WO2018100917A1 - 情報処理装置、観察システム、情報処理方法及びプログラム - Google Patents

情報処理装置、観察システム、情報処理方法及びプログラム Download PDF

Info

Publication number
WO2018100917A1
WO2018100917A1 PCT/JP2017/037939 JP2017037939W WO2018100917A1 WO 2018100917 A1 WO2018100917 A1 WO 2018100917A1 JP 2017037939 W JP2017037939 W JP 2017037939W WO 2018100917 A1 WO2018100917 A1 WO 2018100917A1
Authority
WO
WIPO (PCT)
Prior art keywords
fertilized egg
image
imaging
growth stage
unit
Prior art date
Application number
PCT/JP2017/037939
Other languages
English (en)
French (fr)
Inventor
篠田 昌孝
智也 大沼
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2018553708A priority Critical patent/JPWO2018100917A1/ja
Priority to CN201780072647.7A priority patent/CN110023481A/zh
Priority to US16/463,522 priority patent/US20190376955A1/en
Priority to EP17875942.9A priority patent/EP3550010A4/en
Priority to BR112019010508A priority patent/BR112019010508A2/pt
Priority to AU2017368974A priority patent/AU2017368974A1/en
Publication of WO2018100917A1 publication Critical patent/WO2018100917A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/20ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems

