵の画像取得時の観察照明装置、カメラ、回転装置の駆動のタイミングを説明するための図である。 図5に示す観察システムの学習用データベース作成時及び受精卵の評価時における、回転装置に備えられる振動素子の駆動のタイミングを説明するための図である。 図5に示す観察システムの回転装置により回転された受精卵の回転パターンの一例を説明する図である。 図5に示す観察システムの学習用データベース作成時における受精卵の画像取得時の観察照明装置、カメラ、回転装置の駆動のタイミングの他の例を説明するための図である。 図5に示す観察システムを用いた評価対象の受精卵の評価方法を説明するフローチャートである。 図5に示す観察システムを用いた評価対象の受精卵の画像取得時の観察照明装置、カメラ、回転装置の駆動のタイミングを説明する図である。 図14のフローチャートにおける比較、判定、付与のステップの詳細を説明するフローチャートである。 図5に示す観察システムを用いた評価対象の受精卵の画像取得時の観察照明装置、カメラ、回転装置の駆動のタイミングの他の例を説明する図である。 第2の実施形態における図5に示す観察システムを用いた評価対象の受精卵の画像取得時の観察照明装置、カメラ、回転装置の駆動のタイミングを説明する図である。 第3の実施形態における図5に示す観察システムを用いた受精卵の評価方法を説明するフローチャートである。 第3の実施形態における比較処理の終了の判定を説明する図である。 図19及び図22のフローチャートにおける画像取得、比較、判定、付与のステップの詳細を説明するフローチャートである。 第4の実施形態における図5に示す観察システムを用いた受精卵の評価方法を説明するフローチャートである。 第4の実施形態における比較処理の終了の判定を説明する図である。 第5の実施形態の観察システムの構成を示す概略図である。 第5の実施形態に係る観察システムを示すブロック図である。 第5の実施形態に係る培養容器の部分拡大図である。 第5の実施形態に係る観察システムの回転部付近の構成を示す図である。 第6の実施形態の観察システムの構成を示す概略図である。
 以下、本技術に係る実施形態を、図面を参照しながら説明する。
<培養容器の構成>
 図1は培養容器(ディッシュ)の平面図である。図2は培養容器の部分拡大平面図である。図5は培養容器を観察装置内に収容した状態を説明する概略図である。
 培養容器1は、培養液18及び細胞16を収容可能に構成され、外部より細胞16を撮像可能な程度に透光性を有する。尚、同時に撮像可能な培養容器1及び細胞16の数は限定されない。
 本実施形態では、培養される細胞16として、畜産分野等における生物、例えばウシの受精卵を例にあげて説明する(以下、同じ符号を用いて受精卵16と記載する)。これに限定されず、例えば培養される細胞として、再生医療等の分野における、幹細胞、免疫細胞、癌細胞等の生体から取り出された生体試料等があげられ、構造非対称性が高い形状の成長段階を経る、三次元の画像が必要な細胞に対して本技術は有効である。
 また本明細書において、「細胞」は、単一の細胞と、複数の細胞の集合体とを少なくとも概念的に含む。ここで、単一の細胞または複数の細胞の集合体は、卵母細胞(oocyte)、卵子(eggまたはovum)、受精卵(fertile ovumまたはzygote)、未分化胚芽細胞(blastocyst)、胚(embryo)を含む(ただし限定はされない)受精卵の成長過程の一または複数のステージで観察される細胞に関連するものである。
 図1に示すように、培養容器1は、底部19と、外壁11と、内壁12と、収容部15と、細胞配置用凸部13とを有する。
 培養容器1には、例えば金属、ガラス、シリコン等の無機材料や、ポリスチレン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ABS樹脂、ナイロン、アクリル樹脂、フッ素樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、メチルペンテン樹脂、フェノール樹脂、メラミン樹脂、エポキシ樹脂、塩化ビニル樹脂等の有機材料を用いて形成することができる。本実施形態においては、ポリスチレン樹脂からなる透明の培養容器1を用いている。本実施形態においては、1つの培養容器1に36の収容部15を配置した場合を例にあげ図示しているが収容部15の数はこれに限定されない。尚、図5において培養容器1の収容部15の数は、図面を見やすくするために、図1の培養容器1の収容部15の数と異ならせている。
 収容部15は複数設けられており、各収容部15は、1個の細胞、ここでは受精卵16を収容しつつ一定の位置に留めることが可能である。また、各収容部15には、受精卵16以外に液体が収容される。「液体」は、典型的には、細胞を培養するのに適した培養液であり、以下、培養液として説明する。図5に示すように、収容部15内及び内壁12に囲まれた領域には、受精卵16を培養するための培養液18が注入されている。更に、この培養液18の蒸発を防止するために、内壁12に囲まれた領域には、培養液18を覆うようにオイル17が注入されている。
 底部19は平面形状が例えば円形を有している。外壁11と内壁12は同心円状に形成されており、内壁12の高さは外壁11の高さよりも低く形成されている。細胞配置用凸部13は、底部19の中央部に、内壁12に囲まれた領域に内壁12と間隙をおいて配置される。細胞配置用凸部13は平面形状が矩形を有している。収容部15は、マトリクス状に、例えば36個配置される。収容部15の平面形状は矩形を有するが、これに限定されず円形でもよい。
<受精卵の成長による形状変化>
 図3を用いて受精卵の成長による形状変化について説明する。
 図3は、受精後1日から10日までの受精卵16の一般的な成長段階を示す。図3(a)は受精が確認された1日目の1細胞期の受精卵1601である。受精2日目になると、図3(b)に示すように2分割して2細胞期の受精卵1602となる。その後、順調に成長していくと、受精卵16は、図3(c)、図3(d)、図3(e)と示すように、順に受精3日目に4細胞期の受精卵1603、受精4日目に8細胞期の受精卵1604、受精5日目に16細胞期の受精卵1605というように細胞数が増えていく。
 その後、細胞同士が密着し、図3(f)に示すように受精5~6日目に初期桑実胚1606となり、受精6日目に図3(g)に示すように桑実胚1607となる。更に成長し続けると細胞質内に隙間ができて胞胚腔を形成し、受精7日目に図3(h)に示すように初期胚盤胞1608となる。胞胚腔が拡大すると、受精7~8日目には、図3(i)に示すように完全胚盤胞1609となる。胚盤胞の成長段階(1608以降)となると、将来胎児となる内部細胞塊161(Inner Cell Mass、以下ICMと称す。)と栄養外胚葉162(Trophectoderm、以下TEと称す。)の識別が可能となってくる。初期胚盤胞1608及び完全胚盤胞1609の成長段階では、受精卵の外形を形成する透明体163が認識される。更に、透明体163が薄くなって、受精卵は受精8~9日目には拡張胚盤胞1610となり、受精9日目には透明体から胚盤胞が脱出する脱出胚盤胞1611、受精9~10日目には拡張脱出胚盤胞1612となる。
 受精卵16は、受精から桑実胚1607の成長段階までは比較的構造対称性が高く、観察角度によって見え方がさほど大きく変化しない。例えば、2細胞期、4細胞期の成長段階の受精卵16は観察角度によって見え方が異なりはするが、これらの細胞期では割球数が少なく、例えば1つの観察角度からの観察でも卵割の状態が比較的わかりやすい。
 これに対し、胞胚空が形成されて受精卵16が胚盤胞の成長段階(1608~1612)となると、構造非対称性が高くなり、受精卵16を見る角度によって見え方が大きく異なる。図3(i)(j)(k)(l)に示すように、完全胚盤胞1609以降の成長段階の受精卵16は、受精卵16内における胞胚空の占める割合が大きくなり、ICM161は球状の受精卵16内に偏って存在する。
 受精卵16は、成長段階によっては、観察角度により見え方が大きく異なる。図4は、完全胚盤胞1609以降の成長段階の受精卵16を複数の角度から撮像した画像の概略図である。
 図4(a)は、ICM161が受精卵16の手前側中央に位置した状態を正面としたとき、受精卵16を正面又は裏面から撮像した画像を示す。図4(a)に示すように、受精卵16の中央部に略円形のICM161が位置する画像となる。
 図4(d)は、受精卵16を真横方向から撮像した画像を示す。図4(d)に示すように、受精卵16内の端に略劣弧状のICM161が位置する画像となる。
 図4(b)及び(c)は、真横及び裏面以外の斜めの方向から撮像した場合の画像の一例である。図4(b)及び(c)に示すように、ICM161は受精卵16内の端に略楕円の形状で位置する画像となる。
 このように、成長段階によっては、観察方向によって受精卵16の見え方が大きく異なる。本技術の情報処理システムは、このような観察方向によって受精卵の見え方が大きく異なる成長段階の受精卵の評価に特に有効であり、精度の高い評価を行うことができる。
 以下、本技術の情報処理システムとしての観察システムについて説明する。
<観察システムの概要>
 本技術の情報処理システムとしての観察システムでは、あらゆる成長段階の比較用の受精卵を回転させて撮像した複数の第1の画像のデータが学習用データとして予め記憶部としての学習用データベースに保存されている。この学習用データベースが作成された観察システムを用いて評価対象の受精卵を回転させて撮像した複数の第2の画像が取得される。観察システムでは、この第2の画像の情報と学習用データベースに保存されている第1の画像の情報が比較されて、評価対象の受精卵が評価される。
 ここでは、学習用データである比較用の受精卵の画像を第1の画像と称し、評価対象の受精卵の画像を第2の画像と称す。第1の画像から抽出される特徴量を第1の特徴量と称し、第2の画像から抽出される特徴量を第2の特徴量と称す。
 また、学習用データが保存された学習用データベースを有する観察システムを、必要に応じて、評価時の観察システムと称し、学習用データベース作成時の観察システムと区別する。
 観察システムは、比較用の受精卵及び評価対象の受精卵を回転させる回転機構を備える。
 学習用データベース作成時に、各成長段階の受精卵を回転させ撮像した画像のデータが学習用データとして取得されて、学習用データベースに保存される。この学習用データベースに保存される学習用データは、評価対象の受精卵を評価する際の比較用のデータとなる。
 学習用データとなる受精卵の画像(第1の画像)は、回転機構により受精卵を回転させて撮像部としてのカメラにより撮像され得られる。受精卵を回転させて撮像することにより複数の観察方向から撮像した受精卵の画像が取得される。学習用データは、ある1つの画像取得期間内で複数の観察方向から撮像して取得された複数の受精卵の第1の画像と、その受精卵の第1の特徴量、成長ステージコード、品質ランク等が対応づけられて構成される。
 特徴量は、画像の特徴的な部位の情報であり、例えば受精卵のサイズ、形状、真球度、卵割数(率)、各割球の形態及びそのバランス、フラグメンテーション、ICMのサイズや形状、ICMの細胞数や細胞密度等である。
 成長ステージコード及び品質ランクは、培養士等の評価者が受精卵の画像を観察し、その受精卵に対して行った所見であり、評価者が観察対象の受精卵に付与した評価結果である。成長ステージコードは受精卵の成長段階を表し、品質ランクは受精卵の品質を表す。
 ここで、成長段階とは、上述した、1細胞期、2細胞期、4細胞期、8細胞期、16細胞期、初期桑実胚、桑実胚、初期胚盤胞、完全胚盤胞、拡張胚盤胞、脱出胚盤胞、拡張脱出胚盤胞である。
 例えば1細胞期1601の成長段階を成長ステージコード1、2細胞期1602から16細胞期1605までの成長段階を成長ステージコード2、初期桑実胚1606の成長段階を成長ステージコード3、桑実胚1607の成長段階を成長ステージコード4、初期胚盤胞1608の成長段階を成長ステージコード5、完全胚盤胞1609の成長段階を成長ステージコード6、拡張胚盤胞1610の成長段階を成長ステージコード7、脱出胚盤胞1611の成長段階を成長ステージコード8、拡張脱出胚盤胞1612の成長段階を成長ステージコード9とする。学習用データベースには、成長段階は成長ステージコードで表現されて保存される。
 品質ランクは、評価者によりなされた受精卵の品質評価結果である。品質評価は、受精卵の成長段階により評価基準が異なる。例えば、4~8細胞期においては、受精卵の卵割数(率)、割球の形態及びそのバランス、フラグメンテーションの割合等を評価基準として3つのランクA~Cに分類される。胚盤胞期においては、ICMの細胞数、ICMの細胞密度等を評価基準として3つのランクA~Cに分類される。学習用データベースには、品質は品質ランクA~Cで表現されて保存される。
 評価対象の受精卵の評価は、評価時の観察システムの学習用データベースに保存されている学習用データを用いて行われる。観察システムでは、評価対象の受精卵を回転させて複数の観察方向から撮像した受精卵の画像(第2の画像)が複数取得される。
 取得された第2の画像は、第1の画像と比較される。この比較処理により第2の画像と第1の画像とが一致したと判定されたとき、第2の画像に一致したと判定された第1の画像に対応づけられた評価結果が、一致判定に用いられた第2の画像に付与される。評価結果は、成長ステージコード(成長段階)や品質ランク(品質)等である。
 そして、複数の第2の画像それぞれに付与された評価結果のうち最も多く付与された評価結果が、評価対象の受精卵に対する評価であると判定される。
 ある1つ画像取得期間内で複数の観察方向から撮像した複数の評価対象の受精卵の画像(第2の画像)と、該受精卵が収容されている収容部の位置情報と、撮像日時と、撮像条件と、第2の特徴量と、評価対象の受精卵の評価結果等が対応づけされて、観察システムの記憶部としての解析結果のデータベースに保存される。
(第1の実施形態)
<観察システムの構成>
 以下に、上述の観察システムの一例について説明する。
 上述の培養容器1内に収容される受精卵16を観察する観察システムについて説明する。尚、本実施形態においては、ウシの受精卵を培養するインキュベータと受精卵の観察を行う観察装置は別の装置となっているが、インキュベータ内に受精卵16を観察するために用いるカメラを配置し、インキュベータ内で受精卵を観察できるように構成しても良い。
