WO2012115153A1 - 細胞評価方法、細胞培養方法、細胞評価装置、インキュベータ、細胞評価プログラム、コロニー分類プログラム、幹細胞の培養方法、幹細胞評価装置および幹細胞評価プログラム - Google Patents

細胞評価方法、細胞培養方法、細胞評価装置、インキュベータ、細胞評価プログラム、コロニー分類プログラム、幹細胞の培養方法、幹細胞評価装置および幹細胞評価プログラム Download PDF

Info

Publication number
WO2012115153A1
WO2012115153A1 PCT/JP2012/054282 JP2012054282W WO2012115153A1 WO 2012115153 A1 WO2012115153 A1 WO 2012115153A1 JP 2012054282 W JP2012054282 W JP 2012054282W WO 2012115153 A1 WO2012115153 A1 WO 2012115153A1
Authority
WO
WIPO (PCT)
Prior art keywords
colony
cell
evaluation
imaging
singular point
Prior art date
Application number
PCT/JP2012/054282
Other languages
English (en)
French (fr)
Inventor
泰次郎 清田
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2012115153A1 publication Critical patent/WO2012115153A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/46Means for regulation, monitoring, measurement or control, e.g. flow regulation of cellular or enzymatic activity or functionality, e.g. cell viability
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/10Screening for compounds of potential therapeutic value involving cells

Definitions

  • the present invention relates to a cell evaluation method, a cell culture method, a cell evaluation device, an incubator, a cell evaluation program, a colony classification program, a stem cell culture method, a stem cell evaluation device, and a stem cell evaluation program.
  • techniques for evaluating the culture state of cells are fundamental techniques in a wide range of fields including advanced medical fields such as regenerative medicine and drug screening.
  • advanced medical fields such as regenerative medicine and drug screening.
  • regenerative medicine there is a process for growing and differentiating cells in vitro. And in said process, in order to manage the success or failure of cell differentiation, the canceration of a cell, and the presence or absence of infection, it is indispensable to evaluate the culture state of a cell exactly.
  • a cancer cell evaluation method using a transcription factor as a marker has been disclosed (see Patent Document 1).
  • Stem cells such as ES (Embryonic Stem) cells or iPS (Induced Pluripotent Stem) cells theoretically proliferate almost infinitely while maintaining pluripotency that differentiates into all tissues. As a result, attention has been focused on pharmaceutical development and application to regenerative medicine.
  • stem cells When applying such stem cells to regenerative medicine, it is necessary to maintain stem cells in good condition.
  • distinguishing stem cells in good condition depends on the subjectivity of the researcher, and there is a problem that it is not possible to objectively determine whether the state of the stem cells is good or bad.
  • aspects of the present invention include a cell evaluation method, a cell culture method, a cell evaluation device, an incubator, a cell evaluation program, a colony classification program, a stem cell culture method, a stem cell evaluation device, and a stem cell evaluation that make it possible to evaluate cell quality
  • the challenge is to provide a program.
  • a cell evaluation method includes: an imaging step of imaging a colony composed of a plurality of cells cultured in a culture vessel with an imaging device having a plurality of pixels; and an image captured in the imaging step , Comparing each pixel value inside the colony with a reference value, detecting a specific pixel from the plurality of pixels, and according to the distribution of the specific pixel detected in the detection step, And an evaluation step for evaluating the quality of the cells in the colony.
  • a cell culture method evaluates the cells using the cell evaluation method described above, and based on the evaluation of the cells, colonies formed by the cells are obtained by the imaging step.
  • a colony that is excluded from the object to be imaged and that is not excluded continuously has a control step that causes the imaging step to image during the cell culture time.
  • a cell culture method evaluates the cells using the cell evaluation method, and based on the evaluation of the cells, takes out and isolates the colonies satisfying a predetermined quality, and performs another culture. It has a subculture step of subcultured in a container and a culture step of culturing the subcultured colony in a predetermined culture environment, and is characterized by culturing cells over a predetermined culture period.
  • the cell evaluation apparatus includes a plurality of pixels, an imaging unit that images a colony composed of a plurality of cells cultured in a culture vessel and generates image data, and the imaging unit
  • a detection unit configured to detect a specific pixel from the plurality of pixels by setting a reference value from the image data of the colony imaged in Step 1, comparing the pixel value of the pixel corresponding to the colony and the reference value; Evaluation means for evaluating the quality of the cells in the colony according to the distribution of the specific pixels detected by the detection means.
  • an incubator comprises the above-described cell evaluation apparatus, and a temperature-controlled room that houses a culture container for culturing cells and can maintain the interior in a predetermined environmental condition
  • the imaging means of the cell evaluation apparatus is characterized in that a cell colony in the culture container arranged inside the temperature-controlled room is photographed.
  • a cell evaluation program is a cell evaluation cell evaluation program for causing a computer to function as the imaging unit, the detection unit, and the evaluation unit included in the cell evaluation apparatus described above. is there.
  • the colony classification program stores a classification model in which a classification model for classifying an unknown attribute captured image obtained by imaging a colony composed of stem cells for each attribute based on the luminance distribution of the colony is stored.
  • a third step of classifying colonies in the unknown attribute picked-up image by inputting pixel values of specific pixels detected from the unknown attribute picked-up image into the classification model.
  • a method for culturing a stem cell includes imaging a plurality of colonies composed of a plurality of stem cells cultured in a culture vessel in time series, and in the target image obtained by imaging the colonies, An area occupied is extracted, a luminance distribution of the area occupied by the colony is calculated, and it is evaluated whether there is a singular point in the luminance distribution.
  • the stem cell evaluation apparatus includes an image reading unit that reads a plurality of images in which a plurality of colonies made of a plurality of stem cells cultured in a culture container are imaged in time series, and the colonies In the captured target image, a region extraction unit that extracts a region occupied by the colony, a luminance distribution calculation unit that calculates a luminance distribution of the region occupied by the colony extracted by the region extraction unit, and a specific to the luminance distribution And an evaluation processing unit that evaluates whether there is a point.
  • the incubator contains a culture container for culturing stem cells and can maintain the interior in a predetermined environmental condition, and the colony contained in the culture container in the constant temperature room
  • An imaging apparatus that captures an image and the stem cell evaluation apparatus described above are provided.
  • the program for evaluating stem cells includes a first step of reading a plurality of images in which a plurality of colonies composed of a plurality of stem cells cultured in a culture container are imaged in time series, and the colonies A second step of extracting a region occupied by the colony in a target image obtained by imaging, a third step of calculating a luminance distribution of the region occupied by the colony extracted in the second step, and the luminance A stem cell evaluation program for causing a computer to execute a fourth step of evaluating whether there is a singular point in the distribution.
  • the stem cell evaluation program stores a classification model for classifying an unknown attribute captured image obtained by imaging a colony composed of stem cells for each attribute based on the luminance distribution of the colony.
  • a third step for evaluating whether or not there is a singular point in the luminance distribution; and by inputting the evaluation result extracted from the unknown attribute captured image by the third step to the classification model, 4 is a stem cell evaluation program for executing a fourth step of classifying colonies in an unknown attribute captured image.
  • the quality of cells can be evaluated.
  • the colony example in each state it is the figure which looked at the cross section of the colony, and the colony from the top.
  • the colony example in each state it is the figure which looked at the colony from the top, and the figure which showed the luminance distribution of the colony.
  • FIG. 1 is a block configuration diagram of a cell evaluation apparatus 10 according to the first embodiment of the present invention.
  • the cell evaluation apparatus 10 includes an imaging means (imaging apparatus) 11, a detection means (detection apparatus) 12, an evaluation means (evaluation apparatus) 13, and a control means (control apparatus) 14.
  • this cell evaluation apparatus may be comprised with the computer.
  • the imaging means 11 images a colony composed of a plurality of cells cultured in a culture container a plurality of times over the culture period.
  • the cell is, for example, an undifferentiated stem cell.
  • the imaging means 11 images colonies in each of the first and second periods of the culture period.
  • the imaging unit 11 includes a photodetection sensor such as a two-dimensional CCD sensor or a CMOS sensor having a plurality of pixels, and images a colony at a predetermined time interval during the culture period.
  • the imaging unit 11 outputs image data obtained by imaging the colony to the detection unit 12.
  • the detection means 12 sets a reference value from a pixel value inside the outline of the colony for each of a plurality of images in which the colony is imaged based on the image data, and the pixel value and the reference inside the colony A specific pixel of the imaging means having a pixel value different from the reference value by a predetermined pixel value or more from the reference value is detected.
  • the pixel value inside the colony outline is composed of the luminance value (light intensity value) of the pixel.
  • the specific pixel is, for example, a predetermined value (first threshold value) larger than the pixel value centered on an average value (reference value) of pixel values inside the colony outline, and
  • first threshold value a predetermined value
  • second threshold value a predetermined value
  • the pixel has a pixel value outside the region sandwiched between the two threshold values.
  • the detection unit 12 outputs information indicating the detected specific pixel to the evaluation unit.
  • the evaluation unit 13 evaluates the quality of the cells in the colony according to the pixel value of the specific pixel detected by the detection unit 12. More specifically, the evaluation unit 13 specifies a region where a specific pixel appears continuously over a plurality of pixels as a singular point, and evaluates the quality of the cell according to the singular point. Specifically, for example, the evaluation unit 13 detects, as a singular point, a region where a specific pixel continuously appears across a plurality of pixels, that is, a region having a predetermined area. If the singular point is present, the cell quality is evaluated as poor, and if there is no singular point, the cell quality is evaluated as good.
  • the pixel value of a singular point refers to a pixel value subjected to statistical processing, such as an average value, a variance value, a standard deviation, and the like.
  • the evaluation means 13 determines that the cells in the colony are good, and increases the evaluation value that is an index for evaluating the state of the cells in the colony.
  • the higher the evaluation value the better the cell state, and the lower the evaluation value, the worse the cell state.
  • the evaluation unit 13 determines that the cells in the colony are differentiated.
  • the evaluation unit 13 determines that the cell in the colony is defective and lowers the evaluation value of the colony.
  • the evaluation unit 13 determines whether or not the singular point has appeared, in addition to the presence or absence of the singular point and the pixel value of the singular point (that is, the pixel value subjected to statistical processing, such as an average value, a variance value, a standard deviation,
  • the quality of the cell may be evaluated according to at least one of the size of the singular point and the period in which the singular point appears.
  • the evaluation means 13 further detects the presence / absence of colony position movement (colony buoyancy) from a plurality of images, and evaluates the quality of the cells according to the presence / absence of movement. Specifically, for example, when the colony moves, the evaluation unit 13 decreases the evaluation value of the colony, and when the colony does not move, increases the evaluation value of the colony. The evaluation unit 13 outputs information indicating the evaluation value to the outside.
  • colony position movement colony buoyancy
  • the control means 14 determines whether or not a predetermined culture period has elapsed. When a predetermined culture period has elapsed, the control unit 14 controls to end the process of the cell evaluation apparatus 10. Further, the control means 14 determines whether or not a predetermined time interval has elapsed. When the predetermined time interval elapses, the control unit 14 causes the imaging unit 11 to capture an image.
  • FIG. 2 is a cross-sectional view of the colonies in each state and a view of the colonies from above.