Definitions

  • the present technology relates to an information processing apparatus, an observation system, an information processing method, and a program used for observing cultured cells.
  • An object of the present technology is to provide an information processing apparatus, an observation system, an information processing method, and a program suitable for evaluating a fertilized egg with high accuracy.
  • An information processing apparatus includes an image acquisition unit, an evaluation unit, and an imaging control unit.
  • the said image acquisition part acquires the image of the cell imaged by the imaging part.
  • the evaluation unit evaluates the growth stage of the cells.
  • the said imaging control part makes the said imaging part image the said rotated cell according to the evaluation result of the said evaluation part.
  • the rotated cells are imaged when the cells reach a certain growth stage, it is possible to acquire images of the cells imaged from a plurality of angles. Thereby, when evaluating a fertilized egg, the image of the cell imaged from various angles can be evaluated comprehensively, and highly accurate evaluation can be performed.
  • a rotation control unit may be further provided.
  • the rotation control unit controls a rotation mechanism that rotates the cells according to the evaluation result of the evaluation unit. As described above, the cells rotated by the rotation mechanism may be imaged.
  • the evaluation unit may evaluate the growth stage of the cells based on the image acquired by the image acquisition unit.
  • the cell growth stage may be evaluated based on the cell image.
  • the evaluation unit may evaluate the growth stage of the cell based on the culture time of the cell. Since the growth stage of a cell, for example, a fertilized egg, follows a substantially identical growth curve if it is a normal fertilized egg, it can be estimated from the elapsed time (culture time) from the date of fertilization of the fertilized egg. Therefore, the cell growth stage can be evaluated based on the cell culture time.
  • the imaging control unit may cause the imaging unit to image the rotated cell when the evaluation unit evaluates that the shape of the cell is an asymmetric growth stage.
  • the asymmetric shape refers to a shape when the structural asymmetry is high, and refers to a shape when the appearance of the cells varies greatly depending on the angle observed by the substantially spherical cells.
  • the growth stage in which the cell shape is asymmetric may be a blastocyst growth stage.
  • Cells such as mammalian fertilized eggs, after fertilization, the number of cells increases in the 2 cell stage, 4 cell stage, 8 cell stage, 16 cell stage, etc. depending on the cleavage, and eventually the cells adhere to each other and the morulae are in close contact with each other. It becomes.
  • a gap is formed in the cytoplasm, forming a blastocoele and forming an early blastocyst, and when the blastocoele expands, it grows into a complete blastocyst.
  • ICM inner cell mass
  • TE trophectoderm
  • the growth stage of the blastocyst may be a growth stage after the complete blastocyst.
  • the fertilized egg in the growth stage after the complete blastocyst has a larger proportion of the blastocyst in the fertilized egg, and has a shape with higher structural asymmetry than the initial blastocyst.
  • the classification of the image is facilitated according to the position of the ICM in the fertilized egg in the image.
  • the cell is a cell in a growth stage of a blastocyst having an inner cell mass
  • the evaluation unit uses an image obtained by imaging the rotated cell as a reference based on the position of the inner cell mass in the cell. You may classify
  • the cell imaging direction can be classified into three patterns of front, side, and diagonal with reference to the time when the ICM is in the front position, and as another example, The three imaging directions may be further classified and classified by the observation (imaging) angle.
  • a storage unit for storing the cell image acquired by the image acquisition unit stores in advance the first feature amount of the cell in each growth stage, the evaluation unit extracts a second feature amount of the cell image acquired by the image acquisition unit, The growth stage of the cells may be evaluated based on the first feature amount and the second feature amount.
  • the feature quantity includes, for example, various sizes of cells such as the size, shape, sphericity, cleavage rate (rate) of each fertilized egg, the shape and balance of each blastomere, fragmentation, ICM size and shape, number, density, etc. It is extracted based on the growth stage. In this way, the growth stage can be evaluated by referring to the first feature quantity stored for each cell growth stage stored in advance and the second feature quantity extracted from the acquired image.
  • the storage unit may store the arbitrarily selected cell as a teacher index.
  • a cell to be used as a teacher index may be selected by a specialist (user) such as an embryo cultivator. If the cell arbitrarily selected by the user is a cell that is particularly preferable for growth, the cell is used as a teacher. In evaluating other cells as an index, more accurate evaluation can be performed.
  • the imaging control unit controls the imaging unit to image a plurality of the cells, and the imaging control unit determines the number of times of imaging of the cell that is the teacher index of the cell that is not the teacher index.
  • the imaging unit may be controlled to capture more images than the number of times of imaging.
  • the imaging control unit controls the imaging unit to image a plurality of the cells, and the evaluation unit uses an image of a part of the plurality of cells as a teacher image, and the other of the plurality of cells.
  • the cell image may be used as a test image, and the teacher image may be verified using the test image.
  • the cells evaluated as useful can accumulate a teacher index and a large amount of cell data serving as the teacher index, and a more accurate evaluation can be performed.
  • An observation system includes a culture vessel, an imaging unit, an image acquisition unit, an evaluation unit, a rotation mechanism, and an imaging control unit.
  • the culture container has a plurality of accommodating portions in which cells are accommodated.
  • the imaging unit images the cell.
  • the said image acquisition part acquires the image of the said cell imaged by the said imaging part.
  • the evaluation unit evaluates the growth stage of the cells.
  • the rotation mechanism rotates the cells in the storage unit according to the evaluation result of the growth stage of the cells by the evaluation unit.
  • the imaging control unit controls the imaging unit to image the cells rotated by the rotation mechanism.
  • the cell when it is evaluated that the cell has reached a certain growth stage, the cell is configured to be imaged while being rotated by the rotation mechanism, and thus the cell image captured from a plurality of angles is acquired. be able to.
  • the image of the cell imaged from various angles can be evaluated comprehensively, and highly accurate evaluation can be performed.
  • the rotation mechanism may be a vibration device that vibrates the culture vessel.
  • you may comprise so that a culture container may be vibrated and a cell may be rotated.
  • the storage unit can store the cells and liquid
  • the culture container has the rotation mechanism
  • the rotation mechanism generates a flow in the liquid in the storage unit to rotate the cells. Good.
  • the information processing method evaluates the growth stage of the cell, and images the rotated cell when the cell shape is evaluated to be an asymmetric growth stage.
  • a program causes an information processing device to execute an evaluation step and an imaging step.
  • the step of evaluating is a step of evaluating the stage of cell growth.
  • the step of imaging is a step of imaging the rotated cell when it is evaluated that the shape of the cell is an asymmetric growth stage.
  • FIG. 1 is a plan view of a culture vessel (dish).
  • FIG. 4 is a schematic diagram illustrating a state in which the culture container is accommodated in the observation apparatus.
  • the culture vessel 1 is configured to be able to accommodate the culture solution 18 and the cells 16 and is light-transmitting to the extent that the cells 16 can be imaged from the outside.
  • the number of culture vessels 1 and cells 16 that can be imaged simultaneously is not limited.
  • the cell 16 to be cultured will be described by taking a living organism in the field of animal husbandry and the like, for example, a fertilized egg of a cow as an example (hereinafter referred to as a fertilized egg 16 using the same reference numerals).
  • the cells to be cultured include biological samples taken from living organisms such as stem cells, immune cells, cancer cells, etc. in the field of regenerative medicine, etc., and a growth stage having a shape with high structural asymmetry This technique is effective for cells that require three-dimensional images.
  • the “cell” at least conceptually includes a single cell and an aggregate of a plurality of cells.
  • the culture vessel 1 has a bottom portion 19, an outer wall 11, an inner wall 12, a storage portion 15, and a cell placement convex portion 13.
  • inorganic materials such as metal, glass, silicon, polystyrene resin, polyethylene resin, polypropylene resin, ABS resin, nylon, acrylic resin, fluororesin, polycarbonate resin, polyurethane resin, methylpentene resin, phenol resin
  • organic material such as a melamine resin, an epoxy resin, or a vinyl chloride resin.
  • a transparent culture vessel 1 made of polystyrene resin is used.
  • the case where nine accommodating parts 15 are arranged in one culture vessel 1 is illustrated as an example, but the number of accommodating parts 15 is not limited to this.
  • a plurality of storage units 15 are provided, and each storage unit 15 can hold a single cell, here a fertilized egg 16, while being held in a fixed position.
  • liquid is stored in each storage unit 15.
  • “Liquid” is typically a culture solution suitable for culturing cells, and will be described below as a culture solution.
  • a culture solution 18 for culturing the fertilized egg 16 is injected into a region surrounded by the accommodating portion 15 and the inner wall 12. Further, in order to prevent the culture solution 18 from evaporating, oil 17 is injected into the region surrounded by the inner wall 12 so as to cover the culture solution 18.
  • the bottom portion 19 has a circular planar shape.
  • the outer wall 11 and the inner wall 12 are formed concentrically, and the height of the inner wall 12 is lower than the height of the outer wall 11.
  • the cell placement convex portion 13 is disposed at the center of the bottom portion 19 in a region surrounded by the inner wall 12 with a gap from the inner wall 12.
  • the cell placement convex portion 13 has a rectangular planar shape.
  • FIG. 2 is a perspective view of the dish holder.
  • the dish holder 5 is configured to hold, for example, six culture vessels 1.
  • the dish holder 5 has a rectangular planar shape, and has an accommodating portion 51 having six concave shapes for holding the culture vessel 1 and fixing the position.
  • the movement between the incubator and the observation apparatus can be performed with the culture container 1 alone or with the culture container 1 held in the dish holder 5.
  • a transparent lid made of the same material is placed on the culture vessel 1.
  • FIG. 3 shows the general growth stage of the fertilized egg 16 from day 1 to day 10 after fertilization.
  • FIG. 3A shows a 1-cell fertilized egg 1601 on the first day on which fertilization is confirmed.
  • a two-cell fertilized egg 1602 is obtained by dividing into two as shown in FIG.
  • the fertilized egg 16 becomes a 4-cell stage fertilized egg 1603 in order on the third day of fertilization, as shown in FIGS. 3 (c), 3 (d), and 3 (e).
  • the number of cells increases, such as a fertilized egg 1604 at the 8-cell stage on the fourth day of fertilization and a fertilized egg 1605 at the 16-cell stage on the fifth day of fertilization.
  • the cells are brought into close contact with each other, becoming an early morula 1606 on the 5th to 6th days of fertilization as shown in FIG. 3 (f), and as shown in FIG. 3 (g) on the 6th day of fertilization with the morula embryo 1607.
  • a gap is formed in the cytoplasm, forming a blastocoel, and becomes an early blastocyst 1608 as shown in FIG. 3 (h) on the seventh day of fertilization.
  • a complete blastocyst 1609 is obtained as shown in FIG. 3 (i).
  • the inner cell mass 161 Inner Cell Mass, hereinafter referred to as ICM
  • the trophectoderm 162 Trophectoderm, hereinafter referred to as TE
  • the transparent body 163 that forms the outline of the fertilized egg is recognized.
  • the transparent body 163 is thinned, and the fertilized egg becomes an expanded blastocyst 1610 on the 8th to 9th days of fertilization, and on the 9th day of fertilization, the blastocyst escapes from the transparent body and the blastocyst 1611 is fertilized. On day 9-10, the expanded escape blastocyst 1612 is obtained.
  • the fertilized egg 16 has relatively high structural symmetry from fertilization to the growth stage of the morula 1607, and its appearance does not change greatly depending on the observation angle.
  • the fertilized egg 16 in the growth stage of the 2-cell stage and the 4-cell stage differs in appearance depending on the observation angle, but in these cell stages, the number of blastomeres is small. Is relatively easy to understand, and there are few variations in the appearance depending on the observation angle, and the appearance does not change greatly depending on the observation angle.
  • the structural symmetry is high and the appearance is almost the same depending on the observation angle.
  • the structural asymmetry becomes high, and the appearance varies greatly depending on the angle at which the fertilized egg 16 is viewed.
  • the fertilized egg 16 in the growth stage after the complete blastocyst 1609 has a larger proportion of blastocysts in the fertilized egg 16, and the ICM 161 It is biased in the spherical fertilized egg 16.
  • the observation system is configured to capture the rotated cells and acquire the captured cell images from a plurality of angles in the growth stage after the blastocyst having a highly structured asymmetry in the shape of the fertilized egg 16. Is done. In this way, the fertilized eggs 16 after the blastocysts that are visible depending on the observation angle can be observed with a plurality of images of the fertilized eggs 16 imaged from a plurality of angles, and the state of cell growth can be accurately determined. I can grasp it.
  • the observation system will be described.
  • the incubator for cultivating fertilized bovine eggs and the observation device for observing fertilized eggs are separate devices, but a camera used for observing the fertilized eggs 16 is arranged in the incubator. And you may comprise so that a fertilized egg can be observed within an incubator.
  • FIG. 4 is a schematic diagram showing an observation system.
  • FIG. 5 is a block diagram showing the configuration of the observation system.
  • the observation system is one in which a plurality of culture vessels 1 are placed on the dish holder 5 described above. Alternatively, a plurality of pieces are placed in the observation system so that a large number of fertilized eggs can be observed at a time.
  • the observation system 2 includes an observation device 21, an information processing device 22, a display device 23, and an input device 29.
  • the observation device 21 accommodates the culture container 1 in which the fertilized egg 16 is accommodated, and observes the fertilized egg 16.
  • the culture container 1 is held horizontally in the observation apparatus 21, and each fertilized egg 16 is accommodated in each accommodation portion 15 of the culture container 1.
  • a light source 24, a camera 25 as an imaging unit, a temperature / humidity / gas control unit 26, and a stage 27 are arranged.
  • the light source 24 emits light that irradiates the culture container 1 when the fertilized egg 16 in the culture container 1 is imaged by the camera 25.
  • a camera 25 (hereinafter referred to as the camera 25 using the same reference numeral) as an imaging unit is a visible light camera including an image sensor such as a CMOS (Complementary Metal-Oxide Semiconductor) sensor or a CCD (Charge Coupled Device) sensor. Consists of. An infrared (IR) camera, a change camera, or the like may be used instead of or in addition to the visible light camera.
  • CMOS Complementary Metal-Oxide Semiconductor
  • CCD Charge Coupled Device
  • the camera 25 images the fertilized egg 16 in the culture vessel 1 and is arranged in the observation device 21.
  • the camera 25 includes a lens barrel including a lens group movable in the optical axis direction (Z-axis direction), a CMOS (Complementary Metal Oxide Semiconductor), a CCD (Charge Coupled Device), and the like that captures subject light passing through the lens barrel. It has a solid-state image sensor and a drive circuit for driving them.
  • the camera 25 may be installed in the culture vessel 1 so as to be movable in the Z-axis direction and the horizontal plane direction (XY plane direction) in the drawing.
  • the camera 25 may be configured to capture not only a still image but also a continuous image (video).
  • the number of times of imaging, the timing of imaging, and the like are controlled by an imaging control unit 226 of the information processing apparatus 22 described later.
  • the temperature / humidity / gas control unit 26 controls the temperature / humidity / gas in the observation apparatus 21 and creates an environment suitable for culturing the fertilized egg 16.
  • the gas include nitrogen, oxygen, and carbon dioxide.
  • the input device 29 is connected to the information processing device 22 and is an operation device for inputting a user's scan.
  • the input device 29 for example, a trackball, a touch pad, a mouse, a keyboard, or the like can be used.
  • the display device 23 outputs an image like a display.
  • the display device 23 displays information such as an image of the fertilized egg 16, position information of a storage unit in which the fertilized egg 16 is stored, imaging date and time, and a growth stage (growth stage code).
  • the display device 23 displays an instruction for notifying the user of processing to be performed.
  • the information processing apparatus 22 includes an image acquisition unit 222, an evaluation unit 223, a fertilized egg database unit 224 as a storage unit, a display control unit 225, an imaging control unit 226, and a determination unit 227. It comprises.
  • the information processing device 22 controls the operation of each block in the observation system 2.
  • the information processing apparatus 22 images the fertilized egg 16 from one imaging angle until a certain growth stage, and after the certain growth stage, the number of times of imaging the rotated fertilized egg 16 is larger than the number of imaging performed so far.
  • the camera 25 is controlled so as to capture an image.
  • images of the fertilized egg 16 captured from a plurality of angles are acquired by imaging the fertilized egg 16 while rotating the fertilized egg 16.
  • the information processing device 22 evaluates the fertilized egg 16 based on the fertilized egg image.
  • a certain growth stage that is the timing for imaging the rotated fertilized egg 16 is a complete blastocyst growth stage.
  • the information processing apparatus 22 has hardware necessary for the configuration of the computer, such as a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), HDD (Hard Disk Drive), and the like.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • HDD Hard Disk Drive
  • PC Personal Computer
  • any other computer may be used.
  • the image acquisition unit 222, the evaluation unit 223, the fertilized egg database unit 224, the display control unit 225, the imaging control unit 226, and the determination unit 227 that are functional blocks of the information processing device 22 are non-transitory computer-readable by the CPU. This is realized by loading a program stored in a ROM which is an example of a possible recording medium into the RAM and executing the program. And the image acquisition method which concerns on this technique is performed by these functional blocks.
  • the program is installed in the information processing apparatus 22 via various storage media, for example. Alternatively, the program may be installed via the Internet or the like.
  • the image acquisition unit 222 acquires image information captured by the camera 25 from the camera 25.
  • the evaluation unit 223 extracts the second feature value of the fertilized egg based on the image of the fertilized egg 16 acquired by the camera 25, and stores the extracted second feature value and the fertilized egg database unit 224 in advance.
  • the growth stage of the fertilized egg 16 is evaluated with reference to the first characteristic amount for each growth stage of the fertilized egg 16, and a growth stage code described later is given to the fertilized egg 16.
  • the feature amount is information of a characteristic part of the image. For example, the size, shape, sphericity, blast number (rate) of the fertilized egg, the shape and balance of each blastomere, fragmentation, the size and shape of the ICM Etc., which are extracted based on various growth stages of the fertilized egg 16.
  • the feature quantity extracted based on the image of the fertilized egg 16 to be observed is the second feature quantity, and the feature quantity stored in advance is referred to when evaluating the growth stage of the fertilized egg 16. Is the first feature amount.
  • a specific feature extraction process for extracting the feature amount is not limited, and an arbitrary extraction process may be used. In this embodiment, a machine learning algorithm is used.
  • machine learning algorithms using neural networks such as RNN (Recurrent Neural Network), CNN (Convolutional Neural Network), and MLP (Multilayer Perceptron) are used.
  • RNN Recurrent Neural Network
  • CNN Convolutional Neural Network
  • MLP Multilayer Perceptron
  • any machine learning algorithm that executes a supervised learning method, an unsupervised learning method, a semi-supervised learning method, a reinforcement learning method, or the like may be used.
  • the evaluation of the growth stage is given to the image of the fertilized egg 16 as the growth and development length stage code.
  • the growth stage of the 1 cell stage 1601 is the growth stage code 1
  • the growth stage from the 1 cell stage 1602 to the 16 cell stage 1605 is the growth stage code 2
  • the growth stage of the early morula 1606 is the growth stage code 3
  • the morula is 1607 is the growth stage code 4
  • the growth stage code 5 is the growth stage of the initial blastocyst 1608,
  • the growth stage code 6 is the growth stage of the complete blastocyst 1609
  • the growth stage code is the growth stage of the expanded blastocyst 1610 7.
  • the growth stage code 8 is the growth stage of the escaped blastocyst 1611 and the growth stage code 9 is the growth stage of the extended escape blastocyst 1612.
  • the fertilized egg database unit 224 extracts the image of the fertilized egg 16 captured by the camera 25 from the positional information of the storage unit 15 in which the fertilized egg 16 is stored, the imaging date and time, the imaging conditions, and the fertilized egg extracted by the evaluation unit 223. Along with information such as 16 second feature values and growth stages (growth stage codes), the information is stored in time series for each storage unit 15. Further, in the fertilized egg database unit 224, a plurality of first feature amounts of images at each growth stage of the fertilized egg 16 are stored in advance as teacher data.
  • the display control unit 225 displays an image of the fertilized egg 16 on the display device 23, the position information of the storage unit in which the fertilized egg 16 is stored, the imaging date and time, the imaging conditions, and the second fertilized egg.
  • the feature amount, the growth stage, and the like are displayed on the display device 23.
  • the display control unit 225 determines that the fertilized egg 16 is the complete blastocyst. Informing the user of the subsequent growth stage and causing the display device 23 to display an instruction to rotate the fertilized egg 16 to the user.
  • the user rotates the fertilized egg 16 using optical tweezers, a micropipette, a water flow by a microchannel, or the like according to an instruction displayed on the display device 23.
  • the user inputs the start of rotation of the fertilized egg 16 to the information processing apparatus 22 using the input device 29 such as a mouse in accordance with the start of rotation of the fertilized egg 16.
  • the rotation of the fertilized egg using the water flow by the microchannel will be described in a third embodiment described later.
  • the rotation using the water flow is to provide a micro flow channel connected to each accommodating portion of the culture vessel and rotate the fertilized egg accommodated by the water flow from the micro flow channel.
  • the determination unit 227 determines whether or not the growth stage code given by the evaluation unit 223 is 6 or later.
  • the imaging control unit 226 outputs a control signal for controlling the number of imaging of the fertilized egg 16 to the camera 25.
  • the imaging control unit 226 includes, in the camera 25, a growth stage code including the fertilized egg 16 determined by the determination unit 227 that the growth stage code is not 6 or later, that is, up to the growth stage of a morula with relatively symmetrical shape.
  • the fertilized egg 16 is imaged from one imaging angle with respect to the five or earlier fertilized eggs 16.
  • the imaging control unit 226 uses the camera 25 to determine that the determination unit 227 determines that the growth stage code is 6 or later, that is, a fertilized egg at a growth stage after a complete blastocyst having a highly asymmetric shape.
  • the fertilized egg 16 in a rotated state is imaged at a higher number of imaging times than the imaging frequency of the fertilized egg 16 of the growth stage codes 1 to 5 so far.
  • the imaging control unit 226 starts imaging on the camera 25 when the user performs an input operation for starting rotation of the fertilized egg 16 with respect to the fertilized egg 16 determined to have a growth stage code of 6 or later.
  • the image of the fertilized egg 16 imaged from a plurality of different angles can be acquired by fixing the imaging angle and imaging a plurality of times while rotating the fertilized egg 16.
  • the user When the user finishes rotating the fertilized egg 16, the user performs an input operation to end the rotation of the fertilized egg using the input device 29.
  • the input operation for starting and ending the rotation work may be performed for each container 15, or may be performed for each culture vessel 1 or for each dish holder 5.
  • a plurality of images are acquired while the fertilized egg 16 is rotated, but the rotated fertilized eggs 16 may be acquired as a moving image, and an arbitrary plurality of images may be extracted from the acquired moving image. .
  • the image acquisition unit 222 acquires the image of the fertilized egg 16 captured by the camera 25.
  • the image acquisition unit 222 acquires, for example, an image captured from one imaging angle for the fertilized eggs 16 of the growth stage codes 1 to 5 that are determined by the determination unit 227 that the growth stage code is not 6 or later.
  • images taken from a plurality of angles are acquired.
  • FIG. 6 is a schematic view of an image of the fertilized egg 16 in the growth stage after the complete blastocyst.
  • FIG. 7 is a diagram illustrating an image acquired by the observation system 2.
  • FIG. 8 and 9 are flowcharts of the image acquisition method.
  • FIG. 8 shows an image acquisition method performed on the fertilized egg 16 up to the growth stage code 6
  • FIG. 9 shows an image acquisition method performed on the fertilized egg 16 after the growth stage code 7.
  • the fertilized eggs 16 in the culture vessel 1 placed in the observation device 21 are sequentially imaged one by one.
  • the fertilized eggs 16 are imaged one by one in order, but a plurality of images may be captured together.
  • the image acquisition method will be described with reference to the flowcharts of FIGS.
  • the image acquisition of the fertilized egg 16 is performed in a state where the culture container 1 containing the fertilized egg 16 is held in the observation device 21.
  • the image acquisition process of the fertilized egg 16 is sequentially performed for each fertilized egg 16 accommodated in each of the plurality of accommodating units 15 of the culture container 1.
  • the image acquisition process is automatically performed, for example, every 15 minutes, and the acquired image is obtained for each fertilized egg 16 with the location information, the imaging date and time, the imaging conditions, and the location of the fertilized egg 16.
  • the information is stored in time series.
  • fertilized eggs 16 that have been confirmed to be fertilized are placed one by one in the accommodating portion 15 of the culture container 1, and then the culture solution 18 is injected with a pipette into the accommodating portion 15 and the area surrounded by the inner wall 12. Thereafter, oil 17 is injected into a region surrounded by the inner wall 12 so as to cover the culture solution 18.
  • the culture vessel 1 is placed horizontally on the stage 27 in the observation apparatus 21 as shown in FIG.
  • a transparent lid made of the same material as that of the culture vessel 1 may be placed on the culture vessel 1 as necessary.
  • the fertilized egg 16 is imaged by the camera 25 located at the upper part of the culture container 1 (S101).
  • the camera 25 is controlled by the imaging control unit 226 so that the fertilized egg 16 is imaged from one observation (imaging) angle.
  • the image acquired by the camera 25 is acquired by the image acquisition unit 222.
  • Image preprocessing such as image normalization, adjustment of the position of the fertilized egg 16, and shape enhancement filter may be performed on the acquired image of the fertilized egg 16.
  • the evaluation unit 223 extracts the second feature amount of the fertilized egg 16 based on the image of the fertilized egg 16 acquired by the image acquisition unit 222. Further, the evaluation unit 223 refers to the extracted second feature value and the first feature value for each growth stage of the fertilized egg 16 stored in advance in the fertilized egg database unit 224 to grow the fertilized egg 16. The stage is evaluated and a growth stage code is given to the fertilized egg 16.
  • the image of the fertilized egg 16 corresponds to the position information, the imaging date and time, the imaging condition, the second feature amount, and the growth stage (growth stage code) of the accommodating unit in which the fertilized egg 16 is accommodated. Attached and stored (S102).
  • the growth stage of the fertilized egg 16 provided by the evaluation unit 223 is in a blastocyst state by the determination unit 227, in this embodiment, a state after the complete blastocyst, that is, the growth stage code is 6 or later. It is determined whether or not (S103).
  • the imaging is finished. If it is determined YES in S103, the display control unit 225 displays on the display device 23 that the fertilized egg 16 is in the complete blastocyst growth stage and displays an instruction to rotate the fertilized egg 16. (S104).
  • the user confirms the rotation instruction of the fertilized egg 16 displayed on the display device 23.
  • the rotation instruction may be notified to the user by the generation of sound.
  • the user performs an input operation for notifying the start of rotation from the input device 29 immediately before the 16th rotation of the fertilized egg.
  • the imaging control unit 226 captures the rotated fertilized egg 16 with respect to the camera 25, and the number of times of imaging at the time of imaging the fertilized egg 16 of the growth stage codes 1 to 5 so far. Control is performed to capture an image with a larger number of times. Thereafter, the number of imaging of the fertilized egg 16 after the growth stage code 6 is performed more frequently than the number of imaging until the growth stage code 5.
  • the rotation of the fertilized egg 16 is started by the user using optical tweezers or a micropipette. While the fertilized egg 16 rotates, the fertilized egg 16 is imaged a plurality of times by the camera 25 (S105). An image captured by the camera 25 is acquired by the image acquisition unit 222. When the user completes the rotation of the fertilized egg 16 and performs an input operation for notifying the end of the rotation from the input device 29, the imaging of the fertilized egg 16 is completed. By imaging the fertilized egg 16 that has been rotated, the fertilized egg 16 is imaged from a plurality of angles.
  • the image acquisition when it is determined YES in S103 is the N-th imaging, the image acquisition is performed from the N + 1th time according to the flowchart shown in FIG. If NO is determined in S103, the next image acquisition is performed according to the flowchart shown in FIG. 8, and image acquisition is performed according to the flowchart shown in FIG. 8 until YES is determined in S103.
  • the display control unit 225 displays on the display device 23 that the fertilized egg 16 is in the blastocyst growth stage and displays an instruction to rotate the fertilized egg 16 (S201). .
  • the user confirms the direction of rotation of the fertilized egg 16 displayed on the display device 23, and thereby the fertilized egg 16 is subjected to optical tweezers, a micropipette, water flow control using a microchannel provided in a culture vessel, or the like.
  • the fertilized egg 16 is rotated (S201).
  • the user performs an input operation for notifying the start of rotation from the input device 29 immediately before the start of rotation of the fertilized egg 16.
  • the camera 25 causes the imaging control unit 226 to capture the rotated fertilized egg 16 with a greater number of times of imaging than the number of times of imaging of the fertilized egg 16 before the growth stage code 5. Be controlled.
  • the fertilized egg 16 is imaged by the camera 25 with a larger number of imaging times than the number of imaging times up to the growth stage code 5 (S 202). An image captured by the camera 25 is acquired by the image acquisition unit 222.
  • the user completes the rotation of the fertilized egg 16 and performs an input operation for notifying the end of the rotation from the input device 29, the imaging of the fertilized egg 16 is completed.
  • the evaluation unit 223 extracts the second feature amount of the fertilized egg 16 based on the image of the fertilized egg 16 acquired by the image acquiring unit 222, evaluates the growth stage of the fertilized egg 16, and A growth stage code is given.
  • the fertilized egg database unit 224 images of a plurality of fertilized eggs 16 imaged from a plurality of angles, position information of the storage unit 15 in which the fertilized eggs 16 are stored, imaging date and time, imaging conditions, and the second of the fertilized egg Information such as the feature amount and the growth stage (growth stage code) is stored in association with each other (S203).
  • images of a fertilized egg imaged from a plurality of angles can be obtained by rotating a fertilized egg after the growth stage of a blastocyst having a high structural asymmetry and imaging it a plurality of times.
  • the image of the cell imaged from various angles can be evaluated comprehensively, and highly accurate evaluation can be performed.
  • time-series data of the fertilized egg 16 as shown in FIG. 7 can be obtained.
  • the number of fertilized egg images is reduced for the sake of convenience.
  • FIG. 7 shows images of several growth stages of the fertilized egg 16 arranged in time series in the horizontal direction.
  • the growth stage code 1 1-cell stage 1601, the growth stage code 2 2-cell stage 1602, the 4-cell stage 1603, the growth stage code 4 morula 1607, and the growth stage code 5 early embryo A growth stage fertilized egg 16 of a blastocyst 1608, a complete blastocyst 1609 of growth stage code 6, an escape blastocyst 1611 of growth stage code 8, and an extended escape blastocyst 1612 of growth stage code 9 is illustrated.
  • FIG. 7 shows images of several growth stages of the fertilized egg 16 arranged in time series in the horizontal direction.
  • the fertilized egg 16 in the growth stage after the complete blastocyst 1609 has a large proportion of blastocysts, and the ICM 161 has a spherical fertilization. It exists in the egg 16 so as to be biased toward the end.
  • FIG. 6 is a schematic view of an image obtained by imaging the fertilized egg 16 in the growth stage after the complete blastocyst 1609 from a plurality of angles.
  • the acquired images of the fertilized eggs 16 after the growth stage code 6 may be stored by classifying the captured images according to the shape and position of the ICM 161 into three image patterns of front, back, diagonal, and horizontal. Front, back, diagonal, and horizontal indicate the observation (imaging) direction of the fertilized egg when the fertilized egg 16 is viewed with reference to the front.
  • An image obtained by imaging the fertilized egg 16 from the front surface or the back surface is a substantially circular shape at the center of the fertilized egg 16 as shown in FIG.
  • the image in which the ICM 161 is located is used as the front or back image.
  • An image obtained by imaging the fertilized egg 16 from the lateral direction with the ICM 161 positioned on the front side of the fertilized egg is a substantially subarc-shaped ICM 161 at the end in the fertilized egg 16 as shown in FIG. It becomes a positioned image.
  • This image is a horizontal image.
  • the ICM 161 is an image located in the shape of a substantially ellipse at the end in the fertilized egg 16. This image is an oblique image.
  • images of complete blastocysts 1609 imaged from a plurality of imaging angles are shown side by side in the vertical direction. These are, in order from the top, fertilized eggs 16 of complete blastocysts from an oblique direction, Images taken from the front from an oblique direction, from a lateral direction, and from an oblique direction are shown.
  • the images of the fertilized eggs 16 after the growth stage code 6 imaged from a plurality of imaging angles are classified into front, back, diagonal, and side according to the shape and position of the ICM 161 and stored in the fertilized egg database unit 224. May be.
  • the fertilized egg 16 before the growth stage code 5 is controlled so that the number of times of imaging is smaller than that of the fertilized egg 16 after the growth stage code 6. This makes it possible to reduce the amount of light applied to the fertilized egg 16 that is required for imaging, rather than increasing the number of times of imaging for the fertilized egg 16 before the growth stage code 5. Damage to the fertilized egg 16 can be reduced.
  • the fertilized egg 16 is rotated manually by a micropipette or by controlling the water flow from the microchannel provided in the culture vessel. Rotating operation may be automated.
  • the rotation of the fertilized egg 16 by the apparatus is controlled by the information processing apparatus.
  • a vibration device that vibrates the culture vessel 1 is provided as a device for rotating the fertilized egg 16 as a second embodiment will be described as an example.
  • a configuration different from that of the first embodiment will be mainly described, and a configuration similar to that of the first embodiment may be denoted by the same reference numeral, and description thereof may be omitted.
  • FIG. 10 is a schematic diagram showing an observation system.
  • FIG. 11 is a block diagram illustrating a configuration of the observation system.
  • the observation system 1002 includes an observation device 1021, an information processing device 1022, a display device 23, an input device 29, and a vibration device 1040.
  • the vibration device 1040 as a rotation mechanism vibrates the stage 27 to apply vibration to the culture vessel 1 placed on the stage 27, thereby rotating the fertilized egg 16 accommodated in the accommodation unit 15 of the culture vessel 1. And is arranged in the observation apparatus 1021.
  • the information processing apparatus 1022 includes an image acquisition unit 222, an evaluation unit 223, a fertilized egg database unit 224, a display control unit 225, an imaging control unit 226, a determination unit 227, and a vibration control unit 1228.
  • the information processing apparatus 1022 controls the operation of each block in the observation system 1002.
  • the information processing apparatus 1022 causes the camera 25 to image the fertilized egg 16 from one imaging angle until the initial blastocyst growth stage, and rotates the fertilized egg 16 after the complete blastocyst growth stage. Is controlled so that the number of times of imaging is higher than the number of times of imaging so far.
  • images of the fertilized egg 16 imaged from a plurality of angles are acquired by imaging the fertilized egg 16 a plurality of times while rotating the fertilized egg 16. Further, the information processing apparatus 1022 evaluates the growth stage of the fertilized egg 16 based on the fertilized egg image. In addition, the information processing device 1022 controls the presence and timing of application of vibration to the culture vessel 1.
  • the image acquisition unit 222, the evaluation unit 223, the fertilized egg database unit 224, the display control unit 225, the imaging control unit 226, the determination unit 227, and the vibration control unit 1228 that are functional blocks of the information processing apparatus 1022 are different from each other. This is realized by loading a program stored in a ROM, which is an example of a transient computer-readable recording medium, into the RAM and executing the program. And the image acquisition method which concerns on this technique is performed by these functional blocks.
  • the evaluation unit 223 extracts the second feature value of the fertilized egg based on the image of the fertilized egg 16 acquired by the camera 25, and stores the extracted second feature value and the fertilized egg database unit 224 in advance.
  • the growth stage code of the fertilized egg 16 is evaluated by referring to the first characteristic amount for each growth stage of the fertilized egg 16 and a growth stage code is given to the fertilized egg 16.
  • the determination unit 227 determines whether or not the growth stage code given by the evaluation unit 223 is 6 or later.
  • the vibration control unit 1228 controls the presence or absence of the operation of the vibration device 1040 according to the determination result of the determination unit 227.
  • the vibration control unit 1228 does not operate the vibration device 1040 at the time of imaging the fertilized egg 16 determined by the determination unit 227 that the growth stage code is not 6 or later.
  • the vibration control unit 1228 activates the vibration device 1040 during imaging of the fertilized egg 16 that has been determined by the determination unit 227 that the growth stage code is 6 or later.
  • vibration is applied to the culture vessel 1 placed on the stage 27. By applying this vibration, the fertilized egg 16 accommodated in the culture vessel 1 vibrates and rotates.
  • FIGS. 8 and 9 are the same flowcharts as in the first embodiment.
  • the culture vessel 1 containing the fertilized egg 16 is placed horizontally on the stage 27 in the observation apparatus 1021.