 図5は、観察システムを示す概略図である。図6は、観察システムの構成を示すブロック図である。本実施形態及びそれ以降に説明する実施形態において、1つの培養容器を観察する例をあげて説明するが、観察システムは、複数の培養容器1をディッシュホルダに載置したものを1個又は複数個、観察システム内に載置し、一度に多数の受精卵を観察することが可能に構成されていてもよい。
 図5に示すように、観察システム2は、観察装置21と、情報処理装置22と、表示装置23と、入力装置29と、回転装置340を有する。
 回転機構としての回転装置340は、複数の振動子としての偏心回転モータ(図7に示す符号311~313、321~323)と、制御装置341とを具備する。制御装置341は、後述する回転制御部228からの信号を受け、各偏心回転モータの駆動を制御する。
 回転装置340は振動を発すものであり、培養容器1に振動を与える。培養容器1が振動することにより、培養容器1の収容部15内に収容される受精卵16は回転する。回転装置340は、観察装置21内に配置される。回転装置340の詳細については後述する。
 観察装置21は、受精卵16が収容された培養容器1を収容し、受精卵16を観察するものである。培養容器1は観察装置21内で水平に保持され、培養容器1の各収容部15には1つずつ受精卵16が収容されている。観察装置21内には、観察照明装置24と、カメラ25と、温度・湿度・ガス制御部26と、ステージ27が配置される。
 観察照明装置24は、培養容器1内の受精卵16をカメラ25により撮像する際に、培養容器1に対して照射する光を発する。観察照明装置24の光の点灯(オン)、非点灯(オフ)のタイミングは、後述する情報処理装置22の撮像制御部226からの撮像トリガー信号を基に制御される。
 撮像部としてのカメラ25(以下、同じ符号を用いてカメラ25と記載する。)は、例えばCMOS(Complementary Metal-Oxide Semiconductor)センサやCCD(Charge Coupled Device)センサ等のイメージセンサを備える可視光カメラにより構成される。可視光カメラに代えて、又はこれに加えて、赤外線(IR)カメラや変更カメラ等が用いられてもよい。
 カメラ25は、培養容器1内の受精卵16を撮像するものであり、観察装置21内に配置される。カメラ25は、光軸方向(Z軸方向)に移動可能なレンズ群を含む鏡筒と、鏡筒を通過する被写体光を撮像するCMOS(Complementary Metal Oxide Semiconductor)、CCD(Charge Coupled Device)等の撮像素子としての固体撮像素子と、これらを駆動する駆動回路等を有する。なおカメラ25は、図上Z軸方向および水平面方向(XY平面方向)に移動可能に培養容器1内に設置されてもよい。また、カメラ25は、静止画像だけでなく、連続画像(ビデオ)を撮像することが可能に構成されてもよい。
 カメラ25は、後述する情報処理装置22の撮像制御部226により撮像回数、撮像のタイミング等が制御される。
 温度・湿度・ガス制御部26は、観察装置21内の温度・湿度・ガスを制御するものであり、受精卵16の培養に適した環境をつくる。ガスの種類としては、窒素、酸素、二酸化炭素等がある。
 入力装置29は情報処理装置22に接続され、ユーザの操作を入力するめの操作デバイスである。入力装置29としては、例えば、トラックボール、タッチパッド、マウス、キーボード等を利用可能である。
 表示装置23は、ディスプレイのように画像を出力するものである。表示装置23は、受精卵16の画像、その受精卵16が収容されている収容部の位置情報、撮像日時、成長段階(成長ステージコード)、品質(品質ランク)等の情報を表示するものである。
 図6に示すように、情報処理装置22は、画像取得部222と、特徴量抽出部230と、判定部231と、付与部232と、評価部223と、記憶部224と、表示制御部225と、撮像制御部226と、算出部227と、回転制御部228と、判定制御部229とを具備する。情報処理装置22は、観察システム2内の各ブロックの動作を制御する。
 情報処理装置22は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、HDD(Hard Disk Drive)等のコンピュータの構成に必要なハードウェアを有する。情報処理装置22として、例えばPC(Personal Computer)が用いられるが、他の任意のコンピュータが用いられてもよい。
 情報処理装置22の機能ブロックである画像取得部222と、特徴量抽出部230と、判定部231と、付与部232と、評価部223と、記憶部224と、表示制御部225と、撮像制御部226と、算出部227と、回転制御部228と、判定制御部229は、CPUが、非一過性のコンピュータ読み取り可能な記録媒体の一例であるROMに保存されたプログラムをRAMにロードして実行することにより実現される。そしてこれらの機能ブロックにより、本技術に係る画像取得方法が実行される。プログラムは、例えば種々の記憶媒体を介して情報処理装置22にインストールされる。又はインターネット等を介してプログラムのインストールが実行されてもよい。
 画像取得部222は、カメラ25によって撮像された受精卵の画像情報をカメラ25から取得する。撮像角度を固定し、受精卵16を回転させながら複数回撮像することにより、異なる複数の角度から撮像した受精卵16の画像を取得することができる。尚、ここでは、受精卵16を回転させながら複数枚の画像を取得したが、回転させた受精卵16を動画像で取得し、取得した動画から任意の複数枚の画像を抽出してもよい。
 第1の画像及び第2の画像は、いずれも回転装置340により回転させた受精卵16をカメラ25により撮像することにより取得される。
 特徴量抽出部230は、画像取得部222により取得された受精卵の画像を基に、その受精卵の特徴量を抽出する。
 特徴量は、画像の特徴的な部位の情報であり、例えば受精卵のサイズ、形状、真球度、卵割数(率)、各割球の形態及びそのバランス、フラグメンテーション、ICMのサイズや形状、ICMの細胞数や細胞密度等である。
 記憶部224は、学習用データベース2241と解析結果のデータベース2242を有する。学習用データベース2241は、学習用データとして比較用の受精卵の第1の画像や第1の特徴量等の各種データを保存する。解析結果のデータベース2242は、評価対象の受精卵の第2の画像や第2の特徴量等の各種データを保存する。
 評価時の観察システム2において、評価対象の受精卵は、学習用データベース2241に保存されている学習用データを用いて評価される。
 学習用データベース作成時の観察システム2において、記憶部としての学習用データベース2241は、ある1つの画像取得期間内で撮像した1つの受精卵を回転させて撮像した第1の画像と、特徴量抽出部230により抽出された第1の特徴量と、品質ランク及び成長ステージコード等が対応づけられたデータを保存する。学習用データベース2241には、1細胞期から拡張脱出胚盤胞までのあらゆる成長段階の受精卵のデータが保存される。
 評価時の観察システム2において、記憶部としての解析結果のデータベース2242は、ある1つの画像取得期間内で1つの評価対象の受精卵を回転させて撮像して得られる複数の第2の画像と、評価対象の受精卵16が収容されている収容部15の位置情報と、撮像日時と、撮像条件と、特徴量抽出部230により抽出された第2の特徴量と、評価部223によって評価された成長ステージコードや品質ランク等が対応づけられたデータを保存する。これらデータは、収容部15毎に時系列に解析結果のデータベース2242に保存される。
 判定部231は、評価時の観察システム2において、記憶部224の学習用データベース2241に予め保存されている第1の画像と、評価対象の受精卵の第2の画像を比較し、第1の画像と第2の画像が一致するかを判定する。
 より具体的には、判定部231は、第1の画像を基に抽出された第1の特徴量と、第2の画像を基に抽出された第2の特徴量とを比較して、評価対象の受精卵16の画像である第2の画像と第1の画像が一致するか否かを判定する。判定結果は付与部232に入力される。
 付与部232は、評価時の観察システム2において、判定部231の判定結果に基づき、評価用の受精卵16に対して成長ステージコード及び品質ランクを付与する。
 付与部232は、判定部231により第1の画像と第2の画像が一致すると判定されると、第2の画像に対して、第2の画像と一致すると判定された第1の画像に対応づけられている評価結果である成長ステージコード(成長段階)及び品質ランク(品質評価結果)を、第2の画像に付与する。1つの第2の画像に対して1つの成長ステージコード及び1つの品質ランクが付与される。
 付与部232により付与された結果は算出部227へ出力される。
 算出部227は、評価時の観察システム2において、付与部232により付与された結果を基に、複数の第2の画像それぞれに対し付与された全ての成長ステージコードのうち、各成長ステージコードが占める割合を算出する。算出部227により算出された算出結果は、評価部223へ出力される。
 また、算出部227は、評価時の観察システム2において、付与部232により付与された結果を基に、複数の第2の画像それぞれに対し付与された品質ランクのうち、各品質ランクが占める割合を算出する。算出部227により算出された算出結果は、評価部223へ出力される。
 評価部223は、評価時の観察システム2において、入力された算出結果を基に、評価対象の受精卵16の複数の第2の画像それぞれに対し付与された成長ステージコード(成長段階)のうち最も多く付与された成長ステージコード(成長段階)を、評価用の受精卵16の成長ステージコード(成長段階)であると評価する。
 また、評価部223は、評価時の観察システム2において、入力された算出結果を基に、評価対象の受精卵16の複数の第2の画像それぞれに対し付与された品質ランクのうち最も多く付与された品質ランクを、評価用の受精卵16の品質ランクであると評価する。
 尚、本実施形態においては、評価対象の受精卵16の成長段階及び品質の双方の評価を行う場合を例にあげて説明するが、評価部223により受精卵16の成長段階又は品質のいずれか一方を評価する構成としてもよい。
 学習用データベース作成時の観察システム2において、表示制御部225は、表示装置23に、受精卵16の第1の画像や評価者によって入力が可能な評価入力欄などを表示させる。
 評価時の観察システム2において、表示制御部225は、表示装置23に、評価対象の受精卵16が収容されている収容部の位置情報と、その評価対象の受精卵16を回転させて取得した複数の第2の画像と、評価部223により評価された成長ステージコード(成長段階)又は品質ランク(品質評価結果)等を表示させる。
 撮像制御部226は、受精卵16の撮像回数及び撮像のタイミングを制御する制御信号をカメラ25に出力する。撮像制御部226は、所定の時間間隔で撮像を行う撮像トリガー信号を生成する。尚、構造対称性の高い成長段階の受精卵の撮像数を少なくし、構造非対称性の高い成長段階の受精卵の撮像数を多くするなど制御してもよい。
 回転制御部228は、後述する回転装置340に備えられる複数の偏心回転モータそれぞれの駆動・停止のタイミング、印加電圧を制御する制御信号を制御装置341に出力する。これにより培養容器1への振動付与の有無及びタイミング、振動の方向及び強さが制御される。
 回転装置340に備えられる偏心回転モータの駆動により、培養容器1に振動が付与される。この振動の付与により、培養容器1内に収容される受精卵16は回転する。各偏心回転モータの駆動・停止のタイミング、印加電圧を調整することにより、受精卵16を所望の方向及び回転量で回転させることができる。
 回転制御部228は、撮像制御部226からの撮像トリガー信号を基に、回転装置340の駆動・停止のタイミングを制御する。
 また、回転制御部228は、各偏心回転モータの駆動・停止のタイミング、印加電圧を制御して受精卵16の回転方向及び回転量を制御することができる。
 例えば完全胚盤胞以降の成長段階の受精卵においては、図4(a)~(d)に示すように、観察角度によって受精卵16内のICMの形状や位置が異なる。本実施形態においては、各偏心回転モータの駆動・停止のタイミング、印加電圧を調整することにより、ICMの位置や形状が所望の位置や形状となるように受精卵の回転方向及び回転量を制御することができる。受精卵の回転方向及び回転量の制御は次のように行なわれる。
 回転制御部228は、受精卵16を回転させる直前に撮像した受精卵16の画像に基づき、エッジ検出等の画像認識により、ICM161の形状及び位置を検出する。これを基に、回転制御部228は、例えば図4(a)に示すICM161が受精卵16の中央部に位置する画像が取得できるように、受精卵16の回転方向及び回転量を算出する。回転制御部228は、この算出結果を基に制御信号を生成して制御装置341に送信する。制御装置341により回転装置340の各偏心回転モータの駆動が制御され、受精卵16が回転する。これにより、ICMが中央部に位置する画像を取得することができる。
 このように、画像認識によるICMの形状及び位置の検出結果に基づいて、所望のICMの形状及び位置となる受精卵の画像が取得されるように受精卵16の回転方向及び回転量を算出し、これに基づいて受精卵16を回転させることにより、所望の画像を取得することができる。
 評価時の観察システム2において、判定制御部229は、第1の画像と第2の画像の比較処理の終了の判定を行う。比較処理の終了の判定は、ユーザにより任意に設定可能としてもよく、例えば、時間や第1の画像と第2の画像との比較枚数等をユーザが設定する。或いは、比較終了の判定となる時間や比較枚数等が予め設定されていてもよい。
 図7は回転装置340の平面模式図、図8は回転装置340付近の観察システム2の部分模式図である。
 図7及び図8に示すように、回転装置340は、6つの振動素子としての偏心回転モータ311~313、321~323と制御装置341とを有する。振動素子としては、偏心回転モータの他、圧電素子などを用いてもよい。
 3つの偏心回転モータ321~323は、培養容器1の外底面に、外形平面形状が円状の培養容器1の外周を三等分する位置に配置される。3つの偏心回転モータ311~313は、培養容器1の外側面に、外周を三等分する位置に配置される。培養容器1の平面図において、外周に沿って、偏心回転モータ321は偏心回転モータ311と偏心回転モータ313との中間位置に、偏心回転モータ322は偏心回転モータ311と偏心回転モータ312との中間位置に、偏心回転モータ323は偏心回転モータ312と偏心回転モータ313との中間位置に位置する。