  • FIG. 2A is a cross-sectional view of the colony when the colony is good and a view of the colony from above. As shown in the sectional view, when the colony is good, its height is almost horizontal. Moreover, in the figure seen from the top, it is shown that the inside of a colony has a brightness
  • FIG. 2B is a cross-sectional view of the colony when the colony is defective and a view of the colony from above. As shown in the sectional view, when the vicinity of the center of the colony rises upward, the colony is defective. Moreover, in the figure seen from the top, it is shown that the brightness
  • FIG. 2 (c) is a cross-sectional view of the colony when a part of the cells of the colony is differentiated and a view of the colony from above.
  • the cross-sectional view even when some cells of the colony differentiate, the height is almost horizontal. That is, even if some cells of the colony differentiate, the cross-sectional view is not different from the cross-sectional view of a good colony.
  • luminance of the part applicable to a differentiated cell is higher than the brightness
  • the portion where the luminance is high is one of the singular points described above.
  • FIG. 3 is a diagram showing the colonies in each state as seen from above and the luminance distribution of the colonies.
  • FIG. 3A shows a view of the colony from above and the luminance distribution of the colony when the colony is good.
  • the luminance distribution of the colony is a luminance distribution when a line passing through the center of the colony shown in the drawing of the colony of FIG. It is shown that the brightness is almost constant inside the colony.
  • FIG. 3B shows a view of the colony from above and the luminance distribution of the colony when the colony is defective.
  • the luminance distribution of the colony is a luminance distribution when a line passing through the center of the colony shown in the drawing of the colony in FIG. It is shown that the brightness of the raised part is lower than the brightness of other colonies.
  • the detection means 12 can set a predetermined luminance value as the second threshold value, and detect a pixel whose luminance is lower than the threshold value as a specific pixel inside the colony.
  • the evaluation means 13 can judge that the area
  • FIG. 3C shows a view of the colony from above and the luminance distribution of the colony when some cells of the colony differentiate.
  • the luminance distribution of the colony is a luminance distribution when a line passing through the center of the colony shown in the figure of the colony of FIG. It has been shown that the brightness of the differentiated cell portion is higher than the brightness of other colonies.
  • the detection means 12 can set a predetermined luminance value as the first threshold value, and can detect a pixel having a luminance higher than the threshold value as a specific pixel inside the colony.
  • the evaluation means 13 can judge the area
  • FIG. 4 is a flowchart for explaining the processing flow of the cell evaluation apparatus 10.
  • the imaging means 11 images a colony (step S101).
  • the detection means 12 detects a specific pixel from a certain colony (step S102).
  • the detection unit 12 detects a singular point that is an area in which the detected specific pixel continuously appears across a plurality of pixels (step S103).
  • the evaluation means 13 evaluates the quality of the cell based on the singular point (step S104).
  • step S105 determines whether or not all colonies have been evaluated. If all the colonies have not been evaluated (step S105: NO), the process returns to step S102. On the other hand, when all the colonies have been evaluated (step S105: YES), the control means 14 determines whether or not a predetermined culture period has elapsed (step S106).
  • step S106 When the predetermined culture period has elapsed (YES in step S106), the cell evaluation device 10 ends the process. On the other hand, when the predetermined culture period has not elapsed (step S106: NO), the control means 14 determines whether or not a predetermined time interval has elapsed (step S107).
  • step S107 If the predetermined time interval has not elapsed (NO in step S107), the control unit 14 returns to the process of step S106. If the predetermined time interval has elapsed (YES in step S107), the process returns to step S101. Above, the process of this flowchart is complete
  • FIG. 5 is a flowchart for explaining the processing flow of the evaluation means 13. This figure shows the flow of processing for evaluating the quality of the cell shown in step S104 of FIG.
  • the evaluation means 13 determines whether or not a singular point has been detected (step S201). When the singular point is not detected (step S201: NO), the evaluation unit 13 determines that the colony is good (step S202). On the other hand, when a singular point is detected (YES in step S201), the evaluation unit 13 determines whether the pixel value of the singular point is smaller than the second threshold value (step S203).
  • step S203 When the pixel value of the singular point is smaller than the second threshold (step S203 YES), the evaluation unit 13 determines that the colony is defective (step S204). On the other hand, when the pixel value of the singular point is larger than the second threshold value (NO in step S203), since the singular point is detected, it is clear that the pixel value of the singular point is larger than the first threshold value. The evaluation means 13 determines that the colony has differentiated (step S205). Above, the process of this flowchart is complete
  • the evaluation means 13 can evaluate the quality of the cells in the colony according to the singular points detected by the detection means 12. Thereby, since the quality of cells, such as a stem cell, can be evaluated objectively, only a cell with a favorable state can be maintained.
  • the evaluation unit 13 determines whether the cells in the colony are based on the evaluation value during the culturing period of the cells. Quality may be evaluated.
  • the cell evaluation apparatus 10 evaluated the quality of the cell in the colony cultured in a culture container.
  • the cell culture device 20 evaluates the quality of the cells in the colonies cultured in the culture container, and determines whether to continue imaging the colonies or eliminate the colonies based on the evaluation. To do. As a result, only cells in good condition can be cultured.
  • FIG. 6 is a block diagram of the cell culture device 20 according to the second embodiment of the present invention.
  • the cell culture device 20 includes an imaging unit 11b, a detection unit 12b, an evaluation unit 13b, and a control unit 24.
  • the imaging unit 11b images a colony composed of a plurality of cells cultured in the culture vessel a plurality of times during the culture period, similarly to the imaging unit 11 of the first embodiment.
  • the cell is, for example, an undifferentiated stem cell.
  • the imaging means 11b images colonies in each of the first and second periods of the culture period. Specifically, for example, the imaging unit 11b images colonies at predetermined time intervals during the culture period.
  • the imaging unit 11 b outputs image data obtained by imaging the colony to the detection unit 12 b and the control unit 24.
  • the detection unit 12b sets a reference value from pixel values inside the colony outline for each of a plurality of images in which the colony is imaged, and the above The pixel value inside the colony is compared with the reference value, and a specific pixel having a pixel value different from the reference value by a predetermined pixel value or more is detected.
  • the pixel value inside the outline of the colony is composed of a luminance value (a value subjected to statistical processing as described above).
  • the specific pixel has an average value (reference value) of pixel values inside the outline of the colony as a center, and a value (first threshold value) and a value (second threshold value) larger than this pixel value are 2 This is a pixel having a pixel value deviating from the region sandwiched between the two threshold values when two threshold values are used.
  • the detection unit 12 b outputs information indicating the detected specific pixel to the evaluation unit 13 b and the control unit 24.
  • the evaluation unit 13b evaluates the quality of the cells in the colony according to the pixel value of the specific pixel detected by the detection unit 12b, similarly to the evaluation unit 13 of the first embodiment. More specifically, the evaluation unit 13b evaluates the quality of the cell according to a singular point that is a region where a specific pixel continuously appears across a plurality of pixels. Specifically, for example, the evaluation unit 13b evaluates cell quality based on the presence or absence of a singular point.
  • the evaluation means 13b determines that the cells in the colony are good, and increases the evaluation value of the colony.
  • the evaluation unit 13b determines that the cells in the colony are differentiated.
  • the evaluation unit 13b determines that the cell in the colony is defective and lowers the evaluation value of the colony.
  • the evaluation means 13b controls information indicating an evaluation value that is an index of cell evaluation, information on the presence / absence of a singular point, the time when a singular point appears, the size of a singular point, and the period during which a singular point appears. Output to means 24.
  • the control unit 24 Based on the information indicating the evaluation value input from the evaluation unit 13b, the control unit 24 excludes the colonies formed by the cells from the target to be imaged by the imaging unit 11b, and the colonies that are not excluded continue to be in the culture time.
  • the image pickup unit 11b picks up an image.
  • control unit 24 excludes the specific pixel detected by the detection unit 12b from the colony imaged by the imaging unit 11b according to the presence or absence of a singular point that is an area where the specific pixel continuously appears across a plurality of pixels. To decide.
  • the control means 24 controls the imaging means 11b so as not to image the colonies excluded from the colonies to be imaged.
  • control unit 24 determines whether a colony is imaged by the imaging unit 11b according to at least one of the time when the singular point appears, the size of the singular point, and the period when the singular point appears. You may decide whether to exclude from.
  • the control unit 24 determines that the colony having the singular point is a differentiated cell and eliminates the colony. Specifically, for example, the control means 24 eliminates by sucking out only colonies whose pixel values at singular points are equal to or greater than a predetermined value.
  • the control means 24 detects the presence / absence of movement of the colony position (colony buoyancy) from the plurality of images input from the imaging means 11b, and from the colonies imaged by the imaging means 11b according to the presence / absence of movement. Decide whether to exclude. Specifically, if the position of the colony has moved, the control means 24 determines that the cells of the colony are in a bad state because the adhesion to the culture container is bad, and the colony imaged by the imaging means 11b Exclude from The control means 24 controls the imaging means 11b so as not to image the colonies excluded from the colonies to be imaged.
  • FIG. 7 is a flowchart for explaining the processing flow of the cell culture device 20.
  • the imaging means 11b images a colony cultured in the culture container (step S301).
  • the detection means 12b detects a specific pixel from a certain colony (step S302).
  • the detection unit 12b detects a singular point that is an area in which the detected specific pixel appears continuously over a plurality of pixels (step S303).
  • the evaluation unit 13b determines whether or not the pixel value of the singular point is greater than or equal to the first threshold value (step S304).
  • the control unit 24 excludes colonies whose pixel value of the singular point exceeds the first threshold value (step S305), and in step S309 Proceed to processing.
  • the evaluation unit 13b determines whether the pixel value of the singular point is less than the second threshold (step S306).
  • step S306 When the pixel value of the singular point is less than the second threshold (YES in step S306), the control unit 24 controls the imaging unit 11b to exclude the colony from the target to be imaged (step S308). On the other hand, when the pixel value of the singular point is greater than or equal to the second threshold (step S307 NO), the control unit 24 determines whether or not the position of the colony has moved (step S307).
  • control unit 24 controls the imaging unit 11b so as to exclude the colony from the target of imaging (step S308).
  • the control unit 24 determines whether or not all the colonies have been evaluated (step S309).
  • step S309 When all the colonies have not been evaluated (NO in step S309), the cell culture device 20 returns to the process of step S302. On the other hand, when all the colonies have been evaluated (YES in step S309), the control unit 24 determines whether or not the culture period has elapsed (step S310). When the predetermined culture period has elapsed (YES in step S310), the cell culture device 20 ends the process. On the other hand, when the predetermined culture period has not elapsed (NO in step S310), the control unit 24 determines whether or not a predetermined time interval has elapsed (step S311).
  • step S311 NO
  • the control unit 24 excludes the colonies formed by the cells from the target to be imaged by the imaging unit 11b based on the evaluation of the cells by the evaluation unit 13b, and the colonies that are not excluded continue over the culture time.
  • the imaging unit 11b can take an image. Thereby, since the cell culture apparatus 20 can image only a colony with a good state, it can reduce useless imaging. In addition, since cells in poor condition can be found and eliminated at an early stage, it is possible to reduce the cost for cell culture without using a culture solution unnecessarily. Further, it is possible to eliminate the trouble of selecting a colony in good condition from an image taken by a person who performs culture.
  • FIG. 8 is a block configuration diagram showing an overview of the incubator 30 having the function of the cell evaluation apparatus 10.
  • the incubator 30 includes an upper casing (Casing) 40 and a lower casing 50.
  • the upper casing 40 is placed on the lower casing 50. Note that the internal space between the upper casing 40 and the lower casing 50 is partitioned vertically by a base plate.