  • light is irradiated from the light source 24 from the lower part of the culture container 1, and the fertilized egg 16 is imaged with the camera 25 located in the upper part of the culture container 1 (S101).
  • the image acquired by the camera 25 is acquired by the image acquisition unit 222.
  • Image preprocessing such as image normalization, adjustment of the position of the fertilized egg 16, and shape enhancement filter may be performed on the acquired image of the fertilized egg 16.
  • the evaluation unit 223 extracts the second feature amount of the fertilized egg 16 based on the image of the fertilized egg 16 acquired by the image acquisition unit 222. Further, the evaluation unit 223 refers to the extracted second feature value and the first feature value for each growth stage of the fertilized egg 16 stored in advance in the fertilized egg database unit 224 to grow the fertilized egg 16. The stage is evaluated and a growth stage code is given to the fertilized egg 16.
  • the image of the fertilized egg 16 corresponds to the position information, the imaging date and time, the imaging condition, the second feature amount, and the growth stage (growth stage code) of the accommodating unit in which the fertilized egg 16 is accommodated. Attached and stored (S102).
  • the determination unit 227 determines whether or not the growth stage code is 6 or later (S103). If it is determined No in S103, the imaging ends.
  • the vibration control unit 1228 activates the vibration device 1040, vibrates the stage 27, and the fertilized egg 16 rotates (S104). If YES is determined in S103, the camera 25 captures the rotated fertilized egg 16 by the image capturing control unit 226 at a larger number of times than the number of times of capturing the fertilized egg 16 of the growth stage codes 1 to 5 so far. To be controlled. Thereafter, the number of imaging of the fertilized egg 16 after the growth stage code 6 is performed more frequently than the number of imaging until the growth stage code 5.
  • the fertilized egg 16 is imaged a plurality of times by the camera 25 (S105). An image captured by the camera 25 is acquired by the image acquisition unit 222.
  • the fertilized egg database unit 224 By the fertilized egg database unit 224, the captured image when the fertilized egg 16 is rotated, the positional information of the storage unit in which the fertilized egg 16 is stored, the imaging date and time, the imaging conditions, the second feature amount of the fertilized egg, and the growth stage ( Information such as a growth stage code) is stored in association with each other (S106).
  • the image acquisition when it is determined YES in S103 is the N-th imaging, the image acquisition is performed from the N + 1th time according to the flowchart shown in FIG. If NO is determined in S103, the next image acquisition is performed according to the flowchart shown in FIG. 8, and image acquisition is performed according to the flowchart shown in FIG. 8 until YES is determined in S103.
  • the vibration control unit 1228 activates the vibration device 1040 to vibrate the stage 27 and rotate the fertilized egg 16 (S201).
  • the fertilized egg 16 is imaged by the imaging control unit 226 at a higher imaging count than the imaging count up to the growth stage code 5 (S202).
  • An image captured by the camera 25 is acquired by the image acquisition unit 222.
  • the evaluation unit 223 extracts the second feature amount of the fertilized egg 16 based on the image of the fertilized egg 16 acquired by the image acquisition unit 222, evaluates the growth stage of the fertilized egg 16, and determines the growth stage code. Is granted.
  • the fertilized egg database unit 224 images of a plurality of fertilized eggs 16 imaged from a plurality of angles, position information of an accommodating unit in which the fertilized eggs 16 are accommodated, imaging date and time, imaging conditions, the second of the fertilized egg 16 Information such as the feature amount and the growth stage (growth stage code) is stored in association with each other (S203).
  • images of a fertilized egg imaged from a plurality of angles can be obtained by imaging the fertilized egg after the blastocyst growth stage having a high structural asymmetry in a rotated state.
  • the state evaluation of a fertilized egg can be performed more correctly and evaluation accuracy becomes high.
  • the fertilized eggs are rotated not by manual work but by an apparatus, and the information processing apparatus 1022 controls the rotation of the fertilized eggs and is automated, so that a large amount of fertilized eggs can be observed.
  • the information processing apparatus 1022 controls the rotation of the fertilized eggs and is automated, so that a large amount of fertilized eggs can be observed.
  • 150 can be cultured and observed simultaneously. In observing such a large number of fertilized eggs, an observation system in which images are acquired by automatically rotating the fertilized eggs as in this embodiment is effective.
  • 3rd Embodiment rotates the fertilized egg 16 using an apparatus similarly to 2nd Embodiment.
  • the fertilized egg 16 is rotated by applying vibration to the culture vessel using the vibration device.
  • fluid is injected (injected) into the culture solution in the accommodating portion of the culture vessel. ), A flow is generated in the culture solution in the container, and the fertilized egg 16 is rotated.
  • the third embodiment is mainly different from the second embodiment in that a culture vessel having a rotation mechanism that rotates a fertilized egg by generating a flow in a culture solution instead of a vibration device is used. This will be described below.
  • a configuration different from that of the second embodiment will be mainly described, and a configuration similar to that of the second embodiment may be denoted by the same reference numeral and description thereof may be omitted.
  • FIG. 12 is a schematic diagram showing the configuration of the observation system.
  • FIG. 13 is a block diagram showing the configuration of the observation system.
  • FIG. 14 is a partially enlarged view of the vicinity of the accommodating portion of the culture vessel.
  • FIG. 15 is a diagram illustrating a configuration in the vicinity of the rotation unit of the observation system.
  • the observation system 2002 includes an observation device 2021, an information processing device 2022, a display device 23, and an input device 29.
  • a light source 24, a camera 25 as an imaging unit, a temperature / humidity / gas control unit 26, a stage 27, and a culture vessel 2040 having a rotation mechanism are arranged.
  • the culture vessel 2040 having a rotation mechanism includes a rotation unit 20401 as a rotation mechanism, a storage unit 2015 that stores the fertilized egg 16, and a micro flow channel (water flow channel) 20403.
  • the rotation unit 20401 is controlled by the micro flow path control unit 20402.
  • the rotation unit 20401 rotates the fertilized egg 16 by generating a flow in the culture solution 18 in the storage unit 2015 that stores the fertilized egg 16.
  • the micro flow path control unit 20402 controls the ejection of the fluid into the accommodating unit 2015, and generates a flow in the culture solution 18 by ejecting the fluid.
  • the water flow channel 20403 is a channel that is connected to each housing portion 2015 and through which a fluid for supplying fluid into each housing portion 2015 passes.
  • the accommodating part 2015 accommodates a liquid, like the accommodating part 15 of the culture container 1 of the above-mentioned embodiment, and can be held at a fixed position while accommodating one cell in the liquid.
  • “Liquid” is typically a culture solution suitable for culturing cells, and is described herein as a culture solution.
  • the rotating unit 20401 includes a pump P, an X-axis rotating valve Vx, a Y-axis rotating valve Vy, a Z-axis rotating valve Vz, a first X-axis outlet X1 (first output port), A second X-axis outlet X2 (second output port), a first Y-axis outlet Y1 (first output port), a second Y-axis outlet Y2 (second output port), and The first Z-axis outlet Z1 (first output port) and the second Z-axis outlet Z2 (second output port).
  • the X axis, the Y axis, and the Z axis mean three orthogonal axes, and do not mean the horizontal direction and the vertical direction.
  • the first X-axis jet port X1, the second X-axis jet port X2, the first Y-axis jet port Y1, the second Y-axis jet port Y2, and the first Z-axis outlet Z1 and second Z-axis outlet Z2 are formed (when there are a plurality of accommodating portions 2015, each of the ejecting ports is formed uniquely for each of the accommodating portions 2015. ).
  • Each of the second Z-axis ejection ports Z2 generates a flow in the culture solution in the storage unit 2015 by ejecting (injecting) a fluid into the culture solution in the storage unit 2015.
  • the “fluid” is typically the same liquid as the culture solution in the storage unit 2015, but may be a liquid or gas different from the culture solution in the storage unit 2015.
  • the pump P includes a first X-axis outlet X1, a second X-axis outlet X2, a first Y-axis outlet Y1, a second Y-axis outlet Y2, and a first Z-axis outlet.
  • the outlet Z1 and the second Z-axis outlet Z2 are connected to each other through a flow path, and the culture solution is supplied to these outlets.
  • Part of each flow path (portion side, not pump side) is formed in the wall surface of the accommodating portion 2015 (if there are a plurality of accommodating portions 110, each of the accommodating portions 2015 is inherently unique. , Each flow path is formed).
  • An X-axis rotation valve Vx is provided in a flow path that connects the pump P to the first X-axis outlet X1 and the second X-axis outlet X2.
  • a Y-axis rotation valve Vy is provided in a flow path that connects the pump P to the first Y-axis outlet Y1 and the second Y-axis outlet Y2.
  • a Z-axis rotation valve Vz is provided in a flow path that connects the pump P to the first Z-axis nozzle Z1 and the second Z-axis nozzle Z2.
  • the microchannel control unit 20402 controls the ejection speed and the ejection amount of the culture solution ejected from each ejection port of the rotation unit 20401 based on a control signal transmitted from the rotation control unit 2228 described later.
  • the information processing apparatus 2022 includes an image acquisition unit 222, an evaluation unit 223, a fertilized egg database unit 224, a display control unit 225, an imaging control unit 2226, a determination unit 227, and a rotation control unit 2228.
  • the information processing apparatus 2022 controls the operation of each block in the observation system 2002.
  • the information processing apparatus 2022 controls the number of times the camera 25 is imaged, and the fertilized egg 16 is imaged from one angle until a certain growth stage, and the rotated fertilized egg 16 is then processed after a certain growth stage.
  • the imaging by the camera 25 is controlled so that the imaging is performed with a larger number of imaging than the number of imaging.
  • the information processing apparatus 2022 evaluates the growth stage of the fertilized egg 16 based on the fertilized egg image.
  • the information processing apparatus 2022 controls the operation of the rotating unit 20401 to control the presence / absence and timing of rotation of the fertilized egg 16.
  • the image acquisition unit 222, the evaluation unit 223, the fertilized egg database unit 224, the display control unit 225, the imaging control unit 2226, the determination unit 227, and the rotation control unit 2228, which are functional blocks of the information processing device 2022, are non-identical. This is realized by loading a program stored in a ROM, which is an example of a transient computer-readable recording medium, into the RAM and executing the program. And the image acquisition method which concerns on this technique is performed by these functional blocks.
  • the evaluation unit 223 extracts the second feature value of the fertilized egg based on the image of the fertilized egg 16 acquired by the camera 25, and stores the extracted second feature value and the fertilized egg database unit 224 in advance.
  • the growth stage of the fertilized egg 16 is evaluated with reference to the first characteristic amount for each growth stage of the fertilized egg 16, and a growth stage code described later is given to the fertilized egg 16.
  • the determination unit 227 determines whether or not the growth stage of the fertilized egg 16 evaluated by the evaluation unit 223 is a complete blastocyst, specifically, whether or not the growth stage code is 6 or later.
  • the imaging control unit 2226 images the fertilized egg 16 from one imaging angle for the fertilized egg 16 determined by the determining unit 227 that the growth stage code is not 6 or later.
  • the imaging control unit 2226 fixes the imaging angle of the camera 25 for the fertilized egg 16 determined by the determination unit 227 to have a growth stage code of 6 or later, and determines that it is not the growth stage code 6 or later.
  • the camera 25 is controlled so that the rotated fertilized egg 16 is imaged with a larger number of times of imaging than the number of times the fertilized egg 16 is imaged.
  • the imaging control unit 2226 controls the camera 25 to image the fertilized egg 16 in a state of being stationary immediately before the fertilized egg 16 rotates with respect to the fertilized egg 16 determined to be after the growth stage code 6. .
  • the rotation control unit 2228 controls the operation of the rotation unit 20401 based on the determination result of the determination unit 227, in other words, the growth stage code of the fertilized egg 16 provided by the evaluation unit 223.
  • the rotation control unit 2228 does not operate the rotation unit 20401 when imaging the fertilized egg 16 determined by the determination unit 227 that the growth stage code is not 6 or later, and does not operate the rotation unit 20401 when imaging the fertilized egg 16 determined to be the growth stage code 6 or later.
  • a control signal is transmitted to the micro flow path control unit 20402 so that the rotation unit 20401 is operated.
  • the rotation control unit 2228 can control the rotation of the fertilized egg 16 so that an image of the desired fertilized egg 16 can be obtained.
  • an image of a desired fertilized egg 16 is an image in which ICM 161 is located at the center of the fertilized egg 16 in a fertilized egg at a growth stage after a complete blastocyst (FIG. 6).
  • A referred to as a front or back image
  • an image in which a substantially inferior arc-shaped ICM 161 is located at an end in a substantially circular fertilized egg 16 (FIG. 6 (d), referred to as a horizontal image)
  • the substantially elliptical ICM 161 is three images (images (b) and (c) in FIG. 6, which are referred to as diagonal images) positioned at the end in the fertilized egg 16.
  • the rotation control unit 2228 determines the shape and position of the ICM 161 by image recognition such as edge detection based on the image of the fertilized egg 16 taken immediately before the fertilized egg 16 is rotated. Based on this, the rotation control unit 2228 calculates the rotation direction and amount of rotation of the fertilized egg 16 so that the ICM 161 is positioned at the center of the fertilized egg 16. The fertilized egg 16 is rotated by the rotating unit 20401 according to the calculated rotation direction and rotation amount. Similarly, the rotation control unit 2228 calculates the rotation direction and the amount of rotation of the fertilized egg so that the substantially inferior arc-shaped ICM 161 is positioned at the end of the fertilized egg 16, and generates a control signal based on the calculation result. It is generated and transmitted to the microchannel controller 20402.
  • the microchannel control unit 20402 controls the rotating unit 20401 based on this control signal to rotate the fertilized egg 16. Further, similarly, the rotation control unit 2228 calculates the rotation direction and the rotation amount of the fertilized egg 16 so that the substantially elliptical ICM 161 is positioned at the end of the fertilized egg 16, and based on this calculation result. The fertilized egg 16 is rotated by the rotating unit 20401.
  • the micro flow path control unit 20402 Based on the control signal from the rotation control unit 2228, the micro flow path control unit 20402 individually controls the flow of the culture solution generated at each of the ejection ports X1, X2, Y1, Y2, Z1, and Z2 of the rotation unit 20401. Thus, the direction and amount of rotation of the fertilized egg 16 are controlled. Specifically, the micro-channel control unit 20402 controls the opening and closing of the X-axis rotation valve Vx based on a control signal from the rotation control unit 2228, so that the first X-axis outlet X1 and the second X-axis outlet X1 are controlled. The ejection speed and ejection amount of the culture solution ejected from the X-axis ejection port X2 are controlled.
  • the micro-channel control unit 20402 controls the opening and closing of the Y-axis rotation valve Vy based on a control signal from the rotation control unit 2228, so that the first Y-axis outlet Y1 and the second Y-axis outlet Y2 are controlled. The ejection speed and ejection volume of the ejected culture solution are controlled.
  • the micro-channel control unit 20402 controls the opening and closing of the Z-axis rotation valve Vz based on a control signal from the rotation control unit 2228, so that the first Z-axis outlet Z1 and the second Z-axis outlet Z2 are controlled. The ejection speed and ejection volume of the ejected culture solution are controlled.
  • the direction and amount of rotation of the fertilized egg 16 are controlled, and the fertilized egg 16 can be rotated so that the ICM 161 is positioned at a desired position in the fertilized egg 16. Can be acquired efficiently.
  • FIG. 12 and FIG. 8 and FIG. 9, are flowcharts similar to those in the first embodiment.
  • the culture vessel 2040 in which the fertilized egg 16 is accommodated in the accommodating portion 2015 is placed horizontally on the stage 27 in the observation apparatus 2021.
  • light is emitted from the light source 24 from the lower part of the culture container 2040, and the fertilized egg 16 is imaged by the camera 25 located at the upper part of the culture container 2040 (S101).
  • the camera 25 is controlled by the imaging control unit 2226 so that the fertilized egg 16 is imaged from one angle.
  • the image acquired by the camera 25 is acquired by the image acquisition unit 222.
  • the evaluation unit 223 extracts the second feature quantity of the fertilized egg 16 based on the image of the fertilized egg 16 acquired by the image acquisition unit 222, and grows the fertilized egg 16 from the extracted second feature quantity.
  • the stage is evaluated and a growth stage code is given to the fertilized egg 16.
  • the fertilized egg database unit 224 stores the image of the fertilized egg 16 in association with the imaging date and time, the imaging condition, the second feature amount, and the growth stage (growth stage code) (S102).
  • the determination unit 227 determines whether the growth stage of the fertilized egg 16 evaluated by the evaluation unit 223 is a blastocyst state, in this embodiment, a complete blastocyst state, that is, whether the growth stage code is 6 or later. It is determined whether or not (S103).
  • the imaging control unit 2226 images the fertilized egg 16 in a stationary state immediately before the rotation. Based on the image of the fertilized egg 16 captured immediately before the fertilized egg 16 is rotated by the rotation control unit 2228, the shape and position of the ICM 161 are determined by image recognition such as edge detection. Based on this, the rotation control unit 2228 calculates the rotation direction and the rotation amount of the fertilized egg 16 so that the ICM 161 is positioned at the center of the fertilized egg 16.
  • the ejection speed and the ejection amount of the culture solution ejected from each ejection port are controlled by the micro-channel control unit 20402, and the rotation unit 20401 operates to rotate the fertilized egg 16 ( In S104, the fertilized egg 16 in which the substantially circular ICM 161 is located in the center is imaged by the camera 25 (S105).
  • the rotation direction and amount of the fertilized egg 16 are calculated so that the substantially inferior arc-shaped ICM 161 is positioned at the end of the fertilized egg 16.
  • the rotation unit 20401 Based on the control signal from the rotation control unit 2228, the ejection speed and the ejection amount of the culture solution ejected from each ejection port are controlled by the micro-channel control unit 20402, the rotation unit 20401 operates to rotate the fertilized egg 16, The fertilized egg 16 with the substantially inferior arc-shaped ICM 161 located at the end is imaged by the camera 25.
  • the rotation direction and the rotation amount of the fertilized egg 16 are calculated so that the substantially elliptical ICM 161 is positioned at the end of the fertilized egg 16.
  • the ejection speed and the ejection amount of the culture solution ejected from each ejection port are controlled by the micro-channel control unit 20402, the rotation unit 20401 operates to rotate the fertilized egg 16,
  • the fertilized egg 16 with the substantially elliptical ICM 161 located at the end is imaged by the camera 25.
  • the image acquisition unit 222 acquires front, back, side, and diagonal images captured by the camera 25.
  • the fertilized egg database unit 224 associates the front or back image, the horizontal image, and the diagonal image of the fertilized egg 16 with the imaging date and time, the imaging condition, the second feature amount, and the growth stage (growth stage code). Is remembered. (S106).
  • the image acquisition when it is determined YES in S103 is the N-th imaging, the image acquisition is performed from the N + 1th time according to the flowchart shown in FIG. If NO is determined in S103, the next image acquisition is performed according to the flowchart shown in FIG. 8, and image acquisition is performed according to the flowchart shown in FIG. 8 until YES is determined in S103.
  • the imaging control unit 2226 images the fertilized egg 16 in a stationary state immediately before the rotation.
  • An image of the fertilized egg 16 is acquired by the image acquisition unit 222.
  • the shape of the ICM 161 is detected by image recognition such as edge detection by the rotation control unit 2228.
  • the position is determined.
  • the rotation control unit 2228 calculates the rotation direction and the rotation amount of the fertilized egg 16 so that the ICM 161 is positioned at the center of the fertilized egg 16.
  • the rotation control unit 2228 controls the ejection speed and the ejection amount of the culture solution ejected from each ejection port based on the calculated rotation direction and rotation amount, and the rotation unit 20401 operates to rotate the fertilized egg 16 (S201). ), The fertilized egg 16 in which the substantially circular ICM 161 is located in the center is imaged by the camera 25 (S202).
  • the rotation direction and amount of the fertilized egg 16 are calculated so that the substantially inferior arc-shaped ICM 161 is positioned at the end of the fertilized egg 16.
  • the rotation control unit 2228 controls the ejection speed and the ejection amount of the culture solution ejected from each ejection port based on the calculated rotation direction and rotation amount, and the rotation unit 20401 operates to rotate the fertilized egg 16.
  • the fertilized egg 16 with the subarc-shaped ICM 161 located at the end is imaged by the camera 25.
  • the rotation direction and the rotation amount of the fertilized egg 16 are calculated so that the substantially elliptical ICM 161 is positioned at the end of the fertilized egg 16.
  • the rotation control unit 2228 controls the ejection speed and the ejection amount of the culture solution ejected from each ejection port based on the calculated rotation direction and rotation amount, and the rotation unit 20401 operates to rotate the fertilized egg 16.
  • the fertilized egg 16 with the elliptical ICM 161 located at the end is imaged by the camera 25.
  • the image acquisition unit 222 acquires front, back, side, and diagonal images captured by the camera 25.
  • the evaluation unit 223 extracts the second feature amount of the fertilized egg 16 based on the image of the fertilized egg 16 acquired by the image acquisition unit 222, and the growth stage of the fertilized egg 16 is evaluated based on this. A stage code is given.
  • the fertilized egg database unit 224 By the fertilized egg database unit 224, the front or back image, the horizontal image, and the diagonal image of the fertilized egg 16 are associated with the imaging date and time, the imaging condition, the second feature amount, and the growth stage (growth stage code). Attached and stored for each fertilized egg 16. (S203).
  • the amount and direction of rotation of the fertilized egg are controlled so that three images, front and back images, oblique images, and horizontal images, which have different shapes and positions of the ICM 161 can be captured. Therefore, a desired image can be obtained efficiently.
  • time-dependent changes in the fertilized egg after the growth stage of the blastocyst are arranged in chronological order as images obtained by imaging the fertilized egg 16 from the same angle (for example, an image of the fertilized egg when the ICM is located in front).
  • the growth of the fertilized egg can be accurately grasped, and the evaluation accuracy is increased.
  • the fertilized eggs are rotated not by hand but by the apparatus, and the information processing apparatus controls the rotation time and the number of times of imaging by the camera 25, so that a large amount of fertilized eggs can be observed. It becomes.
  • images of a fertilized egg imaged from a plurality of different angles are obtained by imaging the rotated fertilized egg a plurality of times, but a plurality of desired observation (imaging) angles.
  • a step of determining whether or not there is an image of a fertilized egg imaged from may be added to the image acquisition method. Thereby, the image of the fertilized egg imaged from the desired angle can be obtained reliably.
  • the image of the fertilized egg imaged from the desired plurality of observation (imaging) angles is the same as the image of the desired fertilized egg 16 described in the third embodiment. In this embodiment, an observation direction classification code is given to these three image patterns.
  • an image obtained by rotating a fertilized egg based on the calculation result of the rotation direction and the rotation amount by the rotation control unit is a desired image. You can evaluate whether there is. If a deviation from a desired image has occurred, the result may be fed back, and the calculation result of the rotation direction and the rotation amount by the rotation control unit may be corrected so as to correct the deviation.
  • FIG. 4 is a diagram illustrating a configuration of the observation system.
  • FIG. 5 is a block diagram showing the configuration of the observation system.
  • a case where the fertilized egg 16 is rotated manually as in the first embodiment will be described as an example.
  • the configuration different from the observation system in the first embodiment will be mainly described, and the same configuration is denoted by the same reference numeral, and the description may be omitted.
  • the observation system 3002 includes an observation device 21, an information processing device 3022, a display device 23, and an input device 29.
  • a light source 24, an imaging unit 25, a temperature / humidity / gas control unit 26, and a stage 27 are arranged.
  • the information processing device 3022 includes an image acquisition unit 222, an evaluation unit 3223, a fertilized egg database unit 3224, a display control unit 3225, an imaging control unit 226, and a determination unit 3227. .
  • the information processing apparatus 3022 controls the operation of each block in the observation system 3002. In this embodiment, the number of times the camera 25 is imaged is controlled by the information processing apparatus 3022.
  • the fertilized egg 16 is imaged from one angle until a certain growth stage, and the image of the fertilized egg 16 captured from a plurality of angles after a certain growth stage.
  • the number of times of imaging is controlled so that the fertilized egg 16 is rotated and images are taken a plurality of times. Further, the information processing apparatus 3022 evaluates the fertilized egg 16 based on the fertilized egg image.
  • the image acquisition unit 222, the evaluation unit 3223, the fertilized egg database unit 3224, the display control unit 3225, the imaging control unit 226, and the determination unit 3227, which are functional blocks of the information processing device 3022, are non-transitory computer-readable by the CPU. This is realized by loading a program stored in a ROM which is an example of a possible recording medium into the RAM and executing the program. And the image acquisition method which concerns on this technique is performed by these functional blocks.
  • the evaluation unit 3223 extracts the second feature value of the fertilized egg based on the image of the fertilized egg 16 acquired by the camera 25, and stores the extracted second feature value and the fertilized egg database unit 3224 in advance.
  • the growth stage of the fertilized egg 16 is evaluated with reference to the first characteristic amount for each growth stage of the fertilized egg 16, and a growth stage code described later is given to the fertilized egg 16.
  • the evaluation part 3223 is a front or back surface with respect to the image which ICM161 is located in the center part of the fertilized egg 16 among the several images of the fertilized egg 16 after the growth stage code
  • the second feature amount of the fertilized egg 16 calculated by the evaluation unit 3223, the given growth stage code, and the observation direction classification code are associated with the image of each fertilized egg 16 in the fertilized egg database unit 3224, and fertilized. Each egg 16 is stored in time series.
  • the determination unit 3227 determines whether or not the growth stage code of the fertilized egg 16 given by the evaluation unit 3223 is 6 or more.
  • the determination unit 3227 includes at least one image to which the front, back, side, and oblique observation direction classification codes are assigned in the captured images of the fertilized eggs 16 after the plurality of growth stage codes 6. Determine if it exists.
  • the fertilized egg database unit 3224 displays the image of the fertilized egg 16 captured by the camera 25, the position information of the storage unit in which the fertilized egg 16 is stored, the imaging date and time, the imaging conditions, the second feature amount of the fertilized egg 16, Along with information such as a growth stage code and an observation direction classification code, the information is stored for each storage unit 15.
  • the fertilized egg database unit 3224 stores a plurality of first feature amounts of images at each growth stage of the fertilized egg 16 in advance. Further, in the fertilized egg database unit 3224, in the fertilized egg 16 in the growth stage after the growth stage code 6, the second image of each of the front and back images, the horizontal image, and the diagonal image of the fertilized egg 16 in each growth stage is stored. Are stored in advance.
  • the display control unit 3225 displays on the display device 23 the image of the fertilized egg 16, the image date and time, the image capturing condition, the second feature amount of the fertilized egg, the growth stage, the observation (imaging) angle classification, and the like.
  • a display signal to be displayed is output to the display device 23.
  • the display control unit 3225 displays the fertilized egg 16 on the display device 23. Is in a growth stage after the complete blastocyst, and an instruction to rotate the fertilized egg 16 is displayed on the display device 23 to the user.
  • the user rotates the fertilized egg 16 using manual operations such as optical tweezers and a micropipette, water flow using a micro flow path, vibration, and the like in accordance with instructions displayed on the display device 23.
  • the user inputs the start of rotation of the fertilized egg 16 to the information processing apparatus 3022 using the input device 29 such as a mouse.
  • FIGS. 4, 16, and 17. 16 and 17 are flowcharts of the image acquisition method.
  • FIG. 16 shows an image acquisition method performed on the fertilized eggs 16 up to the growth stage code 6
  • FIG. 17 shows an image acquisition method performed on the fertilized eggs 16 after the growth stage code 7.
  • the image acquisition method will be described with reference to the flowcharts of FIGS. 16 and 17.
  • the culture vessel 1 in which the fertilized eggs 16 whose fertilization has been confirmed is housed in each housing part 15 is placed horizontally on a stage 27 in the observation device 21.
  • the fertilized egg 16 is imaged by the camera 25 located at the upper part of the culture container 1 (S301).
  • the camera 25 is controlled by the imaging control unit 226 so that the fertilized egg 16 is imaged from one angle.
  • the image acquired by the camera 25 is acquired by the image acquisition unit 222.
  • the evaluation unit 3223 extracts the second feature amount of the fertilized egg 16 based on the image of the fertilized egg 16 acquired by the image acquiring unit 222. Further, the evaluation unit 223 refers to the extracted second feature amount and the first feature amount for each growth stage of the fertilized egg 16 stored in advance in the fertilized egg database unit 3224 to grow the fertilized egg 16. The stage is evaluated and a growth stage code is given to the fertilized egg 16.
  • the fertilized egg database unit 3224 stores the image of the fertilized egg 16 in association with the imaging date and time, the imaging condition, the second feature amount, and the growth stage (growth stage code) (S302).
  • the determination unit 3227 determines whether the growth stage code of the fertilized egg 16 given by the evaluation unit 3223 is 6 or more (S303). If it is determined No in S303, the imaging ends. If YES is determined in S303, the display control unit 3225 displays on the display device 23 that the fertilized egg 16 is in the blastocyst growth stage and displays an instruction to rotate the fertilized egg 16. (S304).
  • the user confirms the rotation instruction of the fertilized egg 16 displayed on the display device 23, so that the fertilized egg 16 is fertilized using a manual operation such as optical tweezers or a micropipette, water flow using a micro flow path, vibration, or the like.
  • the egg 16 is rotated.
  • the user performs an input operation for notifying the start of rotation from the input device 29 immediately before the start of rotation of the fertilized egg 16.
  • the camera 25 is controlled by the imaging control unit 226 so that the number of times of imaging is larger than the number of times of imaging of the fertilized eggs 16 of the growth stage codes 1 to 5 so far Is done.
  • the fertilized egg 16 is imaged multiple times by the camera 25 (S305).
  • An image captured by the camera 25 is acquired by the image acquisition unit 222.
  • the evaluation unit 3223 evaluates the observation (imaging) direction based on the image of the fertilized egg 16 acquired by the image acquisition unit 222, and the front or back image of the plurality of acquired images is the front or back surface.
  • An observation direction classification code is assigned, a horizontal observation direction classification code is assigned to a horizontal image, and an oblique observation direction classification code is assigned to an oblique image.
  • the fertilized egg database unit 3224 causes each image of the fertilized egg 16 and positional information of the storage unit in which the fertilized egg 16 is stored, imaging date and time, imaging conditions, the second feature amount of the fertilized egg, and the growth stage (growth). (Stage code), observation direction classification code, and the like are stored in association with each other (S306).
  • At least one of the images of the fertilized eggs 16 captured from a plurality of angles by the determination unit 3227 is provided with front, back, side, and oblique observation direction classification codes. It is determined whether or not there is (S307). If it is determined YES in S307, the image acquisition ends.
  • step S307 If NO is determined in S307, the process returns to step S304, and steps S304, S305, S306, and S307 are repeated until YES is determined in S307.
  • the image acquisition when it is determined YES in S303 is the N-th imaging
  • the image acquisition from the N + 1th time is performed according to the flowchart shown in FIG. If NO is determined in S303, the next image acquisition is performed according to the flowchart shown in FIG. 16, and image acquisition is performed according to the flowchart shown in FIG. 16 until YES is determined in S303.
  • the display control unit 3225 displays an instruction to rotate the fertilized egg 16 on the display device 23 (S401).
  • the user checks the rotation instruction of the fertilized egg 16 displayed on the display device 23, and rotates the fertilized egg 16 using optical tweezers or a micropipette.
  • the user performs an input operation to notify the start of rotation from the input device 29 immediately before the start of rotation of the fertilized egg 16.
  • the imaging control unit 226 transmits a control signal for controlling the number of imaging so as to image one fertilized egg 16 a plurality of times to the imaging number control unit 251 of the camera 25. .
  • the fertilized egg 16 is imaged a plurality of times by the camera 25 (S402).
  • An image captured by the camera 25 is acquired by the image acquisition unit 222.
  • the evaluation unit 3223 evaluates the observation (imaging) angle based on the image of the fertilized egg 16 acquired by the image acquisition unit 222, and the front or back image of the plurality of acquired images is the front or back surface.
  • An observation direction classification code is assigned, a horizontal observation direction classification code is assigned to a horizontal image, and an oblique observation direction classification code is assigned to an oblique image.
  • the fertilized egg database unit 3224 causes each image of the fertilized egg 16 and positional information of the storage unit in which the fertilized egg 16 is stored, imaging date and time, imaging conditions, the second feature amount of the fertilized egg, and the growth stage (growth). (Stage code), observation direction classification code, and the like are stored in association with each other (S403).
  • the determination unit 3227 determines whether or not each of the images of the plurality of fertilized eggs 16 has at least one image to which the front, back, side, and oblique observation direction classification codes are assigned ( S404). If it is determined YES in S404, the image acquisition ends.
  • images of a fertilized egg imaged from a plurality of angles can be obtained by rotating a fertilized egg after the blastocyst growth stage having high structural asymmetry and imaging it multiple times. Furthermore, in the present embodiment, image acquisition is performed until three types of images, that is, the front and back images, the oblique image, and the horizontal image, which have different shapes and positions of the ICM 161 in the image, can be captured. Confirmation of time-dependent changes in fertilized eggs after the blast growth stage by arranging images when the fertilized eggs are imaged from the same imaging angle (for example, images of fertilized eggs when the ICM is in front) in time series And the growth of the fertilized egg can be accurately grasped and the evaluation accuracy is increased.
  • an image of the fertilized egg 16 is evaluated by an expert (user) such as an embryo culture person when the fertilized egg 16 becomes a blastocyst, and the user wants to use it as a teacher index. You may make it determine whether it is a fertilized egg, and you may comprise so that a fertilized egg determined to use as a teacher index by a user may be used as a teacher index. Then, for the fertilized egg 16 that has been set as a teacher index by the user, more images are acquired, or control is performed so as to capture a moving image so that more image information about the fertilized eggs 16 can be acquired. Also good. In order to obtain more image information, for example, in addition to increasing the number of images captured from the same imaging angle, the number of images may be increased by increasing the observation (imaging) angle.
  • the fertilized egg 16 that is ideal and good in growth and determined by the user to observe the growth process in more detail serves as a teacher index, and the information processing apparatus uses the image signal of the fertilized egg 16 as a teacher signal. To learn.
  • FIG. 18 is a block diagram illustrating a configuration of the observation system.
  • a case where the fertilized egg 16 is rotated manually as in the first embodiment will be described as an example.
  • the configuration different from the observation system in the first embodiment will be mainly described, and the same configuration is denoted by the same reference numeral, and the description may be omitted.
  • the observation system 4002 includes an observation device 21, an information processing device 4022, a display device 23, and an input device 29.
  • a light source 24, an imaging unit 25, a temperature / humidity / gas control unit 26, and a stage 27 are arranged.
  • the information processing device 4022 includes an image acquisition unit 222, an evaluation unit 223, a fertilized egg database unit 4224, a display control unit 4225, an imaging control unit 4226, a determination unit 4227, and a grant unit. 4228.
  • the information processing apparatus 4022 controls the operation of each block in the observation system 4002. In this embodiment, the information processing apparatus 4022 controls the number of times the camera 25 is imaged, images the fertilized egg 16 from one angle until the initial blastocyst growth stage, and rotates it after the complete blastocyst growth stage.
  • the fertilized egg 16 is controlled to be imaged a plurality of times. Further, the information processing apparatus 4022 evaluates the fertilized egg 16 based on the fertilized egg image. In addition, the information processing apparatus 4022 instructs the user to evaluate the blastocyst.
  • the image acquisition unit 222, the evaluation unit 223, the fertilized egg database unit 4224, the display control unit 4225, the imaging control unit 4226, the determination unit 4227, and the grant unit 4228, which are functional blocks of the information processing apparatus 4022, are non-transient. It is realized by loading a program stored in a ROM, which is an example of a computer readable recording medium, into a RAM and executing it. And the image acquisition method which concerns on this technique is performed by these functional blocks.
  • the determination unit 4227 determines whether or not the growth stage code of the fertilized egg 16 given by the evaluation unit 223 is 6. In addition, the determination unit 4227 determines whether or not the fertilized egg 16 has been provided as a teacher index by the application unit 4228 described later.
  • the fertilized egg 16 given as the teacher index is the fertilized egg 16 determined by the user to be the teacher index.
  • the display control unit 4225 displays an image of the fertilized egg 16 on the display device 23, the position information of the storage unit in which the fertilized egg 16 is stored, the imaging date and time, the imaging conditions, and the second fertilized egg.
  • a display signal for displaying the feature amount, the growth stage, and the like is output to the display device 23.