 培養容器1は、偏心回転モータ311~313及び321~323それぞれの駆動が制御されることにより振動する。この振動により、培養容器1に収容される受精卵16は回転する。
 偏心回転モータ311~313及び321~323それぞれに印可する電圧を制御することにより振動の周波数(モータの回転数)は制御され、振動の強弱が制御される。また、それぞれ異なる位置に6つの偏心回転モータ311~313及び321~32を配置することにより、培養容器1に対して所望の方向の振動を与えることができる。
 このように、各偏心回転モータの駆動の有無及び駆動電圧を制御することにより、培養容器1に対して所望の強弱及び方向の振動を与えることができる。これにより、受精卵16の回転方向及び回転量が制御される。
 回転装置340が備えられた培養容器1は、ステージ27上に配置される。培養容器1に収容される受精卵16は、ステージ27の上部に配置されるカメラ25により撮像可能となっている。また、ステージ27の下部には観察照明装置24が配置される。観察照明装置24は、培養容器1内の受精卵16に光を照射する。
<観察システムの学習用データベース作成>
 次に、上述の観察システム2を用いた学習用データベース2241の作成について図9~図12を用いて説明する。学習用データベース2241の作成時、あらゆる成長段階の受精卵を回転させて撮像することにより、複数の角度から撮像した受精卵の画像を学習用データとして取得する。
 図9は、学習用データベース2241の作成のフローチャートである。図10は、学習用データベースの作成時における受精卵の画像取得時の観察照明装置、カメラ、回転装置の駆動のタイミングを説明するための図である。図11は、回転装置340に備えられる偏心回転モータ311~313、321~323の駆動のタイミングを説明する図である。図12は、回転装置340の駆動により受精卵16が回転する様子を説明する模式図である。
 比較用の受精卵16の画像取得は、受精卵16を収容した培養容器1を観察装置21内に保持した状態で行われる。受精卵16の画像取得処理は、培養容器1の複数の収容部15にそれぞれ収容された受精卵16毎に順に行われる。
 画像取得処理は例えば15分を1画像取得期間とし、1つの受精卵16を1画像取得期間で撮像して取得される複数の第1の画像に係るデータが、1つの学習用データとしてデータベースに保存される。学習用データは、受精卵の第1の特徴量、受精卵に対する培養士等の所見である成長ステージコード及び品質ランク、1画像取得期間内で取得された複数の観察角度から撮像された受精卵の第1の画像が対応づけされたデータである。
 図10に示すように、受精卵16の画像取得は、1画像取得期間を15分とし、n期間連続して行われる。1画像取得期間内で、観察照明装置24による光の照射はオン、オフが繰り返されて行われており、断続的に受精卵16に対して光の照射が行われる。このように断続的に光が照射されることにより、光照射による受精卵のダメージを減少させることができる。尚、1画像取得期間の時間は15分に限定されず、任意に設定することができる。
 図10に示すように、受精卵16のカメラ25による撮像は、観察照明装置24による光の照射の期間内に行われる。また、回転装置340は、観察照明装置24及びカメラ25のいずれもがオンの状態の時に駆動する。すなわち、回転している状態の受精卵16をカメラ25により撮像する。カメラ25の位置を固定して回転している受精卵16を複数枚撮像することにより、複数の異なる観察角度から受精卵16を撮像することができる。
 受精卵16を回転させる回転装置340の偏心回転モータ311~313、321~323の駆動のタイミングについて説明する。図11に示すように、本実施形態では、培養容器1の側面に配置される偏心回転モータ311~313の駆動と、培養容器1の底面に配置される偏心回転モータ321~323の駆動を交互に行う。尚、偏心回転モータ311~313の駆動と偏心回転モータ321~323の駆動のタイミングはこれに限定されない。
 回転装置340の駆動条件及びカメラ25による撮像回数の一例をあげる。
 定格回転数が約4000rpmの偏心回転モータを使用し、偏心回転モータ321~323のみを駆動して偏心回転モータ321~323に直流電圧1Vを印加する。このような駆動条件では、収容部15内の受精卵16は、約1秒で1回転する。この1秒間で1回転する受精卵16を、1秒間に30フレーム撮像可能なカメラ25で撮像する。これにより、2秒間で60枚の受精卵16の回転画像を取得することができる。この駆動条件により、例えば図12(A)に示すように、収容部15内の受精卵16は、いずれもほぼ同じ回転方向及び回転量で回転する。
 次に、定格回転数が約4000rpmの偏心回転モータを使用し、偏心回転モータ311~313のみを駆動して偏心回転モータ311~313に直流電圧1Vを印加する。このような駆動条件では、収容部15内の受精卵16は、約1秒で1回転する。この駆動条件により、例えば図12(B)に示すように、収容部15内の受精卵16は、いずれもほぼ同じ回転方向及び回転量で回転する。この1秒間で1回転する受精卵16を、上記と同様に、1秒間に30フレーム撮像可能なカメラ25で撮像することにより、2秒間で60枚の受精卵16の回転画像を取得することができる。
 尚、ここでは、受精卵16が回転している状態をカメラ25によって撮像するが、これに限定されない。他の例として図13に示すように、回転後の静止状態の受精卵16を撮像してもよい。
 図13に示すように、受精卵16の画像取得は、1画像取得期間を15分とし、n期間連続して行われる。観察照明装置24による光の照射はオン、オフが繰り返されて行われており、断続的に光の照射が行われる。このように断続的に光が照射されることにより、光照射による受精卵のダメージを減少させることができる。
 受精卵16のカメラ25による撮像は、観察照明装置24による光の照射の期間内に行われる。また、回転装置340は、観察照明装置24及びカメラ25のいずれもがオフの状態の時に駆動する。すなわち、静止状態の受精卵16をカメラ25により撮像した後、回転装置340を駆動させて受精卵16を回転させ、回転後の静止状態の受精卵16を撮像する、というように、撮像と回転を繰り返し行う。
 以下、図9に従って学習用データベースの作成方法について説明する。
 図9は1画像取得期間内に行われる処理を示す。
 まず、受精が確認された比較用の受精卵16を1つずつ培養容器1の収容部15にいれた後、培養液18を収容部15内及び内壁12に囲まれた領域内にピペットで注入する。その後、培養液18を覆うように内壁12に囲まれた領域内にオイル17を注入する。
 次に、培養容器1を図5に示すように観察装置21内のステージ27に水平に載置する。このとき必要に応じて、培養容器1に、図示しない培養容器1と同様の材質でできた透明の蓋が載せられてもよい。
 次に、所定時間間隔での画像撮影が開始されると(S101)、撮像制御部226から観察トリガー信号が出力される(S102)。観察トリガー信号に基づき、図10に示すタイミングで、観察照明装置24の照明が点灯し(S103)、回転装置340が駆動し(S104)、カメラ25による撮像が行われる(S105)。
 画像取得部222は、カメラ25により撮像された受精卵16の第1の画像を取得し、学習用データベース2241は、取得された第1の画像を保存する(S106)。ここで、画像取得部222は、取得された受精卵16の画像に対して、画像の正規化、受精卵16の位置の調整、形状の強調フィルタ等の画像の前処理を実行し、記録部224は、この前処理が行われた第1の画像を保存してもよい。
 撮像制御部226は、撮像を終了するか否かを判定する(S107)。本実施形態においては、15分を1画像取得期間とし、この1画像取得期間分のデータを1つのデータとして保存するので、画像撮影開始から15分経過した時点で、1画像取得期間分の撮像を終了する判定がなされる。
 15分が経過せず、1画像取得期間分の撮像が終了していない場合、撮像制御部226はS107でnoの判定をし、S103に戻り、S103~S106のステップが繰り返される。
 15分経過し、1画像取得期間分の撮像が終了している場合、撮像制御部226はS107でyesの判定をし、S108に進む。
 特徴量抽出部230は、画像取得部222により取得され、前処理が行われた1画像取得期間分の受精卵16の複数の第1の画像に基づいて、受精卵16の第1の特徴量を抽出する(S108)。
 培養士等の評価者は、1画像取得期間内に撮像された複数の受精卵16の第1の画像をみて、受精卵16の成長段階を評価し、受精卵16に成長ステージコードを付与する。更に、評価者は、成長段階毎に予め決められている評価条件を基に受精卵16の品質を評価し、受精卵16に品質ランクを付与する。
 このように評価者により受精卵16の評価が行われ、所見として成長ステージコード及び品質ランクの付与が行われる(S109)。
 次に、学習用データベース2241に、1画像取得期間内に撮像された1つの受精卵16の画像と、その受精卵16の第1の特徴量と、成長ステージコードと、品質ランクとが対応づけされた学習用データが保存される(S110)。
 以上のS101~S110が繰り返され、15分を1画像取得期間として、n期間分の比較用の受精卵16の画像が取得される。これにより、あらゆる成長段階の比較用の受精卵16の複数の観察角度から撮像した画像(第1の画像)が取得される。各画像取得期間で撮像された複数の観察角度から撮像した比較用の受精卵の第1の画像は、その画像の特徴量(第1の特徴量)、成長ステージコード、品質ランクが紐づけされて、学習用データとして、学習用データベース2241に保存される。
<観察システムを用いた受精卵の評価方法>
 次に、上述のように学習用データベースが作成された観察システム2を用いた、評価対象の受精卵の情報処理方法としての評価方法について説明する。
 以下、図14~図16を用いて評価方法について説明する。
 図14は、学習用データが保存された学習用データベース2241を有する観察システム2を用いた評価方法のフローチャートである。
 図15は、同観察システム2を用いた受精卵の画像取得時の観察照明装置、カメラ、回転装置の駆動のタイミングを説明するための図である。図16は、図14に示すフローチャートの受精卵画像の比較、判定、付与のステップの詳細を示すフローチャートである。
 評価対象の受精卵16の画像取得では、上述した学習用データベース作成時に行われた画像取得と同様に、回転装置340を用いて受精卵16を回転させて、回転している状態の受精卵16を撮像することにより、複数の観察角度から撮像した画像を取得する。
 本実施形態においては、図15に示すように、画像取得処理は学習用データベース作成時と同様に、例えば15分を1画像取得期間とし、n期間連続して行われる。観察照明装置24による光の照射は点灯(オン)、非点灯(オフ)が交互に繰り返されて行われており、断続的に光の照射が行われる。カメラ25による撮像及び回転装置340の駆動も、観察照明装置24による点灯、非点灯にあわせて、オン、オフが交互に繰り返される。
 受精卵16のカメラ25による撮像は、観察照明装置24による光の照射の期間内に行われる。また、回転装置340は、観察照明装置24及びカメラ25のいずれもがオンの状態の時に駆動する。すなわち、回転している状態の受精卵16がカメラ25により撮像される。
 カメラ25により取得した評価対象の受精卵16の第2の画像のディープラーニング解析は、観察照明装置24、カメラ25及び回転装置340のいずれもがオフのときに行われる。ディープラーニング解析は、カメラ25による撮像毎に行われ、1画像取得期間内に複数回行われる。
 受精卵16を回転させる回転装置340の偏心回転モータ311~313、321~323の駆動のタイミングは、上述した学習用データベース作成時での回転装置340の駆動と同様である。
 尚、ここでは、受精卵16が回転している状態をカメラ25によって撮像するが、これに限定されない。図17に示すように、観察照明装置24及びカメラ25のいずれもがオフの状態のときに回転装置340を駆動させ、回転後の静止状態の受精卵16を撮影するようにしてもよい。
 図17に示すように、受精卵16の画像取得は、1画像取得期間を15分とし、n期間連続して行われる。観察照明装置24による光の照射はオン、オフが繰り返されて行われており、断続的に光の照射が行われる。
 図17に示すように、受精卵16のカメラ25による撮像は、観察照明装置24による光の照射の期間内に行われる。また、回転装置340は、観察照明装置24及びカメラ25のいずれもがオフの状態の時に駆動する。すなわち、静止状態の受精卵16をカメラ25により撮像した後、回転装置340を駆動させて受精卵16を回転させ、回転後の静止状態の受精卵16を撮像する、というように、撮像と回転を繰り返し行う。
 また、ディープラーニング解析は、回転装置340の駆動が停止した後であって、観察照明装置24及びカメラ25がいずれもオフの状態のときに行われる。
 次に、図14に従って、評価時の観察システム2における受精卵の評価方法について説明する。
 図14は1画像取得期間内に行われる処理を示す。
 まず、受精が確認された受精卵16を1つずつ培養容器1の収容部15にいれた後、培養液18を収容部15内及び内壁12に囲まれた領域内にピペットで注入する。その後、培養液18を覆うように内壁12に囲まれた領域内にオイル17を注入する。
 次に、培養容器1を図5に示すように観察装置21内のステージ27に水平に載置する。このとき必要に応じて、培養容器1に、図示しない培養容器1と同様の材質でできた透明の蓋が載せられてもよい。
 次に、所定時間間隔での画像撮影が開始されると(S201)、撮像制御部226から観察トリガー信号が出力される(S202)。観察トリガー信号に基づき、図15に示すタイミングで、観察照明装置24の照明が点灯し(S203)、回転装置340が駆動し(S204)、カメラ25による撮像が行われる(S205)。
 画像取得部222は、カメラ25により撮像された受精卵16の第2の画像を取得する。取得された第2の画像は、記憶部としての解析結果のデータベース2242に保存される(S206)。ここで、画像取得部222は、取得された受精卵16の第2の画像に対して、画像の正規化、受精卵16の位置の調整、形状の強調フィルタ等の画像の前処理を実行し、解析結果のデータベース2242は、この前処理が行われた第2の画像を保存してもよい。