  • a temperature-controlled room 45 for culturing cells is formed inside the upper casing 40.
  • the temperature-controlled room 45 stores a culture container for culturing cells, and includes a container transport device 44, a temperature adjusting device 45a, and a humidity adjusting device 45b.
  • the observation unit 41 can execute time-lapse observation of the cells in the culture container.
  • the observation unit 41 is disposed by being fitted into the opening of the base plate of the upper casing 40.
  • the observation unit 41 includes an LED light source 42.
  • the container transport device 44 delivers the culture container between the stocker, the sample table of the observation unit 41 and the transport table.
  • the temperature adjusting device 45a adjusts the temperature of the temperature-controlled room 45.
  • the humidity adjusting device 45b adjusts the humidity of the temperature-controlled room. Thereby, the inside of the temperature-controlled room 45 is maintained in an environment suitable for cell culture (for example, an atmosphere having a temperature of 37 ° C. and a humidity of 90%).
  • the lower sequence 50 includes a cell evaluation device 10 c and a control device 51.
  • the cell evaluation apparatus 10c includes an imaging unit 11c, a detection unit 12c, an evaluation unit 13c, and a control unit 14c.
  • the imaging unit 11c acquires a microscopic image of the cell by imaging the cell of the culture vessel that is transmitted and illuminated from the upper side of the sample stage through the optical system of the microscope.
  • the imaging unit 11c converts the acquired microscope image into image data, and outputs the converted image data to the detection unit 12c.
  • the detection unit 12c detects a specific pixel from the image data input from the imaging unit 11c, and detects a singular point that is an area in which the specific pixel appears continuously over a plurality of pixels.
  • the detection unit 12c outputs information indicating the detected singular point to the evaluation unit 13c.
  • the evaluation unit 13c evaluates the quality of the cell based on the input singular point, and outputs information indicating the evaluation result to the control unit 14c.
  • the evaluation means 13c matches the information which shows the evaluation result for every colony with the said location information of a colony, and memorize
  • the control means 14c controls the imaging means 11c so as to exclude the colonies that are not excluded from the object to be imaged by the imaging means 11c based on the result evaluated by the evaluation means 13c, and to continuously take images over the culture period.
  • the control device 51 includes a CPU 52 and a storage unit 53.
  • the storage unit 53 includes a non-volatile storage medium such as a hard disk or a flash memory.
  • the storage unit 53 stores management data regarding each culture vessel stored in the stocker, and data of a microscope image captured by the imaging device. Further, the storage unit 53 stores a predetermined program executed by the CPU 52.
  • the CPU 52 is connected to the observation unit 41, the container transport device 44, the temperature adjustment device 45a, and the humidity adjustment device 45b.
  • CPU52 reads the predetermined program memorize
  • the CPU 52 controls the observation unit 41 and the container transport device 44 based on a predetermined observation schedule, and automatically executes the observation sequence of the culture container.
  • FIG. 9 is an example of a table T 1 stored in the storage unit 53.
  • the information indicating the evaluation result of the colony and the position information of the colony are stored in association with each other.
  • the colony position information is represented, for example, by coordinates in the X direction and the Y direction.
  • the table T1 indicates that the colony existing at the position (100, 100) is in good condition. Further, the table T1 indicates that the colony existing at the position (0, 0) is differentiated from some cells of the colony. In addition, the table T1 indicates that the colony existing at the position ( ⁇ 100, ⁇ 100) is in a poor state.
  • FIG. 10 is a flowchart for explaining the processing flow of the incubator 30. Since the processing from step S401 to step S404 is the same as the processing from step S101 to step S104 in FIG. 4, description of the processing is omitted. Subsequent to step S404, the evaluation unit 13c stores information indicating the evaluation result of the colony and the position information of the colony in the storage unit 53 in association with each other (step S405).
  • the control means 14c determines whether the information indicating the evaluation result of the colony indicates that the state of the colony is bad (step S406). When the information indicating the evaluation result of the colony indicates that the state of the colony is bad (step S406 YES), the control unit 14c controls the imaging unit 11c to exclude the colony from the imaging target (step S407). The process proceeds to step S408.
  • step S406 determines whether or not all the colonies have been evaluated.
  • step S408: NO the process returns to step S402.
  • step S408: YES the control unit 14c determines whether or not the culture period has elapsed.
  • step S409 When the predetermined culture period has elapsed (step S409 YES), the control unit 14c ends the process. On the other hand, when the predetermined culture period has not elapsed (step S409: NO), the control unit 14c determines whether a predetermined time interval has elapsed (step S410).
  • step S410 If the predetermined time interval has not elapsed (NO in step S410), the control unit 14c returns to the process of step S409. If the predetermined time interval has elapsed (step S410 YES), the incubator 30 returns to the process of step S401. Above, the process of this flowchart is complete
  • the control unit 14c of the incubator 30 excludes the colonies formed by the cells from the target to be imaged by the imaging unit 11 based on the result evaluated by the evaluation unit 13c, and continues to culture the colonies that are not excluded.
  • the imaging means 11 can be controlled so as to capture images over a period. Thereby, since the incubator 30 can image only colonies in good condition, it is possible to reduce useless imaging. Further, it is possible to eliminate the trouble of selecting a colony in good condition from an image taken by a person who performs culture.
  • FIG. 11 is a block diagram of a colony classification device 60 according to the fourth embodiment of the present invention.
  • the colony classification device 60 includes a luminance distribution calculation unit 61, a detection unit 12d, a classification model storage unit 62, and a cell classification unit 63.
  • the luminance distribution calculation means 61 calculates the luminance distribution of the area occupied by the colony from a plurality of unknown attribute captured images obtained by imaging the same colony photographed in time series input from the outside, and information indicating the calculated luminance distribution Output to the detection means 12d.
  • the unknown attribute captured image is an image in which a colony whose attribute information (for example, the state is good or bad) is unknown.
  • the detection unit 12d sets a reference value from the pixel values inside the colony outline for each of the plurality of unknown attribute captured images in which the colony is captured, The pixel value inside the colony is compared with a reference value, and a specific pixel having a pixel value different from the reference value by a predetermined pixel value or more is detected.
  • the pixel value inside the outline of the colony is composed of the luminance value of the pixel (the value statistically processed as described above).
  • the detection unit 12d outputs information indicating the detected specific pixel to the cell classification unit 63.
  • the classification model storage unit 62 stores a classification model for classifying an unknown attribute captured image obtained by imaging a colony made of stem cells for each attribute based on the luminance distribution of the colony.
  • the cell classification unit 63 classifies colonies in the unknown attribute captured image by inputting pixel values of specific pixels detected from the unknown attribute captured image into the classification model. Specifically, for example, the cell classification unit 63 calculates a singular point that is an area in which the specific pixel continuously appears across a plurality of pixels from the pixel value of the specific pixel detected from the unknown attribute captured image. The cell classification means 63 classifies the colonies in the unknown attribute captured image by inputting the calculated pixel values of the singular points into the classification model. The cell classification means 63 outputs information indicating the classification result to the outside.
  • FIG. 12 is an example of a classification model stored in the classification model storage unit 62.
  • the classification model a binary tree having the parameters of the presence / absence of a singular point and the luminance value of the singular point is shown.
  • the cell classification means 63 classifies the colony into a normal colony.
  • the cell classification means 63 classifies the colony into colonies having differentiated cells.
  • the cell classification means 63 classifies the colony into a normal colony. On the other hand, when there is a singular point and the luminance value of the singular point is less than 50, the cell classification means 63 classifies the colony into a bad colony.
  • FIG. 13 is a flowchart for explaining the processing flow of the colony classification device 60.
  • the luminance distribution calculating means 61 calculates the luminance distribution of the region occupied by the colony from a plurality of unknown attribute captured images obtained by imaging the same colony taken in time series (step S501).
  • the detection unit 12d detects a specific pixel for each of the plurality of unknown attribute captured images in which the colony is captured (step S502).
  • the cell classification means 63 detects a singular point for each of a plurality of unknown attribute captured images in which colonies are captured (step S503).
  • the cell classification unit 63 classifies the colonies in the unknown attribute captured image by inputting the pixel values of the calculated singular points into the classification model stored in the classification model storage unit 62 (step S504).
  • the cell classification means 63 determines whether or not all colonies have been evaluated for each of the plurality of unknown attribute captured images (step S505). If all the colonies have not been evaluated (NO in step S505), the colony classification device 60 returns to the process in step S501. On the other hand, when all the colonies are evaluated (step S505 YES), the colony classification device 60 ends the process. Above, the process of this flowchart is complete
  • the colony classification device 60 classifies the colonies in the unknown attribute captured image by inputting the pixel values of the specific pixels detected from the unknown attribute captured image in which the colonies made of stem cells are captured into the classification model. be able to.
  • category apparatus 60 can classify a colony according to the state of the cell in a colony, it can evaluate the state of the cell in a colony objectively.
  • the method for culturing a stem cell includes a step of imaging a plurality of colonies composed of a plurality of stem cells cultured in a culture vessel in time series, and a region occupied by the colony in a target image in which the colonies are captured. And calculating a luminance distribution of the region occupied by the colony and evaluating whether there is a singular point in the luminance distribution.
  • colonies having the singularity can be excluded from the culture vessel in which the stem cells are cultured.
  • the colony when the colony has floating properties, the colony can be eliminated.
  • the stem cell evaluation apparatus reads an image reading unit that reads a plurality of images in which a plurality of colonies composed of a plurality of stem cells cultured in a culture container are imaged in time series.
  • a region extraction unit that extracts a region occupied by the colony
  • a luminance distribution calculation unit that calculates a luminance distribution of the region occupied by the colony extracted by the region extraction unit
  • an evaluation processing unit that evaluates whether there is a singular point in the luminance distribution.
  • the incubator accommodates a culture vessel (not shown) for culturing stem cells and can maintain the interior in a predetermined environmental condition, and the culture in the constant temperature chamber
  • the imaging device which images the image of the said colony contained in a container, and the stem cell evaluation apparatus of Claim 22 can be provided.
  • the stem cell evaluation program includes a first step of reading a plurality of images in which a plurality of colonies made of a plurality of stem cells cultured in a culture vessel are imaged in time series, and the colonies are imaged In the target image, a second step of extracting a region occupied by the colony, a third step of calculating a luminance distribution of the region occupied by the colony extracted in the second step, and a singular point in the luminance distribution The fourth step of evaluating whether or not there is a computer can be executed.
  • the computer program of the colony classification apparatus stores a classification model for classifying an unknown attribute captured image obtained by imaging a colony composed of stem cells for each attribute based on the luminance distribution of the colony.
  • the configuration of the incubator 30 will be described with reference to FIG. Basically, the configuration is the same as that described in the third embodiment. However, a part of the configuration will be described with reference to FIGS. 15 and 16.
  • FIG. 15 shows the configuration of the dispensing apparatus 100, and the dispensing apparatus 100 of FIG. 15 is controlled by the control device 51 of the lower casing 50 of FIG.
  • the dispensing apparatus 100 includes a transport robot 101 that transports a culture container for iPS cell colonies cultured in the incubator 30.
  • the transfer robot 101 transfers a plurality of culture vessels 90 and 91 between the dispensing apparatus 100 and the incubator 30 respectively.