  • the display control unit 4225 is an expert (user) such as an embryo culture person.
  • An instruction to evaluate the blastocyst of the fertilized egg 16 is displayed on the display device 23.
  • the user confirms the instruction displayed on the display device 23, inputs his / her findings as an evaluation value while observing the image of the fertilized egg 16, and further determines whether or not the fertilized egg 16 is used as a teacher index. input.
  • the display control unit 4225 determines that the fertilized egg 16 is the complete blastocyst. Control is performed to notify the user of the subsequent growth stage and to cause the display device 23 to display an instruction to rotate the fertilized egg 16 to the user.
  • the user rotates the fertilized egg 16 using manual operations such as optical tweezers and a micropipette, water flow using a micro flow path, vibration, and the like in accordance with instructions displayed on the display device 23.
  • the user performs an input operation for starting the rotation of the fertilized egg 16 using the input device 29 such as a mouse immediately before the start of the rotation of the fertilized egg 16.
  • the assigning unit 4228 assigns to the corresponding image of the fertilized egg 16 whether or not to use the evaluation value and teacher index of the image of the fertilized egg 16 input by the user.
  • the imaging control unit 4226 controls the camera 25 to image the fertilized egg 16 from one angle for the fertilized egg 16 determined by the determining unit 4227 that the growth stage code is not 6 or later.
  • the imaging control unit 4226 fixes the imaging angle of the camera 25 for the fertilized egg 16 determined to have a growth stage code of 6 or later, and rotates the fertilized egg 16 to the previous growth stage code 1.
  • the camera 25 is controlled so that the number of times of imaging is greater than the number of times of imaging of the fertilized eggs 16 of.
  • the imaging control unit 4226 captures the number of times of imaging of the fertilized egg 16 given as the teacher index by the imparting unit 4228 so that the number of times of imaging is larger than that of the other fertilized eggs 16 not given as the teacher index. To control.
  • the fertilized egg database unit 4224 displays the image of the fertilized egg 16 captured by the camera 25, the positional information of the storage unit in which the fertilized egg 16 is stored, the imaging date and time, the imaging conditions, the second feature amount of the fertilized egg 16, Along with information such as the growth stage, the user's evaluation value, and whether or not to use as a teacher index, the information is stored for each storage unit 15.
  • the fertilized egg database unit 4224 stores in advance a plurality of first feature amounts of images at each growth stage of the fertilized egg 16.
  • the fertilized egg 16 given as a teacher index by the granting unit 4228 is, for example, a fertilized egg 16 that is ideal and good in growth, and is a fertilized egg 16 that the user wants to use as a teacher index.
  • a fertilized egg 16 that is ideal and good in growth is a fertilized egg 16 that the user wants to use as a teacher index.
  • the fertilized egg database unit 4224 includes an image (teacher image) of the fertilized egg 16 as a teacher index arbitrarily selected by the user, a feature amount extracted from the image, a growth stage code, an observation angle classification code, and the like. It is stored as teacher data in association.
  • the fertilized egg 16 that is arbitrarily selected by the user and given as a teacher index is the fertilized egg 16 that grows well, but is not limited thereto.
  • a fertilized egg 16 with abnormal growth may be selected as a teacher index as a fertilized egg that requires further detailed image observation, and by accumulating image data of such a fertilized egg 16 with abnormal growth.
  • a fertilized egg for which a detailed image observation is desired such as a fertilized egg of an excellent pedigree cow, may be selected as a teacher index, and can be arbitrarily selected by a user.
  • FIGS. 4, 19, and 20 are flowcharts of the image acquisition method.
  • FIG. 19 shows an image acquisition method performed on the fertilized egg 16 up to the growth stage code 6
  • FIG. 20 shows an image acquisition method performed on the fertilized egg 16 after the growth stage code 7.
  • the image acquisition method will be described with reference to the flowcharts of FIGS. 19 and 20.
  • the culture vessel 1 in which the fertilized eggs 16 whose fertilization has been confirmed is housed in each housing part 15 is placed horizontally on a stage 27 in the observation device 21.
  • the fertilized egg 16 is imaged by the camera 25 located at the upper part of the culture container 1 (S501).
  • the camera 25 is controlled by the imaging control unit 4226 so that the fertilized egg 16 is imaged from one angle.
  • the image acquired by the camera 25 is acquired by the image acquisition unit 222.
  • the evaluation unit 223 extracts the second feature amount of the fertilized egg 16 based on the image of the fertilized egg 16 acquired by the image acquisition unit 222. Further, the evaluation unit 223 refers to the extracted second feature value and the first feature value for each stage of growth of the fertilized egg 16 stored in advance in the fertilized egg database unit 4224, so that the fertilized egg 16 The growth stage is evaluated and a growth stage code is given to the fertilized egg 16.
  • the image of the fertilized egg 16 corresponds to the position information of the storage unit in which the fertilized egg 16 is stored, the imaging date and time, the imaging condition, the second feature amount, and the growth stage (growth stage code). Attached and stored (S502).
  • the determination unit 4227 determines whether or not the growth stage code of the fertilized egg 16 given by the evaluation unit 223 is 6 (S503). If it is determined No in S503, the imaging ends. If YES is determined in S503, the display control unit 4225 displays an instruction to evaluate the blastocyst of the fertilized egg 16 on the display device 23 (S504). Upon receiving this instruction (notification to the user), the user inputs his / her findings as an evaluation value while observing the image of the fertilized egg 16 and inputs whether or not to use it as a teacher index.
  • the display control unit 4225 displays on the display device 23 that the fertilized egg 16 is in the early stage blastocyst growth stage and an instruction to rotate the fertilized egg 16 (S505).
  • the user confirms the rotation instruction of the fertilized egg 16 displayed on the display device 23, so that the fertilized egg is fertilized using a manual operation such as optical tweezers or a micropipette, water flow using a microchannel, vibration, or the like. 16 is rotated.
  • the user performs an input operation for notifying the start of rotation from the input device 29 immediately before the start of rotation of the fertilized egg 16.
  • the camera 25 causes the imaging control unit 226 to capture the rotated fertilized egg 16 more than the number of times of imaging of the fertilized egg 16 of the growth stage codes 1 to 5 so far. Control is performed so that an image is taken at a given number of times.
  • the fertilized egg 16 is imaged by the camera 25 at a larger number of times than the number of times of imaging at the time of imaging the fertilized egg 16 of the growth stage codes 1 to 5 (S506). ). An image captured by the camera 25 is acquired by the image acquisition unit 222.
  • the fertilized egg database unit 4224 provides an image of the fertilized egg 16, position information of the storage unit in which the fertilized egg 16 is stored, imaging date and time, imaging conditions, a second feature amount of the fertilized egg, and a growth stage (growth stage). Code), an evaluation value by the user, whether to use a teacher index, and the like are stored in association with each other (S507).
  • the image acquisition when it is determined YES in S503 is the N-th imaging
  • the image acquisition from the N + 1th time is performed according to the flowchart shown in FIG. If NO is determined in S503, the next image acquisition is performed according to the flowchart shown in FIG. 19, and image acquisition is performed according to the flowchart shown in FIG. 19 until it is determined YES in S503.
  • the determination unit 4227 determines whether or not the fertilized egg 16 to be imaged is given as a teacher index (S601).
  • the display control unit 4225 displays an instruction to rotate the fertilized egg 16 on the display device 23 (S602).
  • the user confirms the rotation instruction of the fertilized egg 16 displayed on the display device 23, so that the fertilized egg is fertilized using a manual operation such as optical tweezers or a micropipette, water flow using a microchannel, vibration, or the like. 16 is rotated.
  • the user performs an input operation for notifying the start of rotation from the input device 29 immediately before the start of rotation of the fertilized egg 16.
  • the camera 25 causes the imaging control unit 226 to increase the number of times that the fertilized egg 16 has been rotated is larger than the number of times the fertilized egg 16 of the growth stage codes 1 to 5 has been captured. Control is performed so that the number of times of imaging is taken.
  • the fertilized egg 16 is imaged by the camera 25 at a larger number of times than the number of times of imaging at the time of imaging the fertilized egg 16 of the growth stage codes 1 to 5 (S603). ). An image captured by the camera 25 is acquired by the image acquisition unit 222.
  • the fertilized egg database unit 4224 provides an image of the fertilized egg 16, position information of the storage unit in which the fertilized egg 16 is stored, imaging date and time, imaging conditions, a second feature amount of the fertilized egg, and a growth stage (growth stage). Code), an evaluation value by the user, and whether or not to use as a teacher index are stored in association with each other (S604).
  • the display control unit 4225 displays an instruction to rotate the fertilized egg 16 on the display device 23 (S605).
  • the user confirms the rotation instruction of the fertilized egg 16 displayed on the display device 23, so that the fertilized egg is fertilized using a manual operation such as optical tweezers or a micropipette, water flow using a microchannel, vibration, or the like. 16 is rotated.
  • the user performs an input operation for notifying the start of rotation from the input device 29 immediately before the start of rotation of the fertilized egg 16.
  • the camera 25 is controlled by the imaging control unit 4226 so that the fertilized egg 16 is imaged by the number of imaging times larger than the number of imaging times performed in S603.
  • the camera 25 may be controlled to capture a moving image.
  • the fertilized egg 16 is imaged by the camera 25 at a larger number of times of imaging than the number of times of imaging performed at S603 (S606).
  • An image captured by the camera 25 is acquired by the image acquisition unit 222.
  • the imaging of the fertilized egg is completed.
  • the fertilized egg database unit 4224 as the fertilized egg 16 of the teacher index, an image or a moving image (teacher image) of the fertilized egg 16, position information of the storage unit in which the fertilized egg 16 is stored, imaging date and time, imaging conditions, The feature amount of the fertilized egg, the growth stage (growth stage code), etc. are associated and stored (S607).
  • this embodiment is configured to allow a user to select a preferable fertilized egg that has good growth, and to evaluate other fertilized eggs using this as a teacher index.
  • a teacher index since the number of imaging is increased more than the fertilized egg 16 which is not a teacher index, more images are acquired, and a large number of teacher images are acquired from the fertilized egg 16 used as the teacher index. Accuracy can be improved.
  • the observation container 21 for observing a fertilized egg has the culture container 1 and the camera 25 installed therein, and the information processing apparatus 22 is installed outside the observation apparatus 21, but is not limited thereto.
  • an information processing device 5022 may be installed in the observation device 5021.
  • FIG. 21 shows a configuration of an observation system 5002 according to the sixth embodiment.
  • the observation system 5002 has an observation device 5021, and the observation device 5021 can be connected to the cloud server 5037 via a network. Further, the portable terminal 5038 and the personal computer 5039 serving as display devices can be connected to the cloud server 5037 via a network.
  • a camera / information processing apparatus integrated unit 5032 and a temperature / humidity / gas control unit 5036 are installed, and the culture vessel 1 is accommodated.
  • the camera / information processing device integrated unit 5032 includes a camera 5025 as an imaging unit, a light source 5024, an information processing device 5022, and a communication unit 5023.
  • the light source 5024 for irradiating the fertilized egg 16 is arranged at the upper part of the culture vessel 1 instead of the lower part.
  • the light source 5024 emits light that irradiates the culture container 1 when the fertilized egg 16 in the culture container 1 is imaged by the camera 5025.
  • the camera 5025 images the fertilized egg 16 in the culture container 1.
  • the information processing apparatus described in the above embodiments can be applied to the information processing apparatus 5022.
  • the information processing apparatus 5022 acquires an image of the fertilized egg 16 at each growth stage. Further, for the fertilized egg 16 at the growth stage after the complete blastocyst, for example, the fertilized egg is rotated while the fertilized egg 16 is rotated. The image of the fertilized egg 16 captured from a plurality of angles is acquired by imaging 16.
  • the information processing apparatus 5022 transmits the image of the fertilized egg 16 to the cloud server 5037 via the communication unit 5023 and the network, the positional information on the storage unit in which the fertilized egg 16 is stored, the imaging date and time, Data signals (hereinafter referred to as data signals related to the fertilized egg 16) such as the imaging conditions, the second feature amount of the fertilized egg, the growth stage code, and the observation direction classification code are output.
  • data signals related to the fertilized egg 16 such as the imaging conditions, the second feature amount of the fertilized egg, the growth stage code, and the observation direction classification code are output.
  • the temperature / humidity / gas control unit 5036 controls the temperature / humidity / gas in the observation apparatus 5021 and creates an environment suitable for culturing the fertilized egg 16.
  • the communication unit 5023 receives a data signal related to the fertilized egg 16 from the information processing apparatus 5022 and outputs it to the cloud server 5037 via the network.
  • the cloud server 5037 stores a data signal related to the fertilized egg 16.
  • a personal computer 5039 and a portable terminal 5038 each including the display unit 5039a and the information processing unit 5039b receive and display a data signal related to the fertilized egg 16 from the cloud server 5037 through a network by an operation of a user who operates them.
  • the fertilized egg selected by the user as the teacher index is used as the teacher index.
  • the image of the fertilized egg 16 in the growth stage after the complete blastocyst is used.
  • an image of a part of the fertilized eggs 16 among the plurality of fertilized eggs 16 accommodated in one culture container 1 is used as a teacher image, and an image of the remaining fertilized eggs 16 is used as a test image. It is good also as a structure from which the fertilized egg 16 used is selected.
  • the selection process of the fertilized egg 16 serving as the teacher index is performed on the fertilized egg 16 in the growth stage of the complete blastocyst of the growth stage code 6, for example.
  • FIG. 22 is a schematic plan view of the culture vessel 1.
  • images of the fertilized eggs 16 accommodated in each of the six accommodating portions 15 among the nine accommodating portions 15 are used as teacher images, and images of the fertilized eggs 16 accommodated in the remaining accommodating portions 15 are used as test images.
  • FIG. 4 is a schematic diagram of an observation system according to the present embodiment
  • FIG. 5 is a block diagram showing a configuration of the observation system according to the present embodiment.
  • differences from the first embodiment will be mainly described, and the same structure is denoted by the same reference numeral, and description thereof may be omitted.
  • the observation system 6002 includes an observation device 21, an information processing device 6022, a display device 23, and an input device 29.
  • a light source 24, a camera 25 as an imaging unit, a temperature / humidity / gas control unit 26, and a stage 27 are arranged.
  • the information processing apparatus 6022 includes an image acquisition unit 222, an evaluation unit 6223, a fertilized egg database unit 6224, a display control unit 225, an imaging control unit 226, and a determination unit 227.
  • the image acquisition unit 222, the evaluation unit 6223, the fertilized egg database unit 6224, the display control unit 225, the imaging control unit 226, and the determination unit 227, which are functional blocks of the information processing device 6022, are non-transitory computer-readable by the CPU. This is realized by loading a program stored in a ROM which is an example of a possible recording medium into the RAM and executing the program. And the image acquisition method which concerns on this technique is performed by these functional blocks.
  • the evaluation unit 6223 extracts the second feature amount based on the image of the fertilized egg 16 of the growth stage code 6 as the teacher image, and based on this, the growth stage code and the observation direction are added to the corresponding fertilized egg 16 image. Assign a classification code.
  • the evaluation unit 6223 extracts the second feature amount based on the image of the fertilized egg 16 of the growth stage code 6 as the test image, and based on this, the growth stage code and the image of the corresponding fertilized egg 16 are extracted. An observation direction classification code is assigned.
  • the evaluation unit 6223 uses the second feature amount of the fertilized egg 16 as the teacher image and the reliability and usefulness of the relationship between the growth stage code and the observation direction classification code as a test image. Evaluation is performed using a set of feature quantities, growth stage codes, and observation direction classification codes.
  • the fertilized egg 16 evaluated as useful among the fertilized eggs 16 made into a plurality of teacher images by the evaluation unit 6223 is used as a teacher index, and an image (teacher image), a feature amount, and a growth stage code are determined by the fertilized egg database unit 6224.
  • the observation direction classification code are associated with each other and stored as teacher data.
  • the teacher data acquired at the time of image acquisition uses the feature amount as the first feature amount in subsequent image acquisition, and is referred to for evaluating the growth stage and the imaging angle.
  • the captured image of the growth stage after the complete blastocyst is classified into three image patterns using the observation (imaging) direction as a classification index.
  • the observation (imaging) is performed.
  • An observation (imaging) angle obtained by classifying the direction in more detail may be classified as a classification index.
  • an observation angle classification code is provided, images of fertilized eggs imaged from a plurality of angles after the growth stage code 6 are classified using the observation (imaging) angle as a classification index, and the obtained image is obtained.
  • An observation angle classification code is assigned. The application of the observation angle classification code is applicable in each of the above-described embodiments.
  • FIG. 23 and 24 are diagrams for explaining the classification based on the observation angle.
  • FIG. 23 is a diagram for explaining the definition of the observation (imaging) angle.
  • FIG. 24 is a diagram for explaining the correspondence between the observation angle classification code, the observation (imaging) direction, the observation (imaging) angle, and the fertilized egg image. .
  • the captured images are classified according to the observation (imaging) angle of the fertilized egg 16, and an observation angle classification code is assigned to each image.
  • the center of the substantially spherical fertilized egg 16 is centered on the observation (imaging) direction when imaging the fertilized egg 16 from the front (the direction from the plus to minus of the Z axis in FIG. 23).
  • an angle ⁇ formed by the observation direction from the front and the observation (imaging) direction is set as an observation (imaging) angle
  • an observation angle classification code is assigned corresponding to the observation (imaging) angle.
  • the observation angle classification code is represented by a numerical value of 0 ° to 360 °.
  • the X axis, the Y axis, and the Z axis mean three orthogonal axes, and do not mean the horizontal direction and the vertical direction.
  • the fertilized egg 16 is unevenly present in the fertilized egg 16 in the growth stage after the blastocyst.
  • the ICM 161 is located in the positive region of the Z axis, and the ICM 161 is projected onto the XY plane
  • the fertilized egg 16 is imaged in the observation (imaging) direction from the positive to the negative of the Z axis along the Z axis with the fertilized egg 16 positioned so that the center of the substantially circular ICM 161 is located at the origin.
  • this image corresponds to a front image of a fertilized egg with ICM 161 positioned in front, and an observation angle classification code of 0 ° is assigned to this image.
  • an image obtained by imaging the fertilized egg 16 in the direction from the minus side of the Z axis toward the plus side along the Z axis is a flat surface as shown in FIG.
  • This is an image in which the ICM 161 is located in the center of the fertilized egg 16 having a substantially circular shape, and an observation angle classification code of 180 ° is given to this back surface image.
  • both the front image and the back image are images in which a substantially circular ICM 161 is located in the center of the fertilized egg 16, but the front image and the back image can be distinguished by, for example, shading. .
  • an image obtained by imaging the fertilized egg 16 in the observation (imaging) direction from the position in the XY plane to the origin is a planar shape as shown in FIG. Is an image in which a substantially inferior arc-shaped ICM 161 is located at the end of a substantially circular fertilized egg 16, and an observation angle classification code of 90 ° is given to this image.
  • the observation (imaging) angle ⁇ is 0 ° ⁇ ⁇ 90 °, 90 ° ⁇ ⁇ 180 °, 180 ° ⁇ ⁇ 270 °, and 270 ° ⁇ ⁇ 360 °.
  • An image in which the fertilized egg 16 is imaged in other words, an image in which the fertilized egg 16 is imaged from an angle other than the front surface, the back surface, and the side is an image in which the substantially elliptical ICM 161 is located at a position shifted from the center of the fertilized egg 16.
  • the size and shape of the ICM 161 vary depending on the angle. An observation angle classification code corresponding to the observation (imaging) angle is given to this image.
  • the image of the fertilized egg 16 that is imaged at an observation (imaging) angle of 30 ° and the observation angle classification code is 30 ° the image is circular at a position slightly shifted from the center of the fertilized egg 16.
  • An image in which the near approximately elliptical ICM 161 is located is obtained.
  • An image picked up at an observation (imaging) angle of 30 ° has an ICM 161 position of, for example, the upper right of the fertilized egg 16 depending on the direction of the observation (imaging) direction on the XY plane when the observation (imaging) direction is projected onto the XY plane.
  • the position of the ICM 161 is different depending on whether it is closer or lower.
  • the shape and size of the ICM 161 are substantially the same, and images taken from different directions at the same observation (imaging) angle are centered on the center of the substantially circular fertilized egg 16.
  • the ICM 161 substantially coincides. The same applies to other observation (imaging) angles.
  • a substantially elliptical ICM 161 is positioned at the end of the fertilized egg 16.
  • the substantially elliptical ICM 161 is located at the end of the fertilized egg 16.
  • the image of the fertilized egg 16 that is imaged at an observation (imaging) angle of 150 ° and the observation angle classification code is 150 °
  • the image is a substantially elliptical shape close to a circle at a position slightly deviated from the center of the fertilized egg 16.
  • the image is where the ICM 161 is located.
  • the observation (imaging) angle is determined based on the size (area) and shape of the ICM 161, the position of the ICM 161 viewed from the center of the substantially circular fertilized egg 16 and the like. It can be calculated.
  • an image with an observation angle classification code of 30 ° and an image with an observation angle classification code of 150 ° are both images in which a substantially elliptical ICM 161 close to a circle is located at a position slightly shifted from the center of the fertilized egg 16.
  • both images can be distinguished by, for example, shading.
  • an image with an observation angle classification code of 60 ° and an image with an observation angle classification code of 120 ° are both images in which a substantially elliptical ICM 161 is located at the end of the fertilized egg 16. Can be distinguished.
  • an image acquired by imaging the rotated fertilized egg 16 is classified according to an observation (imaging) angle, and an image observed (imaging) from an oblique direction can be classified in more detail. It has become. Thereby, more detailed image information of the fertilized egg 16 can be obtained, and the fertilized egg 16 can be evaluated with high accuracy.
  • the observation (imaging) angle has been described in increments of 30 °, but is not limited thereto.
  • FIG. 4 is a diagram illustrating a configuration of the observation system.
  • FIG. 5 is a block diagram showing the configuration of the observation system.
  • a case where the fertilized egg 16 is rotated manually as in the first embodiment will be described as an example.
  • the configuration different from the observation system in the first embodiment will be mainly described, and the same configuration is denoted by the same reference numeral, and the description may be omitted.
  • the observation system 7002 includes an observation device 21, an information processing device 7022, a display device 23, and an input device 29.
  • a light source 24, an imaging unit 25, a temperature / humidity / gas control unit 26, and a stage 27 are arranged.
  • the information processing device 7022 includes an image acquisition unit 222, an evaluation unit 7223, a fertilized egg database unit 7224, a display control unit 225, an imaging control unit 226, and a determination unit 3227. .
  • the information processing device 7022 controls the operation of each block in the observation system 7002. In this embodiment, the number of times that the camera 25 is imaged is controlled by the information processing apparatus 7022.
  • the fertilized egg 16 is imaged from one angle until a certain growth stage, and the rotated fertilized egg 16 is imaged a plurality of times after a certain growth stage. To be controlled. Further, the information processing apparatus 7022 evaluates the fertilized egg 16 based on the fertilized egg image.
  • the image acquisition unit 222, the evaluation unit 7223, the fertilized egg database unit 7224, the display control unit 225, the imaging control unit 226, and the determination unit 227, which are functional blocks of the information processing device 7022, are non-transiently read by the CPU This is realized by loading a program stored in a ROM which is an example of a possible recording medium into the RAM and executing the program. And the image acquisition method which concerns on this technique is performed by these functional blocks.
  • the evaluation unit 7223 extracts the second feature value of the fertilized egg based on the image of the fertilized egg 16 acquired by the camera 25, and stores the extracted second feature value and the fertilized egg database unit 7224 in advance.
  • the growth stage of the fertilized egg 16 is evaluated with reference to the first characteristic amount for each growth stage of the fertilized egg 16, and a growth stage code described later is given to the fertilized egg 16.
  • the evaluation unit 7223 extracts the second feature amount of the fertilized egg based on the image for each image of the fertilized egg 16 imaged from a plurality of imaging angles after the growth stage code 6, and this extracted second And the first feature value for each growth stage of the fertilized egg 16 stored in advance in the fertilized egg database unit 7224, the observation (imaging) angle is evaluated, and an observation angle classification code is assigned. .
  • the second feature amount of the fertilized egg 16 calculated by the evaluation unit 7223, the given growth stage code, and the observation angle classification code are associated with the image of each fertilized egg 16 in the fertilized egg database unit 7224, and fertilized. Each egg 16 is stored in time series.
  • the determination unit 227 determines whether or not the growth stage code of the fertilized egg 16 given by the evaluation unit 7223 is 6 or later.
  • the fertilized egg database unit 7224 displays the image of the fertilized egg 16 captured by the camera 25, the positional information of the storage unit in which the fertilized egg 16 is stored, the imaging date and time, the imaging conditions, the second feature amount of the fertilized egg 16, Along with information such as a growth stage code and an observation angle classification code, the information is stored for each storage unit 15.
  • the fertilized egg database unit 7224 stores in advance a plurality of first feature amounts of images at each growth stage of the fertilized egg 16. Further, in the fertilized egg database unit 7224, in the fertilized egg 16 in the growth stage after the growth stage code 6, a plurality of second feature amounts of images for each observation (imaging) angle of the fertilized egg 16 in each growth stage are stored in advance. It is remembered.
  • the display control unit 225 displays the image of the fertilized egg 16 on the display device 23, the image date and time, the image capturing condition, the second feature amount of the fertilized egg, the growth stage, the observation (imaging) angle, and the like in association with the image.
  • the display signal to be output is output to the display device 23.
  • the display control unit 225 displays the fertilized egg 16 on the display device 23. Is in a growth stage after the complete blastocyst, and an instruction to rotate the fertilized egg 16 is displayed on the display device 23 to the user.
  • the user rotates the fertilized egg 16 using optical tweezers, a micropipette or the like in accordance with instructions displayed on the display device 23.
  • the user inputs the start of rotation of the fertilized egg 16 to the information processing apparatus 7022 by using the input device 29 such as a mouse in accordance with the start of rotation of the fertilized egg 16.
  • the culture vessel 1 in which the fertilized eggs 16 whose fertilization has been confirmed is housed in each housing part 15 is placed horizontally on a stage 27 in the observation device 21.
  • the fertilized egg 16 is imaged by the camera 25 located at the upper part of the culture container 1 (S101).
  • the camera 25 is controlled by the imaging control unit 226 so that the fertilized egg 16 is imaged from one angle.
  • the image acquired by the camera 25 is acquired by the image acquisition unit 222.
  • the evaluation unit 7223 extracts the second feature amount of the fertilized egg 16 based on the image of the fertilized egg 16 acquired by the image acquiring unit 222. Further, the evaluation unit 7223 refers to the extracted second feature value and the first feature value for each growth stage of the fertilized egg 16 stored in advance in the fertilized egg database unit 7224 to grow the fertilized egg 16. The stage is evaluated and a growth stage code is given to the fertilized egg 16.
  • the fertilized egg database unit 7224 stores the image of the fertilized egg 16 in association with the imaging date and time, the imaging condition, the second feature amount, and the growth stage (growth stage code) (S102).
  • the determination unit 227 determines whether or not the growth stage code of the fertilized egg 16 given by the evaluation unit 7223 is 6 or later (S103). If it is determined No in S103, the imaging ends. If it is determined YES in S103, the display control unit 225 displays on the display device 23 that the fertilized egg 16 is in the blastocyst growth stage and displays an instruction to rotate the fertilized egg 16. (S104).
  • the user confirms the direction of rotation of the fertilized egg 16 displayed on the display device 23, so that the fertilized egg 16 can be moved manually using optical tweezers or a micropipette, water flow through a microchannel, vibration, or the like.
  • the fertilized egg 16 is rotated.
  • the user performs an input operation for notifying the start of rotation from the input device 29 immediately before the start of rotation of the fertilized egg 16.
  • the camera 25 causes the imaging control unit 226 to increase the number of times that the fertilized egg 16 has been rotated is larger than the number of times the fertilized egg 16 of the growth stage codes 1 to 5 has been captured. Control is performed so that the number of times of imaging is taken. Thereafter, the number of imaging of the fertilized egg 16 after the growth stage code 6 is performed more frequently than the number of imaging until the growth stage code 5.
  • the fertilized egg 16 is imaged multiple times by the camera 25 (S105). An image captured by the camera 25 is acquired by the image acquisition unit 222.
  • the evaluation unit 7223 extracts the second feature amount of the fertilized egg 16 based on the image of the fertilized egg 16 acquired by the image acquisition unit 222. Further, the evaluation unit 7223 refers to the extracted second feature value and the first feature value for each growth stage of the fertilized egg 16 stored in advance in the fertilized egg database unit 3224 for observation (imaging). The angle is evaluated and an observation angle classification code is assigned.
  • the fertilized egg database unit 7224 uses each image of the fertilized egg 16, position information of the storage unit in which the fertilized egg 16 is stored, imaging date and time, imaging conditions, a second feature amount of the fertilized egg, and a growth stage (growth) (Stage code), observation angle classification code, and the like are stored in association with each other (S106).
  • the image acquisition when it is determined YES in S103 is the N-th imaging
  • the image acquisition from the (N + 1) -th time is performed according to the flowchart shown in FIG. If NO is determined in S103, the next image acquisition is performed according to the flowchart shown in FIG. 8, and image acquisition is performed according to the flowchart shown in FIG. 8 until YES is determined in S103.
  • the display control unit 225 displays an instruction to rotate the fertilized egg 16 on the display device 23 (S201).
  • the user confirms the rotation instruction of the fertilized egg 16 displayed on the display device 23, so that the fertilized egg is fertilized using a manual operation such as optical tweezers or a micropipette, water flow using a microchannel, vibration, or the like.
  • the egg 16 is rotated.
  • the user performs an input operation for notifying the start of rotation from the input device 29 immediately before the 16th rotation of the fertilized egg.
  • the camera 25 takes an image of the fertilized egg 16 rotated by the imaging control unit 226 more than the number of times of imaging of the fertilized egg 16 of the growth stage codes 1 to 5 so far. Control is performed so that an image is taken at a given number of times.
  • the fertilized egg 16 is imaged a plurality of times by the camera 25 (S202). An image captured by the camera 25 is acquired by the image acquisition unit 222.
  • the evaluation unit 7223 extracts the second feature amount of the fertilized egg 16 based on the image of the fertilized egg 16 acquired by the image acquisition unit 222, and evaluates the observation (imaging) angle. Further, the evaluation unit 7223 gives an observation angle classification code to each image.
  • each image of the fertilized egg 16 the positional information of the storage unit in which the fertilized egg 16 is stored, the imaging date and time, the imaging conditions, the second feature amount of the fertilized egg 16, and the growth stage ( (Growth stage code), observation angle classification code and the like are stored in association with each other (S203).
  • the observation angle classification code is assigned to the image of the fertilized egg 16 at the growth stage after the growth stage code 6, but the image of the fertilized egg 16 at the growth stage before the growth stage code 5 is added.
  • an observation angle classification code may be assigned.
  • an image to which a specific observation angle classification code is assigned may be used as the teacher image.
  • An observation angle classification code of 0 ° is assigned to the adjacent front image where two cells do not overlap as shown in FIG. 3 (b), and one elliptical image corresponds to a horizontal image
  • a 90 ° observation angle classification code is assigned, and an image in which two cells partially overlap each other is diagonally inclined, 0 ° ⁇ ⁇ 90 °, 90 ° ⁇ ⁇ 180 °, 180 ° ⁇
  • An observation angle classification code of ⁇ 270 °, 270 ° ⁇ ⁇ 360 ° is given. Then, among the images of the two-cell stage of the fertilized egg 16 serving as the teacher index, an image to which one specific observation angle classification code, for example, an observation angle classification code of 0 ° is assigned, is used as the teacher image.
  • an image to which a specific one observation angle classification code is assigned is used as a teacher image, and the growth stage code 6 or later.
  • a plurality of images to which a plurality of observation angle classification codes are assigned may be used as teacher images.
  • the fertilized egg is imaged from a plurality of angles in the growth stage after the complete blastocyst.
  • the present invention is not limited to this.
  • an evaluation part evaluates a growth stage based on the image of a fertilized egg, gives a growth stage code to a fertilized egg, and a growth part code is 6 or more in a determination part. Is determined and whether or not to rotate the fertilized egg is determined, but the evaluation of the growth stage is not limited to this.
  • the evaluation unit evaluates the growth stage based on the incubation time of the fertilized egg, that is, the time elapsed from the fertilization date, and gives the growth stage code to the fertilized egg. Whether or not to rotate the fertilized egg may be determined.
  • a general fertilized egg grows through a growth stage as shown in FIG. 3, and it is almost known which growth stage the fertilized egg is in the elapsed time (culture time) from the fertilization date. Therefore, the growth stage can be evaluated from the culture time of the fertilized egg.
  • this technique can also take the following structures.
  • an image acquisition unit that acquires an image of a cell imaged by the imaging unit;
  • An evaluation unit for evaluating the growth stage of the cells;
  • An information processing apparatus comprising: an imaging control unit that causes the imaging unit to image the rotated cells according to an evaluation result of the evaluation unit.
  • An information processing apparatus further comprising a rotation control unit that controls a rotation mechanism that rotates the cell according to the evaluation result of the evaluation unit.
  • the evaluation unit evaluates the growth stage of the cell based on the image acquired by the image acquisition unit.
  • the information processing apparatus evaluates a growth stage of the cell based on a culture time of the cell.
  • the imaging control unit causes the imaging unit to image the rotated cell when the evaluation unit evaluates that the shape of the cell is an asymmetric growth stage.
  • the growth stage in which the shape of the cell is asymmetric is a growth stage of a blastocyst.
  • the growth stage of the blastocyst is a growth stage after the complete blastocyst.
  • the information processing apparatus is a cell in the growth stage of a blastocyst having an inner cell mass;
  • the evaluation unit classifies an image obtained by imaging the rotated cell according to an imaging direction based on a position of the inner cell mass in the cell.
  • the storage unit stores in advance the first feature amount of the cell in each growth stage,
  • the evaluation unit extracts a second feature amount of the cell image acquired by the image acquisition unit, and evaluates the growth stage of the cell based on the first feature amount and the second feature amount.
  • Information processing device is a cell in the growth stage of a blastocyst having an inner cell mass;
  • the evaluation unit classifies an image obtained by imaging the rotated cell according to an imaging direction based on a position of the inner cell mass in the cell.
  • the storage unit stores the arbitrarily selected cell as a teacher index.
  • the imaging control unit controls the imaging unit to image a plurality of the cells, The information processing apparatus controls the imaging unit so that the number of times of imaging of the cell that is the teacher index is larger than the number of times of imaging of the cell that is not the teacher index.
  • Information processing device is any one of (1) to (9).
  • a culture container having a plurality of accommodating portions in which cells are accommodated; An imaging unit for imaging the cells; An image acquisition unit for acquiring an image of the cell imaged by the imaging unit; An evaluation unit for evaluating the growth stage of the cells; According to the evaluation result of the growth stage of the cell by the evaluation unit, a rotation mechanism that rotates the cell in the storage unit, An observation system comprising an imaging control unit that controls the imaging unit so as to image the cells rotated by the rotation mechanism.
  • the observation system is a vibration device that vibrates the culture vessel.
  • the accommodating portion is capable of accommodating the cells and liquid;
  • the culture vessel has the rotation mechanism, The observation mechanism rotates the cell by generating a flow in the liquid in the storage unit.
  • (16) assessing the growth stage of the cells An information processing method for imaging the rotated cells when it is evaluated that the shape of the cells is an asymmetric growth stage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Pathology (AREA)
  • Quality & Reliability (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Optics & Photonics (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)