 特徴量抽出部230は、画像取得部222により取得され、前処理が行われた評価対象の受精卵16の第2の画像に基づいて、第2の画像の第2の特徴量を抽出する(S207)。
 次に、評価対象の受精卵16の第2の画像と第1の画像の比較、判定、評価の付与が行われる(S208)。図16を用いて、比較、判定、評価の付与のステップについて説明する。
 図16に示すように、判定部231は、学習用データベース2241に保存されている第1の画像と、解析結果のデータベース2242に保存されている第2の画像とを比較し、両者が一致するか否かを判定する。より具体的には、判定部231は、第1の特徴量と第2の特徴量とを比較し、第1の画像と第2の画像とが一致するか否かを判定する(S301)。
 付与部232は、判定部231による判定結果を基に、第2の画像に対して成長ステージコード及び品質ランクを付与する(S302)。具体的には、判定部231により第1の画像と第2の画像とが一致すると判定された場合、付与部232は、第2の画像に一致すると判定された第1の画像に対応づけられている成長ステージコード及び品質ランクを、第2の画像に対し付与する。
 このような比較、判定、付与が第2の画像毎に行なわれ、複数の第2の画像それぞれに成長ステージコード及び品質ランクが付与される。
 次に、算出部227は、付与部232により複数の第2の画像それぞれに付与された成長ステージコードのうち、各成長ステージコードの占める割合を算出する(S303)。算出部227により算出された算出結果は、評価部223へ出力される。
 図14に戻って、判定制御部229により、第1の画像と第2の画像との比較処理を終了するか否かが判定される(S209)。本実施形態においては、15分を1画像取得期間とし、この1画像取得期間分のデータを1つのデータとして保存するので、画像撮影開始から15分経過した時点で1画像取得期間分の撮像を終了する、換言すると、比較処理を終了する判定がなされる。
 15分が経過せず、1画像取得期間分の撮像が終了していない場合、判定制御部229は、比較処理を続行すると判定し、S209でnoの判定をする。S209でnoの判定がなされると、S203に戻り、S203~S208のステップが繰り返される。
 15分経過し、1画像取得期間分の撮像が終了している場合、判定制御部229はS209でyesの判定をし、S210に進む。
 尚、本実施形態においては、比較処理の終了の判定を1画像取得期間の時間を基に行っているが、これに限定されず、例えば第1の画像と第2の画像の比較枚数を基に行っても良い。この場合、15分の1画像取得期間の15分を経過しない時点で、設定された比較枚数に達した場合は、その画像取得期間内での評価対象の受精卵の撮像が途中で停止されるようにしてもよい。撮像の停止とともに観察照明装置による光の照射も停止される。これにより、受精卵16への光の照射時間を短縮することができ、受精卵に対する光の影響を抑制することができる。
 S209で比較処理を終了すると判定されると、評価部223は、算出部227により算出された算出結果を基に、複数の第2の画像それぞれに付与された成長ステージコードのうち最も多く付与された成長ステージコードを1画像取得期間における評価対象の受精卵16の成長ステージコードであると評価する(S210)。評価対象の受精卵16には、その評価された成長ステージコードが付与される。
 次に、算出部227は、評価対象の受精卵16に対して付与された成長ステージコードと同じ成長ステージコードが付与されている第2の画像を対象にして、この対象とする第2の画像と一致すると判定された第1の画像に対応づけられている品質ランクの割合を算出する(S211)。算出部227により算出された算出結果は、評価部223へ出力される。
 評価部223は、入力された算出結果を基に、対象とする複数の第2の画像それぞれに対し付与された品質ランクのうち最も多く付与された品質ランクを、評価用の受精卵16の品質ランクであると評価する(S212)。評価対象の受精卵16には、その評価された品質ランクが付与される。
 このように、S208~S212により1画像取得期間内で撮像された評価対象の受精卵16の第2の画像がディープラーニング解析される。
 評価対象の受精卵16の第2の画像のディープラーニング解析が終了すると、解析結果のデータベース2242に、評価対象の受精卵16が収容されている収容部15の位置情報、撮像日時、撮像条件、特徴量抽出部230により抽出された第2の特徴量、画像取得部222により取得された複数の観察方向から撮像した複数の受精卵の画像(第2の画像)、及び、評価部223によって評価された成長ステージコード及び品質ランク等が対応づけられて、収容部15毎に保存される(S213)。
 以上のS201~S213が繰り返され、15分を1画像取得期間として、n期間分の評価対象の受精卵16のデータが取得される。各画像取得期間で取得された第2の画像は、第2の特徴量、収容部15の位置情報、撮像日時、撮像条件、成長ステージコード、品質ランク等が対応づけられて、受精卵16毎に時系列に解析結果のデータベース2242に保存される。
 以上のように、観察システム2を用いることにより、学習用データベース2241に保存されている学習用データを基に、評価者による観察を必要とせずに、評価対象の受精卵16に対してその成長段階及び品質を正確に評価することができ、精度の高い評価が可能となる。また、観察システム2を用いることにより、評価者による観察なく評価対象の受精卵16の評価を行うことができるので、大量の受精卵の評価に有効である。
 評価対象の受精卵16の評価方法の具体的な例をあげる。
 S302で、付与部232により1000枚の第2の画像それぞれに成長ステージコード及び品質ランクが付与されたとする。
 例えば成長ステージコード4と付与された第2の画像が30枚、成長ステージコード5と付与された第2の画像が950枚、成長ステージコード6と付与された第2の画像が20枚とすると、S303で、算出部227は、成長ステージコード4と判定された第2の画像の占める割合を3%、成長ステージコード5と判定された第2の画像の占める割合を95%、成長ステージコード6と判定された第2の画像の占める割合を2%と算出する。
 S210で、評価部223は、この算出結果を基に、複数の評価対象の受精卵16の第2の画像に対し付与された成長段階のうち最も多く付与された成長ステージコード5を、評価用の受精卵16の成長段階であるとする。
 次に、S211で、算出部227は、評価対象の受精卵16に付与された評価結果と同じ成長ステージコード5が付与された950枚の第2の画像を対象にして、これらの第2の画像それぞれに対し付与された品質ランクのうち、各品質ランクが占める割合を算出する。仮に、成長ステージコード5が付与された950枚の第2の画像のうち、893枚がAランク、38枚がBランク、19枚がCランクとすると、算出部227は、Aランクの占める割合が94%、Bランクの占める割合が4%、Cランクの占める割合が2%と算出する。
 これにより、S212で、評価部223は、この算出結果を基に、評価対象の受精卵16の成長ステージコード5が付与された第2の画像に対し付与された成長段階のうち最も多く付与された品質ランクAを、評価用の受精卵16の品質であるとする。
 以上のように、本技術においては、学習用データベース作成時に、比較用の受精卵を回転させて受精卵の画像データを取得しているので、あらゆる観察角度から見た受精卵のデータを学習用データとして取得することができる。
 更に、評価時の観察システム2において、評価用の受精卵を回転させて受精卵の画像データを取得しているので、あらゆる観察角度から見た評価対象の受精卵のデータを評価用データとして取得することができる。
 そして、あらゆる観察角度から見た受精卵の画像データを有する学習用データを用いて、同じくあらゆる観察角度から見た受精卵の画像データを評価するので、評価対象の受精卵の評価を高精度のものとすることができる。
 例えば、評価対象の受精卵が構造非対称性の高い胚盤胞の成長段階以降の受精卵で、観察角度によって見え方が著しく異なる受精卵である場合、本技術に係る観察システムを用いることにより、評価対象の受精卵の成長段階や品質の評価をより正確に行うことができ評価精度が高くなる。
(第2の実施形態)
 第1の実施形態では、評価時の観察システムにおいて、カメラによる撮像毎にディープラーニング解析を行っていたが、これに限定されない。例えば、図18に示すように、1画像取得期間内で、複数回のカメラによる撮像が行われた後に、1回ディープラーニング解析を行うようにしてもよい。
 図18に示すように、受精卵16の画像取得は、1画像取得期間を15分とし、n期間連続して行われる。観察照明装置24による光の照射は点灯、非点灯が交互に繰り返されて行われており、断続的に光の照射が行われる。カメラ25による撮像及び回転装置340の駆動も、観察照明装置24による点灯、非点灯にあわせて、オン、オフが交互に繰り返される。
 受精卵16のカメラ25による撮像は、観察照明装置24による光の照射の期間内に行われる。また、回転装置340は、観察照明装置24及びカメラ25のいずれもがオンの状態の時に駆動する。すなわち、回転している状態の受精卵16をカメラ25により撮像することができる。
 カメラ25により取得した評価対象の受精卵16の第2の画像のディープラーニング解析は、観察照明装置24、カメラ25及び回転装置340のいずれもがオフのときに行われる。本実施形態では、1画像取得期間内で、複数回のカメラによる撮像で取得された第2の画像をまとめて、1回のディープラーニング解析で解析する。
(第3の実施形態)
 第1の実施形態においては、第1の画像と第2の画像との比較処理の終了の判定は、例えば、ユーザによって予め設定された時間や画像の比較枚数等を基に行われていたが、これに限定されない。以下、比較処理の終了の判定の他の例について図6、図19~図21を用いて説明する。上述の実施形態と同様の構成については同様の符号を付し、説明を省略する。また、ここでは、回転している状態の受精卵を撮像する例をあげて説明する。
 図6は、本実施形態における観察システムの構成を示すブロック図である。図19は、本実施形態における評価時の観察システムを用いた受精卵の評価方法を説明するフローチャートである。図20は、比較処理の終了の判定を説明する図である。図21は、図19のフローチャートにおける画像取得、比較、判定、付与のステップの詳細を説明するフローチャートである。
 図6に示すように、観察システム1002の情報処理装置1022は、画像取得部222と、特徴量抽出部230と、判定部231と、付与部232と、評価部223と、記憶部224と、表示制御部225と、撮像制御部226と、算出部227と、回転制御部228と、判定制御部1229とを具備する。
 判定制御部1229は、第1の画像と第2の画像の比較処理の終了の判定を行う。判定制御部1229は、算出部227により算出された、第2の画像それぞれに付与された成長段階のうち最も多く付与された成長段階が占める割合の数値が安定したか否かを判定し、割合の数値が安定したと判定するまで第1の画像と第2の画像の比較を行うよう判定部231を制御する。
 判定制御部1229は、割合の数値が安定したと判定すると、比較処理を終了するように判定部231を制御する。
 判定制御部1229は、割合の数値が変動しており安定していないと判定すると、比較処理を続行するように判定部231を制御する。
 図19に従って、本実施形態における受精卵16の評価方法について説明する。図20において、横軸は第1の画像と第2の画像とを比較する枚数を示し、縦軸は最も多く付与される成長段階が占める割合を示す。
 図19は1画像取得期間内に行われる処理を示す。
 ディープラーニング解析において、第1の画像と第2の画像との比較枚数が多いほど、解析精度が高くなっていく。
 まず、図19に示すように、画像取得、比較、判定、付与が行われる(S401)。詳細には、図21に示すように、回転装置340が駆動し(S501)、評価対象の受精卵16が回転する。回転する受精卵16はカメラ25により撮像される(S502)。撮像された受精卵16の第2の画像は、解析結果のデータベース2242に保存される(S503)。
 特徴量抽出部230は、撮像された受精卵16の第2の画像を基に第2の特徴量を抽出する(S504)。判定部231は、学習用データベース2241に保存されている第1の画像に基づいて抽出された第1の特徴量と、解析結果のデータベース2242に保存されている第2の画像に基づいて抽出された第2の特徴量とを比較する。判定部231は、第1の特徴量と第2の特徴量とを比較し、第1の画像と第2の画像とが一致するかを判定する(S505)。
 付与部232は、判定部231による判定結果を基に、第2の画像に対して成長ステージコード及び品質ランクを付与する(S506)。具体的には、判定部231により第1の画像と第2の画像とが一致すると判定された場合、付与部232は、第2の画像に一致すると判定された第1の画像に対応づけられている成長ステージコード及び品質ランクを、第2の画像に対し付与する。これにより、複数の第2の画像それぞれに成長ステージコード及び品質ランクが付与される。
 次に、算出部227は、付与部232により複数の第2の画像それぞれに付与された成長ステージコードのうち、各成長ステージコードの占める割合を算出する(S507)。算出部227により算出された算出結果は、判定制御部1229へ出力される。
 図19に戻って、判定制御部1229は、各第2の画像に付与された成長段階のうち最も多く付与された成長段階が占める割合の数値が安定しているか否かを判定する(S402)。
 図20の領域Aに示すように、算出部227により算出された、各第2の画像に付与された成長段階のうち最も多く付与された成長段階が占める割合の数値が変動する場合、判定制御部1229は、数値は安定していない、比較処理を続行する判定をする(no)。S402でnoと判定されると、S401に戻って、S501~S507のステップが繰り返され、画像取得、比較、判定、付与が繰り返される。
 他方、図20の領域Bに示すように、算出部227により算出された、各第2の画像に付与された成長段階のうち最も多く付与された成長段階が占める割合の数値が安定した場合、判定制御部1229は、数値は安定している、比較処理を終了する判定をする(yes)。S402でYesと判定されると、比較処理が終了し、S403に進む。