  • the dispensing apparatus 100 includes a dispensing pipette apparatus 102, a culture medium tank 103 for dispensing, and a waste liquid tank 104. Note that a plurality of culture solution tanks 103 may be arranged, and for example, a chemical solution tank such as a medicine may be used.
  • the dispensing pipette device 102 is connected to the tanks 103 and 104 by a pipe, and this pipe is provided with a valve for controlling the liquid.
  • the dispensing pipette device 102 is configured to be movable by a predetermined distance in order to suck up the iPS cell colonies in the culture container 90 with a pipette and transfer them to another culture container 91.
  • the dispensing device 100 is automatically controlled by the CPU 52 of the control device 51 by programming, and is configured to execute the following control.
  • step 600 and 601 at the start of cell culture, dispense pipette device 102 is controlled to seed iPS cell seeds into culture vessel 90 (cell seeding step), or in the colony state evaluation process of the above embodiment, good A new undifferentiated iPS cell colony is taken out (pipetting), broken up until it becomes a small lump, and isolated into a plurality of iPS cells (state evaluation and cell isolation step).
  • steps 602 and 603 the iPS cells that have become small clusters are seeded in a plurality of culture vessels (passaging step).
  • step 604 small iPS cells seeded in the plurality of culture vessels are cultured in an incubator.
  • the dispensing pipette device 102 uses the culturing liquid tank 103 and the waste liquid tank 104 for exchanging the medium (replenishment of nutrients and removing impurities) to promote the culturing.
  • the incubator 30 is maintained in a culture environment of temperature (37 ° C.), carbon dioxide (5%), and humidity (95%), and is cultured in the incubator 30 until it becomes 80-90% confluent (medium exchange / culture process) ).
  • the iPS cell colony that has become confluent is returned to the state evaluation and cell isolation steps in the same manner as described above, and the culture is repeated.
  • step 605 it is determined whether a predetermined culture period has elapsed or whether a predetermined amount of undifferentiated iPS cell colonies has been collected.
  • step 606 a colony state evaluation process is performed, and only good undifferentiated iPS cell colonies are frozen and stored (freezing step).
  • the colony state evaluation processing of the above embodiment is performed, and only good undifferentiated iPS cell colonies are taken out (pipetting), whereby a large number of iPS cell colonies with stable quality can be obtained.
  • the cell evaluation apparatus 10 in the first embodiment of the present invention the cell culture apparatus 20 in the second embodiment of the present invention, the cell evaluation apparatus 10c in the third embodiment of the present invention, or the fourth of the present invention.
  • the cell You may perform the various process mentioned above which concerns on the evaluation apparatus 10, the cell culture apparatus 20, the cell evaluation apparatus 10c, or the colony classification apparatus 60.
  • the “computer system” referred to here may include an OS and hardware such as peripheral devices. Further, the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used.
  • the “computer-readable recording medium” means a flexible disk, a magneto-optical disk, a ROM, a writable nonvolatile memory such as a flash memory, a portable medium such as a CD-ROM, a hard disk built in a computer system, etc. This is a storage device.
  • the “computer-readable recording medium” means a volatile memory (for example, DRAM (Dynamic) in a computer system which becomes a server or a client when a program is transmitted through a network such as the Internet or a communication line such as a telephone line. Random Access Memory)), etc. that hold a program for a certain period of time.
  • the program may be transmitted from a computer system storing the program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium.
  • the “transmission medium” for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
  • the program may be for realizing a part of the functions described above. Furthermore, what can implement

Abstract

 細胞評価装置は、撮像手段(11)が、培養容器内で培養される複数の細胞からなるコロニーを培養期間中にわたって複数回、撮像し、検出手段(12)が、コロニーが撮像された複数の画像の各々について、コロニーの輪郭よりも内側における画素値から基準値を設定し、かつ上記コロニーの内側における画素値と基準値を比較して、基準値から所定の画素値以上異なる画素値を有する特定画素を検出し、評価手段(13)が、検出手段(12)で検出された特定画素の画素値に応じて、コロニーにある細胞の品質を評価する。

Description

細胞評価方法、細胞培養方法、細胞評価装置、インキュベータ、細胞評価プログラム、コロニー分類プログラム、幹細胞の培養方法、幹細胞評価装置および幹細胞評価プログラム
 本発明は、細胞評価方法、細胞培養方法、細胞評価装置、インキュベータ、細胞評価プログラム、コロニー分類プログラム、幹細胞の培養方法、幹細胞評価装置および幹細胞評価プログラムに関するものである。
 本願は、2011年2月25日に出願された日本国特願2011-040689号に基づき優先権を主張し、その内容をここに援用する。
 一般的に、細胞の培養状態を評価する技術は、再生医療などの先端医療分野や医薬品のスクリーニングを含む幅広い分野での基盤技術となっている。例えば、再生医療分野では、インビトロ(in vitro)で細胞を増殖、分化させるプロセスが存在する。そして、上記のプロセスでは、細胞の分化の成否、細胞の癌化や感染の有無を管理するために、細胞の培養状態を的確に評価することが不可欠である。一例として、マーカーとして転写因子を用いたがん細胞の評価方法が開示されている(特許文献1参照)。
 ES(Embryonic Stem、胚性幹)細胞またはiPS(induced Pluripotent Stem、誘導多能性幹)細胞などの幹細胞は、理論上すべての組織に分化する分化多能性を保ちつつ、ほぼ無限に増殖させる事ができるため、医薬開発および再生医療への応用に注目が集まっている。
特開2007-195533号公報
 そのような幹細胞を再生医療に応用する際には、状態が良い幹細胞を維持する必要がある。しかしながら、従来、状態が良い幹細胞を見分けるのは研究者の主観に依存しており、客観的に幹細胞の状態が良いか悪いか判定することができないという問題があった。
 本発明の態様は、細胞の品質を評価することを可能とする細胞評価方法、細胞培養方法、細胞評価装置、インキュベータ、細胞評価プログラム、コロニー分類プログラム、幹細胞の培養方法、幹細胞評価装置および幹細胞評価プログラムを提供することを課題とする。
 本発明の一態様において、細胞評価方法は、培養容器内で培養される複数の細胞からなるコロニーを、複数の画素を有する撮像素子で撮像する撮像ステップと、前記撮像ステップで撮像された画像について、前記コロニーの内側における各画素値と基準値とを比較して、前記複数の画素のうちから特定画素を検出する検出ステップと、前記検出ステップで検出された前記特定画素の分布に応じて、前記コロニーにある細胞の品質を評価する評価ステップと、を有することを特徴とする。
 本発明の別の一態様において、細胞培養方法は、上記に記載の細胞評価方法を用いて前記細胞を評価し、前記細胞の評価を基に、前記細胞で形成されるコロニーを前記撮像ステップによって撮像する対象から除外し、除外されていないコロニーについては引き続き前記細胞の培養時間中にわたって前記撮像ステップにて撮像させる制御ステップを有することを特徴とする。