Abstract

【課題】受精卵を高い精度で評価するのに適した情報処理装置、観察システム、情報処理方法及びプログラムを提供する。 【解決手段】情報処理装置は、画像取得部と、評価部と、撮像制御部を具備する。前記画像取得部は、撮像部により撮像された細胞の画像を取得する。前記評価部は、前記細胞の成長段階を評価する。前記撮像制御部は、前記評価部の評価結果に応じて、回転させた前記細胞を前記撮像部に撮像させる。

Description

情報処理装置、観察システム、情報処理方法及びプログラム
 本技術は、培養細胞の観察に用いられる情報処理装置、観察システム、情報処理方法及びプログラムに関する。
 近年、不妊治療や家畜の繁殖等の細胞培養分野において研究が行われている。
 例えば体外受精による受精卵の成長を観察する場合、受精卵を保持する収容部を備えた培養容器に受精卵を収容し、成長を観察する。受精卵の成長の経時変化を観察する際、受精卵をカメラにより撮像して画像を取得する(例えば、特許文献1参照)。受精卵の観察においては、受精卵を高い精度で評価することが求められている。
特開2011-192109号公報
 受精卵の撮像画像を用いて受精卵を評価する際、例えば胚盤胞以降の受精卵の形状は構造的に非対称性が高く、観察角度によって受精卵の見え方が大きく異なる。そのため、1つの観察角度から撮像した画像だけでは、十分な評価を行うことができない。
 本技術の目的は、受精卵を高い精度で評価するのに適した情報処理装置、観察システム、情報処理方法及びプログラムを提供することにある。
 本技術の一実施形態に係る情報処理装置は、画像取得部と、評価部と、撮像制御部を具備する。
 上記画像取得部は、撮像部により撮像された細胞の画像を取得する。
 上記評価部は、上記細胞の成長段階を評価する。
 上記撮像制御部は、上記評価部の評価結果に応じて、回転させた上記細胞を上記撮像部に撮像させる。
 本形態によれば、細胞がある成長段階となったときに、回転させた細胞を撮像するので、複数の角度から撮像した細胞の画像を取得することができる。これにより、受精卵を評価するにあたり、様々な角度から撮像した細胞の画像を総合的にみて評価することができ、高い精度の評価を行うことができる。
 回転制御部を更に具備してもよい。
 上記回転制御部は、上記評価部の評価結果に応じて、上記細胞を回転させる回転機構を制御する。
 このように、回転機構により回転させた細胞を撮像してもよい。
 上記評価部は、上記画像取得部により取得された上記画像を基に上記細胞の成長段階を評価してもよい。
 このように細胞の画像を基に、細胞の成長段階を評価してもよい。
 上記評価部は、上記細胞の培養時間を基に上記細胞の成長段階を評価してもよい。
 細胞、例えば受精卵の成長段階は、正常な受精卵であればほぼ同じ成長曲線をたどるので、受精卵の受精日からの経過時間(培養時間)で推測が可能である。したがって、細胞の培養時間を基に細胞の成長段階を評価することができる。
 上記撮像制御部は、上記評価部が上記細胞の形状が非対称の成長段階であると評価したときに、回転させた上記細胞を上記撮像部に撮像させてもよい。
 このように、細胞の形状が非対称となったときの成長段階に、複数の角度から撮像した細胞の画像を取得することにより、角度によって多様な形状が観察される細胞の成長をより正確に把握することができる。ここで、非対称の形状とは構造非対称性が高いときの形状を指し、略球形の細胞が観察する角度によって細胞の見え方が大きく異なるときの形状をいう。
 上記細胞の形状が非対称である成長段階は胚盤胞の成長段階であってもよい。
 細胞、例えば哺乳類の受精卵は、受精後、卵割によって2細胞期、4細胞期、8細胞期、16細胞期というように細胞数が増えていき、やがて細胞同士が密着して桑実胚となる。更に成長し続けると細胞質内に隙間ができて胞胚腔を形成し初期胚盤胞となり、胞胚腔が拡大すると完全胚盤胞へと成長する。完全胚盤胞以降では、将来胎児となる内部細胞塊(Inner Cell Mass、以下ICMと称す。)と栄養外胚葉(Trophectoderm、以下TEと称す。)の識別が可能となる。胚盤胞の成長段階の細胞では、略球形の細胞が観察する角度によって細胞の見え方が大きく異なり、この構造非対称性が高い形状の胚盤胞以降の成長段階で、回転する細胞を撮像し複数の角度からの細胞画像を取得することにより、細胞の成長の様子を正確に把握することができる。
 上記胚盤胞の成長段階は完全胚盤胞以降の成長段階であってもよい。
 完全胚盤胞以降の成長段階の受精卵は、受精卵内で胞胚空が占める割合が大きくなり、初期胚盤胞よりも構造非対称性がより高い形状となる。これにより、例えば、画像における受精卵内のICMの位置によって画像の分類が容易となり、画像における受精卵内のICMの位置を基準にして画像パターンをいくつかに分類することにより、異なる成長段階の受精卵をほぼ同じ観察角度から観察することが可能となり、細胞の成長の経時変化を正確に把握することができる。
 上記細胞は、内部細胞塊を有する胚盤胞の成長段階の細胞であり、上記評価部は、回転させた上記細胞を撮像した画像を、上記細胞内の上記内部細胞塊の位置を基準にした撮像方向によって分類してもよい。
 このように、画像における受精卵内の内部細胞塊(ICM)の位置を基準にして画像パターンをいくつかに分類することにより、異なる成長段階の受精卵をほぼ同じ観察角度から観察することが可能となり、細胞の成長の経時変化を正確に把握することができる。撮像方向による分類の一例として、例えばICMが正面の位置にあるときを基準にして、細胞の撮像方向を正面、横、斜めの3つのパターンに分類することができ、また、他の例として、3つの撮像方向を更に詳細にわけて観察(撮像)角度で分類してもよい。
 上記画像取得部により取得された上記細胞の画像を記憶する記憶部を更に具備し、
 上記記憶部は、各成長段階における上記細胞の第1の特徴量を予め記憶し、上記評価部は、上記画像取得部により取得された上記細胞の画像の第2の特徴量を抽出し、上記第1の特徴量と上記第2の特徴量を基に上記細胞の成長段階を評価してもよい。
 特徴量は、例えば受精卵のサイズ、形状、真球度、卵割数(率)、各割球の形態及びそのバランス、フラグメンテーション、ICMのサイズや形状、数、密度等の、細胞の種々の成長段階に基づいて抽出されるものである。このように、予め記憶されている細胞の成長段階毎の第1の特徴量と、取得した画像から抽出する第2の特徴量を参照することにより、成長段階を評価することができる。
 上記記憶部は、任意に選択された上記細胞を教師指標として記憶してもよい。
 例えば胚培養士等の専門家(ユーザ)により、教師指標としたいとする細胞が選択されてもよく、ユーザによって任意に選択された細胞が特に成長が好ましい細胞であった場合、この細胞を教師指標として他の細胞を評価するにあたり、より精度の高い評価を行うことができる。
 上記撮像制御部は、複数の上記細胞を撮像するよう上記撮像部を制御し、上記撮像制御部は、上記教師指標とされた上記細胞の撮像回数を、上記教師指標とされなかった上記細胞の撮像回数よりも多く撮像するよう上記撮像部を制御してもよい。
 このように、教師指標となる細胞の画像をより多く取得することにより、教師指標となる細胞のデータを多く蓄積することができ、これを用いることにより、評価精度が向上する。
 上記撮像制御部は、複数の上記細胞を撮像するよう上記撮像部を制御し、上記評価部は、上記複数の細胞のうち一部の細胞の画像を教師画像とし、上記複数の細胞のうち他の細胞の画像をテスト画像とし、前記テスト画像を用いて前記教師画像を検証してもよい。
 これにより、教師画像の有用性を評価することができる。そして、有用と評価された細胞を教師指標と、教師指標となる細胞のデータを多く蓄積することができ、より精度の高い評価を行うことができる。
 本技術の一形態に係る観察システムは、培養容器と、撮像部と、画像取得部と、評価部と、回転機構と、撮像制御部とを具備する。
 上記培養容器は、細胞が収容された収容部を複数有する。
 上記撮像部は、上記細胞を撮像する。
 上記画像取得部は、上記撮像部で撮像された上記細胞の画像を取得する。
 上記評価部は、上記細胞の成長段階を評価する。
 上記回転機構は、上記評価部による上記細胞の成長段階の評価結果に応じて、上記細胞を上記収容部内で回転させる。
 上記撮像制御部は、上記回転機構により回転させた上記細胞を撮像するように上記撮像部を制御する。
 本形態によれば、例えば細胞がある成長段階となったと評価されたときに、細胞を回転機構により回転させながら撮像するように構成されるので、複数の角度から撮像した細胞の画像を取得することができる。これにより、受精卵を評価するにあたり、様々な角度から撮像した細胞の画像を総合的にみて評価することができ、高精度の評価を行うことができる。
 上記回転機構は、上記培養容器を振動させる振動装置であってもよい。
 このように培養容器を振動させ、細胞を回転させるよう構成してもよい。
 上記収容部は上記細胞と液体を収容可能であり、上記培養容器は上記回転機構を有し、上記回転機構は、上記収容部内の前記液体に流れを発生させて、上記細胞を回転させてもよい。
 本技術の一形態に係る情報処理方法は、細胞の成長段階を評価し、上記細胞の形状が非対称の成長段階であると評価したときに、回転させた前記細胞を撮像する。
 本技術の一形態に係るプログラムは、情報処理装置に、評価するステップと、撮像するステップを実行させる。
 上記評価するステップは、細胞の成長段階を評価するステップである。
 上記撮像するステップは、上記細胞の形状が非対称の成長段階であると評価したときに、回転させた上記細胞を撮像するステップである。
 以上のように、本技術によれば、細胞の成長による変化を詳細に観察することができ、高精度の評価が可能となる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
各実施形態に係る培養容器の平面図である。 図1の培養容器を保持するディッシュホルダの斜視図である。 受精卵の成長による形状変化を説明する図である。 第1、第4、第5、第7、第8の実施形態に係る観察システムの構成を示す概略図である。 第1、第4、第7、第8の実施形態に係る観察システムを示すブロック図である。 完全胚盤胞以降の成長段階の受精卵16の画像の概略図である。 各実施形態に係る観察システムによって取得する画像を説明する図である。 第1、第2、第3、第8の実施形態に係る観察システムにおける画像取得方法のフローチャート(その1)である。 第1、第2、第3、第8の実施形態に係る観察システムにおける画像取得方法のフローチャート(その2)である。 第2の実施形態に係る観察システムの構成を示す概略図である。 第2の実施形態に係る観察システムを示すブロック図である。 第3の実施形態に係る観察システムの構成を示す概略図である。 第3の実施形態に係る観察システムを示すブロック図である。 第3の実施形態に係る培養容器の部分拡大図である。 第3の実施形態に係る観察システムの回転部付近の構成を示す図である。 第4の実施形態に係る観察システムにおける画像取得方法のフローチャート(その1)である。 第4の実施形態に係る観察システムにおける画像取得方法のフローチャート(その2)である。 第5の実施形態に係る観察システムを示すブロック図である。 第5の実施形態に係る観察システムにおける画像取得方法のフローチャート(その1)である。 第5の実施形態に係る観察システムにおける画像取得方法のフローチャート(その2)である。 第6の実施形態に係る観察システムの構成を示す概略図である。 第7の実施形態に係る画像取得方法を説明する図である。 観察角度分類コードについて説明するための図である。 観察角度分類コードと受精卵の撮像画像との対応を説明する図である
 以下、本技術に係る実施形態を、図面を参照しながら説明する。
(第1の実施形態)
 〈培養容器の構成〉
 図1は培養容器(ディッシュ)の平面図である。図4は培養容器を観察装置内に収容した状態を説明する概略図である。
 培養容器1は、培養液18及び細胞16を収容可能に構成され、外部より細胞16を撮像可能な程度に透光性を有する。尚、同時に撮像可能な培養容器1及び細胞16の数は限定されない。
 本実施形態では、培養される細胞16として、畜産分野等における生物、例えばウシの受精卵を例にあげて説明する(以下、同じ符号を用いて受精卵16と記載する)。これに限定されず、例えば培養される細胞として、再生医療等の分野における、幹細胞、免疫細胞、癌細胞等の生体から取り出された生体試料等があげられ、構造非対称性が高い形状の成長段階を経る、三次元の画像が必要な細胞に対して本技術は有効である。
 また本明細書において、「細胞」は、単一の細胞と、複数の細胞の集合体とを少なくとも概念的に含む。
 図1に示すように、培養容器1は、底部19と、外壁11と、内壁12と、収容部15と、細胞配置用凸部13とを有する。
 培養容器1には、例えば金属、ガラス、シリコン等の無機材料や、ポリスチレン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ABS樹脂、ナイロン、アクリル樹脂、フッ素樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、メチルペンテン樹脂、フェノール樹脂、メラミン樹脂、エポキシ樹脂、塩化ビニル樹脂等の有機材料を用いて形成することができる。本実施形態においては、ポリスチレン樹脂からなる透明の培養容器1を用いている。本実施形態においては、1つの培養容器1に9つの収容部15を配置した場合を例にあげ図示しているが収容部15の数はこれに限定されない。
 収容部15は複数設けられており、各収容部15は、1個の細胞、ここでは受精卵16を収容しつつ一定の位置に留めることが可能である。また、各収容部15には、受精卵16以外に液体が収容される。「液体」は、典型的には、細胞を培養するのに適した培養液であり、以下、培養液として説明する。図4に示すように、収容部15内及び内壁12に囲まれた領域には、受精卵16を培養するための培養液18が注入されている。更に、この培養液18の蒸発を防止するために、内壁12に囲まれた領域には、培養液18を覆うようにオイル17が注入されている。
 底部19は平面形状が円形を有している。外壁11と内壁12は同心円状に形成されており、内壁12の高さは外壁11の高さよりも低く形成されている。細胞配置用凸部13は、底部19の中央部に、内壁12に囲まれた領域に内壁12と間隙をおいて配置される。細胞配置用凸部13は、平面形状が矩形を有している。
 〈ディッシュホルダの構成〉
 上述した培養容器1は、例えばディッシュホルダにより保持されて後述する観察装置内に保持可能となっている。図2はディッシュホルダの斜視図である。
 図2に示すように、ディッシュホルダ5は例えば6つの培養容器1を保持可能に構成される。ディッシュホルダ5は、矩形の平面形状を有し、培養容器1を保持、位置を固定する6つの凹部形状を有する収容部51を有する。インキュベータと観察装置間の移動は、培養容器1単独、或いは、ディッシュホルダ5に培養容器1を保持した状態で行うことが可能である。図2において、培養容器1には、同様の材質でできた透明の蓋が載せられている。
 〈受精卵の成長による形状変化〉
 図3を用いて受精卵の成長による形状変化について説明する。
 図3は、受精後1日から10日までの受精卵16の一般的な成長段階を示す。図3(a)は受精が確認された1日目の1細胞期の受精卵1601である。受精2日目になると、図3(b)に示すように2分割して2細胞期の受精卵1602となる。その後、順調に成長していくと、受精卵16は、図3(c)、図3(d)、図3(e)と示すように、順に受精3日目に4細胞期の受精卵1603、受精4日目に8細胞期の受精卵1604、受精5日目に16細胞期の受精卵1605というように細胞数が増えていく。
 その後、細胞同士が密着し、図3(f)に示すように受精5~6日目に初期桑実胚1606となり、受精6日目に図3(g)に示すように桑実胚1607となる。更に成長し続けると細胞質内に隙間ができて胞胚腔を形成し、受精7日目に図3(h)に示すように初期胚盤胞1608となる。胞胚腔が拡大すると、受精7~8日目には、図3(i)に示すように完全胚盤胞1609となる。胚盤胞の成長段階(1608以降)となると、将来胎児となる内部細胞塊161(Inner Cell Mass、以下ICMと称す。)と栄養外胚葉162(Trophectoderm、以下TEと称す。)の識別が可能となってくる。初期胚盤胞1608及び完全胚盤胞1609の成長段階では、受精卵の外形を形成する透明体163が認識される。更に、透明体163が薄くなって、受精卵は受精8~9日目には拡張胚盤胞1610となり、受精9日目には透明体から胚盤胞が脱出する脱出胚盤胞1611、受精9~10日目には拡張脱出胚盤胞1612となる。
 受精卵16は、受精から桑実胚1607の成長段階までは比較的構造対称性が高く、観察角度によって見え方がさほど大きく変化しない。例えば、2細胞期、4細胞期の成長段階の受精卵16は観察角度によって見え方が異なりはするが、これらの細胞期では割球数が少なく、例えば1つの観察角度からの観察でも卵割の状態が比較的わかりやすく、また、観察角度によっての見え方のバリエーションが少なく、観察角度によって見え方がさほど大きく変化しない。また、8細胞期から桑実胚の受精卵16では、構造対称性が高くなり、観察角度によって見え方がだいたい同じとなる。
 しかし、胞胚空が形成されて受精卵16が胚盤胞の成長段階(1608~1612)となると、構造非対称性が高くなり、受精卵16を見る角度によって見え方が大きく異なる。図3(i)(j)(k)(l)に示すように、完全胚盤胞1609以降の成長段階の受精卵16は、受精卵16内における胞胚空の占める割合が大きくなり、ICM161は球状の受精卵16内に偏って存在する。
 本技術においては、受精卵16の形状が、構造非対称性の高い胚盤胞以降の成長段階で、回転させた細胞を撮像し、複数の角度から撮像した細胞画像を取得するよう観察システムが構成される。このように、観察角度によって見え方が多様な胚盤胞以降の受精卵16を、複数の角度から撮像した受精卵16の複数の画像により観察することができ、細胞の成長の様子を正確に把握することができる。以下、観察システムについて説明する。
(第1の実施形態)
〈観察システム〉
 上述の培養容器1内に収容される受精卵16を観察する第1の実施形態における観察システムについて説明する。尚、本実施形態においては、ウシの受精卵を培養するインキュベータと受精卵の観察を行う観察装置は別の装置となっているが、インキュベータ内に受精卵16を観察するために用いるカメラを配置し、インキュベータ内で受精卵を観察できるように構成しても良い。
 図4は、観察システムを示す概略図である。図5は、観察システムの構成を示すブロック図である。本実施形態及び以降に説明する実施形態において、1つの培養容器を観察する例をあげて説明するが、観察システムは、複数の培養容器1を上述したディッシュホルダ5に載置したものを1個又は複数個、観察システム内に載置し、一度に多数の受精卵を観察することが可能に構成される。
 図4に示すように、観察システム2は、観察装置21と、情報処理装置22と、表示装置23と、入力装置29を有する。
 観察装置21は、受精卵16が収容された培養容器1を収容し、受精卵16を観察するものである。培養容器1は観察装置21内で水平に保持され、培養容器1の各収容部15には1つずつ受精卵16が収容されている。観察装置21内には、光源24と、撮像部としてのカメラ25と、温度・湿度・ガス制御部26と、ステージ27が配置される。
 光源24は、培養容器1内の受精卵16をカメラ25により撮像する際に、培養容器1に対して照射する光を発する。
 撮像部としてのカメラ25(以下、同じ符号を用いてカメラ25と記載する。)は、例えばCMOS(Complementary Metal-Oxide Semiconductor)センサやCCD(Charge Coupled Device)センサ等のイメージセンサを備える可視光カメラにより構成される。可視光カメラに代えて、又はこれに加えて、赤外線(IR)カメラや変更カメラ等が用いられてもよい。
 カメラ25は、培養容器1内の受精卵16を撮像するものであり、観察装置21内に配置される。カメラ25は、光軸方向(Z軸方向)に移動可能なレンズ群を含む鏡筒と、鏡筒を通過する被写体光を撮像するCMOS(Complementary Metal Oxide Semiconductor)、CCD(Charge Coupled Device)等の固体撮像素子と、これらを駆動する駆動回路等を有する。なおカメラ25は、図上Z軸方向および水平面方向(XY平面方向)に移動可能に培養容器1内に設置されてもよい。また、カメラ25は、静止画像だけでなく、連続画像(ビデオ)を撮像することが可能に構成されてもよい。
 カメラ25は、後述する情報処理装置22の撮像制御部226により撮像回数、撮像のタイミング等が制御される。
 温度・湿度・ガス制御部26は、観察装置21内の温度・湿度・ガスを制御するものであり、受精卵16の培養に適した環境をつくる。ガスの種類としては、窒素、酸素、二酸化炭素等がある。
 入力装置29は情報処理装置22に接続され、ユーザの走査を入力するめの操作デバイスである。入力装置29としては、例えば、トラックボール、タッチパッド、マウス、キーボード等を利用可能である。
 表示装置23は、ディスプレイのように画像を出力するものである。表示装置23は、受精卵16の画像、その受精卵16が収容されている収容部の位置情報、撮像日時、成長段階(成長ステージコード)等の情報を表示するものである。また、表示装置23には、受精卵16の画像や各種情報以外に、ユーザに対して行うべき処理等を報知する指示が表示される。
 図5に示すように、情報処理装置22は、画像取得部222と、評価部223と、記憶部としての受精卵データベース部224と、表示制御部225と、撮像制御部226と、判定部227とを具備する。情報処理装置22は、観察システム2内の各ブロックの動作を制御する。本実施形態では情報処理装置22により、ある成長段階までは1つの撮像角度から受精卵16を撮像し、ある成長段階以降は、回転させた受精卵16をそれまでの撮像回数よりも多い撮像回数で撮像するようにカメラ25を制御する。このように、ある成長段階以降の撮像では、受精卵16を回転させながら受精卵16を撮像することにより、複数の角度から撮像した受精卵16の画像を取得する。また、情報処理装置22により、受精卵画像に基づいて受精卵16が評価される。本実施形態においては、回転させた受精卵16を撮像するタイミングとなるある成長段階とは、完全胚盤胞の成長段階である。
 情報処理装置22は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、HDD(Hard Disk Drive)等のコンピュータの構成に必要なハードウェアを有する。情報処理装置22として、例えばPC(Personal Computer)が用いられるが、他の任意のコンピュータが用いられてもよい。
 情報処理装置22の機能ブロックである画像取得部222、評価部223、受精卵データベース部224、表示制御部225、撮像制御部226、及び判定部227は、CPUが、非一過性のコンピュータ読み取り可能な記録媒体の一例であるROMに格納されたプログラムをRAMにロードして実行することにより実現される。そしてこれらの機能ブロックにより、本技術に係る画像取得方法が実行される。プログラムは、例えば種々の記憶媒体を介して情報処理装置22にインストールされる。又はインターネット等を介してプログラムのインストールが実行されてもよい。
 画像取得部222は、カメラ25によって撮像された画像情報をカメラ25から取得する。
 評価部223は、カメラ25によって取得された受精卵16の画像に基づいて、受精卵の第2の特徴量を抽出し、この抽出した第2の特徴量と、受精卵データベース部224に予め記憶されている受精卵16の成長段階毎の第1の特徴量とを参照し、受精卵16の成長段階を評価し、受精卵16に後述する成長ステージコードを付与する。
 特徴量は、画像の特徴的な部位の情報であり、例えば受精卵のサイズ、形状、真球度、卵割数(率)、各割球の形態及びそのバランス、フラグメンテーション、ICMのサイズや形状等の、受精卵16の種々の成長段階に基づいて抽出されたものである。本実施形態においては、観察する受精卵16の画像を基に抽出される特徴量を第2の特徴量とし、受精卵16の成長段階を評価するにあたり参照される、予め記憶されている特徴量を第1の特徴量とする。特徴量を抽出するための具体的な特徴抽出処理は限定されず、任意の抽出処理が用いられてよい。本実施形態では、機械学習アルゴリズムが用いられる。
 例えばRNN(Recurrent Neural Network:再起型ニューラルネットワーク)、CNN(Convolutional Neural Network:畳み込みニューラルネットワーク)、MLP(Multilayer Perceptron:多層パーセプトロン)等のニューラルネットワークを用いた機械学習アルゴリズムが用いられる。その他、教師あり学習法、教師なし学習法、半教師あり学習法、強化学習法等を実行する任意の機械学習アルゴリズムが用いられてよい。
 ここでは、成長段階の評価を発育成長ステージコードとして受精卵16の画像に付与する。例えば1細胞期1601の成長段階を成長ステージコード1、2細胞期1602から16細胞期1605までの成長段階を成長ステージコード2、初期桑実胚1606の成長段階を成長ステージコード3、桑実胚1607の成長段階を成長ステージコード4、初期胚盤胞1608の成長段階を成長ステージコード5、完全胚盤胞1609の成長段階を成長ステージコード6、拡張胚盤胞1610の成長段階を成長ステージコード7、脱出胚盤胞1611の成長段階を成長ステージコード8、拡張脱出胚盤胞1612の成長段階を成長ステージコード9とする。
 受精卵データベース部224は、カメラ25によって撮像された受精卵16の画像を、受精卵16が収容されている収容部15の位置情報、撮像日時、撮像条件、評価部223によって抽出された受精卵16の第2の特徴量、成長段階(成長ステージコード)等の情報とともに、収容部15毎に時系列に記憶する。また、受精卵データベース部224には、受精卵16の各成長段階の画像の第1の特徴量が予め教師データとして複数記憶されている。
 表示制御部225は、表示装置23に、受精卵16の画像、この画像に対応づけて、受精卵16が収容されている収容部の位置情報、撮像日時、撮像条件、受精卵の第2の特徴量、成長段階等を表示装置23に表示させる。
 また、表示制御部225は、判定部227によって受精卵16が成長ステージコード6以降の成長段階、すなわち完全胚盤胞以降の成長段階であると判定されると、受精卵16が完全胚盤胞以降の成長段階であることを知らせるとともにユーザに対して受精卵16を回転する指示を表示装置23に表示させる。ユーザは、この表示装置23に表示される指示に従って、光ピンセットやマイクロピペット、マイクロ流路による水流等を用いて受精卵16を回転させる。ユーザは受精卵16の回転開始に合わせて、マウス等の入力装置29を用いて受精卵16の回転の開始を情報処理装置22に入力する。マイクロ流路による水流を用いての受精卵の回転については後述する第3の実施形態で説明する。この水流を用いた回転は、培養容器の各収容部につながったマイクロ流路を設け、該マイクロ流路からの水流により収容されている受精卵を回転させるものである。
 判定部227は、評価部223によって付与された成長ステージコードが6以降であるか否かを判定する。
 撮像制御部226は、受精卵16の撮像回数を制御する制御信号をカメラ25に出力する。撮像制御部226は、カメラ25に、判定部227によって成長ステージコードが6以降でないと判定された受精卵16、すなわち、形状が比較的対称である桑実胚の成長段階までを含む成長ステージコード5以前の受精卵16に対して、1つの撮像角度から受精卵16を撮像させる。撮像制御部226は、カメラ25に、判定部227によって成長ステージコードが6以降であると判定された受精卵16、すなわち、非対称性が高い形状である完全胚盤胞以降の成長段階の受精卵に対しては、回転させた状態の受精卵16を、それまでの成長ステージコード1~5の受精卵16の撮像回数よりも多い撮像回数で撮像させる。
 また、撮像制御部226は、成長ステージコードが6以降であると判定された受精卵16に対して、ユーザによる受精卵16の回転の開始の入力操作がなされると、カメラ25に撮像を開始させる。
 撮像角度を固定し、受精卵16を回転させながら複数回撮像することにより、異なる複数の角度から撮像した受精卵16の画像を取得することができる。
 ユーザは受精卵16の回転が終了すると、入力装置29を用いて受精卵の回転の終了の入力操作を行う。この回転作業の開始及び終了の入力操作は、収容部15毎に行っても良いし、培養容器1毎、或いはディッシュホルダ5毎に行ってもよい。
 尚、ここでは、受精卵16を回転させながら複数枚の画像を取得したが、回転させた受精卵16を動画像で取得し、取得した動画から任意の複数枚の画像を抽出してもよい。
 画像取得部222は、カメラ25により撮像された受精卵16の画像を取得する。画像取得部222は、判定部227によって成長ステージコードが6以降ではないと判定された成長ステージコード1~5の受精卵16に対しては例えば1つの撮像角度から撮像した画像を取得し、判定部227によって成長ステージコード6以降であると判定された受精卵16に対しては複数の角度から撮像した画像を取得する。
 〈画像取得方法〉
 次に、上述の観察システム2における情報処理方法としての画像取得方法について図4、図6~図9を用いて説明する。図6は、完全胚盤胞以降の成長段階の受精卵16の画像の概略図である。図7は、観察システム2によって取得される画像を示す図である。
 図8及び図9は画像取得方法のフローチャートである。図8は成長ステージコード6までの受精卵16に行われる画像取得方法であり、図9は成長ステージコード7以降の受精卵16に行われる画像取得方法である。ここでは、観察装置21内に載置される培養容器1内の受精卵16は1つずつ順に撮像される。尚、本実施形態においては、1つずつ順に受精卵16を撮像するが、複数個まとめて撮像してもよい。以下、図8、図9のフローに従って画像取得方法について説明する。
 受精卵16の画像取得は、受精卵16を収容した培養容器1を観察装置21内に保持した状態で行われる。受精卵16の画像取得処理は、培養容器1の複数の収容部15にそれぞれ収容された受精卵16毎に順に行われる。画像取得処理は例えば15分おきに自動で行われ、取得された画像は、受精卵16毎に、受精卵16が収容されている収容部の位置情報、撮像日時、撮像条件、受精卵16の第2の特徴量、成長段階等の情報と共に、時系列に記憶される。
 まず、受精が確認された受精卵16を1つずつ培養容器1の収容部15にいれた後、培養液18を収容部15内及び内壁12に囲まれた領域内にピペットで注入する。その後、培養液18を覆うように内壁12に囲まれた領域内にオイル17を注入する。
 次に、培養容器1を図4に示すように観察装置21内のステージ27に水平に載置する。このとき必要に応じて、培養容器1に、図示しない培養容器1と同様の材質でできた透明の蓋が載せられてもよい。
 次に、培養容器1の下部から光源24から光を照射し、培養容器1の上部に位置したカメラ25により受精卵16が撮像される(S101)。撮像制御部226により、受精卵16が1つの観察(撮像)角度から撮像されるようにカメラ25は制御される。
 画像取得部222により、カメラ25により撮像された画像が取得される。取得された受精卵16の画像に対して、画像の正規化、受精卵16の位置の調整、形状の強調フィルタ等の、画像の前処理が実行されてもよい。
 次に、評価部223により、画像取得部222が取得した受精卵16の画像に基づいて、受精卵16の第2の特徴量が抽出される。更に、評価部223により、抽出された第2の特徴量と受精卵データベース部224に予め記憶されている受精卵16の成長段階毎の第1の特徴量とが参照されて受精卵16の成長段階が評価され、受精卵16に成長ステージコードが付与される。
 受精卵データベース部224により、受精卵16の画像と、受精卵16が収容されている収容部の位置情報、撮像日時、撮像条件、第2の特徴量及び成長段階(成長ステージコード)とが対応づけられて記憶される(S102)。
 次に、判定部227により、評価部223によって付与された受精卵16の成長段階が胚盤胞の状態、本実施形態においては完全胚盤胞以降の状態、すなわち成長ステージコードが6以降であるか否かが判定される(S103)。
 S103でNoと判定されると撮像が終了する。S103でYESと判定されると、表示制御部225により、表示装置23に、受精卵16が完全胚盤胞の成長段階であることが表示されるとともに、受精卵16を回転する指示が表示される(S104)。
 ユーザにより、表示装置23に表示された受精卵16の回転の指示が確認される。表示装置23に受精卵16の回転の指示が表示される際、音の発生により回転の指示をユーザに報知するように構成してもよい。
 ユーザにより、受精卵の16の回転開始の直前に、入力装置29から回転の開始を知らせるための入力操作が行われる。ユーザにより回転開始の入力操作が行われると、撮像制御部226は、カメラ25に対し、回転させた受精卵16を、これまでの成長ステージコード1~5の受精卵16の撮像時の撮像回数よりも多い撮像回数で撮像する制御する。以降、成長ステージコード6以降の受精卵16の撮像回数は、成長ステージコード5までの撮像回数よりも多い回数で行われる。
 ユーザにより光ピンセットやマイクロピペット等が用いられて受精卵16の回転が開始される。受精卵16が回転する間、カメラ25により受精卵16は複数回撮像される(S105)。カメラ25により撮像された画像は、画像取得部222により取得される。ユーザによる受精卵16の回転が終了し、入力装置29から回転の終了を知らせるための入力操作をユーザが行うことにより、受精卵16の撮像は終了する。回転された受精卵16を撮像することにより、複数の角度から受精卵16を撮像することになる。
 受精卵データベース部224により、複数の角度から撮像した受精卵16の複数の画像と、受精卵16が収容されている収容部の位置情報、撮像日時、撮像条件、受精卵の第2の特徴量及び成長段階(成長ステージコード)等の情報が対応づけられて記憶される(S106)。
 S103でYESと判定されたときの画像取得がN回目の撮像とすると、N+1回目からは図9に示すフローチャートに従って画像取得が行われる。また、S103でNOと判定された場合は、次の画像取得は図8に示すフローチャートに従って行われ、S103でYESと判定されるまで、図8に示すフローチャートに沿った画像取得が行われる。
 次に、N+1回目以降の画像取得方法について図9を用いて説明する。
 画像処理がスタートすると、表示制御部225により、表示装置23に、受精卵16が胚盤胞の成長段階であることが表示されるとともに、受精卵16を回転する指示が表示される(S201)。
 ユーザは、表示装置23に表示された受精卵16の回転の指示を確認することにより、受精卵16を、光ピンセットやマイクロピペット、培養容器に設けられたマイクロ流路による水流制御等を用いて受精卵16を回転させる(S201)。
 ユーザは受精卵16の回転開始の直前に、入力装置29から回転の開始を知らせるための入力操作をする。ユーザによる回転開始の入力操作が行われると、撮像制御部226により、回転させた受精卵16を、成長ステージコード5以前の受精卵16の撮像回数よりも多い撮像回数で撮像するようカメラ25は制御される。
 ユーザが受精卵16を回転させている間、カメラ25により受精卵16は成長ステージコード5までの撮像回数よりも多い撮像回数で撮像される(S202)。カメラ25により撮像された画像は、画像取得部222により取得される。ユーザによる受精卵16の回転が終了し、入力装置29から回転の終了を知らせるための入力操作をユーザが行うことにより、受精卵16の撮像は終了する。
 次に、評価部223により、画像取得部222が取得した受精卵16の画像に基づき、受精卵16の第2の特徴量が抽出され、受精卵16の成長段階が評価され、受精卵16に成長ステージコードが付与される。
 受精卵データベース部224により、複数の角度から撮像した複数枚の受精卵16の画像と、受精卵16が収容されている収容部15の位置情報、撮像日時、撮像条件、受精卵の第2の特徴量及び成長段階(成長ステージコード)等の情報が対応づけられて記憶される(S203)。
 以上のように、構造非対称性の高い胚盤胞の成長段階以降の受精卵を回転させて複数回撮像することにより、複数の角度から撮像した受精卵の画像を得ることができる。これにより、受精卵を評価するにあたり、様々な角度から撮像した細胞の画像を総合的にみて評価することができ、高精度の評価を行うことができる。
 以上の画像取得方法を用いて任意の撮像間隔で受精卵16の撮像を行うことにより、図7に示すような受精卵16の時系列データを得ることができる。尚、図7においては、便宜的に受精卵の画像数を少なく図示している。
 図7は、受精卵16のいくつかの成長段階の画像を横方向に時系列に並べたものである。図7において、左から順に、成長ステージコード1の1細胞期1601、成長ステージコード2の2細胞期1602、4細胞期1603、成長ステージコード4の桑実胚1607、成長ステージコード5の初期胚盤胞1608、成長ステージコード6の完全胚盤胞1609、成長ステージコード8の脱出胚盤胞1611、成長ステージコード9の拡張脱出胚盤胞1612の成長段階の受精卵16が図示される。図7では、成長ステージコード6の完全胚盤胞1609の受精卵16においてのみ、複数の角度から撮像した受精卵16の画像が縦方向に並んで図示されているが、これよりも後の成長段階にある成長ステージコード7~9の受精卵16に対しても同様に複数の角度から撮像した受精卵16の画像が取得される。
 ここで、図3(i)(j)(k)(l)に示すように、完全胚盤胞1609以降の成長段階の受精卵16は、胞胚空が占める割合が大きく、ICM161は球状の受精卵16内に端に偏って存在する。
 図6は、完全胚盤胞1609以降の成長段階の受精卵16を複数の角度から撮像した画像の概略図である。取得した成長ステージコード6以降の受精卵16の画像を、ICM161の形状及び位置により撮像画像を正面又は裏面、斜め、横の3つの画像パターンで分類し、記憶するように構成してもよい。正面又は裏面、斜め、横は、正面を基準として受精卵16を見たときの受精卵の観察(撮像)方向を示す。
 ICM161が受精卵16の手前側中央に位置した状態を正面とし、受精卵16を正面又は裏面から撮像した画像は、図6(a)に示すように、受精卵16の中央部に略円形のICM161が位置する画像となり、この画像を正面又は裏面の画像とする。
 ICM161が受精卵の手前側に位置した状態を正面とし、受精卵16を真横方向から撮像した画像は、図6(d)に示すように、受精卵16内の端に略劣弧状のICM161が位置する画像となる。この画像を横の画像とする。
 ICM161が受精卵16の手前側に位置した状態を正面とし、受精卵16を、真横及び裏面以外の斜めの方向から撮像した場合の画像の一部は、図6(b)や図6(c)に示すようにICM161は受精卵16内の端に略楕円の形状で位置する画像となる。この画像を斜めの画像とする。
 図7において、複数の撮像角度から撮像した完全胚盤胞1609の画像が縦方向に並んで図示されているが、これらは上から順に、完全胚盤胞の受精卵16を、斜め方向から、斜め方向から、横方向から、斜め方向から、正面から撮像した画像をそれぞれ示す。
 このように、複数の撮像角度から撮像した成長ステージコード6以降の受精卵16の画像を、ICM161の形状及び位置により、正面又は裏面、斜め、横に分類して受精卵データベース部224に記憶させてもよい。
 また、本実施形態においては、成長ステージコード5以前の受精卵16は成長ステージコード6以降の受精卵16よりも撮像回数が少なくなるように制御されている。これにより、成長ステージコード5以前の受精卵16に対しても撮像回数が多くなるようにするよりも、撮像時に必要となる受精卵16への光の照射量を少なくすることができ、光による受精卵16のダメージを小さくすることができる。
(第2の実施形態)
 第1の実施形態においては、受精卵16の回転をマイクロピペットによる手作業、もしくは、培養容器に設けたマイクロ流路からの水流を制御することにより行っていたが、装置を用いて受精卵16を回転させて回転作業を自動化してもよい。装置による受精卵16の回転は情報処理装置により制御される。以下、第2の実施形態として受精卵16を回転させる装置として培養容器1を振動させる振動装置を設ける場合を例にあげて説明する。第1の実施形態と異なる構成について主に説明し、第1の実施形態と同様の構成については同様の符号を付し、説明を省略する場合がある。
 〈観察システム〉
 第2の実施形態における観察システムについて図10及び図11を用いて説明する。図10は、観察システムを示す概略図である。図11は、観察システムの構成を示すブロック図である。
 観察システム1002は、観察装置1021と、情報処理装置1022と、表示装置23と、入力装置29と、振動装置1040を有する。回転機構としての振動装置1040は、ステージ27を振動させてステージ27に載置される培養容器1に振動を与え、これにより培養容器1の収容部15内に収容される受精卵16を回転させるものであり、観察装置1021内に配置される。