 本実施形態において、15分の1画像取得期間の15分を経過しない時点で、S402で数値は安定しているという判定がされた場合は、その画像取得期間内での評価対象の受精卵の撮像が途中で停止される。この撮像の停止とともに観察照明装置による光の照射も停止される。これにより、受精卵16への光の照射時間を短縮することができ、受精卵に対する光の影響を抑制することができる。
 評価部223は、算出部227により算出された算出結果を基に、複数の第2の画像それぞれに付与された成長ステージコードのうち最も多く付与された成長ステージコードを、評価対象の受精卵16の成長ステージコードであるとする(S403)。評価対象の受精卵16には、その評価された成長ステージコードが付与される。
 次に、算出部227は、判定された成長ステージコードと同じ成長ステージコードが付与された第2の画像を対象にして、この対象の第2の画像と一致すると判定された第1の画像に対応づけられている品質ランクの割合を算出する(S404)。算出部227により算出された算出結果は、評価部223へ出力される。
 評価部223は、入力された算出結果を基に、評価対象の受精卵16の複数の第2の画像それぞれに対し付与された品質ランクのうち最も多く付与された品質ランクを、評価用の受精卵16の品質ランクであるとする(S405)。評価対象の受精卵16には、その評価された品質ランクが付与される。
 以上のように、S401~S405により評価対象の受精卵16の第2の画像がディープラーニング解析される。
 評価対象の受精卵16の第2の画像のディープラーニング解析が終了すると、解析結果のデータベース2242に、評価対象の受精卵16が収容されている収容部15の位置情報、撮像日時、撮像条件、特徴量抽出部230により抽出された第2の特徴量、1画像取得期間内に画像取得部222により取得された複数の観察方向から撮像した複数の受精卵の画像、及び、評価部223によって評価された成長ステージコード及び品質ランク等が互いに対応づけられて、収容部15毎に保存される(S406)。
 このように、各第2の画像に付与された成長段階のうち最も多く付与された成長段階が占める割合の数値が安定した場合、比較処理を終了するように構成してもよい。これにより、より精度の高い評価を行うことができる。
(第4の実施形態)
 第1の実施形態においては、比較処理の終了の判定は、例えば、ユーザによって予め設定された時間や画像の比較枚数等を基に行われていたが、これに限定されない。以下、比較処理の終了の判定の更に他の例について図6、図21~図23を用いて説明する。上述の実施形態と同様の構成については同様の符号を付し、説明を省略する。また、ここでは、回転している状態の受精卵を撮像する例をあげて説明する。
 図6は、本実施形態における観察システムの構成を示すブロック図である。図22は、本実施形態における観察システムを用いた受精卵の評価方法を説明するフローチャートである。図23は、比較処理の終了の判定を説明する図である。図21は、図22のフローチャートにおける画像取得、比較、判定、付与のステップの詳細を説明するフローチャートである。
 図6に示すように、観察システム2002の情報処理装置2022は、画像取得部222と、特徴量抽出部230と、判定部231と、付与部232と、評価部223と、記憶部224と、表示制御部225と、撮像制御部226と、算出部227と、回転制御部2228と、判定制御部2229とを具備する。
 判定制御部2229は、ある回転条件で回転させた受精卵を撮像して取得した第2の画像と第1の画像の比較処理の終了の判定を行う。判定制御部2229は、算出部227により算出された、第2の画像それぞれに付与された成長段階のうち最も多く付与された成長段階が占める割合の数値が安定したか否かを判定し、割合の数値が安定したと判定するまで第1の画像と第2の画像の比較を行うよう判定部231を制御する。
 判定制御部2229は、割合の数値が安定したと判定すると、ある回転条件で回転させた受精卵を撮像して取得した第2の画像と第1の画像の比較処理を終了するよう判定部231を制御する。
 判定制御部2229は、割合の数値が変動しており安定していないと判定すると、比較処理を続行するように判定する。
 更に、判定制御部2229は、ある回転条件で回転させた受精卵を撮像して取得した第2の画像と第1の画像の比較処理を終了する判定をすると、異なる回転条件で受精卵16を回転させるよう回転制御部2228に対して制御信号を出力する。
 回転制御部2228は、判定制御部2229からの制御信号をうけ、回転装置340に備えられる複数の偏心回転モータそれぞれの駆動・停止のタイミング、印加電圧を制御する制御信号を制御装置341に出力する。
 回転制御部2228は、第1の実施形態の回転制御部228と同様に、受精卵16の回転方向及び回転量が制御可能となっている。
 本実施形態においては、図23に示すように、回転装置340を3種類の駆動条件下で順番に駆動し、評価対象の受精卵16を3種類の異なる回転条件で回転させている。異なる回転条件それぞれで回転させた受精卵16の画像を複数枚取得する。
 図22に従って、本実施形態における受精卵16の評価方法について説明する。図23において、横軸は第1の画像と第2の画像とを比較する枚数を示し、縦軸は最も多く付与される成長段階が占める割合を示す。
 まず、図22に示すように、画像取得、比較、判定、付与が行われる(S601)。詳細には、図21に示すように、回転装置340が第1の駆動条件で駆動し(S501)、評価対象の受精卵16が第1の回転条件で回転する。回転する受精卵16はカメラ25により撮像される(S502)。撮像された受精卵16の第2の画像は、解析結果のデータベース2242に保存される(S503)。
 特徴量抽出部230は、撮像された受精卵16の第2の画像を基に第2の特徴量を抽出する(S504)。判定部231は、学習用データベース2241に保存されている第1の画像に基づいて抽出された第1の特徴量と、解析結果のデータベース2242に保存されている第2の画像に基づいて抽出された第2の特徴量とを比較する。判定部231は、第1の特徴量と第2の特徴量とを比較し、第1の画像と第2の画像とが一致するかを判定する(S505)。
 付与部232は、判定部231による判定結果を基に、第2の画像に対して成長ステージコード及び品質ランクを付与する(S506)。具体的には、判定部231により第1の画像と第2の画像とが一致すると判定された場合、付与部232は、第2の画像に一致すると判定された第1の画像に対応づけられている成長ステージコード及び品質ランクを、第2の画像に対し付与する。これにより、複数の第2の画像それぞれに成長ステージコード及び品質ランクが付与される。
 次に、算出部227は、付与部232により複数の第2の画像それぞれに付与された成長ステージコードのうち、各成長ステージコードの占める割合を算出する(S507)。算出部227により算出された算出結果は、判定制御部2229へ出力される。
 図22に戻って、判定制御部2229は、各第2の画像に付与された成長段階のうち最も多く付与された成長段階が占める割合の数値が安定しているか否かを判定する(S602)。
 図23の領域A1に示すように、算出部227により算出された、各第2の画像に付与された成長段階のうち最も多く付与された成長段階が占める割合の数値が変動する場合、判定制御部2229は、数値は安定していない、比較処理を続行する判定をする(no)。S602でnoと判定されると、S601に戻って、S501~S507のステップが繰り返され、画像取得、比較、判定、付与が繰り返される。
 他方、図23の領域B1に示すように、算出部227により算出された、各第2の画像に付与された成長段階のうち最も多く付与された成長段階が占める割合の数値が安定した場合、判定制御部2229は、数値は安定している、比較処理を終了する判定をする(yes)。S602でYesと判定されると、比較処理が終了し、S603に進む。
 S603では、画像取得、比較、判定、付与が行われる。詳細には、図21に示すように、回転装置340が第2の駆動条件で駆動し(S501)、評価対象の受精卵16が第2の回転条件で回転する。第2の駆動条件は第1の駆動条件とは異なる。第2の回転条件は第1の回転条件とは異なる。
 以下、上述と同様に、S502~S507が行われる。
 図22に戻って、判定制御部2229は、各第2の画像に付与された成長段階のうち最も多く付与された成長段階が占める割合の数値が安定しているか否かを判定する(S604)。
 図23の領域A2に示すように、算出部227により算出された、各第2の画像に付与された成長段階のうち最も多く付与された成長段階が占める割合の数値が変動する場合、判定制御部2229は、数値は安定していない、比較処理を続行する判定をする(no)。S604でnoと判定されると、S603に戻って、S501~S507のステップが繰り返され、画像取得、比較、判定、付与が繰り返される。
 他方、図23の領域B2に示すように、算出部227により算出された、各第2の画像に付与された成長段階のうち最も多く付与された成長段階が占める割合の数値が安定した場合、判定制御部2229は、数値は安定している、比較処理を終了する判定をする(yes)。S604でyesと判定されると、比較処理が終了し、S605に進む。
 S605では、画像取得、比較、判定、付与が行われる。詳細には、図21に示すように、回転装置340が第3の駆動条件で駆動し(S501)、評価対象の受精卵16が第3の回転条件で回転する。第3の駆動条件は第1及び第2の駆動条件とは異なる。第3の回転条件は第1及び第2の回転条件とは異なる。
 以下、上述と同様に、S502~S507が行われる。
 図22に戻って、判定制御部2229は、各第2の画像に付与された成長段階のうち最も多く付与された成長段階が占める割合の数値が安定しているか否かを判定する(S606)。
 図23の領域A3に示すように、算出部227により算出された、各第2の画像に付与された成長段階のうち最も多く付与された成長段階が占める割合の数値が変動する場合、判定制御部2229は、数値は安定していない、比較処理を続行する判定をする(no)。S606でnoと判定されると、S605に戻って、S501~S507のステップが繰り返され、画像取得、比較、判定、付与が繰り返される。
 他方、図23の領域B3に示すように、算出部227により算出された、各第2の画像に付与された成長段階のうち最も多く付与された成長段階が占める割合の数値が安定した場合、判定制御部2229は、数値は安定している、比較処理を終了する判定をする(yes)。S606でyesと判定されると、比較処理が終了し、S607に進む。
 尚、本実施形態においては、3種類の回転条件で受精卵16を回転させる例をあげたが、回転条件の種類は3種類に限定されず、任意に設定可能である。
 また、本実施形態において、15分の1画像取得期間の15分を経過しない時点で、S606で数値は安定しているという判定がされた場合は、その画像取得期間内での評価対象の受精卵の撮像が途中で停止される。この撮像の停止とともに観察照明装置による光の照射も停止される。これにより、受精卵16への光の照射時間を短縮することができ、受精卵に対する光の影響を抑制することができる。
 評価部223は、算出部227により算出された算出結果を基に、複数の第2の画像それぞれに付与された成長ステージコードのうち最も多く付与された成長ステージコードを、評価対象の受精卵16の成長ステージコードであるとする(S607)。評価対象の受精卵16には、その評価された成長ステージコードが付与される。
 次に、算出部227は、判定された成長ステージコードと同じ成長ステージコードが付与された第2の画像を対象にして、この対象の第2の画像と一致すると判定された第1の画像に対応づけられている品質ランクの割合を算出する(S608)。算出部227により算出された算出結果は、評価部223へ出力される。
 評価部223は、入力された算出結果を基に、評価対象の受精卵16の複数の第2の画像それぞれに対し付与された品質ランクのうち最も多く付与された品質ランクを、評価用の受精卵16の品質ランクであるとする(S609)。評価対象の受精卵16には、その評価された品質ランクが付与される。
 以上のように、S601~S609により評価対象の受精卵16の第2の画像がディープラーニング解析される。
 評価対象の受精卵16の第2の画像のディープラーニング解析が終了すると、解析結果のデータベース2242に、評価対象の受精卵16が収容されている収容部15の位置情報、撮像日時、撮像条件、特徴量抽出部230により抽出された第2の特徴量、1画像取得期間内に画像取得部222により取得された複数の観察方向から撮像した複数の受精卵の画像、及び、評価部223によって評価された成長ステージコード及び品質ランク等が対応づけられて、収容部15毎に保存される(S610)。
 このように、回転条件をかえて回転させた受精卵の第2の画像を取得し、それぞれの回転条件下で取得した第2の画像に付与された成長段階のうち最も多く付与された成長段階が占める割合の数値が安定した場合、比較処理を終了するように構成してもよい。これにより、より精度の高い評価を行うことができる。
(第5の実施形態)
 上述の実施形態では、振動を利用した回転装置を用いて受精卵16を回転させたが、本実施形態では、水流を利用した回転装置を用いて受精卵16を回転させている。本実施形態においては、培養容器の収容部の培養液に流体を噴出(注入)することで、収容部内の培養液に流れを発生させて、受精卵16を回転させる。
 本実施形態は、上述の実施形態と比較して、振動装置ではなく培養液に流れを発生させて受精卵を回転させる回転機構を具備する培養容器を用いる点が主に相違する。上述の実施形態と異なる構成について主に説明し、上述の実施形態と同様の構成については同様の符号を付し、説明を省略する場合がある。
 第5の実施形態における観察システムについて図24~27を用いて説明する。図24は、観察システムの構成を示す概略図である。図25は、観察システムの構成を示すブロック図である。図26は培養容器の収容部付近の部分拡大図である。図27は、観察システムの回転部付近の構成を示す図である。
 観察システム3002は、観察装置3021と、情報処理装置3022と、表示装置23と、入力装置29とを有する。観察装置3021内には、観察照明装置24と、撮像部としてのカメラ25と、温度・湿度・ガス制御部26と、ステージ27と、回転機構を有する培養容器3040が配置される。