 本発明の別の一態様において、細胞培養方法は、上記細胞評価方法を用いて前記細胞を評価し、前記細胞の評価を基に、所定の品質を満たす前記コロニーを取り出し単離して別の培養容器に継代する継代ステップと、前記継代された前記コロニーを所定の培養環境で培養する培養ステップとを有し、所定の培養期間にわたって細胞を培養することを特徴とする。
 本発明の別の一態様において、細胞評価装置は、複数の画素を有し、培養容器内で培養される複数の細胞からなるコロニーを撮像して画像データを生成する撮像手段と、前記撮像手段で撮像された前記コロニーの画像データから基準値を設定し、前記コロニーに対応する前記画素の画素値と前記基準値を比較して、前記複数の画素から特定画素を検出する検出手段と、前記検出手段で検出された前記特定画素の分布に応じて、前記コロニーにある細胞の品質を評価する評価手段と、を備えることを特徴とする。
 本発明の別の一態様において、インキュベータは、上記に記載の細胞評価装置と、細胞を培養する培養容器を収納するとともに、所定の環境条件に内部を維持可能な恒温室と、を備え、前記細胞評価装置の撮像手段は、前記恒温室の内部に配置された前記培養容器中の細胞のコロニーを撮影することを特徴とする。
 本発明の別の一態様において、細胞評価プログラムは、コンピュータを、上記に記載の細胞評価装置が備える前記撮像手段と、前記検出手段と、前記評価手段として機能させるための細胞評価細胞評価プログラムである。
 本発明の別の一態様において、コロニー分類プログラムは、幹細胞からなるコロニーが撮像された未知属性撮像画像を、コロニーの輝度分布に基づいて属性毎に分類する分類モデルが記憶されている分類モデル記憶手段を備えるコロニー分類装置のコンピュータに、同一のコロニーが時系列に撮像されることにより得られる複数の前記未知属性撮像画像から、前記コロニーが占める領域の輝度分布を算出する第1のステップと、前記コロニーが撮像された複数の未知属性撮像画像の各々について、前記コロニーの輪郭よりも内側における画素値から基準値を設定し、かつ前記コロニーの内側における画素値と基準値を比較して、前記基準値から所定の画素値以上異なる画素値を有する特定画素を検出する第2のステップと、前記第2のステップによって、前記未知属性撮像画像から検出された特定画素の画素値を、前記分類モデルに投入することによって、前記未知属性撮像画像内のコロニーを分類する第3のステップと、を実行させるためのコロニー分類プログラムである。
 本発明の別の一態様において、幹細胞の培養方法は、培養容器内で培養される複数の幹細胞からなる複数のコロニーを時系列に撮像し、前記コロニーが撮像された対象画像において、前記コロニーが占める領域を抽出し、前記コロニーが占める前記領域の輝度分布を算出し、前記輝度分布に特異点があるかを評価することを特徴とする。
 本発明の別の一態様において、幹細胞評価装置は、培養容器内で培養される複数の幹細胞からなる複数のコロニーが時系列に撮像されている複数の画像を読み込む画像読込部と、前記コロニーが撮像された対象画像において、前記コロニーが占める領域を抽出する領域抽出部と、前記領域抽出部で抽出された前記コロニーが占める領域の輝度分布を算出する輝度分布算出部と、前記輝度分布に特異点があるかを評価する評価処理部と、を備えることを特徴とする。
 本発明の別の一態様において、インキュベータは、幹細胞を培養する培養容器を収納するとともに、所定の環境条件に内部を維持可能な恒温室と、前記恒温室内で前記培養容器に含まれる前記コロニーの画像を撮像する撮像装置と、上記に記載の幹細胞評価装置と、を備えることを特徴とする。
 本発明の別の一態様において、幹細胞評価プログラムは、培養容器内で培養される複数の幹細胞からなる複数のコロニーが時系列に撮像されている複数の画像を読み込む第1のステップと、前記コロニーが撮像された対象画像において、前記コロニーが占める領域を抽出する第2のステップと、前記第2のステップで抽出された前記コロニーが占める領域の輝度分布を算出する第3のステップと、前記輝度分布に特異点があるかを評価する第4のステップと、をコンピュータに実行させるための幹細胞評価プログラムである。
 本発明の別の一態様において、幹細胞評価プログラムは、幹細胞からなるコロニーが撮像された未知属性撮像画像を、コロニーの輝度分布に基づいて属性毎に分類する分類モデルが記憶されているコロニー分類装置のコンピュータに、前記未知属性撮像画像から、個々のコロニーが占める領域を抽出する第1のステップと、前記第1のステップで抽出された前記コロニーが占める領域の輝度分布を算出する第2のステップと、前記輝度分布に特異点があるかを評価する第3のステップと、前記第3のステップによって、前記未知属性撮像画像から抽出された評価結果を、前記分類モデルに投入することによって、前記未知属性撮像画像内のコロニーを分類する第4のステップと、を実行させるための幹細胞評価プログラムである。
 本発明の態様によれば、細胞の品質を評価することができる。
本発明の第1の実施形態である細胞評価装置のブロック構成図である。 それぞれの状態にあるコロニー例において、そのコロニーの断面図及びそのコロニーを上から見た図である。 それぞれの状態にあるコロニー例において、そのコロニーを上から見た図及びそのコロニーの輝度分布を示した図である。 細胞評価装置の処理の流れを説明するフローチャートである。 評価手段の処理の流れを説明するフローチャートである。 本発明の第2の実施形態である細胞培養装置のブロック構成図である。 細胞培養装置の処理の流れを説明するフローチャートである。 本発明の第3の実施形態における細胞評価装置の機能を兼ね備えるインキュベータの概要を示すブロック構成図である。 記憶部に記憶されているテーブルの一例である。 インキュベータの処理の流れを説明するフローチャートである。 本発明の第4の実施形態におけるコロニー分類装置のブロック構成図である。 分類モデル記憶手段に記憶されている分類モデルの一例である。 コロニー分類装置の処理の流れを説明するフローチャートである。 幹細胞評価装置を備えるインキュベータの例を示した図である。 iPS細胞コロニーの状態評価とiPS細胞の培養工程について説明した図である。 iPS細胞コロニーの状態評価とiPS細胞の培養工程の流れを説明するフローチャートである。
 <第1の実施形態>
 以下、本発明を実施するための形態について、図面を参照して詳細に説明する。図1は、本発明の第1の実施形態である細胞評価装置10のブロック構成図である。細胞評価装置10は、撮像手段(撮像装置)11と、検出手段(検出装置)12と、評価手段(評価装置)13と、制御手段(制御装置)14とを備える。なお、この細胞評価装置は、コンピュータで構成されていてもよい。
 撮像手段11は、培養容器内で培養される複数の細胞からなるコロニーを培養期間中にわたって複数回撮像する。上記細胞は、例えば、未分化の幹細胞である。撮像手段11は、前記培養期間の前期、後期の各々でコロニーを撮像する。具体的には、例えば、撮像手段11は、複数の画素を有する2次元CCDセンサー、CMOSセンサーなどの光検出センサーからなり、培養期間中に所定の時間間隔で、コロニーを撮像する。
 撮像手段11は、コロニーを撮像した画像データを検出手段12に出力する。
 検出手段12は、画像データに基づき、上記コロニーが撮像された複数の画像の各々について、上記コロニーの輪郭よりも内側における画素値から基準値を設定し、かつ上記コロニーの内側における画素値と基準値とを比較して、この基準値から所定の画素値以上異なる画素値を有する撮像手段の特定画素を検出する。ここで、上記コロニーの輪郭よりも内側における画素値は、その画素の輝度値(光強度値)からなっている。
 また、特定画素は、具体的には、例えば、上記コロニーの輪郭の内側における画素値の平均値(基準値)を中心にして、この画素値よりも大きい所定の値(第1の閾値)及び小さい所定の値(第2の閾値)を2つの閾値としたときに、上記2つの閾値で挟まれる領域から外れた画素値を有する画素である。
 検出手段12は、検出した特定画素を示す情報を評価手段に出力する。
 評価手段13は、検出手段12で検出された特定画素の画素値に応じて、コロニーにある細胞の品質を評価する。
 より詳細には、評価手段13は、特定画素が複数の画素にわたって連続的に出現した領域を特異点として特定し、その特異点に応じて、細胞の品質を評価する。具体的には、例えば、評価手段13は、特定画素が複数の画素にわたって連続的に出現する領域、すなわち所定の面積となった領域を特異点として検出する。そして、その特異点が有る場合には細胞の品質が悪いと評価し、特異点が無い場合には細胞の品質を良好と評価する。特異点の画素値とは、統計処理された画素値、例えば平均値、分散値、標準偏差などをいう。
 評価手段13は、特異点が無い場合、そのコロニーにある細胞は良好であると判定し、そのコロニーにある細胞の状態を評価した指標である評価値を高くする。ここで、評価値が高いほど細胞の状態が良く、評価値が低いほど細胞の状態が悪いこととする。
 評価手段13は、特異点が有り、特異点の画素値が第1の閾値よりも大きいときには、そのコロニーにある細胞が分化していると判定する。一方、評価手段13は、特異点が有り、特異点の画素値が第2の閾値よりも小さいときには、そのコロニーにある細胞は不良であると判定し、そのコロニーの評価値を低くする。
 なお、評価手段13は、上記特異点の有無と特異点の画素値(すなわち、統計処理された画素値、例えば平均値、分散値、標準偏差など)に加え、上記特異点が出現した時期、上記特異点の大きさ、上記特異点の出現した期間の少なくともいずれか一つに応じて、細胞の品質を評価してもよい。
 また、評価手段13は、更にコロニーの位置の移動の有無(コロニーの浮遊性)を複数の画像から検出し、移動の有無に応じて、細胞の品質を評価する。具体的には、例えば、評価手段13は、コロニーが移動した場合、そのコロニーの評価値を低くし、コロニーが移動しない場合、そのコロニーの評価値を高くする。
 評価手段13は、評価値を示す情報を外部に出力する。
 制御手段14は、予め決められた培養期間が経過したか否か判定する。予め決められた培養期間が経過した場合、制御手段14は、細胞評価装置10の処理を終了するよう制御する。
 また、制御手段14は、所定の時間間隔が経過したか否か判定する。所定の時間間隔が経過した場合、制御手段14は、撮像手段11に撮像させる。
 図2は、それぞれの状態にあるコロニーの断面図とコロニーを上から見た図である。図2(a)は、コロニーが良好な場合のコロニーの断面図とコロニーを上から見た図である。断面図に示されるように、コロニーが良好な場合、その高さがほぼ水平となっている。
 また、上から見た図において、コロニーの内部は、コロニーの輪郭よりも輝度(光強度)が低く、一様な輝度分布(光強度分布)を持つことが示されている。
 図2(b)は、コロニーが不良な場合のコロニーの断面図とコロニーを上から見た図である。断面図に示されるように、コロニーの中心付近が上に盛り上がる場合、そのコロニーは不良である。また、上から見た図において、その盛り上がっている部分の輝度は、他のコロニー内部の輝度よりも低くなっていることが示されている。この輝度が低くなっている部分が上述した特異点の一つである。
 図2(c)は、コロニーの一部の細胞が分化した場合のコロニーの断面図とコロニーを上から見た図である。断面図に示されるように、コロニーの一部の細胞が分化した場合でも、その高さがほぼ水平となっている。すなわち、コロニーの一部の細胞が分化しても、その断面図は、良好なコロニーの断面図と変わりはない。
 しかし、上から見た図において、分化した細胞に該当する部分の輝度は、他のコロニー内部の輝度よりも高くなっていることが示されている。この輝度が高くなっている部分が上述した特異点の一つである。
 図3は、それぞれの状態にあるコロニーを上から見た図とコロニーの輝度分布を示した図である。図3(a)には、コロニーが良好な場合において、コロニーを上から見た図とコロニーの輝度分布とが示されている。コロニーの輝度分布は、図3(a)のコロニーを上から見た図に示すコロニーの中心を通る線をx軸としたときの輝度分布である。コロニーの内部で輝度がほぼ一定であることが示されている。
 図3(b)には、コロニーが不良な場合において、コロニーを上から見た図とコロニーの輝度分布とが示されている。コロニーの輝度分布は、図3(b)のコロニーを上から見た図に示すコロニーの中心を通る線をx軸としたときの輝度分布である。上に盛り上がった部分の輝度が、他のコロニーの内部の輝度よりも低くなっていることが示されている。
 同図より、検出手段12は、所定の輝度値を第2の閾値に設定し、コロニーの内部においてその閾値よりも輝度が低い画素を特定画素として検出することができる。また、評価手段13は、その第2の閾値よりも低い輝度値を持つ領域を、上に盛り上がっている部分と判断し、そのコロニーにある細胞の品質が悪いと評価することができる。
 図3(c)には、コロニーの一部の細胞が分化した場合において、コロニーを上から見た図とコロニーの輝度分布とが示されている。コロニーの輝度分布は、図3(c)のコロニーを上から見た図に示すコロニーの中心を通る線をx軸としたときの輝度分布である。分化した細胞の部分の輝度が、他のコロニーの内部の輝度よりも高くなっていることが示されている。