 情報処理装置1022は、画像取得部222と、評価部223と、受精卵データベース部224と、表示制御部225と、撮像制御部226と、判定部227と、振動制御部1228とを具備する。情報処理装置1022は、観察システム1002内の各ブロックの動作を制御する。本実施形態では情報処理装置1022により、カメラ25は、初期胚盤胞の成長段階までは1つの撮像角度から受精卵16を撮像し、完全胚盤胞以降の成長段階は回転させた受精卵16を、それまでの撮像回数よりも多い撮像回数で撮像するよう制御される。完全胚盤胞以降の成長段階の撮像では、受精卵16を回転させながら1つの撮像角度から複数回撮像することにより、複数の角度から撮像した受精卵16の画像を取得する。また、情報処理装置1022により、受精卵画像に基づいて受精卵16の成長段階が評価される。また、情報処理装置1022により、培養容器1への振動の付与の有無及びタイミングが制御される。
 情報処理装置1022の機能ブロックである画像取得部222、評価部223、受精卵データベース部224、表示制御部225、撮像制御部226、判定部227、及び振動制御部1228は、CPUが、非一過性のコンピュータ読み取り可能な記録媒体の一例であるROMに格納されたプログラムをRAMにロードして実行することにより実現される。そしてこれらの機能ブロックにより、本技術に係る画像取得方法が実行される。
 評価部223は、カメラ25によって取得された受精卵16の画像に基づいて、受精卵の第2の特徴量を抽出し、この抽出した第2の特徴量と、受精卵データベース部224に予め記憶されている受精卵16の成長段階毎の第1の特徴量とを参照し、受精卵16の成長段階を評価し、受精卵16に成長ステージコードを付与する。
 判定部227は、評価部223により付与された成長ステージコードが6以降であるか否かを判定する。
 振動制御部1228は、判定部227の判定結果に応じて振動装置1040の作動の有無を制御する。振動制御部1228は、判定部227によって成長ステージコードが6以降でないと判定された受精卵16の撮像時には振動装置1040を作動させない。振動制御部1228は、判定部227によって成長ステージコードが6以降であると判定された受精卵16の撮像時には振動装置1040を作動させる。振動装置1040の作動により、ステージ27に載置される培養容器1に振動が付与される。この振動の付与により、培養容器1内に収容される受精卵16は振動し、回転する。
 〈画像取得方法〉
 次に、上述の観察システム1002における情報処理方法としての画像取得方法について説明するが、第1の実施形態における画像取得方法と比較して受精卵の回転を手作業ではなく振動装置を用いて行う点のみが異なり、以下第1実施形態と同様のフローチャートである図8、図9を用いて説明する。
 第1実施形態と同様に、受精卵16を収容した培養容器1を観察装置1021内のステージ27に水平に載置する。次に、培養容器1の下部から光源24から光を照射し、培養容器1の上部に位置したカメラ25により受精卵16が撮像される(S101)。
 画像取得部222により、カメラ25により撮像された画像が取得される。取得された受精卵16の画像に対して、画像の正規化、受精卵16の位置の調整、形状の強調フィルタ等の、画像の前処理が実行されてもよい。
 次に、評価部223により、画像取得部222が取得した受精卵16の画像に基づいて、受精卵16の第2の特徴量が抽出される。更に、評価部223により、抽出された第2の特徴量と受精卵データベース部224に予め記憶されている受精卵16の成長段階毎の第1の特徴量とが参照されて受精卵16の成長段階が評価され、受精卵16に成長ステージコードが付与される。
 受精卵データベース部224により、受精卵16の画像と、受精卵16が収容されている収容部の位置情報、撮像日時、撮像条件、第2の特徴量及び成長段階(成長ステージコード)とが対応づけられて記憶される(S102)。
 次に、判定部227により、成長ステージコードが6以降であるか否かが判定される(S103)。S103でNoと判定されると撮像が終了する。
 S103でYESと判定されると、振動制御部1228により、振動装置1040が作動されステージ27が振動し受精卵16が回転する(S104)。S103でYESと判定されると、カメラ25は、撮像制御部226により、回転させた受精卵16を、これまでの成長ステージコード1~5の受精卵16の撮像回数よりも多い撮像回数で撮像するように制御される。以降、成長ステージコード6以降の受精卵16の撮像回数は、成長ステージコード5までの撮像回数よりも多い回数で行われる。
 振動装置1040が作動し、受精卵16が回転している間、カメラ25により受精卵16は複数回撮像される(S105)。カメラ25により撮像された画像は、画像取得部222により取得される。
 受精卵データベース部224により、受精卵16の回転時の撮像画像と、受精卵16が収容されている収容部の位置情報、撮像日時、撮像条件、受精卵の第2の特徴量及び成長段階(成長ステージコード)等の情報が対応づけられて記憶される(S106)。
 S103でYESと判定されたときの画像取得がN回目の撮像とすると、N+1回目からは図9に示すフローチャートに従って画像取得が行われる。また、S103でNOと判定された場合は、次の画像取得は図8に示すフローチャートに従って行われ、S103でYESと判定されるまで、図8に示すフローチャートに沿った画像取得が行われる。
 次に、N+1回目以降の画像取得方法について図9を用いて説明する。
 画像処理がスタートすると、振動制御部1228により、振動装置1040が作動されステージ27が振動し受精卵16が回転する(S201)。撮像制御部226により、成長ステージコード5までの撮像回数よりも多い撮像回数で、受精卵16が撮像される(S202)。カメラ25により撮像された画像は、画像取得部222により取得される。
 次に、評価部223により、画像取得部222が取得した受精卵16の画像に基づき、受精卵16の第2の特徴量が抽出され、受精卵16の成長段階が評価されて成長ステージコードが付与される。受精卵データベース部224により、複数の角度から撮像した複数枚の受精卵16の画像と、受精卵16が収容されている収容部の位置情報、撮像日時、撮像条件、受精卵16の第2の特徴量及び成長段階(成長ステージコード)等の情報が対応づけられて記憶される(S203)。
 以上のように、構造非対称性が高い胚盤胞の成長段階以降の受精卵を回転させた状態で複数回撮像することにより、複数の角度から撮像した受精卵の画像を得ることができる。これにより、受精卵の状態評価をより正確に行うことができ評価精度が高くなる。また、本実施形態においては、受精卵の回転が手作業ではなく装置により行われ情報処理装置1022によって受精卵の回転が制御されて自動化されているので、大量の受精卵の観察が可能となる。例えば、25個の受精卵を収容可能な培養容器を6個ディッシュホルダに保持にして観察した場合、150個を同時に培養、観察可能である。このような大量の受精卵の観察において、本実施形態のように自動的に受精卵の回転が行われて画像取得が行われる観察システムは有効である。
(第3の実施形態)
 第3の実施形態は、第2の実施形態と同様、装置を用いて受精卵16を回転させるものである。第2の実施形態では振動装置を用いて培養容器に振動を付与して受精卵16を回転させたが、第3の実施形態においては、培養容器の収容部の培養液に流体を噴出(注入)することで、収容部内の培養液に流れを発生させて、受精卵16を回転させる。
 第3の実施形態は、第2の実施形態と比較して、振動装置ではなく培養液に流れを発生させて受精卵を回転させる回転機構を具備する培養容器を用いる点が主に相違し、以下に説明する。第2の実施形態と異なる構成について主に説明し、第2の実施形態と同様の構成については同様の符号を付し、説明を省略する場合がある。
 〈観察システム〉
 第3の実施形態における観察システムについて図12、図13、図14及び図15を用いて説明する。図12は、観察システムの構成を示す概略図である。図13は、観察システムの構成を示すブロック図である。図14は培養容器の収容部付近の部分拡大図である。図15は、観察システムの回転部付近の構成を示す図である。
 観察システム2002は、観察装置2021と、情報処理装置2022と、表示装置23と、入力装置29とを有する。観察装置21内には、光源24と、撮像部としてのカメラ25と、温度・湿度・ガス制御部26と、ステージ27と、回転機構を有する培養容器2040が配置される。
 回転機構を有する培養容器2040は、回転機構としての回転部20401と、受精卵16を収容する収容部2015と、マイクロ流路(水流流路)20403を具備する。回転部20401は、マイクロ流路制御部20402によって制御される。回転部20401は、受精卵16を収容する収容部2015内の培養液18に流れを発生させて、受精卵16を回転させるものである。マイクロ流路制御部20402は、収容部2015内への流体の噴出を制御するものであり、流体を噴出させることにより培養液18に流れを発生させる。水流流路20403は、各収容部2015に接続され、流体を各収容部2015内に供給するための流体が通る流路である。
 収容部2015は、上述の実施形態の培養容器1の収容部15と同様に、液体を収容し、液体内に1個の細胞を収容しつつ一定の位置に留めることが可能である。「液体」は、典型的には、細胞を培養するのに適した培養液であり、ここでは、培養液として説明する。
 回転部20401は、ポンプPと、X軸回転用バルブVxと、Y軸回転用バルブVyと、Z軸回転用バルブVzと、第1のX軸噴出口X1(第1の出力口)と、第2のX軸噴出口X2(第2の出力口)と、第1のY軸噴出口Y1(第1の出力口)と、第2のY軸噴出口Y2(第2の出力口)と、第1のZ軸噴出口Z1(第1の出力口)と、第2のZ軸噴出口Z2(第2の出力口)とを有する。ここでは、X軸、Y軸及びZ軸は直交する3軸を意味し、水平方向及び垂直方向を意味するものでは無い。
 収容部2015の内壁面に、第1のX軸噴出口X1と、第2のX軸噴出口X2と、第1のY軸噴出口Y1と、第2のY軸噴出口Y2と、第1のZ軸噴出口Z1と、第2のZ軸噴出口Z2とが形成される(収容部2015が複数の場合、全ての収容部2015それぞれに対して、固有に、各噴出口が形成される)。第1のX軸噴出口X1と、第2のX軸噴出口X2と、第1のY軸噴出口Y1と、第2のY軸噴出口Y2と、第1のZ軸噴出口Z1と、第2のZ軸噴出口Z2とは、それぞれ、収容部2015内の培養液に流体を噴出(注入)することで、収容部2015内の培養液に流れを発生させる。「流体」は、典型的には、収容部2015内の培養液と同じ液体であるが、収容部2015内の培養液と異なる液体又は気体でもよい。
 ポンプPは、第1のX軸噴出口X1と、第2のX軸噴出口X2と、第1のY軸噴出口Y1と、第2のY軸噴出口Y2と、第1のZ軸噴出口Z1と、第2のZ軸噴出口Z2とにそれぞれ流路を介して接続し、これら噴出口に培養液を供給する。各流路の一部(ポンプ側ではなく噴出口側の部分)は、収容部2015の壁面内に形成される(収容部110が複数の場合、全ての収容部2015それぞれに対して、固有に、各流路が形成される)。
 ポンプPと、第1のX軸噴出口X1及び第2のX軸噴出口X2とを接続する流路には、X軸回転用バルブVxが設けられる。ポンプPと、第1のY軸噴出口Y1及び第2のY軸噴出口Y2とを接続する流路には、Y軸回転用バルブVyが設けられる。ポンプPと、第1のZ軸噴出口Z1及び第2のZ軸噴出口Z2とを接続する流路には、Z軸回転用バルブVzが設けられる。
 マイクロ流路制御部20402は、後述する回転制御部2228から送信される制御信号を基に、回転部20401の各噴出口から噴出される培養液の噴出速度及び噴出量を制御する。
 情報処理装置2022は、画像取得部222と、評価部223と、受精卵データベース部224と、表示制御部225と、撮像制御部2226と、判定部227と、回転制御部2228とを具備する。
 情報処理装置2022は、観察システム2002内の各ブロックの動作を制御する。本実施形態では情報処理装置2022により、カメラ25の撮像回数が制御され、ある成長段階までは1つの角度から受精卵16を撮像し、ある成長段階以降は、回転させた受精卵16をそれまでの撮像回数よりも多い撮像回数で撮像するようカメラ25による撮像が制御される。また、情報処理装置2022により、受精卵画像に基づいて受精卵16の成長段階が評価される。また、情報処理装置2022により、回転部20401の動作が制御されて受精卵16の回転付与の有無及びタイミングが制御される。
 情報処理装置2022の機能ブロックである画像取得部222、評価部223、受精卵データベース部224、表示制御部225、撮像制御部2226、判定部227、及び回転制御部2228は、CPUが、非一過性のコンピュータ読み取り可能な記録媒体の一例であるROMに格納されたプログラムをRAMにロードして実行することにより実現される。そしてこれらの機能ブロックにより、本技術に係る画像取得方法が実行される。
 評価部223は、カメラ25によって取得された受精卵16の画像に基づいて、受精卵の第2の特徴量を抽出し、この抽出した第2の特徴量と、受精卵データベース部224に予め記憶されている受精卵16の成長段階毎の第1の特徴量とを参照し、受精卵16の成長段階を評価し、受精卵16に後述する成長ステージコードを付与する。
 判定部227は、評価部223によって評価された受精卵16の成長段階が完全胚盤胞であるか否か、具体的には、成長ステージコードが6以降であるか否かを判定する。
 撮像制御部2226は、判定部227により成長ステージコードが6以降でないと判定された受精卵16に対しては1つの撮像角度から受精卵16を撮像する。撮像制御部2226は、判定部227により成長ステージコードが6以降であると判定された受精卵16に対しては、カメラ25の撮像角度を固定し、それまでの成長ステージコード6以降でないと判定される受精卵16の撮像回数よりも多い撮像回数で、回転させた受精卵16を撮像するように、カメラ25を制御する。
 また、撮像制御部2226は、成長ステージコード6以降であると判定された受精卵16に対して、受精卵16が回転する直前に静止した状態で受精卵16を撮像するようカメラ25を制御する。
 回転制御部2228は、判定部227の判定結果、言い換えると、評価部223により付与される受精卵16の成長ステージコードにより、回転部20401の作動の有無を制御する。回転制御部2228は、判定部227により成長ステージコードが6以降でないと判定された受精卵16の撮像時には回転部20401を作動させず、成長ステージコード6以降と判定された受精卵16の撮影時には回転部20401を作動させるように、マイクロ流路制御部20402に制御信号を送信する。
 回転制御部2228からマイクロ流路制御部20402に送信された制御信号を基に、回転部20401の作動が開始されると、収容部2015内に流体が噴出され、収容部2015内の培養液18に流れが発生して、受精卵16が回転する。
 回転制御部2228は、所望の受精卵16の画像が得られるように、受精卵16の回転を制御可能である。本実施形態において、所望の受精卵16の画像とは、図6に示すように、完全胚盤胞以降の成長段階の受精卵において、ICM161が受精卵16の中央部に位置する画像(図6(a)、正面又は裏面の画像と称す。)と、略劣弧状のICM161が略円形の受精卵16内の端に位置する画像(図6(d)、横の画像と称す。)と、略楕円形のICM161が受精卵16内の端に位置する画像(図6(b)及び(c)、斜めの画像と称す。)の3つの画像である。
 回転制御部2228は、受精卵16を回転させる直前に撮像した受精卵16の画像に基づき、エッジ検出等の画像認識により、ICM161の形状及び位置を判断する。これを基に、回転制御部2228は、ICM161が受精卵16の中央部に位置するようにするために、受精卵16の回転方向及び回転量を算出する。この算出された回転方向及び回転量に従って回転部20401により受精卵16を回転させる。同様に、回転制御部2228は、略劣弧状のICM161が受精卵16の端に位置するようにするために、受精卵の回転方向及び回転量を算出し、この算出結果を基に制御信号を生成してマイクロ流路制御部20402に送信する。マイクロ流路制御部20402は、この制御信号に基づいて回転部20401を制御して受精卵16を回転させる。更に、同様に、回転制御部2228は、略楕円状のICM161が受精卵16の端に位置するようにするために、受精卵16の回転方向及び回転量を算出し、この算出結果に基づいて回転部20401により受精卵16を回転させる。
 マイクロ流路制御部20402は、回転制御部2228からの制御信号に基づいて、回転部20401の各噴出口X1、X2、Y1、Y2、Z1、Z2が発生する培養液の流れを個別に制御して、受精卵16の回転方向及び回転量を制御する。具体的には、マイクロ流路制御部20402は、回転制御部2228からの制御信号を基に、X軸回転用バルブVxを開閉制御することで、第1のX軸噴出口X1及び第2のX軸噴出口X2が噴出する培養液の噴出速度及び噴出量を制御する。マイクロ流路制御部20402は、回転制御部2228からの制御信号を基にY軸回転用バルブVyを開閉制御することで、第1のY軸噴出口Y1及び第2のY軸噴出口Y2が噴出する培養液の噴出速度及び噴出量を制御する。マイクロ流路制御部20402は、回転制御部2228からの制御信号を基にZ軸回転用バルブVzを開閉制御することで、第1のZ軸噴出口Z1及び第2のZ軸噴出口Z2が噴出する培養液の噴出速度及び噴出量を制御する。
 このように、本実施形態においては、受精卵16の回転方向及び回転量を制御し、受精卵16内の所望の位置にICM161が位置するように受精卵16を回転させることができるので、所望の画像を効率よく取得することができる。
 〈画像取得方法〉
 次に、上述の観察システム2002における画像取得方法について説明する。以下、図12、第1実施形態と同様のフローチャートである図8、図9を用いて説明する。
 受精卵16を収容部2015に収容した培養容器2040を観察装置2021内のステージ27に水平に載置する。次に、培養容器2040の下部から光源24から光を照射し、培養容器2040の上部に位置したカメラ25により受精卵16が撮像される(S101)。撮像制御部2226により、受精卵16が1つの角度から撮像されるようにカメラ25は制御される。
 画像取得部222により、カメラ25により撮像された画像が取得される。次に、評価部223により、画像取得部222が取得した受精卵16の画像に基づき、受精卵16の第2の特徴量が抽出され、抽出された第2の特徴量から受精卵16の成長段階が評価されて受精卵16に成長ステージコードが付与される。
 受精卵データベース部224により、受精卵16の画像と、撮像日時、撮像条件、第2の特徴量及び成長段階(成長ステージコード)とが対応づけられて記憶される(S102)。
 次に、判定部227により、評価部223によって評価された受精卵16の成長段階が胚盤胞の状態、本実施形態においては完全胚盤胞の状態、すなわち成長ステージコードが6以降であるか否かが判定される(S103)。
 S103でNoと判定されると撮像が終了する。S103でYESと判定されると、撮像制御部2226により、回転直前の静止した状態の受精卵16が撮像される。回転制御部2228により、受精卵16を回転させる直前に撮像した受精卵16の画像に基づき、エッジ検出等の画像認識により、ICM161の形状及び位置が判断される。これを基に、回転制御部2228により、ICM161が受精卵16の中央部に位置するようにするために、受精卵16の回転方向及び回転量が算出される。回転制御部2228からの制御信号を基にマイクロ流路制御部20402により各噴出口が噴出する培養液の噴出速度及び噴出量が制御され、回転部20401が作動して受精卵16を回転させ(S104)、略円形のICM161が中央部に位置する受精卵16がカメラ25により撮像される(S105)。
 同様に、略劣弧状のICM161が受精卵16の端に位置するようにするために、受精卵16の回転方向及び回転量が算出される。回転制御部2228からの制御信号を基にマイクロ流路制御部20402により各噴出口が噴出する培養液の噴出速度及び噴出量が制御され、回転部20401が作動して受精卵16を回転させ、略劣弧状のICM161が端に位置する受精卵16がカメラ25により撮像される。
 同様に、略楕円状のICM161が受精卵16の端に位置するようにするために、受精卵16の回転方向及び回転量が算出される。回転制御部2228からの制御信号を基にマイクロ流路制御部20402により各噴出口が噴出する培養液の噴出速度及び噴出量が制御され、回転部20401が作動して受精卵16を回転させ、略楕円状のICM161が端に位置する受精卵16がカメラ25により撮像される。
 画像取得部222により、カメラ25により撮像された、正面又は裏面、横、斜めの各画像が取得される。受精卵データベース部224により、受精卵16の正面又は裏面の画像、横の画像、斜めの画像と、撮像日時、撮像条件、第2の特徴量及び成長段階(成長ステージコード)とが対応づけられて記憶される。(S106)。
 S103でYESと判定されたときの画像取得がN回目の撮像とすると、N+1回目からは図9に示すフローチャートに従って画像取得が行われる。また、S103でNOと判定された場合は、次の画像取得は図8に示すフローチャートに従って行われ、S103でYESと判定されるまで、図8に示すフローチャートに沿った画像取得が行われる。
 次に、N+1回目以降の画像取得方法について図9を用いて説明する。
 画像取得処理がスタートすると、撮像制御部2226により、回転直前の静止した状態の受精卵16が撮像される。画像取得部222により受精卵16の画像が取得され、この受精卵16を回転させる直前に撮像した受精卵16の画像に基づき、回転制御部2228により、エッジ検出等の画像認識により、ICM161の形状及び位置が判断される。これを基に、回転制御部2228により、ICM161が受精卵16の中央部に位置するようにするために、受精卵16の回転方向及び回転量が算出される。回転制御部2228により、算出された回転方向及び回転量に基づいて各噴出口が噴出する培養液の噴出速度及び噴出量が制御され、回転部20401が作動して受精卵16を回転させ(S201)、略円形のICM161が中央部に位置する受精卵16がカメラ25により撮像される(S202)。
 同様に、略劣弧状のICM161が受精卵16の端に位置するようにするために、受精卵16の回転方向及び回転量が算出される。回転制御部2228により、算出された回転方向及び回転量に基づいて各噴出口が噴出する培養液の噴出速度及び噴出量が制御され、回転部20401が作動して受精卵16を回転させ、略劣弧状のICM161が端に位置する受精卵16がカメラ25により撮像される。
 同様に、略楕円状のICM161が受精卵16の端に位置するようにするために、受精卵16の回転方向及び回転量が算出される。回転制御部2228により、算出された回転方向及び回転量に基づいて各噴出口が噴出する培養液の噴出速度及び噴出量が制御され、回転部20401が作動して受精卵16を回転させ、略楕円状のICM161が端に位置する受精卵16がカメラ25により撮像される。
 画像取得部222により、カメラ25により撮像された、正面又は裏面、横、斜めの各画像が取得される。次に、評価部223により、画像取得部222が取得した受精卵16の画像に基づき、受精卵16の第2の特徴量が抽出され、これを基に受精卵16の成長段階が評価され成長ステージコードが付与される。
 受精卵データベース部224により、受精卵16の正面又は裏面の画像、横の画像、及び斜めの画像と、撮像日時、撮像条件、第2の特徴量及び成長段階(成長ステージコード)とが、対応づけられて受精卵16毎に記憶される。(S203)。
 以上のように、構造非対称性が高い胚盤胞の成長段階以降の受精卵を回転させて複数回撮像することにより、複数の角度から撮像した受精卵の画像を得ることができ、評価精度が向上する。また、本実施形態においては、ICM161の形状及び位置がそれぞれ異なる、正面又は裏面の画像、斜めの画像、横の画像の3つの画像が撮像できるように受精卵の回転量及び回転方向を制御しているので、効率よく所望の画像を得ることができる。これにより胚盤胞の成長段階以降の受精卵の経時変化を、同じ角度から受精卵16を撮像したときの画像(例えばICMが正面に位置するときの受精卵の画像)を時系列に並べることによって確認することができ、受精卵の成長を正確に把握することができ評価精度が高くなる。
 また、本実施形態においては、受精卵の回転が手作業ではなく装置により行われ、情報処理装置によって回転の時期及びカメラ25による撮像回数の制御が行われるので、大量の受精卵の観察が可能となる。
(第4の実施形態)
 第1及び第2の実施形態においては、回転させた受精卵を複数回撮像することにより、複数の異なる角度から撮像した受精卵の画像を得ていたが、所望の複数の観察(撮像)角度から撮像した受精卵の画像があるか否かを判別するステップを画像取得方法に追加してもよい。これにより、所望の角度から撮像した受精卵の画像を確実に得ることができる。上述の所望の複数の観察(撮像)角度から撮像した受精卵の画像は、第3の実施形態で説明した所望の受精卵16の画像と同様である。本実施形態においては、これら3つの画像パターンに観察方向分類コードを付与している。
 尚、第3の実施形態においても、同様のステップを追加してもよく、回転制御部による回転方向及び回転量の算出結果を基に受精卵を回転させて撮像した画像が、所望の画像であるかどうかを評価することができる。そして、もし所望の画像とずれが生じていた場合には、その結果をフィードバックさせ、ずれを補正するように回転制御部による回転方向及び回転量の算出結果を修正させるようにしてもよい。
 〈観察システム〉
 第4の実施形態における観察システムについて、第1実施形態で用いた図4及び図5を用いて説明する。図4は、観察システムの構成を示す図である。図5は、観察システムの構成を示すブロック図である。本実施形態においては、第1の実施形態と同様に受精卵16の回転を手作業で行う場合を例にあげて説明する。第1の実施形態における観察システムと異なる構成について主に説明し、同様の構成については同様の符号を付し、説明を省略する場合がある。
 図4に示すように、観察システム3002は、観察装置21と、情報処理装置3022と、表示装置23と、入力装置29を有する。観察装置21内には、光源24と、撮像部25と、温度・湿度・ガス制御部26と、ステージ27が配置される。
 図5に示すように、情報処理装置3022は、画像取得部222と、評価部3223と、受精卵データベース部3224と、表示制御部3225と、撮像制御部226と、判定部3227とを具備する。情報処理装置3022は、観察システム3002内の各ブロックの動作を制御する。本実施形態では情報処理装置3022によりカメラ25の撮像回数が制御され、ある成長段階までは1つの角度から受精卵16を撮像し、ある成長段階以降は複数の角度から撮像した受精卵16の画像が取得できるように受精卵16を回転させ複数回撮像を行うように、撮像回数が制御される。また、情報処理装置3022により、受精卵画像に基づいて受精卵16が評価される。
 情報処理装置3022の機能ブロックである画像取得部222、評価部3223、受精卵データベース部3224、表示制御部3225、撮像制御部226、及び判定部3227は、CPUが、非一過性のコンピュータ読み取り可能な記録媒体の一例であるROMに格納されたプログラムをRAMにロードして実行することにより実現される。そしてこれらの機能ブロックにより、本技術に係る画像取得方法が実行される。
 評価部3223は、カメラ25によって取得された受精卵16の画像に基づいて、受精卵の第2の特徴量を抽出し、この抽出した第2の特徴量と、受精卵データベース部3224に予め記憶されている受精卵16の成長段階毎の第1の特徴量とを参照し、受精卵16の成長段階を評価し、受精卵16に後述する成長ステージコードを付与する。
 また、評価部3223は、成長ステージコード6以降の受精卵16の複数の画像のうち、図6(a)に示すように受精卵16の中央部にICM161が位置する画像に対して正面又は裏面の観察方向分類コードを付与し、図6(c)に示すように受精卵16の端に略劣弧状のICM161が位置する画像に対して横の観察方向分類コードを付与し、図6(b)に示すように受精卵16の端に略楕円状のICM161が位置する画像に対して斜めの観察方向分類コードを付与する。
 評価部3223によって算出された受精卵16の第2の特徴量、付与された成長ステージコード、観察方向分類コードは、受精卵データベース部3224に、各受精卵16の画像に対応づけられて、受精卵16毎に時系列に記憶される。
 判定部3227は、評価部3223によって付与された受精卵16の成長ステージコードが6以上であるか否かを判定する。また、判定部3227は、撮像した複数の成長ステージコード6以降の受精卵16の画像の中に、正面又は裏面、横、斜めの観察方向分類コードが付与されている画像がそれぞれ少なくとも1つはあるかどうかを判定する。
 受精卵データベース部3224は、カメラ25によって撮像された受精卵16の画像を、受精卵16が収容されている収容部の位置情報、撮像日時、撮像条件、受精卵16の第2の特徴量、成長ステージコード、観察方向分類コード等の情報とともに、収容部15毎に記憶する。
 また、受精卵データベース部3224には、受精卵16の各成長段階における画像の第1の特徴量が予め複数記憶されている。更に、受精卵データベース部3224には、成長ステージコード6以降の成長段階の受精卵16においては、各成長段階の受精卵16の正面又は裏面の画像、横の画像、斜めの画像それぞれの第2の特徴量が予め複数記憶されている。
 表示制御部3225は、表示装置23に、受精卵16の画像、この画像に対応づけて、撮像日時、撮像条件、受精卵の第2の特徴量、成長段階、観察(撮像)角度分類等を表示させる表示信号を表示装置23に出力する。
 また、表示制御部3225は、評価部3223によって受精卵16が成長ステージコード6以降の成長段階、すなわち完全胚盤胞以降の成長段階であると評価されると、表示装置23に、受精卵16が完全胚盤胞以降の成長段階であることを知らせるとともにユーザに対して受精卵16を回転する指示を表示装置23に表示させる。ユーザは、この表示装置23に表示される指示に従って、光ピンセットやマイクロピペット等の手作業、マイクロ流路による水流、振動等を用いて受精卵16を回転させる。ユーザは受精卵16の回転開始に合わせて、マウス等の入力装置29を用いて受精卵16の回転の開始を情報処理装置3022に入力する。
 〈画像取得方法〉
 次に、上述の観察システム3002における画像取得方法について図4、図16、図17を用いて説明する。図16及び図17は画像取得方法のフローチャートである。図16は成長ステージコード6までの受精卵16に行われる画像取得方法であり、図17は成長ステージコード7以降の受精卵16に行われる画像取得方法である。以下、図16及び図17のフローに従い、画像取得方法について説明する。
 図4に示すように、受精が確認された受精卵16が1つずつ各収容部15に収容された培養容器1を観察装置21内のステージ27に水平に載置する。
 次に、培養容器1の下部から光源24からの光を照射し、培養容器1の上部に位置したカメラ25により受精卵16が撮像される(S301)。撮像制御部226により、受精卵16が1つの角度から撮像されるようにカメラ25は制御される。画像取得部222により、カメラ25により撮像された画像が取得される。
 次に、評価部3223により、画像取得部222が取得した受精卵16の画像に基づいて、受精卵16の第2の特徴量が抽出される。更に、評価部223により、抽出された第2の特徴量と受精卵データベース部3224に予め記憶されている受精卵16の成長段階毎の第1の特徴量とが参照されて受精卵16の成長段階が評価され、受精卵16に成長ステージコードが付与される。
 受精卵データベース部3224により、受精卵16の画像と、撮像日時、撮像条件、第2の特徴量及び成長段階(成長ステージコード)とが対応づけられて記憶される(S302)。
 次に、判定部3227により、評価部3223によって付与された受精卵16の成長ステージコードが6以上であるか否かが判定される(S303)。S303でNoと判定されると撮像が終了する。S303でYESと判定されると、表示制御部3225により、表示装置23に、受精卵16が胚盤胞の成長段階であることを表示されるとともに、受精卵16を回転する指示が表示される(S304)。
 ユーザは、表示装置23に表示された受精卵16の回転の指示を確認することにより、受精卵16を、光ピンセットやマイクロピペット等の手作業、マイクロ流路による水流、振動等を用いて受精卵16を回転させる。ユーザは受精卵16の回転開始の直前に、入力装置29から回転の開始を知らせるための入力操作をする。ユーザからの回転開始の入力操作が行われると、これまでの成長ステージコード1~5の受精卵16の撮像時の撮像回数よりも多い撮像回数で撮像するよう撮像制御部226によりカメラ25が制御される。
 ユーザが受精卵16を回転させている間、カメラ25により受精卵16は複数回撮像される(S305)。カメラ25により撮像された画像は、画像取得部222により取得される。次に、評価部3223により、画像取得部222が取得した受精卵16の画像に基づき観察(撮像)方向が評価され、取得された複数の画像のうち正面又は裏面の画像には正面又は裏面の観察方向分類コードが付与され、横の画像には横の観察方向分類コードが付与され、斜めの画像には斜めの観察方向分類コードが付与される。
 ユーザによる受精卵16の回転が終了し、入力装置29から回転の終了を知らせるための入力操作をユーザが行うことにより、受精卵の撮像は終了する。そして、受精卵データベース部3224により、受精卵16の各画像と、受精卵16が収容されている収容部の位置情報、撮像日時、撮像条件、受精卵の第2の特徴量、成長段階(成長ステージコード)、観察方向分類コード等が対応づけられて記憶される(S306)。
 次に、判定部3227により、複数の角度から撮像された複数の受精卵16の画像の中に、正面又は裏面、横、斜めの観察方向分類コードが付与されている画像がそれぞれ少なくとも1つはあるかどうかが判定される(S307)。S307で、YESと判定されると、画像取得が終了する。
 S307でNOと判定されるとS304のステップに戻り、S307でYESの判定がでるまで、S304、S305、S306、S307のステップが繰り返される。
 S303でYESと判定されたときの画像取得がN回目の撮像とすると、N+1回目からの画像取得は図17に示すフローチャートに従って画像取得が行われる。また、S303でNOと判定された場合は、次の画像取得は図16に示すフローチャートに従って行われ、S303でYESと判定されるまで、図16に示すフローチャートに沿った画像取得が行われる。
 次に、N+1回目以降の画像取得方法について図17を用いて説明する。
 画像処理がスタートすると、表示制御部3225により、表示装置23に、受精卵16を回転する指示が表示される(S401)。
 ユーザは、表示装置23に表示された受精卵16の回転の指示を確認することにより、受精卵を、光ピンセットやマイクロピペット等を用いて受精卵16を回転させる。ユーザは受精卵の16の回転開始の直前に、入力装置29から回転の開始を知らせるための入力操作をする。ユーザからの回転開始の入力が行われると、撮像制御部226からカメラ25の撮像回数制御部251に対し、1つの受精卵16を複数回撮像するよう撮像回数を制御する制御信号が送信される。
 ユーザが受精卵16を回転させている間、カメラ25により受精卵16は複数回撮像される(S402)。カメラ25により撮像された画像は、画像取得部222により取得される。次に、評価部3223により、画像取得部222が取得した受精卵16の画像に基づき観察(撮像)角度が評価され、取得された複数の画像のうち正面又は裏面の画像には正面又は裏面の観察方向分類コードが付与され、横の画像には横の観察方向分類コードが付与され、斜めの画像には斜めの観察方向分類コードが付与される。
 ユーザによる受精卵16の回転が終了し、入力装置29から回転の終了を知らせるための入力操作をユーザが行うことにより、受精卵の撮像は終了する。そして、受精卵データベース部3224により、受精卵16の各画像と、受精卵16が収容されている収容部の位置情報、撮像日時、撮像条件、受精卵の第2の特徴量、成長段階(成長ステージコード)、観察方向分類コード等が対応づけられて記憶される(S403)。
 次に、判定部3227により、複数の受精卵16の画像の中に、正面又は裏面、横、斜めの観察方向分類コードが付与された画像がそれぞれ少なくとも1つはあるかどうかが判定される(S404)。S404で、YESと判定されると、画像取得が終了する。
 S404でNOと判定されるとS401のステップに戻り、S404でYESの判定がでるまで、S401、S402、S403、S404のステップが繰り返される。
 以上のように、構造非対称性が高い胚盤胞の成長段階以降の受精卵を回転させて複数回撮像することにより、複数の角度から撮像した受精卵の画像を得ることができる。更に、本実施形態においては、画像におけるICM161の形状及び位置がそれぞれ異なる、正面又は裏面の画像、斜めの画像、横の画像の3種類の画像が撮像できるまで画像取得が行われるので、胚盤胞の成長段階以降の受精卵の経時変化を、同じ撮像角度から受精卵を撮像したときの画像(例えばICMが正面に位置するときの受精卵の画像)を時系列に並べることによって確認することができ、受精卵の成長を正確に把握することができ評価精度が高くなる。
(第5の実施形態)
 上述の各実施形態の構成に加え、受精卵16が胚盤胞になった段階で胚培養士等の専門家(ユーザ)により受精卵16の画像を評価してもらい、ユーザが教師指標としたい受精卵か否かを判定してもらい、ユーザにより教師指標としたいと判定された受精卵を教師指標とするように構成してもよい。そして、ユーザにより教師指標とされた受精卵16に対してはより多くの画像を取得する、或いは、動画像を撮影するように制御させ、受精卵16に関する画像情報をより多く取得できるようにしてもよい。より多くの画像情報を得るために、例えば同じ撮像角度から撮像する画像数を増やす他、観察(撮像)角度を増やして画像数を増やしてもよい。
 本実施形態においては、成長が理想的で良好な、ユーザにより成長過程をより詳細に観察したいと判定される受精卵16が教師指標となり、その受精卵16の画像信号を教師信号として情報処理装置に学習させている。
 〈観察システム〉
 第5の実施形態における観察システムについて図4及び図18を用いて説明する。図18は、観察システムの構成を示すブロック図である。本実施形態においては、第1の実施形態と同様に受精卵16の回転を手作業で行う場合を例にあげて説明する。第1の実施形態における観察システムと異なる構成について主に説明し、同様の構成については同様の符号を付し、説明を省略する場合がある。
 図4に示すように、観察システム4002は、観察装置21と、情報処理装置4022と、表示装置23と、入力装置29を有する。観察装置21内には、光源24と、撮像部25と、温度・湿度・ガス制御部26と、ステージ27が配置される。
 図18に示すように、情報処理装置4022は、画像取得部222と、評価部223と、受精卵データベース部4224と、表示制御部4225と、撮像制御部4226と、判定部4227と、付与部4228を具備する。情報処理装置4022は、観察システム4002内の各ブロックの動作を制御する。本実施形態では情報処理装置4022により、カメラ25の撮像回数が制御され、初期胚盤胞の成長段階までは1つの角度から受精卵16を撮像し、完全胚盤胞の成長段階以降は回転させた受精卵16を複数回撮像するように制御される。また、情報処理装置4022により、受精卵画像に基づいて受精卵16が評価される。また、情報処理装置4022により、ユーザによる胚盤胞の評価の指示が行われる。
 情報処理装置4022の機能ブロックである画像取得部222、評価部223、受精卵データベース部4224、表示制御部4225、撮像制御部4226、判定部4227、及び付与部4228は、CPUが、非一過性のコンピュータ読み取り可能な記録媒体の一例であるROMに格納されたプログラムをRAMにロードして実行することにより実現される。そしてこれらの機能ブロックにより、本技術に係る画像取得方法が実行される。
 判定部4227は、評価部223によって付与された受精卵16の成長ステージコードが6であるか否かを判定する。また、判定部4227は、受精卵16に、後述する付与部4228により教師指標とすると付与されているか否かを判定する。教師指標とすると付与される受精卵16は、ユーザにより教師指標にしたいと判定された受精卵16である。
 表示制御部4225は、表示装置23に、受精卵16の画像、この画像に対応づけて、受精卵16が収容されている収容部の位置情報、撮像日時、撮像条件、受精卵の第2の特徴量、成長段階等を表示させる表示信号を表示装置23に出力する。