 回転機構を有する培養容器3040は、回転機構としての回転部30401と、受精卵16を収容する収容部3015と、マイクロ流路(水流流路)30403を具備する。回転部30401は、マイクロ流路制御部30402によって制御される。回転部30401は、受精卵16を収容する収容部3015内の培養液18に流れを発生させて、受精卵16を回転させるものである。マイクロ流路制御部30402は、収容部3015内への流体の噴出を制御するものであり、流体を噴出させることにより培養液18に流れを発生させる。水流流路30403は、各収容部3015に接続され、流体を各収容部3015内に供給するための流体が通る流路である。
 収容部3015は、上述の実施形態の培養容器1の収容部15と同様に、液体を収容し、液体内に1個の細胞を収容しつつ一定の位置に留めることが可能である。「液体」は、典型的には、細胞を培養するのに適した培養液であり、ここでは、培養液として説明する。
 回転部30401は、ポンプPと、X軸回転用バルブVxと、Y軸回転用バルブVyと、Z軸回転用バルブVzと、第1のX軸噴出口X1(第1の出力口)と、第2のX軸噴出口X2(第2の出力口)と、第1のY軸噴出口Y1(第1の出力口)と、第2のY軸噴出口Y2(第2の出力口)と、第1のZ軸噴出口Z1(第1の出力口)と、第2のZ軸噴出口Z2(第2の出力口)とを有する。ここでは、X軸、Y軸及びZ軸は直交する3軸を意味し、水平方向及び垂直方向を意味するものでは無い。
 収容部3015の内壁面に、第1のX軸噴出口X1と、第2のX軸噴出口X2と、第1のY軸噴出口Y1と、第2のY軸噴出口Y2と、第1のZ軸噴出口Z1と、第2のZ軸噴出口Z2とが形成される(収容部3015が複数の場合、全ての収容部3015それぞれに対して、固有に、各噴出口が形成される)。第1のX軸噴出口X1と、第2のX軸噴出口X2と、第1のY軸噴出口Y1と、第2のY軸噴出口Y2と、第1のZ軸噴出口Z1と、第2のZ軸噴出口Z2とは、それぞれ、収容部3015内の培養液に流体を噴出(注入)することで、収容部3015内の培養液に流れを発生させる。「流体」は、典型的には、収容部3015内の培養液と同じ液体であるが、収容部3015内の培養液と異なる液体又は気体でもよい。
 ポンプPは、第1のX軸噴出口X1と、第2のX軸噴出口X2と、第1のY軸噴出口Y1と、第2のY軸噴出口Y2と、第1のZ軸噴出口Z1と、第2のZ軸噴出口Z2とにそれぞれ流路を介して接続し、これら噴出口に培養液を供給する。各流路の一部(ポンプ側ではなく噴出口側の部分)は、収容部3015の壁面内に形成される(収容部3015が複数の場合、全ての収容部3015それぞれに対して、固有に、各流路が形成される)。
 ポンプPと、第1のX軸噴出口X1及び第2のX軸噴出口X2とを接続する流路には、X軸回転用バルブVxが設けられる。ポンプPと、第1のY軸噴出口Y1及び第2のY軸噴出口Y2とを接続する流路には、Y軸回転用バルブVyが設けられる。ポンプPと、第1のZ軸噴出口Z1及び第2のZ軸噴出口Z2とを接続する流路には、Z軸回転用バルブVzが設けられる。
 マイクロ流路制御部30402は、後述する回転制御部3228から送信される制御信号を基に、回転部30401の各噴出口から噴出される培養液の噴出速度及び噴出量を制御する。
 情報処理装置3022は、画像取得部222と、特徴量抽出部230と、判定部231と、付与部232と、評価部223と、記憶部224と、表示制御部225と、撮像制御部226と、算出部227と、回転制御部3228と、判定制御部2229とを具備する。
 情報処理装置3022は、観察システム3002内の各ブロックの動作を制御する。情報処理装置3022の機能ブロックである画像取得部222と、特徴量抽出部230と、判定部231と、付与部232と、評価部223と、記憶部224と、表示制御部225と、撮像制御部226と、算出部227と、回転制御部3228と、判定制御部2229は、CPUが、非一過性のコンピュータ読み取り可能な記録媒体の一例であるROMに保存されたプログラムをRAMにロードして実行することにより実現される。そしてこれらの機能ブロックにより、本技術に係る画像取得方法及び評価方法が実行される。
 回転制御部3228は、判定制御部2229からの駆動信号をうけ、受精卵16の撮影時に回転部30401を作動させるように、回転装置340に制御信号を送信する。回転制御部3228は、所望の受精卵16の画像が得られるように、受精卵16の回転方向及び回転量を制御可能である。
 回転制御部3228は、判定制御部2229からの駆動信号をうけ、回転部30401を作動させるように、マイクロ流路制御部30402に制御信号を送信する。
 回転制御部3228からマイクロ流路制御部30402に送信された制御信号を基に、回転部30401の作動が開始されると、収容部3015内に流体が噴出され、収容部2015内の培養液18に流れが発生して、受精卵16が回転する。
 回転制御部3228は、所望の受精卵16の画像が得られるように、受精卵16の回転方向及び回転量を制御可能である。
 ここで、完全胚盤胞1609以降の成長段階の受精卵16は、観察方向によって受精卵16内のICM161の形状や位置が異なる。例えば、ICM161が受精卵16の中央に位置する画像を取得したい場合、次のようにして受精卵16を回転させてICM161が中央に位置する受精卵16の画像を取得することができる。
 回転制御部3228は、受精卵16を回転させる直前に撮像した受精卵16の画像に基づき、エッジ検出等の画像認識により、ICM161の形状及び位置を検出する。これを基に、回転制御部3228は、ICM161が受精卵16の中央部に位置するようにするために、受精卵16の回転方向及び回転量を算出する。この算出された回転方向及び回転量に従って回転部20401により受精卵16を回転させればよい。
 マイクロ流路制御部30402は、回転制御部3228からの制御信号に基づいて、回転部30401の各噴出口X1、X2、Y1、Y2、Z1、Z2が発生する培養液の流れを個別に制御して、受精卵16の回転方向及び回転量を制御する。具体的には、マイクロ流路制御部30402は、回転制御部3228からの制御信号を基に、X軸回転用バルブVxを開閉制御することで、第1のX軸噴出口X1及び第2のX軸噴出口X2が噴出する培養液の噴出速度及び噴出量を制御する。マイクロ流路制御部30402は、回転制御部3228からの制御信号を基にY軸回転用バルブVyを開閉制御することで、第1のY軸噴出口Y1及び第2のY軸噴出口Y2が噴出する培養液の噴出速度及び噴出量を制御する。マイクロ流路制御部30402は、回転制御部3228からの制御信号を基にZ軸回転用バルブVzを開閉制御することで、第1のZ軸噴出口Z1及び第2のZ軸噴出口Z2が噴出する培養液の噴出速度及び噴出量を制御する。
 以上のように、培養容器の収容部の培養液に流体を噴出(注入)することで、収容部内の培養液に流れを発生させて、受精卵16を回転させてもよい。
(第6の実施形態)
 次に、第6の実施形態として、上述の各実施形態における観察システムとは異なる構成の観察システムについて説明する。尚、観察システムの構成はこれらに限定されるものではない。
 上述の実施形態において、受精卵を観察する観察装置21には内部に培養容器1とカメラ25が設置され、情報処理装置22は観察装置21の外に設置されているが、これに限定されない。例えば、図28に示すように、観察装置5021内に、情報処理装置5022を設置してもよい。
 図28は、第6の実施形態に係る観察システム5002の構成を示す。図28に示すように、観察システム5002は観察装置5021を有し、観察装置5021はネットワークを介してクラウドサーバ5037と接続可能となっている。更に、表示装置となる携帯端末5038及びパソコン5039はそれぞれネットワークを介してクラウドサーバ5037と接続可能となっている。観察装置5021内には、カメラ・情報処理装置一体型ユニット5032と、温度・湿度・ガス制御部5036とが設置され、培養容器1が収容される。
 カメラ・情報処理装置一体型ユニット5032は、撮像部としてのカメラ5025と、観察照明装置5024と、情報処理装置5022と、通信部5023とを有する。本実施形態では、受精卵16に照射する光の観察照明装置5024を培養容器1の下部ではなく上部に配置している。
 観察照明装置5024は、培養容器1内の受精卵16をカメラ5025により撮像する際に、培養容器1に対して照射する光を発する。カメラ5025は、培養容器1内の受精卵16を撮像するものである。
 情報処理装置5022には、上述の各実施形態に記載する情報処理装置が適用可能である。情報処理装置5022は、各成長段階の受精卵16の画像を取得し、更に、完全胚盤胞以降の成長段階の受精卵16に対しては、例えば受精卵16を回転させた状態で受精卵16を撮像することにより複数の角度から撮像した受精卵16の画像を取得する。情報処理装置5022は、通信部5023及びネットワークを介して、クラウドサーバ5037に受精卵16の画像、この画像に対応づけられた、受精卵16が収容されている収容部の位置情報、撮像日時、撮像条件、受精卵の第2の特徴量、成長ステージコード、観察方向分類コード等のデータ信号(以下、受精卵16に係るデータ信号と称す。)を出力する。
 温度・湿度・ガス制御部5036は、観察装置5021内の温度・湿度・ガスを制御するものであり、受精卵16の培養に適した環境をつくる。
 通信部5023は、受精卵16に係るデータ信号を情報処理装置5022から受け取り、ネットワークを介してクラウドサーバ5037に対して出力する。
 クラウドサーバ5037は、受精卵16に係るデータ信号を記憶する。表示部5039aと情報処理部5039bとからなるパソコン5039、携帯端末5038は、それらを操作するユーザの操作によって、ネットワークを介してクラウドサーバ5037から受精卵16に係るデータ信号を受け取り表示する。
 以上、本技術の各実施形態について説明したが、本技術は上述の実施形態にのみ限定されるものではなく、本技術の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
 なお、本技術は以下のような構成もとることができる。
(1) 比較用の細胞を回転させ撮像して得られた複数の第1の画像を予め保存する記憶部と、
 評価対象の細胞を回転させ撮像して得られた複数の第2の画像を取得する画像取得部と、
 前記第1の画像と前記第2の画像との比較結果を基に前記評価対象の細胞を評価する評価部と
 を具備する情報処理装置。
(2) 前記(1)に記載の情報処理装置であって、
 前記評価部は、前記第1の画像より抽出された第1の特徴量と前記第2の画像より抽出された第2の特徴量との比較結果を基に前記評価対象の細胞を評価する
 情報処理装置。
(3) 前記(1)又は(2)に記載の情報処理装置であって、
 前記記憶部には、前記第1の画像に対応づけられた前記第1の画像に対する評価結果が保存され、
 前記第1の画像と前記第2の画像とを比較し、前記第1の画像と前記第2の画像とが一致するか否かを判定する判定部と、
 前記判定部により前記第1の画像と前記第2の画像とが一致すると判定されたときに、前記第2の画像に一致すると判定された前記第1の画像に対応づけられた前記評価結果を前記第2の画像に付与する付与部と
 を更に具備し、
 前記評価部は、複数の前記第2の画像それぞれに付与された評価結果のうち最も多く付与された評価結果を、前記評価対象の細胞に対する評価とする
 情報処理装置。
(4) 前記(3)に記載の情報処理装置であって、
 複数の前記第2の画像それぞれに付与された評価結果のうち最も多く付与された評価結果が占める割合を算出する算出部と、
 前記算出部により算出された前記割合の数値が安定したか否かを判定し、前記割合の数値が安定したと判定するまで前記第1の画像と前記第2の画像の比較を行うよう前記判定部を制御する判定制御部と
 を更に具備する
 情報処理装置。
(5) 前記(4)に記載の情報処理装置であって、
 前記細胞を回転させる回転機構を制御する回転制御部
 を更に具備する情報処理装置。
(6) 前記(5)に記載の情報処理装置であって、
 前記回転制御部は、前記判定制御部により前記割合の数値が安定したと判定されると、前記評価対象の細胞を回転させるよう前記回転機構を制御する
 情報処理装置。
(7) 前記(1)から(6)いずれか1つに記載の情報処理装置であって、
 前記評価部は、前記評価対象の細胞の成長段階を評価する
 情報処理装置。
(8) 前記(1)から(7)いずれか1つに記載の情報処理装置であって、
 前記評価部は、前記評価対象の細胞の品質を評価する
 情報処理装置。
(9) 細胞が収容された収容部を複数有する培養容器と、
 前記細胞を撮像する撮像部と、
 前記撮像部で撮像された前記細胞の画像を取得する画像取得部と、
 前記細胞を前記収容部内で回転させる回転機構と、
 前記回転機構により回転させた比較用の前記細胞を前記撮像部により撮像して取得した第1の画像を予め保存する記憶部と、
 前記回転機構により回転させた評価対象の前記細胞を前記撮像部により撮像し得られた複数の第2の画像を取得する画像取得部と、
 前記第1の画像と前記第2の画像との比較結果を基に前記評価対象の細胞を評価する評価部と
 を具備する情報処理システム。
(10) 評価対象の細胞を回転させ撮像して複数の第2の画像を取得し、
 比較用の細胞を回転させ撮像して予め取得した複数の第1の画像と、前記第2の画像を比較し、
 前記比較結果を基に前記評価対象の細胞を評価する
 情報処理方法。
(11) 評価対象の細胞を回転させ撮像して複数の第2の画像を取得するステップと、
 比較用の細胞を回転させ撮像して予め取得した複数の第1の画像と、前記第2の画像を比較するステップと、
 前記比較結果を基に前記評価対象の細胞を評価するステップと
 をコンピュータに実行させるプログラム。
1、3040…培養容器
2、1002、2002、3002、5002…観察システム(情報処理システム)
15、3015…収容部
16…受精卵(細胞)
22、1022、2022、3022、5022…情報処理装置
25、5025…カメラ(撮像部)
222…画像取得部
223…評価部
224…記憶部
2241…学習用データベース
2242…解析結果のデータベース
227…算出部
228、2228、3228…回転制御部
229、1229、2229…判定制御部
231…判定部
340…回転装置(回転機構)
30401…回転部(回転機構)