 同図より、検出手段12は、所定の輝度値を第1の閾値に設定し、コロニーの内部においてその閾値よりも輝度が高い画素を特定画素として検出することができる。また、評価手段13は、その第1の閾値よりも高い輝度値を持つ領域を、分化した細胞の領域と判断し、そのコロニーをそれ以降の撮像対象から除外することができる。
 図4は、細胞評価装置10の処理の流れを説明するフローチャートである。本フローチャートでは、細胞評価装置10が、ある1つの培養容器で培養されている細胞に対して行う処理について説明する。まず、撮像手段11は、コロニーを撮像する(ステップS101)。次に、検出手段12は、あるコロニーから特定画素を検出する(ステップS102)。次に、検出手段12は、検出した特定画素が複数の画素にわたって連続的に出現した領域である特異点を検出する(ステップS103)。次に、評価手段13は、特異点に基づき、細胞の品質を評価する(ステップS104)。
 次に、評価手段13は、全てのコロニーを評価したか否か判定する(ステップS105)。全てのコロニーを評価していない場合(ステップS105 NO)、ステップS102の処理に戻る。一方、全てのコロニーを評価した場合(ステップS105 YES)、制御手段14は、予め決められた培養期間が経過したか否か判定する(ステップS106)。
 予め決められた培養期間が経過した場合(ステップS106 YES)、細胞評価装置10はその処理を終了する。一方、予め決められた培養期間が経過していない場合(ステップS106 NO)、制御手段14は、所定の時間間隔が経過したか否か判定する(ステップS107)。
 所定の時間間隔が経過していていない場合(ステップS107 NO)、制御手段14は、ステップS106の処理に戻る。所定の時間間隔が経過した場合(ステップS107 YES)、ステップS101の処理に戻る。以上で、本フローチャートの処理を終了する。
 図5は、評価手段13の処理の流れを説明するフローチャートである。同図には、図4のステップS104で示された細胞の品質を評価する処理の流れが示されている。まず、評価手段13は、特異点が検出されたか否か判定する(ステップS201)。特異点が検出されなかった場合(ステップS201 NO)、評価手段13は、コロニーが良好であると判定する(ステップS202)。一方、特異点が検出された場合(ステップS201 YES)、評価手段13は、特異点の画素値が第2の閾値よりも小さいか否か判定する(ステップS203)。
 特異点の画素値が第2の閾値よりも小さい場合(ステップS203 YES)、評価手段13は、コロニーが不良であると判定する(ステップS204)。一方、特異点の画素値が第2の閾値よりも大きい場合(ステップS203 NO)、特異点が検出されていることから、特異点の画素値は第1の閾値よりも大きいことが明らかなので、評価手段13は、コロニーが分化したと判定する(ステップS205)。以上で、本フローチャートの処理を終了する。
 以上により、評価手段13が、検出手段12で検出された特異点に応じて、コロニーにある細胞の品質を評価することができる。これにより、幹細胞などの細胞の品質を客観的に評価することができるので、状態が良い細胞のみを維持することができる。
 なお、コロニーにある細胞の状態が一時的に悪くなっても、よい状態に戻ることもあるので、評価手段13は、細胞の培養期間の経過時の評価値に基づいて、コロニーにある細胞の品質を評価してもよい。
 <第2の実施形態>
 次に、第2の実施形態について説明する。第1の実施形態では、細胞評価装置10が、培養容器内で培養されるコロニーにある細胞の品質を評価することを説明した。第2の実施形態では、細胞培養装置20が培養容器内で培養されるコロニーにある細胞の品質を評価し、その評価に基づいてそのコロニーの撮像を継続するか、そのコロニーを排除するか判定する。これにより、状態が良い細胞のみを培養することができる。
 図6は、本発明の第2の実施形態である細胞培養装置20のブロック構成図である。細胞培養装置20は、撮像手段11bと、検出手段12bと、評価手段13bと、制御手段24とを備える。
 撮像手段11bは、第1の実施形態の撮像手段11と同様に、培養容器内で培養される複数の細胞からなるコロニーを培養期間中にわたって複数回撮像する。上記細胞は、例えば、未分化の幹細胞である。撮像手段11bは、前記培養期間の前期、後期の各々でコロニーを撮像する。具体的には、例えば、撮像手段11bは、培養期間中に所定の時間間隔で、コロニーを撮像する。撮像手段11bは、コロニーを撮像した画像データを検出手段12bと制御手段24とに出力する。
 検出手段12bは、第1の実施形態の検出手段12と同様に、上記コロニーが撮像された複数の画像の各々について、上記コロニーの輪郭よりも内側における画素値から基準値を設定し、かつ上記コロニーの内側における画素値と基準値とを比較して、この基準値から所定の画素値以上異なる画素値を有する特定画素を検出する。ここで、上記コロニーの輪郭よりも内側における画素値は、輝度値(前述した通り統計処理された値)からなっている。
 また、特定画素は、コロニーの輪郭の内側における画素値の平均値(基準値)を中心にして、この画素値よりも大きい値(第1の閾値)及び小さい値(第2の閾値)を2つの閾値としたときに、上記2つの閾値で挟まれる領域から外れた画素値を有する画素である。
 検出手段12bは、検出した特定画素を示す情報を評価手段13bと制御手段24とに出力する。
 評価手段13bは、第1の実施形態の評価手段13と同様に、検出手段12bで検出された特定画素の画素値に応じて、コロニーにある細胞の品質を評価する。より詳細には、評価手段13bは、特定画素が複数の画素にわたって連続的に出現した領域である特異点に応じて、細胞の品質を評価する。具体的には、例えば、評価手段13bは、特異点の有無に基づいて、細胞の品質を評価する。
 その場合、評価手段13bは、特異点が無い場合、そのコロニーにある細胞は良好であると判定し、そのコロニーの評価値を高くする。
 評価手段13bは、特異点が有り、特異点の画素値が第1の閾値よりも大きいときには、そのコロニーにある細胞が分化していると判定する。一方、評価手段13bは、特異点が有り、特異点の画素値が第2の閾値よりも小さいときには、そのコロニーにある細胞は不良であると判定し、そのコロニーの評価値を低くする。
 評価手段13bは、細胞の評価の指標である評価値を示す情報と、特異点の有無の情報と、特異点が出現した時期と、特異点の大きさと、特異点の出現した期間とを制御手段24に出力する。
 制御手段24は、評価手段13bから入力された評価値を示す情報を基に、細胞で形成されるコロニーを撮像手段11bによって撮像する対象から除外し、除外されていないコロニーについては引き続き培養時間中にわたって撮像手段11bに撮像させる。
 また、制御手段24は、検出手段12bで検出された特定画素が複数の画素にわたって連続的に出現した領域である特異点の有無に応じて、撮像手段11bによって撮像するコロニーから除外するか否かを決定する。制御手段24は、撮像するコロニーから除外したコロニーを撮像しないよう撮像手段11bを制御する。
 なお、制御手段24は、特異点の有無に加え、特異点が出現した時期、特異点の大きさ、特異点の出現した期間の少なくともいずれか一つに応じて、撮像手段11bによって撮像するコロニーから除外するか否かを決定してもよい。
 制御手段24は、特異点における画素値が所定値以上である場合には、特異点を有するコロニーを分化した細胞であると判定し、そのコロニーを排除する。具体的には、例えば、制御手段24は、特異点における画素値が所定値以上であるコロニーだけ吸い出すことにより排除する。
 制御手段24は、撮像手段11bから入力された複数の画像から、上記コロニーの位置の移動の有無(コロニーの浮遊性)を検出し、移動の有無に応じて、撮像手段11bによって撮像するコロニーから除外するか否かを決定する。具体的には、制御手段24は、コロニーの位置が移動していたら、そのコロニーの細胞は、培養容器への接着性が悪いことから、状態が悪いと判定し、撮像手段11bによって撮像するコロニーから除外する。
 制御手段24は、撮像するコロニーから除外したコロニーを撮像しないよう撮像手段11bを制御する。
 図7は、細胞培養装置20の処理の流れを説明するフローチャートである。まず、撮像手段11bが、培養容器内で培養されるコロニーを撮像する(ステップS301)。次に、検出手段12bは、あるコロニーから特定画素を検出する(ステップS302)。次に、検出手段12bは、検出した特定画素が複数の画素にわたって連続的に出現した領域である特異点を検出する(ステップS303)。
 評価手段13bは、特異点の画素値が第1の閾値以上であるか否か判定する(ステップS304)。特異点の画素値が第1の閾値を超えた場合(ステップS304 YES)、制御手段24は、特異点の画素値が第1の閾値を超えたコロニーを排除し(ステップS305)、ステップS309の処理に進む。
 一方、特異点の画素値が第1の閾値未満である場合(ステップS304 NO)、評価手段13bは、特異点の画素値が第2の閾値未満か否か判定する(ステップS306)。
 特異点の画素値が第2の閾値未満の場合(ステップS306 YES)、制御手段24は、そのコロニーを撮像する対象から除外するよう撮像手段11bを制御する(ステップS308)。一方、特異点の画素値が第2の閾値以上の場合(ステップS307 NO)、制御手段24は、コロニーの位置が移動したか否か判定する(ステップS307)。
 コロニーの位置が移動した場合(ステップS307 YES)、制御手段24は、そのコロニーを撮像する対象から除外するよう撮像手段11bを制御する(ステップS308)。一方、コロニーの位置が移動していない場合(ステップS307 NO)、制御手段24は、全てのコロニーを評価したか否か判定する(ステップS309)。
 全てのコロニーを評価していない場合(ステップS309 NO)、細胞培養装置20はステップS302の処理に戻る。一方、全てのコロニーを評価した場合(ステップS309 YES)、制御手段24は、培養期間が経過したか否か判定する(ステップS310)。
 予め決められた培養期間が経過した場合(ステップS310 YES)、細胞培養装置20はその処理を終了する。一方、予め決められた培養期間が経過していない場合(ステップS310 NO)、制御手段24は、所定の時間間隔が経過したか否か判定する(ステップS311)。
 所定の時間間隔が経過していていない場合(ステップS311 NO)、制御手段24は、ステップS310の処理に戻る。所定の時間間隔が経過した場合(ステップS311 YES)、細胞培養装置20はステップS301の処理に戻る。以上で、本フローチャートの処理を終了する。
 以上により、制御手段24が、評価手段13bによる細胞の評価を基に、その細胞で形成されるコロニーを撮像手段11bによって撮像する対象から除外し、除外されていないコロニーについては引き続き培養時間中にわたって撮像手段11bに撮像させることができる。これにより、細胞培養装置20は、状態の良いコロニーのみを撮像することができるので、無駄な撮像を減らすことができる。また、状態の悪い細胞を早期に見つけ出し、それを排除することができるので、無駄に培養液を使うことがなく、細胞培養にかかる経費を削減することができる。また、培養をする者が撮像された画像から、状態の良いコロニーを選別する手間を無くすことができる。
 <第3の実施形態>
 続いて、本発明の第3の実施形態におけるインキュベータ(Incubator)について説明する。図8は、細胞評価装置10の機能を兼ね備えるインキュベータ30の概要を示すブロック構成図である。
 インキュベータ30は、上部ケーシング(Casing)40と下部ケーシング50とを備える。インキュベータ30の組立状態において、上部ケーシング40は下部ケーシング50の上に載置される。なお、上部ケーシング40と下部ケーシング50との内部空間は、ベースプレートによって上下に仕切られている。
 まず、上部ケーシング40の構成の概要を説明する。図8において、上部ケーシング40の内部には、細胞の培養を行う恒温室45が形成されている。この恒温室45は、細胞を培養する培養容器を収納するとともに、容器搬送装置44と、温度調整装置45aと、湿度調整装置45bとを備える。
 観察ユニット41は、培養容器内の細胞のタイムラプス(Time‐lapse)観察を実行することができる。
 ここで、観察ユニット41は、上部ケーシング40のベースプレートの開口部に嵌め込まれて配置される。観察ユニット41にはLED光源42が内蔵されている。
 容器搬送装置44は、ストッカー、観察ユニット41の試料台および搬送台との間で培養容器の受け渡しを行う。
 温度調整装置45aは、恒温室45の温度を調整する。また、湿度調整装置45bは恒温室の湿度を調整する。これにより、恒温室45内は細胞の培養に適した環境(例えば温度37℃、湿度90%の雰囲気)に維持されている。
 下部シーケンス50は、細胞評価装置10cと制御装置51とを備える。細胞評価装置10cは、撮像手段11cと、検出手段12cと、評価手段13cと、制御手段14cとを備える。