 また、表示制御部4225は、判定部4227によって受精卵16が成長ステージコード6の成長段階、すなわち完全胚盤胞の成長段階であると判定されると、胚培養士等の専門家(ユーザ)による受精卵16の胚盤胞の評価の指示を表示装置23上に表示する。ユーザは、この表示装置23に表示される指示を確認し、受精卵16の画像を観察しながら、自分の所見を評価値として入力し、更にこの受精卵16を教師指標とするか否かを入力する。
 また、表示制御部4225は、判定部4227によって受精卵16が成長ステージコード6以降の成長段階、すなわち完全胚盤胞以降の成長段階であると判定されると、受精卵16が完全胚盤胞以降の成長段階であることを知らせるとともにユーザに対して受精卵16を回転する指示を表示装置23に表示させるように制御する。ユーザは、この表示装置23に表示される指示に従って、光ピンセットやマイクロピペット等の手作業、マイクロ流路による水流、振動等を用いて受精卵16を回転させる。ユーザは受精卵16の回転開始の直前に、マウス等の入力装置29を用いて受精卵16の回転開始の入力操作を行う。
 付与部4228は、ユーザにより入力された受精卵16の画像の評価値及び教師指標とするか否かを、対応する受精卵16の画像に付与する。
 撮像制御部4226は、判定部4227によって成長ステージコードが6以降でないと判定された受精卵16に対しては1つの角度から受精卵16を撮像するようカメラ25を制御する。撮像制御部4226は、成長ステージコードが6以降であると判定された受精卵16に対しては、カメラ25の撮像角度を固定し、回転させた受精卵16を、それまでの成長ステージコード1~5の受精卵16の撮像回数よりも多い撮像回数で撮像するように、カメラ25を制御する。更に、撮像制御部4226は、付与部4228により教師指標とすると付与された受精卵16の撮像では、教師指標とすると付与されていない他の受精卵16よりも撮像回数が多くなるように撮像回数を制御する。
 受精卵データベース部4224は、カメラ25によって撮像された受精卵16の画像を、受精卵16が収容されている収容部の位置情報、撮像日時、撮像条件、受精卵16の第2の特徴量、成長段階、ユーザの評価値、教師指標とする否か等の情報とともに、収容部15毎に記憶する。また、受精卵データベース部4224には、受精卵16の各成長段階の画像の第1の特徴量が予め複数記憶されている。
 付与部4228により、教師指標とすると付与された受精卵16は、例えば成長が理想的で良好な受精卵16であり、ユーザにとって教師指標としたい受精卵16である。このような成長が理想的で良好な受精卵16の画像をより多く取得し、これを教師画像とするように構成することにより、教師指標となるデータを蓄積することができる。これにより、受精卵16の画像評価を更に高精度に行うことが可能となる。
 受精卵データベース部4224は、ユーザによって任意に選択された教師指標となる受精卵16の画像(教師画像)と、この画像から抽出した特徴量と、成長ステージコードと、観察角度分類コード等とを対応づけて教師データとして記憶する。
 本実施形態においては、ユーザによって任意に選択される、教師指標とすると付与される受精卵16は、成長が良好な受精卵16であったが、これに限定されない。例えば、成長が異常な受精卵16を、更なる詳細な画像観察が必要な受精卵として教師指標として選択してもよく、このような成長が異常な受精卵16の画像データを蓄積することによって例えば早期の受精卵の異常の発見を行うことが可能となる。また、優良血統のウシの受精卵等、特に詳細な画像観察を行いたいとする受精卵を、教師指標として選択してもよく、ユーザによって任意に選択することが可能となっている。
 〈画像取得方法〉
 次に、上述の観察システム4002における画像取得方法について図4、図19、図20を用いて説明する。図21及び図22は画像取得方法のフローチャートである。図19は成長ステージコード6までの受精卵16に行われる画像取得方法であり、図20は成長ステージコード7以降の受精卵16に行われる画像取得方法である。以下、図19及び図20のフローに従い、画像取得方法について説明する。
 図4に示すように、受精が確認された受精卵16が1つずつ各収容部15に収容された培養容器1を観察装置21内のステージ27に水平に載置する。
 次に、培養容器1の下部から光源24からの光を照射し、培養容器1の上部に位置したカメラ25により受精卵16が撮像される(S501)。撮像制御部4226により、受精卵16が1つの角度から撮像されるようにカメラ25は制御される。画像取得部222により、カメラ25により撮像された画像が取得される。
 次に、評価部223により、画像取得部222が取得した受精卵16の画像に基づいて、受精卵16の第2特徴量が抽出される。更に、評価部223により、抽出された第2の特徴量と、受精卵データベース部4224に予め記憶されている受精卵16の成長段階毎の第1の特徴量とが参照されて受精卵16の成長段階が評価され、受精卵16に成長ステージコードが付与される。
 受精卵データベース部4224により、受精卵16の画像と、受精卵16が収容されている収容部の位置情報、撮像日時、撮像条件、第2の特徴量及び成長段階(成長ステージコード)とが対応づけられて記憶される(S502)。
 次に、判定部4227により、評価部223によって付与された受精卵16の成長ステージコードが6であるか否かが判定される(S503)。S503でNoと判定されると撮像が終了する。S503でYESと判定されると、表示制御部4225により、表示装置23に、受精卵16の胚盤胞の評価を行う指示が表示される(S504)。この指示(ユーザへの通知)をうけ、ユーザは受精卵16の画像を観察しながら、自分の所見を評価値として入力し、教師指標とするか否かを入力する。
 次に、表示制御部4225により、表示装置23に、受精卵16が初期胚盤胞の成長段階であることが表示されるとともに、受精卵16を回転する指示が表示される(S505)。ユーザは、表示装置23に表示された受精卵16の回転の指示を確認することにより、受精卵を、光ピンセットやマイクロピペット等の手作業、マイクロ流路による水流、振動等を用いて受精卵16を回転させる。
 ユーザは受精卵16の回転開始の直前に、入力装置29から回転の開始を知らせるための入力操作をする。ユーザによる回転開始の入力操作が行われると、カメラ25は、撮像制御部226により、回転させた受精卵16を、これまでの成長ステージコード1~5の受精卵16の撮像回数よりも多い撮像回数で撮像するように制御される。
 ユーザが受精卵16を回転させている間、カメラ25により受精卵16は、これまでの成長ステージコード1~5の受精卵16の撮像時の撮像回数よりも多い撮像回数で撮像される(S506)。カメラ25により撮像された画像は、画像取得部222により取得される。
 ユーザによる受精卵16の回転が終了し、入力装置29から回転の終了を知らせるための入力操作をユーザが行うことにより、受精卵16の撮像は終了する。そして、受精卵データベース部4224により、受精卵16の画像と、受精卵16が収容されている収容部の位置情報、撮像日時、撮像条件、受精卵の第2の特徴量、成長段階(成長ステージコード)、ユーザによる評価値、教師指標とするか否か等が対応づけられて記憶される(S507)。
 S503でYESと判定されたときの画像取得がN回目の撮像とすると、N+1回目からの画像取得は図22に示すフローチャートに従って画像取得が行われる。また、S503でNOと判定された場合は、次の画像取得は図19に示すフローチャートに従って行われ、S503でYESと判定されるまで、図19に示すフローチャートに沿った画像取得が行われる。
 次に、N+1回目以降の画像取得方法について図20を用いて説明する。
 画像処理がスタートすると、判定部4227により、撮像対象の受精卵16に、教師指標とすると付与されているか否かが判定される(S601)。
 S601でNOと判定されると、表示制御部4225により、表示装置23に、受精卵16を回転する指示が表示される(S602)。ユーザは、表示装置23に表示された受精卵16の回転の指示を確認することにより、受精卵を、光ピンセットやマイクロピペット等の手作業、マイクロ流路による水流、振動等を用いて受精卵16を回転させる。
 ユーザは受精卵16の回転開始の直前に、入力装置29から回転の開始を知らせるための入力操作をする。ユーザからの回転開始の入力操作が行われると、カメラ25は、撮像制御部226により、回転させた受精卵16を、これまでの成長ステージコード1~5の受精卵16の撮像回数よりも多い撮像回数で撮像するように制御される。
 ユーザが受精卵16を回転させている間、カメラ25により受精卵16は、これまでの成長ステージコード1~5の受精卵16の撮像時の撮像回数よりも多い撮像回数で撮像される(S603)。カメラ25により撮像された画像は、画像取得部222により取得される。
 ユーザによる受精卵16の回転が終了し、入力装置29から回転の終了を知らせるための入力操作をユーザが行うことにより、受精卵の撮像は終了する。そして、受精卵データベース部4224により、受精卵16の画像と、受精卵16が収容されている収容部の位置情報、撮像日時、撮像条件、受精卵の第2の特徴量、成長段階(成長ステージコード)、ユーザによる評価値、教師指標とするか否かが対応づけられて記憶される(S604)。
 S601でYESと判定されると、表示制御部4225により、表示装置23に、受精卵16を回転する指示が表示される(S605)。ユーザは、表示装置23に表示された受精卵16の回転の指示を確認することにより、受精卵を、光ピンセットやマイクロピペット等の手作業、マイクロ流路による水流、振動等を用いて受精卵16を回転させる。
 ユーザは受精卵16の回転開始の直前に、入力装置29から回転の開始を知らせるための入力操作をする。ユーザからの回転開始の入力が行われると、カメラ25は、撮像制御部4226により、S603で行われる撮像回数よりも多い撮像回数で受精卵16を撮像するよう制御される。或いは、動画撮像するようカメラ25を制御してもよい。
 ユーザが受精卵16を回転させている間、カメラ25により受精卵16は、S603で行われる撮像回数よりも多い撮像回数で撮像される(S606)。カメラ25により撮像された画像は、画像取得部222により取得される。
 ユーザによる受精卵16の回転が終了し、入力装置29から回転の終了を知らせるための入力操作をユーザが行うことにより、受精卵の撮像は終了する。そして、受精卵データベース部4224により、教師指標の受精卵16として、受精卵16の画像又は動画(教師画像)と、受精卵16が収容されている収容部の位置情報、撮像日時、撮像条件、受精卵の特徴量、成長段階(成長ステージコード)等が対応づけられて記憶される(S607)。
 本実施形態においては、成長が良好で好ましい受精卵をユーザにより選択してもらい、これを教師指標として他の受精卵を評価することが可能に構成され、また、教師指標となる受精卵16に対しては、教師指標とならない受精卵16よりも撮像回数を増やして、より多く画像を取得し、教師指標とする受精卵16から大量の教師画像を取得しているので、機械学習での判別精度を向上させることができる。
(第6の実施形態)
 次に、第6の実施形態として、上述の各実施形態における観察システムとは異なる構成の観察システムについて説明する。尚、観察システムの構成はこれらに限定されるものではない。
 上述の実施形態において、受精卵を観察する観察装置21には内部に培養容器1とカメラ25が設置され、情報処理装置22は観察装置21の外に設置されているが、これに限定されない。例えば、図21に示すように、観察装置5021内に、情報処理装置5022を設置してもよい。
 図21は、第6の実施形態に係る観察システム5002の構成を示す。図21に示すように、観察システム5002は観察装置5021を有し、観察装置5021はネットワークを介してクラウドサーバ5037と接続可能となっている。更に、表示装置となる携帯端末5038及びパソコン5039はそれぞれネットワークを介してクラウドサーバ5037と接続可能となっている。観察装置5021内には、カメラ・情報処理装置一体型ユニット5032と、温度・湿度・ガス制御部5036とが設置され、培養容器1が収容される。
 カメラ・情報処理装置一体型ユニット5032は、撮像部としてのカメラ5025と、光源5024と、情報処理装置5022と、通信部5023とを有する。本実施形態では、受精卵16に照射する光の光源5024を培養容器1の下部ではなく上部に配置している。
 光源5024は、培養容器1内の受精卵16をカメラ5025により撮像する際に、培養容器1に対して照射する光を発する。カメラ5025は、培養容器1内の受精卵16を撮像するものである。
 情報処理装置5022には、上述の各実施形態に記載する情報処理装置が適用可能である。情報処理装置5022は、各成長段階の受精卵16の画像を取得し、更に、完全胚盤胞以降の成長段階の受精卵16に対しては、例えば受精卵16を回転させた状態で受精卵16を撮像することにより複数の角度から撮像した受精卵16の画像を取得する。情報処理装置5022は、通信部5023及びネットワークを介して、クラウドサーバ5037に受精卵16の画像、この画像に対応づけられた、受精卵16が収容されている収容部の位置情報、撮像日時、撮像条件、受精卵の第2の特徴量、成長ステージコード、観察方向分類コード等のデータ信号(以下、受精卵16に係るデータ信号と称す。)を出力する。
 温度・湿度・ガス制御部5036は、観察装置5021内の温度・湿度・ガスを制御するものであり、受精卵16の培養に適した環境をつくる。
 通信部5023は、受精卵16に係るデータ信号を情報処理装置5022から受け取り、ネットワークを介してクラウドサーバ5037に対して出力する。
 クラウドサーバ5037は、受精卵16に係るデータ信号を記憶する。表示部5039aと情報処理部5039bとからなるパソコン5039、携帯端末5038は、それらを操作するユーザの操作によって、ネットワークを介してクラウドサーバ5037から受精卵16に係るデータ信号を受け取り表示する。
(第7の実施形態)
 上述の第5の実施形態においては、ユーザにより教師指標としたいと選定された受精卵を教師指標としたが、本実施形態のように、完全胚盤胞以降の成長段階の受精卵16の画像取得において、1つの培養容器1に収容される複数の受精卵16のうち一部の受精卵16の画像を教師画像とし、残りの受精卵16の画像をテスト画像とし、これらを用いて教師指標となる受精卵16が選定される構成としてもよい。この教師指標となる受精卵16の選定処理は、例えば成長ステージコード6の完全胚盤胞の成長段階の受精卵16に対して行われる。
 図22は、培養容器1の概略平面図である。本実施形態では、9つの収容部15のうち6つの収容部15それぞれに収容される受精卵16の画像を教師画像とし、残りの収容部15それぞれに収容される受精卵16の画像をテスト画像とする。
 図4は本実施形態にかかわる観察システムの概略図、図5は本実施形態に係る観察システムの構成を示すブロック図である。以下、第1の実施形態と異なる点について主に説明し、同様の構造については同様の符号を付し、説明を省略する場合がある。
 図4及び図5に示すように、観察システム6002は、観察装置21と、情報処理装置6022と、表示装置23と、入力装置29を有する。観察装置21内には、光源24と、撮像部としてのカメラ25と、温度・湿度・ガス制御部26と、ステージ27が配置される。情報処理装置6022は、画像取得部222と、評価部6223と、受精卵データベース部6224と、表示制御部225と、撮像制御部226と、判定部227とを具備する。
 情報処理装置6022の機能ブロックである画像取得部222、評価部6223、受精卵データベース部6224、表示制御部225、撮像制御部226、及び判定部227は、CPUが、非一過性のコンピュータ読み取り可能な記録媒体の一例であるROMに格納されたプログラムをRAMにロードして実行することにより実現される。そしてこれらの機能ブロックにより、本技術に係る画像取得方法が実行される。
 評価部6223は、教師画像とした成長ステージコード6の受精卵16の画像を基に第2の特徴量を抽出し、これを基に、対応する受精卵16の画像に成長ステージコード及び観察方向分類コードを付与する。また、評価部6223は、テスト画像とした成長ステージコード6の受精卵16の画像を基に第2の特徴量を抽出し、これを基に、対応する受精卵16の画像に成長ステージコード及び観察方向分類コードを付与する。
 評価部6223は、教師画像とした受精卵16の第2の特徴量と、成長ステージコード及び観察方向分類コードとの関係の信頼性及び有用性を、テスト画像とした受精卵16の第2の特徴量と、成長ステージコード及び観察方向分類コードとのセットを使用して評価する。評価部6223により、複数の教師画像とした受精卵16のうち有用と評価された受精卵16は教師指標とされ、受精卵データベース部6224により、画像(教師画像)と、特徴量、成長ステージコード及び観察方向分類コードとが対応づけられて教師データとして記憶される。この画像取得時に取得される教師データは、以降に行われる画像取得において、特徴量は第1の特徴量として用いられ、成長段階や撮像角度を評価するのに参照される。
(第8の実施形態)
 上述の実施形態では、完全胚盤胞以降の成長段階の撮像画像を、観察(撮像)方向を分類指標として3つの画像パターンに分類していたが、本実施形態のように、観察(撮像)方向を更に詳細に分類した観察(撮像)角度を分類指標として分類してもよい。第8の実施形態においては、観察角度分類コードを設け、成長ステージコード6以降の複数の角度から撮像した受精卵の画像を、観察(撮像)角度を分類指標として分類し、得られた画像に観察角度分類コードを付与している。この観察角度分類コードの付与は上述の各実施形態において適用可能である。本実施形態においては、第1の実施形態と同様に受精卵16の回転を手作業で行う場合を例にあげて説明する。第1の実施形態における観察システムと異なる構成について主に説明し、同様の構成については同様の符号を付し、説明を省略する場合がある。
 <観察角度分類>
 図23及び図24は、観察角度による分類について説明するための図である。図23は観察(撮像)角度の定義を説明する図であり、図24は観察角度分類コード、観察(撮像)方向、観察(撮像)角度、受精卵の画像との対応を説明する図である。本実施形態では、受精卵16の観察(撮像)角度によって撮像画像を分類し、各画像に観察角度分類コードを付与する。
 図23に示すように、正面から受精卵16を撮像するときの観察(撮像)方向(図23におけるZ軸のプラスからマイナスに向かう方向)を基準とし、略球形の受精卵16の中心を中心に、この正面からの観察方向と、観察(撮像)方向とのなす角θを観察(撮像)角度とし、観察(撮像)角度に対応して観察角度分類コードを付与する。観察角度分類コードは0°~360°の数値で表す。尚、図23において、X軸、Y軸及びZ軸は直交する3軸を意味し、水平方向及び垂直方向を意味するものでは無い。
 上述で説明したように、受精卵16は胚盤胞以降の成長段階では、受精卵16の中でICM161は偏って存在する。
 図23に示すように、XYZ座標に、略球形の受精卵16の中心が原点に位置し、ICM161がZ軸のプラスの領域に位置し、かつXY平面にICM161を投影したときにその平面形状が略円形のICM161の中心が原点に位置するように、受精卵16を配置した状態で、Z軸に沿ってZ軸のプラスからマイナスに向かう観察(撮像)方向で受精卵16を撮像したときの画像は、図24に示すように、ICM161が手前に位置する受精卵の正面画像に相当し、この画像には0°の観察角度分類コードが付与される。
 図23において、Z軸に沿ってZ軸のマイナスからプラスに向かう方向で受精卵16を撮像した画像、言い換えると、受精卵16を裏面側から撮像した画像は、図24に示すように、平面形状が略円形の受精卵16の中央部にICM161が位置する画像であり、この裏面画像には、180°の観察角度分類コードが付与される。ここで、正面の画像と裏面の画像はいずれも受精卵16の中央部に略円形のICM161が位置した画像となるが、正面の画像と裏面の画像とは、例えば濃淡で区別することができる。
 図23において、XY平面内の位置から原点にむかう観察(撮像)方向で受精卵16を撮像した画像、言い換えると、受精卵16を真横から撮像した画像は、図24に示すように、平面形状が略円形の受精卵16の端に略劣弧状のICM161が位置する画像であり、この画像には90°の観察角度分類コードが付与される。
 図23において、観察(撮像)角度θが、0°<θ<90°、90°<θ<180°、180°<θ<270°、270°<θ<360°の観察(撮像)方向で受精卵16を撮像した画像、言い換えると受精卵16を正面、裏面及び横以外の斜めから撮像した画像は、受精卵16の中心からずれた位置に略楕円状のICM161が位置する画像となり、観察(撮像)角度によってICM161の大きさや形状が異なる。この画像には、観察(撮像)角度に応じた観察角度分類コードが付与される。
 図24に示すように、例えば観察(撮像)角度が30°で撮像された観察角度分類コードが30°の受精卵16の画像においては、受精卵16の中心からややずれた位置に、円形に近い略楕円状のICM161が位置する画像となる。観察(撮像)角度が30°で撮像される画像は、観察(撮像)方向をXY平面に投影したときのXY平面における観察(撮像)方向の向きによって、ICM161の位置が例えば受精卵16の右上寄りであったり、下寄りであったりとICM161の位置が異なった画像となる。しかしながら、観察(撮像)角度が同じであれば、ICM161の形状や大きさはほぼ同じとなり、同一の観察(撮像)角度で異なる方向から撮像した画像は、略円形の受精卵16の中心を中心にして回転移動するとICM161がほぼ一致する。これは他の観察(撮像)角度についても同様である。
 図24に示すように、例えば観察(撮像)角度が60°で撮像された観察角度分類コードが60°の受精卵16の画像においては、受精卵16の端に、略楕円状のICM161が位置する画像となる。また、例えば観察(撮像)角度が120°で撮像された観察角度分類コードが120°の受精卵16の画像においては、受精卵16の端に、略楕円状のICM161が位置する画像となる。また、例えば観察(撮像)角度が150°で撮像された観察角度分類コードが150°の受精卵16の画像においては、受精卵16の中心からややずれた位置に、円形に近い略楕円状のICM161が位置する画像となる。
 また、斜めの観察(撮像)角度で撮像した画像においては、ICM161の大きさ(面積)や形状、平面形状の略円形の受精卵16の中心からみたICM161の位置等から観察(撮像)角度が算出可能である。
 ここで、例えば観察角度分類コードが30°の画像と観察角度分類コードが150°の画像はいずれも受精卵16の中心からややずれた位置に、円形に近い略楕円状のICM161が位置する画像となるが、双方の画像は、例えば濃淡で区別することができる。
 また、観察角度分類コードが60°の画像と観察角度分類コードが120°の画像はいずれも受精卵16の端に略楕円状のICM161が位置する画像となるが、双方の画像は、例えば濃淡で区別することができる。
 以上のように、本実施形態では、回転させた受精卵16を撮像して取得した画像を、観察(撮像)角度によって分類し、斜め方向から観察(撮像)する画像をより詳細に分類可能となっている。これにより、更に詳細な受精卵16の画像情報を得ることができ、受精卵16の評価を高精度に行うことができる。尚、上述の説明では、観察(撮像)角度を30°刻みで説明したが、これに限定されない。
 〈観察システム〉
 第8の実施形態における観察システムについて、第1実施形態で用いた図4及び図5を用いて説明する。図4は、観察システムの構成を示す図である。図5は、観察システムの構成を示すブロック図である。本実施形態においては、第1の実施形態と同様に受精卵16の回転を手作業で行う場合を例にあげて説明する。第1の実施形態における観察システムと異なる構成について主に説明し、同様の構成については同様の符号を付し、説明を省略する場合がある。
 図4に示すように、観察システム7002は、観察装置21と、情報処理装置7022と、表示装置23と、入力装置29を有する。観察装置21内には、光源24と、撮像部25と、温度・湿度・ガス制御部26と、ステージ27が配置される。
 図5に示すように、情報処理装置7022は、画像取得部222と、評価部7223と、受精卵データベース部7224と、表示制御部225と、撮像制御部226と、判定部3227とを具備する。情報処理装置7022は、観察システム7002内の各ブロックの動作を制御する。本実施形態では情報処理装置7022によりカメラ25の撮像回数が制御され、ある成長段階までは1つの角度から受精卵16を撮像し、ある成長段階以降は回転させた受精卵16を複数回撮像するように制御される。また、情報処理装置7022により、受精卵画像に基づいて受精卵16が評価される。
 情報処理装置7022の機能ブロックである画像取得部222、評価部7223、受精卵データベース部7224、表示制御部225、撮像制御部226、及び判定部227は、CPUが、非一過性のコンピュータ読み取り可能な記録媒体の一例であるROMに格納されたプログラムをRAMにロードして実行することにより実現される。そしてこれらの機能ブロックにより、本技術に係る画像取得方法が実行される。
 評価部7223は、カメラ25によって取得された受精卵16の画像に基づいて、受精卵の第2の特徴量を抽出し、この抽出した第2の特徴量と、受精卵データベース部7224に予め記憶されている受精卵16の成長段階毎の第1の特徴量とを参照し、受精卵16の成長段階を評価し、受精卵16に後述する成長ステージコードを付与する。
 また、評価部7223は、成長ステージコード6以降の複数の撮像角度から撮像した受精卵16の画像毎に、画像に基づいて、受精卵の第2の特徴量を抽出し、この抽出した第2の特徴量と、受精卵データベース部7224に予め記憶されている受精卵16の成長段階毎の第1の特徴量とを参照し、観察(撮像)角度を評価し、観察角度分類コードを付与する。
 評価部7223によって算出された受精卵16の第2の特徴量、付与された成長ステージコード、観察角度分類コードは、受精卵データベース部7224に、各受精卵16の画像に対応づけられて、受精卵16毎に時系列に記憶される。
 判定部227は、評価部7223によって付与された受精卵16の成長ステージコードが6以降であるか否かを判定する。
 受精卵データベース部7224は、カメラ25によって撮像された受精卵16の画像を、受精卵16が収容されている収容部の位置情報、撮像日時、撮像条件、受精卵16の第2の特徴量、成長ステージコード、観察角度分類コード等の情報とともに、収容部15毎に記憶する。
 また、受精卵データベース部7224には、受精卵16の各成長段階における画像の第1の特徴量が予め複数記憶されている。更に、受精卵データベース部7224には、成長ステージコード6以降の成長段階の受精卵16においては、各成長段階の受精卵16の観察(撮像)角度毎の画像の第2の特徴量が予め複数記憶されている。
 表示制御部225は、表示装置23に、受精卵16の画像、この画像に対応づけて、撮像日時、撮像条件、受精卵の第2の特徴量、成長段階、観察(撮像)角度等を表示させる表示信号を表示装置23に出力する。
 また、表示制御部225は、評価部7223によって受精卵16が成長ステージコード6以降の成長段階、すなわち完全胚盤胞以降の成長段階であると評価されると、表示装置23に、受精卵16が完全胚盤胞以降の成長段階であることを知らせるとともにユーザに対して受精卵16を回転する指示を表示装置23に表示させる。ユーザは、この表示装置23に表示される指示に従って、光ピンセットやマイクロピペット等を用いて受精卵16を回転させる。ユーザは受精卵16の回転開始に合わせて、マウス等の入力装置29を用いて受精卵16の回転の開始を情報処理装置7022に入力する。
 〈画像取得方法〉
 次に、上述の観察システム7002における画像取得方法について説明するが、第
1の実施形態における画像取得方法と比較して、回転させた状態で撮像した受精卵の画像を観察(撮像)角度毎に分類し観察角度分類コードを付与している点が異なり、以下第1実施形態と同様のフローチャートである図8、図9を用いて説明する。
 図4に示すように、受精が確認された受精卵16が1つずつ各収容部15に収容された培養容器1を観察装置21内のステージ27に水平に載置する。
 次に、培養容器1の下部から光源24からの光を照射し、培養容器1の上部に位置したカメラ25により受精卵16が撮像される(S101)。撮像制御部226により、受精卵16が1つの角度から撮像されるようにカメラ25は制御される。画像取得部222により、カメラ25により撮像された画像が取得される。
 次に、評価部7223により、画像取得部222が取得した受精卵16の画像に基づいて、受精卵16の第2の特徴量が抽出される。更に、評価部7223により、抽出された第2の特徴量と受精卵データベース部7224に予め記憶されている受精卵16の成長段階毎の第1の特徴量とが参照されて受精卵16の成長段階が評価され、受精卵16に成長ステージコードが付与される。
 受精卵データベース部7224により、受精卵16の画像と、撮像日時、撮像条件、第2の特徴量及び成長段階(成長ステージコード)とが対応づけられて記憶される(S102)。
 次に、判定部227により、評価部7223によって付与された受精卵16の成長ステージコードが6以降であるか否かが判定される(S103)。S103でNoと判定されると撮像が終了する。S103でYESと判定されると、表示制御部225により、表示装置23に、受精卵16が胚盤胞の成長段階であることを表示されるとともに、受精卵16を回転する指示が表示される(S104)。
 ユーザは、表示装置23に表示された受精卵16の回転の指示を確認することにより、受精卵16を、光ピンセットやマイクロピペットト等の手作業、マイクロ流路による水流、振動等を用いて受精卵16を回転させる。
 ユーザは受精卵16の回転開始の直前に、入力装置29から回転の開始を知らせるための入力操作をする。ユーザからの回転開始の入力操作が行われると、カメラ25は、撮像制御部226により、回転させた受精卵16を、これまでの成長ステージコード1~5の受精卵16の撮像回数よりも多い撮像回数で撮像するように制御される。以降、成長ステージコード6以降の受精卵16の撮像回数は、成長ステージコード5までの撮像回数よりも多い回数で行われる。
 ユーザが受精卵16を回転させている間、カメラ25により受精卵16は複数回撮像される(S105)。カメラ25により撮像された画像は、画像取得部222により取得される。次に、評価部7223により、画像取得部222が取得した受精卵16の画像に基づき受精卵16の第2の特徴量が抽出される。更に、評価部7223により、抽出された第2の特徴量と受精卵データベース部3224に予め記憶されている受精卵16の成長段階毎の第1の特徴量とが参照されて、観察(撮像)角度が評価され、観察角度分類コードが付与される。
 ユーザによる受精卵16の回転が終了し、入力装置29から回転の終了を知らせるための入力操作をユーザが行うことにより、受精卵の撮像は終了する。そして、受精卵データベース部7224により、受精卵16の各画像と、受精卵16が収容されている収容部の位置情報、撮像日時、撮像条件、受精卵の第2の特徴量、成長段階(成長ステージコード)、観察角度分類コード等が対応づけられて記憶される(S106)。
 S103でYESと判定されたときの画像取得がN回目の撮像とすると、N+1回目からの画像取得は図9に示すフローチャートに従って画像取得が行われる。また、S103でNOと判定された場合は、次の画像取得は図8に示すフローチャートに従って行われ、S103でYESと判定されるまで、図8に示すフローチャートに沿った画像取得が行われる。
 次に、N+1回目以降の画像取得方法について図9を用いて説明する。
 画像処理がスタートすると、表示制御部225により、表示装置23に、受精卵16を回転する指示が表示される(S201)。ユーザは、表示装置23に表示された受精卵16の回転の指示を確認することにより、受精卵を、光ピンセットやマイクロピペットト等の手作業、マイクロ流路による水流、振動等を用いて受精卵16を回転させる。
 ユーザは受精卵の16の回転開始の直前に、入力装置29から回転の開始を知らせるための入力操作をする。ユーザからの回転開始の入力が行われると、カメラ25は、撮像制御部226により、回転させた受精卵16を、これまでの成長ステージコード1~5の受精卵16の撮像回数よりも多い撮像回数で撮像するように制御される。
 ユーザが受精卵16を回転させている間、カメラ25により受精卵16は複数回撮像される(S202)。カメラ25により撮像された画像は、画像取得部222により取得される。次に、評価部7223により、画像取得部222が取得した受精卵16の画像に基づき受精卵16の第2の特徴量が抽出され、観察(撮像)角度が評価される。更に、評価部7223により、各画像に観察角度分類コードが付与される。
 ユーザによる受精卵16の回転が終了し、入力装置29から回転の終了を知らせるための入力操作をユーザが行うことにより、受精卵の撮像は終了する。そして、受精卵データベース部7224により、受精卵16の各画像と、受精卵16が収容されている収容部の位置情報、撮像日時、撮像条件、受精卵16の第2の特徴量、成長段階(成長ステージコード)、観察角度分類コード等が対応づけられて記憶される(S203)。
 以上のように、観察(撮像)角度によって撮像画像を分類するので、より詳細な画像データを得ることができる。また、本実施形態は、上述の各実施形態に適用可能である。
 また、本実施形態においては、成長ステージコード6以降の成長段階の受精卵16の画像に対して観察角度分類コードを付与したが、成長ステージコード5以前の成長段階の受精卵16の画像に対して観察角度分類コードを付与するようにしてもよい。そして、教師指標となる受精卵16の成長ステージコード5以前の受精卵16の画像に関しては、特定の観察角度分類コードが付与された画像を教師画像として使用するようにしもよい。この際、成長ステージコード5までの成長段階の受精卵16に対しては、各成長段階の受精卵16の形状の特徴に従って、成長段階毎に観察角度分類コードを定義するのが望ましい。
 例えば2細胞期を例にする。図3(b)に示すような2つ細胞が重なり合わず隣り合う正面の画像に対して、0°の観察角度分類コードを付与し、1つの楕円の画像に対しては横の画像に相当する、90°の観察角度分類コードを付与し、2つの細胞が互いに一部が重なり合った画像に対しては斜め、0°<θ<90°、90°<θ<180°、180°<θ<270°、270°<θ<360°の観察角度分類コードを付与する。そして、教師指標となった受精卵16の2細胞期の画像のうち、特定の1つの観察角度分類コード、例えば0°の観察角度分類コードが付与された画像を教師画像とする。
 このように、教師指標となった受精卵16において、成長ステージコード5以前の受精卵に対しては、特定の1つの観察角度分類コードが付与された画像を教師画像とし、成長ステージコード6以降の受精卵に対しては複数の観察角度分類コードそれぞれが付与された複数の画像を教師画像としてもよい。
 以上、本技術の各実施形態について説明したが、本技術は上述の実施形態にのみ限定されるものではなく、本技術の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
 上述の実施形態においては、完全胚盤胞以降の成長段階で、複数の角度から受精卵を撮像するように構成したが、これに限定されない。
 また、上述の実施形態において、評価部は、受精卵の画像を基に成長段階を評価して成長ステージコードを受精卵に付与し、判定部にて成長ステージコードが6以降であるか否かが判定され、受精卵を回転させるか否かが決定されたが、成長段階の評価はこれに限定されない。
 例えば、評価部で、受精卵の培養時間、すなわち受精日から経過した時間を基に成長段階を評価して受精卵に成長ステージコードを付与し、判定部により成長ステージコード6以降であるか否かが判定され、受精卵を回転させるか否かが決定されてもよい。一般的な受精卵は、図3に示すような成長段階を経て成長し、受精日からの経過時間(培養時間)で受精卵がどの成長段階にあるかほぼわかる。したがって、受精卵の培養時間から成長段階を評価することが可能となる。
 なお、本技術は以下のような構成もとることができる。
 (1)撮像部により撮像された細胞の画像を取得する画像取得部と、
 前記細胞の成長段階を評価する評価部と、
 前記評価部の評価結果に応じて、回転させた前記細胞を前記撮像部に撮像させる撮像制御部と
 を具備する情報処理装置。
 (2)上記(1)に記載の情報処理装置であって、
 前記評価部の評価結果に応じて、前記細胞を回転させる回転機構を制御する回転制御部を
 更に具備する情報処理装置
 (3)上記(1)又は(2)に記載の情報処理装置であって、
 前記評価部は、前記画像取得部により取得された前記画像を基に前記細胞の成長段階を評価する
 情報処理装置。
 (4)上記(1)又は(2)に記載の情報処理装置であって、
 前記評価部は、前記細胞の培養時間を基に前記細胞の成長段階を評価する
 情報処理装置。
 (5)上記(1)から(4)のいずれかに記載の情報処理装置であって、
 前記撮像制御部は、前記評価部が前記細胞の形状が非対称の成長段階であると評価したときに、回転させた前記細胞を前記撮像部に撮像させる
 情報処理装置。
 (6)上記(5)に記載の情報処理装置であって、
 前記細胞の形状が非対称である成長段階は胚盤胞の成長段階である
 情報処理装置。
 (7)上記(6)に記載の情報処理装置であって、
 前記胚盤胞の成長段階は完全胚盤胞以降の成長段階である
 情報処理装置。
 (8)上記(1)から(7)のいずれかに記載の情報処理装置であって、
 前記細胞は、内部細胞塊を有する胚盤胞の成長段階の細胞であり、
 前記評価部は、回転させた前記細胞を撮像した画像を、前記細胞内の前記内部細胞塊の位置を基準にした撮像方向によって分類する
 情報処理装置。
 (9)上記(1)から(8)のいずれかに記載の情報処理装置であって、
 前記画像取得部により取得された前記細胞の画像を記憶する記憶部
 を更に具備し、
 前記記憶部は、各成長段階における前記細胞の第1の特徴量を予め記憶し、
 前記評価部は、前記画像取得部により取得された前記細胞の画像の第2の特徴量を抽出し、前記第1の特徴量と前記第2の特徴量を基に前記細胞の成長段階を評価する
 情報処理装置。
 (10)上記(9)に記載の情報処理装置であって、
 前記記憶部は、任意に選択された前記細胞を教師指標として記憶する
 情報処理装置。
 (11)上記(10)に記載の情報処理装置であって、
 前記撮像制御部は、複数の前記細胞を撮像するよう前記撮像部を制御し、
 前記撮像制御部は、前記教師指標とされた前記細胞の撮像回数を、前記教師指標とされなかった前記細胞の撮像回数よりも多く撮像するよう前記撮像部を制御する
 情報処理装置。
 (12)上記(1)から(9)のいずれかに記載の情報処理装置であって、
 前記撮像制御部は、複数の前記細胞を撮像するよう前記撮像部を制御し、
 前記評価部は、前記複数の細胞のうち一部の細胞の画像を教師画像とし、前記複数の細胞のうち他の細胞の画像をテスト画像とし、前記テスト画像を用いて前記教師画像を検証する
 情報処理装置。
 (13)細胞が収容された収容部を複数有する培養容器と、
 前記細胞を撮像する撮像部と、
 前記撮像部で撮像された前記細胞の画像を取得する画像取得部と、
 前記細胞の成長段階を評価する評価部と、
 前記評価部による前記細胞の成長段階の評価結果に応じて、前記細胞を前記収容部内で回転させる回転機構と、
 前記回転機構により回転させた前記細胞を撮像するように前記撮像部を制御する撮像制御部
を具備する観察システム。
 (14)上記(13)に記載の観察システムであって、
 前記回転機構は、前記培養容器を振動させる振動装置である
 観察システム。
 (15)上記(13)に記載の観察システムであって、
 前記収容部は前記細胞と液体を収容可能であり、
 前記培養容器は前記回転機構を有し、
 前記回転機構は、前記収容部内の前記液体に流れを発生させて、前記細胞を回転させる
 観察システム。
 (16)細胞の成長段階を評価し、
 前記細胞の形状が非対称の成長段階であると評価したときに、回転させた前記細胞を撮像する
 情報処理方法。
 (17)情報処理装置に、
 細胞の成長段階を評価するステップと、
 前記細胞の形状が非対称の成長段階であると評価したときに、回転させた前記細胞を撮像するステップと
 を実行させるプログラム。
 1、2040…培養容器
 2、1002、2002、3002、4002、5002、6002、7002…観察システム
 15、2015…収容部
 16…受精卵
 22、1022、2022、3022、4022、5022、6022、7022…情報処理装置
 25、5025…カメラ(撮像部)
 161…内部細胞塊(ICM)
 222…画像取得部
 223、3223、6223、7223…評価部
 224、3224、4224、6224、7224…受精卵データベース部(記憶部)
 226、2226、4226…撮像制御部
 1040…振動装置(回転機構)
 1608…初期胚盤胞
 1609…完全胚盤胞
 1610…拡張胚盤胞
 1611…脱出胚盤胞
 1612…拡張脱出胚盤胞
 20401…回転部(回転機構)