Claims (11)

  1.  比較用の細胞を回転させ撮像して得られた複数の第1の画像を予め保存する記憶部と、
     評価対象の細胞を回転させ撮像して得られた複数の第2の画像を取得する画像取得部と、
     前記第1の画像と前記第2の画像との比較結果を基に前記評価対象の細胞を評価する評価部と
     を具備する情報処理装置。
  2.  請求項1に記載の情報処理装置であって、
     前記評価部は、前記第1の画像より抽出された第1の特徴量と前記第2の画像より抽出された第2の特徴量との比較結果を基に前記評価対象の細胞を評価する
     情報処理装置。
  3.  請求項2に記載の情報処理装置であって、
     前記記憶部には、前記第1の画像に対応づけられた前記第1の画像に対する評価結果が保存され、
     前記第1の画像と前記第2の画像とを比較し、前記第1の画像と前記第2の画像とが一致するか否かを判定する判定部と、
     前記判定部により前記第1の画像と前記第2の画像とが一致すると判定されたときに、前記第2の画像に一致すると判定された前記第1の画像に対応づけられた前記評価結果を前記第2の画像に付与する付与部と
     を更に具備し、
     前記評価部は、複数の前記第2の画像それぞれに付与された評価結果のうち最も多く付与された評価結果を、前記評価対象の細胞に対する評価とする
     情報処理装置。
  4.  請求項3に記載の情報処理装置であって、
     複数の前記第2の画像それぞれに付与された評価結果のうち最も多く付与された評価結果が占める割合を算出する算出部と、
     前記算出部により算出された前記割合の数値が安定したか否かを判定し、前記割合の数値が安定したと判定するまで前記第1の画像と前記第2の画像の比較を行うよう前記判定部を制御する判定制御部と
     を更に具備する
     情報処理装置。
  5.  請求項4に記載の情報処理装置であって、
     前記細胞を回転させる回転機構を制御する回転制御部
     を更に具備する情報処理装置。
  6.  請求項5に記載の情報処理装置であって、
     前記回転制御部は、前記判定制御部により前記割合の数値が安定したと判定されると、前記評価対象の細胞を回転させるよう前記回転機構を制御する
     情報処理装置。
  7.  請求項6に記載の情報処理装置であって、
     前記評価部は、前記評価対象の細胞の成長段階を評価する
     情報処理装置。
  8.  請求項7に記載の情報処理装置であって、
     前記評価部は、前記評価対象の細胞の品質を評価する
     情報処理装置。
  9.  細胞が収容された収容部を複数有する培養容器と、
     前記細胞を撮像する撮像部と、
     前記撮像部で撮像された前記細胞の画像を取得する画像取得部と、
     前記細胞を前記収容部内で回転させる回転機構と、
     前記回転機構により回転させた比較用の前記細胞を前記撮像部により撮像して取得した第1の画像を予め保存する記憶部と、
     前記回転機構により回転させた評価対象の前記細胞を前記撮像部により撮像し得られた複数の第2の画像を取得する画像取得部と、
     前記第1の画像と前記第2の画像との比較結果を基に前記評価対象の細胞を評価する評価部と
     を具備する情報処理システム。
  10.  評価対象の細胞を回転させ撮像して複数の第2の画像を取得し、
     比較用の細胞を回転させ撮像して予め取得した複数の第1の画像と、前記第2の画像を比較し、
     前記比較結果を基に前記評価対象の細胞を評価する
     情報処理方法。
  11.  評価対象の細胞を回転させ撮像して複数の第2の画像を取得するステップと、
     比較用の細胞を回転させ撮像して予め取得した複数の第1の画像と、前記第2の画像を比較するステップと、
     前記比較結果を基に前記評価対象の細胞を評価するステップと
     をコンピュータに実行させるプログラム。
PCT/JP2018/017004 2017-06-13 2018-04-26 情報処理装置、情報処理システム、情報処理方法及びプログラム WO2018230178A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18816577.3A EP3640319A4 (en) 2017-06-13 2018-04-26 INFORMATION PROCESSING DEVICE, INFORMATION PROCESSING SYSTEM, INFORMATION PROCESSING PROCESS AND PROGRAM
BR112019025849-3A BR112019025849A2 (pt) 2017-06-13 2018-04-26 aparelho, sistema e método de processamento de informação, e, programa.
JP2019525186A JP7215416B2 (ja) 2017-06-13 2018-04-26 情報処理装置、情報処理システム、情報処理方法及びプログラム
US16/619,988 US20200110922A1 (en) 2017-06-13 2018-04-26 Information processing apparatus, information processing system, information processing method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017115759 2017-06-13
JP2017-115759 2017-06-13