 撮像手段11cは、試料台の上側から透過照明された培養容器の細胞を、顕微鏡の光学系を介して撮像することで細胞の顕微鏡画像を取得する。撮像手段11cは、取得した顕微鏡画像を画像データに変換し、変換した画像データを検出手段12cに出力する。
 検出手段12cは、撮像手段11cから入力された画像データから特定画素を検出し、特定画素が複数の画素にわたって連続的に出現した領域である特異点を検出する。検出手段12cは、検出した特異点を示す情報を評価手段13cに出力する。
 評価手段13cは、入力された特異点に基づいて、細胞の品質を評価し、その評価結果を示す情報を制御手段14cに出力する。また、評価手段13cは、コロニー毎の評価結果を示す情報を上記コロニーの位置情報と対応付けて制御装置51の後述する記憶部53に記憶させる。
 制御手段14cは、評価手段13cで評価された結果に基づいて、撮像手段11cによって撮像する対象から除外し、除外されていないコロニーについては引き続き培養期間にわたって撮影するように撮像手段11cを制御する。
 制御装置51は、CPU52及び記憶部53を備える。記憶部53は、ハードディスクや、フラッシュメモリ等の不揮発性の記憶媒体などで構成される。この記憶部53には、ストッカーに収納されている各培養容器に関する管理データと、撮像装置で撮像された顕微鏡画像のデータとが記憶されている。さらに、記憶部53には、CPU52によって実行される所定のプログラムが記憶されている。
 CPU52は、観察ユニット41、容器搬送装置44、温度調整装置45a、及び湿度調整装置45bとそれぞれ接続されている。CPU52は、記憶部53に記憶されている所定のプログラムを読み出し、そのプログラムに従ってインキュベータ30の各部を統括的に制御する。
 具体的には、CPU52は、温度調整装置45aを制御して恒温室45の温度を調整するか、または湿度調整装置45bを制御して恒温室45の湿度を調整する。これにより、制御装置51は、恒温室45内を所定の環境条件に維持することができる。
 また、CPU52は、所定の観察スケジュールに基づいて、観察ユニット41および容器搬送装置44を制御して、培養容器の観察シーケンスを自動的に実行する。
 図9は、記憶部53に記憶されているテーブルT1の一例である。同図において、コロニーの評価結果を示す情報と、コロニーの位置情報とが関係づけられて記憶されている。コロニーの位置情報は、例えば、X方向とY方向の座標によって表されている。
 例えば、テーブルT1には、位置(100,100)に存在するコロニーは状態が良いことが示されている。また、テーブルT1には、位置(0,0)に存在するコロニーは、コロニーの一部の細胞が分化したことが示されている。また、テーブルT1には、位置(-100,―100)に存在するコロニーは状態が悪いことが示されている。
 図10は、インキュベータ30の処理の流れを説明するフローチャートである。ステップS401からステップS404までの処理は、図4のステップS101からステップS104までの処理と同様であるので、その処理の説明を省略する。
 ステップS404に続いて、評価手段13cは、コロニーの評価結果を示す情報と、そのコロニーの位置を示情報とを関係付けて記憶部53に記憶させる(ステップS405)。
 制御手段14cは、コロニーの評価結果を示す情報がコロニーの状態が悪いことを示しているか否か判定する(ステップS406)。コロニーの評価結果を示す情報がコロニーの状態が悪いことを示している場合(ステップS406 YES)、制御手段14cは、そのコロニーを撮像対象から除外するよう撮像手段11cを制御し(ステップS407)、ステップS408の処理に進む。
 一方、コロニーの評価結果を示す情報がコロニーの状態が悪いことを示していない場合(ステップS406 NO)、制御手段14cは、全てのコロニーを評価したか否か判定する(ステップS408)。全てのコロニーを評価していない場合(ステップS408 NO)、ステップS402の処理に戻る。一方、全てのコロニーを評価した場合(ステップS408 YES)、制御手段14cは、培養期間が経過したか否か判定する(ステップS409)。
 予め決められた培養期間が経過した場合(ステップS409 YES)、制御手段14cは、その処理を終了する。一方、予め決められた培養期間が経過していない場合(ステップS409 NO)、制御手段14cは、所定の時間間隔が経過したか否か判定する(ステップS410)。
 所定の時間間隔が経過していていない場合(ステップS410 NO)、制御手段14cは、ステップS409の処理に戻る。所定の時間間隔が経過した場合(ステップS410 YES)、インキュベータ30はステップS401の処理に戻る。以上で、本フローチャートの処理を終了する。
 以上により、インキュベータ30の制御手段14cは、評価手段13cで評価された結果に基づいて、細胞で形成されるコロニーを撮像手段11によって撮像する対象から除外し、除外されていないコロニーについては引き続き培養期間にわたって撮影するように撮像手段11を制御することができる。これにより、インキュベータ30は、状態の良いコロニーのみを撮像することができるので、無駄な撮像を減らすことができる。また、培養をする者が撮像された画像から、状態の良いコロニーを選別する手間を無くすことができる。
 <第4の実施形態>
 次に、第4の実施形態におけるコロニー分類装置について説明する。図11は、本発明の第4の実施形態におけるコロニー分類装置60のブロック構成図である。コロニー分類装置60は、輝度分布算出手段61と、検出手段12dと、分類モデル記憶手段62と、細胞分類手段63とを備える。
 輝度分布算出手段61は、外部から入力された時系列に撮影した同一のコロニーを撮像した複数の未知属性撮像画像から、コロニーが占める領域の輝度分布を算出し、算出した輝度分布を示す情報を検出手段12dに出力する。ここで、未知属性撮像画像とは、そのコロニーの属性情報(例えば、状態の良し悪し)が未知のコロニーが撮像された画像である。
 検出手段12dは、第1の実施形態の検出手段12と同様に、コロニーが撮像された複数の未知属性撮像画像の各々について、上記コロニーの輪郭よりも内側における画素値から基準値を設定し、かつ前記コロニーの内側における画素値と基準値を比較して、前記基準値から所定の画素値以上異なる画素値を有する特定画素を検出する。ここで、上記コロニーの輪郭よりも内側における画素値は、その画素の輝度値(前述したとおり統計処理された値)からなっている。
 検出手段12dは、検出した特定画素を示す情報を細胞分類手段63に出力する。分類モデル記憶手段62には、幹細胞からなるコロニーが撮像された未知属性撮像画像を、コロニーの輝度分布に基づいて属性毎に分類する分類モデルが記憶されている。
 細胞分類手段63は、未知属性撮像画像から検出された特定画素の画素値を、上記分類モデルに投入することによって、未知属性撮像画像内のコロニーを分類する。具体的には、例えば、細胞分類手段63は、未知属性撮像画像から検出された特定画素の画素値から、特定画素が複数の画素にわたって連続的に出現した領域である特異点を算出する。細胞分類手段63は、算出した特異点の画素値を上記分類モデルに投入することによって、未知属性撮像画像内のコロニーを分類する。
 細胞分類手段63は、分類結果を示す情報を外部に出力する。
 図12は、分類モデル記憶手段62に記憶されている分類モデルの一例である。同図において、分類モデルの一例として、特異点の有無と特異点の輝度値をパラメータとする二分木が示されている。
 まず特異点がない場合には、細胞分類手段63は、コロニーを正常なコロニーに分類する。次に、特異点がある場合には、特異点の輝度値が200以上の場合、細胞分類手段63は、コロニーを分化している細胞を有するコロニーに分類する。
 次に、特異点があり、特異点の輝度値が50以上200未満の場合には、細胞分類手段63は、コロニーを正常なコロニーに分類する。一方、特異点があり、特異点の輝度値が50未満の場合には、細胞分類手段63は、コロニーを不良なコロニーに分類する。
 図13は、コロニー分類装置60の処理の流れを説明するフローチャートである。まず、輝度分布算出手段61は、時系列に撮影した同一のコロニーを撮像した複数の未知属性撮像画像から、コロニーが占める領域の輝度分布を算出する(ステップS501)。
 次に、検出手段12dは、コロニーが撮像された複数の未知属性撮像画像の各々について、特定画素を検出する(ステップS502)。
 次に、細胞分類手段63は、コロニーが撮像された複数の未知属性撮像画像の各々について、特異点を検出する(ステップS503)。次に、細胞分類手段63は、算出した特異点の画素値を分類モデル記憶手段62に記憶されている分類モデルに投入することによって、未知属性撮像画像内のコロニーを分類する(ステップS504)。
 次に、細胞分類手段63は、複数の未知属性撮像画像の各々について、全てのコロニーを評価したか否か判定する(ステップS505)。全てのコロニーを評価していない場合(ステップS505 NO)、コロニー分類装置60はステップS501の処理に戻る。
 一方、全てのコロニーを評価した場合(ステップS505 YES)、コロニー分類装置60はその処理を終了する。以上で、本フローチャートの処理を終了する。
 以上により、コロニー分類装置60は、幹細胞からなるコロニーが撮像された未知属性撮像画像から検出された特定画素の画素値を、分類モデルに投入することによって、未知属性撮像画像内のコロニーを分類することができる。これにより、コロニー分類装置60は、コロニーにある細胞の状態に応じて、コロニーを分類することができるので、客観的にコロニーにある細胞の状態を評価することができる。
 一実施形態において、幹細胞の培養方法は、培養容器内で培養される複数の幹細胞からなる複数のコロニーを時系列に撮像するステップと、前記コロニーが撮像された対象画像において、前記コロニーが占める領域を抽出するステップと、前記コロニーが占める前記領域の輝度分布を算出し、前記輝度分布に特異点があるかを評価するステップを含むことができる。
 また、上記の一実施形態において、前記特異点が所定値以上である場合には、前記幹細胞を培養する培養容器から前記特異点を有するコロニーを排除することができる。
 また、上記の一実施形態において、前記特異点が所定値以下である場合には、時系列に撮像された複数の対象画像における前記特異点の変化に応じて、前記特異点を有するコロニーを排除することができる。
 また、上記の一実施形態において、前記コロニーが浮遊性を有する場合には、前記コロニーを排除することができる。
 他の一実施形態において、幹細胞評価装置は、図14に示すように、培養容器内で培養される複数の幹細胞からなる複数のコロニーが時系列に撮像されている複数の画像を読み込む画像読込部と、前記コロニーが撮像された対象画像において、前記コロニーが占める領域を抽出する領域抽出部と、前記領域抽出部で抽出された前記コロニーが占める領域の輝度分布を算出する輝度分布算出部と、前記輝度分布に特異点があるかを評価する評価処理部と、を備えることができる。
 一実施形態において、インキュベータは、図14に示すように、幹細胞を培養する培養容器(不図示)を収納するとともに、所定の環境条件に内部を維持可能な恒温室と、前記恒温室内で前記培養容器に含まれる前記コロニーの画像を撮像する撮像装置と、請求項22に記載の幹細胞評価装置と、を備えることができる。
 一実施形態において、幹細胞評価プログラムは、培養容器内で培養される複数の幹細胞からなる複数のコロニーが時系列に撮像されている複数の画像を読み込む第1のステップと、前記コロニーが撮像された対象画像において、前記コロニーが占める領域を抽出する第2のステップと、前記第2のステップで抽出された前記コロニーが占める領域の輝度分布を算出する第3のステップと、前記輝度分布に特異点があるかを評価する第4のステップと、をコンピュータに実行させることができる。
 他の一実施形態において、幹細胞評価プログラムは、幹細胞からなるコロニーが撮像された未知属性撮像画像を、コロニーの輝度分布に基づいて属性毎に分類する分類モデルが記憶されているコロニー分類装置のコンピュータに、前記未知属性撮像画像から、個々のコロニーが占める領域を抽出する第1のステップと、前記第1のステップで抽出された前記コロニーが占める領域の輝度分布を算出する第2のステップと、前記輝度分布に特異点があるかを評価する第3のステップと、前記第3のステップによって、前記未知属性撮像画像から抽出された評価結果を、前記分類モデルに投入することによって、前記未知属性撮像画像内のコロニーを分類する第4のステップと、を実行させることができる。
 ここで、上記実施形態で説明したiPS細胞コロニーの状態評価とiPS細胞の培養工程について説明する。上記コロニーの状態評価を行いつつ、iPS細胞コロニーの培養を行えば、正常な未分化iPS細胞コロニーを大量生産することができる。
 まず、図8に基づきインキュベータ30の構成について説明する。基本的には第3の実施形態で説明した構成と同じであるが、一部変更した点につき図15および図16にも基づき説明する。
 図15では分注装置100の構成を示しており、図15の分注装置100は図8の下部ケーシング50の制御装置51によって制御される。