Claims (17)

  1.  撮像部により撮像された細胞の画像を取得する画像取得部と、
     前記細胞の成長段階を評価する評価部と、
     前記評価部の評価結果に応じて、回転させた前記細胞を前記撮像部に撮像させる撮像制御部と
     を具備する情報処理装置。
  2.  請求項1に記載の情報処理装置であって、
     前記評価部の評価結果に応じて、前記細胞を回転させる回転機構を制御する回転制御部を
     更に具備する情報処理装置
  3.  請求項2に記載の情報処理装置であって、
     前記評価部は、前記画像取得部により取得された前記画像を基に前記細胞の成長段階を評価する
     情報処理装置。
  4.  請求項2に記載の情報処理装置であって、
     前記評価部は、前記細胞の培養時間を基に前記細胞の成長段階を評価する
     情報処理装置。
  5.  請求項3に記載の情報処理装置であって、
     前記撮像制御部は、前記評価部が前記細胞の形状が非対称の成長段階であると評価したときに、回転させた前記細胞を前記撮像部に撮像させる
     情報処理装置。
  6.  請求項5に記載の情報処理装置であって、
     前記細胞の形状が非対称である成長段階は胚盤胞の成長段階である
     情報処理装置。
  7.  請求項6に記載の情報処理装置であって、
     前記胚盤胞の成長段階は完全胚盤胞以降の成長段階である
     情報処理装置。
  8.  請求項7に記載の情報処理装置であって、
     前記細胞は、内部細胞塊を有する胚盤胞の成長段階の細胞であり、
     前記評価部は、回転させた前記細胞を撮像した画像を、前記細胞内の前記内部細胞塊の位置を基準にした撮像方向によって分類する
     情報処理装置。
  9.  請求項8に記載の情報処理装置であって、
     前記画像取得部により取得された前記細胞の画像を記憶する記憶部
     を更に具備し、
     前記記憶部は、各成長段階における前記細胞の第1の特徴量を予め記憶し、
     前記評価部は、前記画像取得部により取得された前記細胞の画像の第2の特徴量を抽出し、前記第1の特徴量と前記第2の特徴量を基に前記細胞の成長段階を評価する
     情報処理装置。
  10.  請求項9に記載の情報処理装置であって、
     前記記憶部は、任意に選択された前記細胞を教師指標として記憶する
     情報処理装置。
  11.  請求項10に記載の情報処理装置であって、
     前記撮像制御部は、複数の前記細胞を撮像するよう前記撮像部を制御し、
     前記撮像制御部は、前記教師指標とされた前記細胞の撮像回数を、前記教師指標とされなかった前記細胞の撮像回数よりも多く撮像するよう前記撮像部を制御する
     情報処理装置。
  12.  請求項9に記載の情報処理装置であって、
     前記撮像制御部は、複数の前記細胞を撮像するよう前記撮像部を制御し、
     前記評価部は、前記複数の細胞のうち一部の細胞の画像を教師画像とし、前記複数の細胞のうち他の細胞の画像をテスト画像とし、前記テスト画像を用いて前記教師画像を検証する
     情報処理装置。
  13.  細胞が収容された収容部を複数有する培養容器と、
     前記細胞を撮像する撮像部と、
     前記撮像部で撮像された前記細胞の画像を取得する画像取得部と、
     前記細胞の成長段階を評価する評価部と、
     前記評価部による前記細胞の成長段階の評価結果に応じて、前記細胞を前記収容部内で回転させる回転機構と、
     前記回転機構により回転させた前記細胞を撮像するように前記撮像部を制御する撮像制御部
    を具備する観察システム。
  14.  請求項13に記載の観察システムであって、
     前記回転機構は、前記培養容器を振動させる振動装置である
     観察システム。
  15.  請求項13に記載の観察システムであって、
     前記収容部は前記細胞と液体を収容可能であり、
     前記培養容器は前記回転機構を有し、
     前記回転機構は、前記収容部内の前記液体に流れを発生させて、前記細胞を回転させる
     観察システム。
  16.  細胞の成長段階を評価し、
     前記細胞の形状が非対称の成長段階であると評価したときに、回転させた前記細胞を撮像する
     情報処理方法。
  17.  情報処理装置に、
     細胞の成長段階を評価するステップと、
     前記細胞の形状が非対称の成長段階であると評価したときに、回転させた前記細胞を撮像するステップと
     を実行させるプログラム。
PCT/JP2017/037939 2016-11-30 2017-10-20 情報処理装置、観察システム、情報処理方法及びプログラム WO2018100917A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018553708A JPWO2018100917A1 (ja) 2016-11-30 2017-10-20 情報処理装置、観察システム、情報処理方法及びプログラム
CN201780072647.7A CN110023481A (zh) 2016-11-30 2017-10-20 信息处理设备、观察系统、信息处理方法和程序
US16/463,522 US20190376955A1 (en) 2016-11-30 2017-10-20 Information processing apparatus, observation system, information processing method, and program
EP17875942.9A EP3550010A4 (en) 2016-11-30 2017-10-20 INFORMATION PROCESSING DEVICE, OBSERVATION SYSTEM, INFORMATION PROCESSING METHOD AND PROGRAM
BR112019010508A BR112019010508A2 (pt) 2016-11-30 2017-10-20 aparelho e método de processamento de informações, sistema de observação, e, programa
AU2017368974A AU2017368974A1 (en) 2016-11-30 2017-10-20 Information processing device, observation system, information processing method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-232132 2016-11-30
JP2016232132 2016-11-30

Publications (1)

Publication Number Publication Date
WO2018100917A1 true WO2018100917A1 (ja) 2018-06-07

Family

ID=62242544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037939 WO2018100917A1 (ja) 2016-11-30 2017-10-20 情報処理装置、観察システム、情報処理方法及びプログラム

Country Status (8)

Country Link
US (1) US20190376955A1 (ja)
EP (1) EP3550010A4 (ja)
JP (1) JPWO2018100917A1 (ja)
CN (1) CN110023481A (ja)
AR (1) AR110295A1 (ja)
AU (1) AU2017368974A1 (ja)
BR (1) BR112019010508A2 (ja)
WO (1) WO2018100917A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6468576B1 (ja) * 2018-10-22 2019-02-13 康成 宮木 受精卵の画像診断システム、受精卵の画像診断プログラム及び受精卵の画像診断用識別器の作成方法。
WO2020012616A1 (ja) * 2018-07-12 2020-01-16 ソニー株式会社 情報処理装置、情報処理方法、プログラム、及び情報処理システム
US11889797B2 (en) 2020-06-03 2024-02-06 Nanotronics Imaging, Inc. Controlled growth system for biologicals

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109415676A (zh) * 2016-07-01 2019-03-01 索尼公司 图像获取方法、图像获取装置、程序和培养容器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008009914A (ja) * 2006-06-30 2008-01-17 Canon Inc 画像処理装置、画像処理方法、プログラム、記憶媒体
JP2009204657A (ja) * 2008-02-26 2009-09-10 Nagoya Institute Of Technology 細胞把持・回転観察装置
JP2011017964A (ja) * 2009-07-10 2011-01-27 Nikon Corp 培養観察装置
JP2011192109A (ja) 2010-03-16 2011-09-29 Dainippon Printing Co Ltd 画像処理装置、画像処理方法、プログラムおよび記憶媒体
WO2012142664A1 (en) * 2011-04-20 2012-10-26 Monash University Method and device for trapping and analysing cells and the like
JP2012531584A (ja) * 2009-06-25 2012-12-10 フェイズ ホログラフィック イメージング ペーホーイー アーベー デジタルホログラフィック撮像による卵又は胚の分析
JP2013243968A (ja) * 2012-05-25 2013-12-09 Nagoya Univ 細胞操作装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8265357B2 (en) * 2005-10-14 2012-09-11 Unisense Fertilitech A/S Determination of a change in a cell population
AU2010286740B2 (en) * 2009-08-22 2016-03-10 The Board Of Trustees Of The Leland Stanford Junior University Imaging and evaluating embryos, oocytes, and stem cells
EP2726865B1 (en) * 2011-07-01 2016-12-14 Cambridge Enterprise Ltd. Methods for predicting mammalian embryo viability
ES2717478T3 (es) * 2012-05-31 2019-06-21 Ares Trading Sa Métodos de predicción de blastocistos embrionarios in vitro
JP6071007B2 (ja) * 2013-08-22 2017-02-01 富士フイルム株式会社 観察画像撮影評価装置および方法並びにプログラム
US9458506B2 (en) * 2013-10-31 2016-10-04 The Board Of Trustees Of The Leland Stanford Junior University Markers for the detection of human embryo developmental quality
JP6291388B2 (ja) * 2014-09-12 2018-03-14 富士フイルム株式会社 細胞培養評価システムおよび方法
WO2018063098A1 (en) * 2016-09-30 2018-04-05 Nanyang Technological University Apparatus for embryo biopsy

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008009914A (ja) * 2006-06-30 2008-01-17 Canon Inc 画像処理装置、画像処理方法、プログラム、記憶媒体
JP2009204657A (ja) * 2008-02-26 2009-09-10 Nagoya Institute Of Technology 細胞把持・回転観察装置
JP2012531584A (ja) * 2009-06-25 2012-12-10 フェイズ ホログラフィック イメージング ペーホーイー アーベー デジタルホログラフィック撮像による卵又は胚の分析
JP2011017964A (ja) * 2009-07-10 2011-01-27 Nikon Corp 培養観察装置
JP2011192109A (ja) 2010-03-16 2011-09-29 Dainippon Printing Co Ltd 画像処理装置、画像処理方法、プログラムおよび記憶媒体
WO2012142664A1 (en) * 2011-04-20 2012-10-26 Monash University Method and device for trapping and analysing cells and the like
JP2013243968A (ja) * 2012-05-25 2013-12-09 Nagoya Univ 細胞操作装置

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
IGLESIAS, I.: "Tomographic imaging of transparent biological samples using the pyramid phase microscope", BIOMED. OPT. EXPRESS, vol. 7, August 2016 (2016-08-01), pages 3049 - 3055, XP055591970 *
KURITA, T. ET AL.: "Integration of Viewpoint Dependent Classifiers for Viewpoint Invariant Face Recognition", TECHNICAL REPORT OF IEICE, vol. 99, no. 514, 1999, pages 35 - 42, XP009515068 *
LAGALLA, C. ET AL.: "A quantitative approach to blastocyst quality evaluation: morphometric analysis and related IVF outcomes", J. ASSIST REPROD. GENET., vol. 32, 2015, pages 705 - 712, XP055192642, doi:10.1007/s10815-015-0469-3 *
MATOS, F. D. ET AL.: "A method using artificial neural networks to morphologically assess mouse blastocyst quality", J. ANIMAL SCI. TECHNOL., vol. 56, 2014, pages 1 - 10, XP021196283 *
MINASI, M. G. ET AL.: "Correlation between aneuploidy, standard morphology evaluation and morphokinetics development in 1730 biopsied blastocysts: a consecutive case series study", HUM. REPROD., vol. 31, September 2016 (2016-09-01), pages 2245 - 2254, XP055591965, doi:10.1093/humrep/dew183 *
MOTOSUGI, N . ET AL.: "Polarity of the mouse embryo is established at blastocyst and is not prepatterned", GENE DEV., vol. 19, 2005, pages 1081 - 1092, XP055591992, doi:10.1101/gad.1304805 *
OGAWA, M. ET AL.: "3-D Observation of Cell Nucleus and Cytoskeleton with Cell Rotation System", JSME ANNUAL MEETING. MECHANICAL ENGINEERING CONGRESS, JAPAN ; (KUMAMOTO) : 2006.09.18-22 , vol. 5, 2006, pages 279 - 280, XP009515819 *
ROCHA, J. C. ET AL.: "A Method Based on Artificial Intelligence to Fully Automatize the Evaluation of Bovine Blastocyst Images", SCIENTIFIC REPORTS, vol. 7, no. 1, 9 August 2017 (2017-08-09), pages 1 - 10, XP055610210 *
See also references of EP3550010A4
UCHIDA, S.: "Image processing and recognition for biological images", DEVELOP. GROWTH DIFFER., vol. 55, 2013, pages 523 - 549, XP055459119, doi:10.1111/dgd.12054 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020012616A1 (ja) * 2018-07-12 2020-01-16 ソニー株式会社 情報処理装置、情報処理方法、プログラム、及び情報処理システム
JPWO2020012616A1 (ja) * 2018-07-12 2021-08-02 ソニーグループ株式会社 情報処理装置、情報処理方法、プログラム、及び情報処理システム
JP6468576B1 (ja) * 2018-10-22 2019-02-13 康成 宮木 受精卵の画像診断システム、受精卵の画像診断プログラム及び受精卵の画像診断用識別器の作成方法。
JP2020067680A (ja) * 2018-10-22 2020-04-30 康成 宮木 受精卵の画像診断システム、受精卵の画像診断プログラム及び受精卵の画像診断用識別器の作成方法。
US11889797B2 (en) 2020-06-03 2024-02-06 Nanotronics Imaging, Inc. Controlled growth system for biologicals

Also Published As

Publication number Publication date
EP3550010A4 (en) 2019-12-18
CN110023481A (zh) 2019-07-16
US20190376955A1 (en) 2019-12-12
JPWO2018100917A1 (ja) 2019-10-17
EP3550010A1 (en) 2019-10-09
AU2017368974A1 (en) 2019-06-13
BR112019010508A2 (pt) 2019-09-17
AR110295A1 (es) 2019-03-13

Similar Documents

Publication Publication Date Title
WO2018100917A1 (ja) 情報処理装置、観察システム、情報処理方法及びプログラム
US20130205920A1 (en) Automated visual pipetting
JP7215416B2 (ja) 情報処理装置、情報処理システム、情報処理方法及びプログラム
JP6977293B2 (ja) 情報処理装置、情報処理方法、プログラム及び観察システム
US20140106389A1 (en) Apparatus, Method, and System for the Automated Imaging and Evaluation of Embryos, Oocytes and Stem Cells
US20210198605A1 (en) Information processing apparatus, information processing method, program, and observation system
US11625830B2 (en) Information processing apparatus, information processing method, program, and observation system
JP7001060B2 (ja) 情報処理装置、情報処理方法及び情報処理システム
WO2012115153A1 (ja) 細胞評価方法、細胞培養方法、細胞評価装置、インキュベータ、細胞評価プログラム、コロニー分類プログラム、幹細胞の培養方法、幹細胞評価装置および幹細胞評価プログラム
JP5876453B2 (ja) 培養品質評価方法
WO2018179971A1 (ja) 情報処理装置、情報処理方法、プログラム及び観察システム
EP3120297A1 (en) Quantitative measurement of human blastocyst and morula morphology developmental kinetics
AU2017287141B2 (en) Image acquisition method, image acquisition device, program and culture container
US20200065962A1 (en) Information processing apparatus, information processing method, program, and observation system
Mattos et al. Semi-automated blastocyst microinjection
JPWO2019150756A1 (ja) 生体対象物の移動方法及び移動装置
JP6911851B2 (ja) 装置
Dai et al. Robotic orientation control of deformable cells
JP6947905B2 (ja) 撮像システム及び生体対象物移動装置
WO2023008180A1 (ja) 画像処理方法、コンピュータープログラムおよび記録媒体
Chi Design and Testing of Automatic Microinjection System for Zebrafish Larvae
Grexa et al. SpheroidPicker: An Automated 3D cell culture manipulator robot using deep learning
Diaz Ros-Drill Automation: Visual Feedback Control And Rotational Motion Tracking

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875942

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018553708

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019010508

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017368974

Country of ref document: AU

Date of ref document: 20171020

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017875942

Country of ref document: EP

Effective date: 20190701

ENP Entry into the national phase

Ref document number: 112019010508

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190523