Publications (1)

Publication Number Publication Date
WO2018230178A1 true WO2018230178A1 (ja) 2018-12-20

Family

ID=64659657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017004 WO2018230178A1 (ja) 2017-06-13 2018-04-26 情報処理装置、情報処理システム、情報処理方法及びプログラム

Country Status (5)

Country Link
US (1) US20200110922A1 (ja)
EP (1) EP3640319A4 (ja)
JP (1) JP7215416B2 (ja)
BR (1) BR112019025849A2 (ja)
WO (1) WO2018230178A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021132185A1 (en) * 2019-12-24 2021-07-01 Nihon Kohden Corporation Cell culture evaluation system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7296878B2 (ja) * 2017-06-26 2023-06-23 株式会社エビデント 細胞観察システム
JP6928653B2 (ja) 2017-06-26 2021-09-01 オリンパス株式会社 細胞観察システム
CN116416249B (zh) * 2023-06-08 2023-09-05 张家港市民华塑胶有限公司 一种人造运动草丝的质量检测评估方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010181402A (ja) * 2009-01-09 2010-08-19 Dainippon Printing Co Ltd 受精卵品質評価支援システム、受精卵品質評価支援装置および受精卵品質評価支援方法
JP2011192109A (ja) 2010-03-16 2011-09-29 Dainippon Printing Co Ltd 画像処理装置、画像処理方法、プログラムおよび記憶媒体
JP2013502233A (ja) * 2009-08-22 2013-01-24 ザ ボード オブ トラスティーズ オブ ザ リーランド スタンフォード ジュニア ユニバーシティ 胚、卵母細胞、および幹細胞の撮像および評価
JP2013243968A (ja) * 2012-05-25 2013-12-09 Nagoya Univ 細胞操作装置
JP2015022042A (ja) * 2013-07-17 2015-02-02 国立大学法人 東京大学 単一細胞を解析するための顕微鏡システム、単一細胞の解析方法及び解析用キット
JP2017092730A (ja) * 2015-11-11 2017-05-25 ソニー株式会社 情報処理装置、情報処理方法、プログラム及び情報処理システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020068358A1 (en) * 1998-04-28 2002-06-06 Campbell Michael J. In vitro embryo culture device
WO2010151221A1 (en) * 2009-06-25 2010-12-29 Phase Holographic Imaging Phi Ab Analysis of ova or embryos with digital holographic imaging
JP6303347B2 (ja) * 2013-09-11 2018-04-04 大日本印刷株式会社 検体画像管理システム及び検体画像管理プログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010181402A (ja) * 2009-01-09 2010-08-19 Dainippon Printing Co Ltd 受精卵品質評価支援システム、受精卵品質評価支援装置および受精卵品質評価支援方法
JP2013502233A (ja) * 2009-08-22 2013-01-24 ザ ボード オブ トラスティーズ オブ ザ リーランド スタンフォード ジュニア ユニバーシティ 胚、卵母細胞、および幹細胞の撮像および評価
JP2011192109A (ja) 2010-03-16 2011-09-29 Dainippon Printing Co Ltd 画像処理装置、画像処理方法、プログラムおよび記憶媒体
JP2013243968A (ja) * 2012-05-25 2013-12-09 Nagoya Univ 細胞操作装置
JP2015022042A (ja) * 2013-07-17 2015-02-02 国立大学法人 東京大学 単一細胞を解析するための顕微鏡システム、単一細胞の解析方法及び解析用キット
JP2017092730A (ja) * 2015-11-11 2017-05-25 ソニー株式会社 情報処理装置、情報処理方法、プログラム及び情報処理システム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3640319A4
TESHIMA, T. ET AL.: "High-Resolution Vertical Observation of Intracellular Structure Using Magnetically Responsive Microplates", SMALL, vol. 12, no. 25, 12 July 2016 (2016-07-12), pages 3366 - 3373, XP055561290, Retrieved from the Internet <URL:https://doi.org/10.1002/smll.201600339> *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021132185A1 (en) * 2019-12-24 2021-07-01 Nihon Kohden Corporation Cell culture evaluation system
JP2021100401A (ja) * 2019-12-24 2021-07-08 日本光電工業株式会社 細胞培養評価システム

Also Published As

Publication number Publication date
US20200110922A1 (en) 2020-04-09
EP3640319A4 (en) 2020-06-03
EP3640319A1 (en) 2020-04-22
BR112019025849A2 (pt) 2020-07-07
JP7215416B2 (ja) 2023-01-31
JPWO2018230178A1 (ja) 2020-04-16

Similar Documents

Publication Publication Date Title
WO2018230178A1 (ja) 情報処理装置、情報処理システム、情報処理方法及びプログラム
US9482659B2 (en) Apparatus, method, and system for the automated imaging and evaluation of embryos, oocytes and stem cells
WO2018100917A1 (ja) 情報処理装置、観察システム、情報処理方法及びプログラム
EP2995676A1 (en) Device for analyzing cells and monitoring cell culturing and method for analyzing cells and monitoring cell culturing using same
JP2022188054A (ja) 生物学的試料を動的に培養するための方法および装置
AU2017287141B2 (en) Image acquisition method, image acquisition device, program and culture container
JP6977293B2 (ja) 情報処理装置、情報処理方法、プログラム及び観察システム
JPWO2019082617A1 (ja) 情報処理装置、情報処理方法、プログラム及び観察システム
JP7001060B2 (ja) 情報処理装置、情報処理方法及び情報処理システム
EP3144379A1 (en) Culture observation apparatus
WO2009039433A1 (en) Analytical microfluidic culture system
JPWO2018179971A1 (ja) 情報処理装置、情報処理方法、プログラム及び観察システム
EP1588160A2 (en) Method and apparatus for following cells
US11334988B2 (en) Information processing apparatus, information processing method, program, and observation system for cell image capture
JP2024503530A (ja) インキュベータ及び方法
EP3553497A1 (en) Information processing device, information processing method and information processing system
US20170146460A1 (en) Controlled environment observation device
TWI579588B (zh) 顯微鏡監控裝置及其系統
KR101772151B1 (ko) 타임랩스 세포배양기
EP3739036B1 (en) Biological subject transfer device
JP2023108459A (ja) 処理装置および処理方法
CN111763624A (zh) 一种高内涵细胞观测培养装置
Fischer Retro Reproduction: An old imaging technology rewrites the rules of modern embryology
JP2019141090A (ja) 胚選抜システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18816577

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019525186

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019025849

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018816577

Country of ref document: EP

Effective date: 20200113

ENP Entry into the national phase

Ref document number: 112019025849

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191206