 分注装置100は、インキュベータ30と同様に内部環境が培養条件に制御されている。この分注装置100は、インキュベータ30で培養されたiPS細胞コロニーの培養容器を搬送する搬送ロボット101を有する。搬送ロボット101は、分注装置100とインキュベータ30との間で複数の培養容器90,91をそれぞれ搬送する。
 分注装置100は、分注ピペット装置102と、分注用の培養液タンク103と、廃液タンク104とを備えている。なお、培養液タンク103は複数配置されていても良く、例えば薬剤などの薬液タンクであってもよい。
 この分注ピペット装置102は、各タンク103と104とは管で結ばれており、この配管には液の制御用の弁などが備えられている。また、分注ピペット装置102は、培養容器90のiPS細胞コロニーをピペットにて吸い取り、他の培養容器91に移し変えるため、所定の距離移動可能に構成されている。
 分注装置100は制御装置51のCPU52にプログラミングによって自動制御されるものであり、次の制御を実行するよう構成されている。
 ステップ600及び601にて、細胞培養開始において、分注ピペット装置102を制御して、iPS細胞の種を培養容器90に蒔くか(細胞播種工程)、或いは上記実施形態のコロニー状態評価処理において良好な未分化iPS細胞コロニーを取り出し(ピペッティング)、一旦、このコロニーが小塊となるまで崩し、複数のiPS細胞に単離する(状態評価および細胞単離工程)。
 このピペッティング工程においては未分化iPS細胞コロニーをピペットにて抽出し、別の培養容器91に移す。そして、コロニー状態評価処理(培養評価装置10c)において不良コロニー、分化したコロニーは、元の培養容器に取り残されるが、この元の培養容器内に残った不良コロニー、分化したコロニーは廃液タンク104に廃棄処分される。
 ステップ602及び603にて、小塊となったiPS細胞を複数の培養容器に播種する(継代工程)。
 ステップ604にて、これら複数の培養容器に播種された小塊のiPS細胞をインキュベータにおいて培養を行う。この培養期間中に分注ピペット装置102は分注用の培養液タンク103と廃液タンク104とを利用して、培地交換(栄養分補給と不純物除去)が行われ、培養が促進される。インキュベータ30は温度(37℃)、二酸化炭素(5%)、湿度(95%)の培養環境が保たれ、インキュベータ30で80~90%コンフルエント(Confluent)となるまで培養する(培地交換・培養工程)。コンフルエントになったiPS細胞コロニーを上述したのと同様に、状態評価および細胞単離工程に戻り、培養が繰り返される。
 ステップ605にて、所定の培養期間を経過したか、あるいは所定量の未分化iPS細胞コロニーを採取できたかを判断する。
 ステップ606にて、コロニー状態評価処理を行い、良好な未分化iPS細胞コロニーのみを凍結処理して、保管する(凍結工程)。
 通常のインキュベータでの培養工程と同様に、細胞の培養、培地交換、継代および凍結処理を繰り返す。
 この継代処理前に、上記実施形態のコロニー状態評価処理を行い、良好な未分化iPS細胞コロニーのみを取り出す(ピペッティング)ことで品質の安定したiPS細胞コロニーを大量に取得できる。
 また、本発明の第1の実施形態における細胞評価装置10、本発明の第2の実施形態における細胞培養装置20、本発明の第3の実施形態における細胞評価装置10c、または本発明の第4の実施形態におけるコロニー分類装置60の各処理を実行するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより、細胞評価装置10、細胞培養装置20、細胞評価装置10c、またはコロニー分類装置60に係る上述した種々の処理を行ってもよい。
 なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものであってもよい。また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、フラッシュメモリ等の書き込み可能な不揮発性メモリ、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。
  さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(例えばDRAM(Dynamic Random Access Memory))のように、一定時間プログラムを保持しているものも含むものとする。また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。また、上記プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。
 以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
10 細胞評価装置
11、11b、11c 撮像手段
12、12b、12c、12d 検出手段
13、13b、13c 評価手段
14、14c 制御手段
20 細胞培養装置
24 制御手段
30 インキュベータ
45 恒温室
53 記憶部
60 コロニー分類装置
61 輝度算出手段
63 細胞分類手段

Claims (25)

  1.  培養容器内で培養される複数の細胞からなるコロニーを、複数の画素を有する撮像素子で撮像する撮像ステップと、
     前記撮像ステップで撮像された画像について、前記コロニーの内側における各画素値と基準値とを比較して、前記複数の画素のうちから特定画素を検出する検出ステップと、
     前記検出ステップで検出された前記特定画素の分布に応じて、前記コロニーにある細胞の品質を評価する評価ステップと、
     を有することを特徴とする細胞評価方法。
  2.  前記検出ステップにおいて、前記コロニーの輪郭よりも内側における画素値から前記基準値を設定し、前記基準値から所定の画素値以上異なる画素値を有する画素を特定画素とすることを特徴とする請求項1に記載の細胞評価方法。
  3.  前記評価ステップにおいて、前記特定画素が複数の画素にわたって連続的に出現した領域である特異点の有無に応じて、前記細胞の品質を評価することを特徴とする請求項1または2のいずれか1項に記載の細胞評価方法。
  4.  前記撮像ステップにおいて、前記コロニーを培養期間中にわたって複数回、撮像し、
     前記検出ステップにおいて、前記複数回の撮像で得られた前記画像それぞれについて前記特定画素を検出すると共に、その時期を検出し、
     前記評価ステップにおいて、前記特異点の有無に加え、前記特異点が出現した時期、前記特異点の大きさ、前記特異点の出現した期間の長さの少なくともいずれか一つに応じて、前記細胞の品質を評価することを特徴とする請求項3に記載の細胞評価方法。
  5.  前記評価ステップにおいて、更に前記コロニーの位置の移動の有無を前記複数の画像から検出し、前記移動の有無に応じて、前記細胞の品質を評価することを特徴とする請求項4に記載の細胞評価方法。
  6.  前記検出ステップにおいて、前記コロニーの輪郭の内側における画素値の平均値を中心にして、前記画素値よりも大きい値及び小さい値である2つの閾値を前記基準値としたときに、前記2つの閾値で挟まれる領域から外れた画素値を有する画素を前記特定画素とすることを特徴とする請求項1から請求項5のいずれか1項に記載の細胞評価方法。
  7.  前記撮像ステップにおいて、前記培養期間の前期、後期の各々で前記コロニーの撮像を行うことを特徴とする請求項1から請求項6のいずれか1項に記載の細胞評価方法。
  8.  請求項1から請求項7のいずれか1項に記載の細胞評価方法を用いて前記細胞を評価し、
     前記細胞の評価を基に、前記細胞で形成されるコロニーを前記撮像ステップによって撮像する対象から除外し、除外されていないコロニーについては引き続き前記細胞の培養時間中にわたって前記撮像ステップにて撮像させる制御ステップを有することを特徴とする細胞培養方法。
  9.  前記制御ステップにおいて、前記特定画素が複数の画素にわたって連続的に出現した領域である特異点における画素値が所定値以上である場合には、前記特異点を有するコロニーを排除する請求項8に記載の細胞培養方法。
  10.  前記制御ステップにおいて、更に前記コロニーの位置の移動の有無を前記複数の画像から検出し、前記移動の有無に応じて、前記撮像ステップによって撮像するコロニーから除外するか否かを決定することを特徴とする請求項9に記載の細胞培養方法。
  11.  請求項1から請求項10のいずれか1項に記載の細胞評価方法を用いて前記細胞を評価し、前記細胞の評価を基に、所定の品質を満たす前記コロニーを取り出し単離して別の培養容器に継代する継代ステップと、
    前記継代された前記コロニーを所定の培養環境で培養する培養ステップとを有し、
    所定の培養期間にわたって細胞を培養する特徴とする細胞培養方法。
  12.  複数の画素を有し、培養容器内で培養される複数の細胞からなるコロニーを撮像して画像データを生成する撮像手段と、
     前記撮像手段で撮像された前記コロニーの画像データから基準値を設定し、前記コロニーに対応する前記画素の画素値と前記基準値を比較して、前記複数の画素から特定画素を検出する検出手段と、
     前記検出手段で検出された前記特定画素の分布に応じて、前記コロニーにある細胞の品質を評価する評価手段と、
     を備えることを特徴とする細胞評価装置。
  13.  請求項12に記載の細胞評価装置と、
     細胞を培養する培養容器を収納するとともに、所定の環境条件に内部を維持可能な恒温室と、
     を備え、
     前記細胞評価装置の撮像手段は、前記恒温室の内部に配置された前記培養容器中の細胞のコロニーを撮影することを特徴とするインキュベータ。
  14.  前記評価手段で評価された結果に基づいて、前記細胞で形成されるコロニーを前記撮像手段によって撮像する対象から除外し、除外されていないコロニーについては引き続き前記培養期間にわたって撮影するように前記撮像手段を制御する制御手段を更に備えることを特徴とする請求項13に記載のインキュベータ。
  15.  前記評価手段で評価された結果を前記コロニーの位置情報と対応付けて記憶する記憶部を更に備えたことを特徴とする請求項12または請求項13に記載のインキュベータ。
  16.  コンピュータを、
     請求項12に記載の細胞評価装置が備える前記撮像手段と、前記検出手段と、前記評価手段として機能させるための細胞評価プログラム。
  17.  幹細胞からなるコロニーが撮像された未知属性撮像画像を、コロニーの輝度分布に基づいて属性毎に分類する分類モデルが記憶されている分類モデル記憶手段を備えるコロニー分類装置のコンピュータに、
     同一のコロニーが時系列に撮像されることにより得られる複数の前記未知属性撮像画像から、前記コロニーが占める領域の輝度分布を算出する第1のステップと、
     前記コロニーが撮像された複数の未知属性撮像画像の各々について、前記コロニーの輪郭よりも内側における画素値から基準値を設定し、かつ前記コロニーの内側における画素値と基準値を比較して、前記基準値から所定の画素値以上異なる画素値を有する特定画素を検出する第2のステップと、
     前記第2のステップによって、前記未知属性撮像画像から検出された特定画素の画素値を、前記分類モデルに投入することによって、前記未知属性撮像画像内のコロニーを分類する第3のステップと、
     を実行させるためのコロニー分類プログラム。
  18.  培養容器内で培養される複数の幹細胞からなる複数のコロニーを時系列に撮像し、
     前記コロニーが撮像された対象画像において、前記コロニーが占める領域を抽出し、
     前記コロニーが占める前記領域の輝度分布を算出し、
     前記輝度分布に特異点があるかを評価することを特徴とする幹細胞の培養方法。
  19.  前記特異点が所定値以上である場合には、前記幹細胞を培養する培養容器から前記特異点を有するコロニーを排除することを特徴とする請求項18に記載の幹細胞の培養方法。
  20.  前記特異点が所定値以下である場合には、時系列に撮像された複数の対象画像における前記特異点の変化に応じて、前記特異点を有するコロニーを排除することを特徴とする請求項18または請求項19に記載の幹細胞の培養方法。
  21.  前記コロニーが浮遊性を有する場合には、前記コロニーを排除することを特徴とする請求項18から請求項20のいずれか1項に記載の幹細胞の培養方法。
  22.  培養容器内で培養される複数の幹細胞からなる複数のコロニーが時系列に撮像されている複数の画像を読み込む画像読込部と、
     前記コロニーが撮像された対象画像において、前記コロニーが占める領域を抽出する領域抽出部と、
     前記領域抽出部で抽出された前記コロニーが占める領域の輝度分布を算出する輝度分布算出部と、
     前記輝度分布に特異点があるかを評価する評価処理部と、を備えることを特徴とする幹細胞評価装置。
  23.  幹細胞を培養する培養容器を収納するとともに、所定の環境条件に内部を維持可能な恒温室と、
     前記恒温室内で前記培養容器に含まれる前記コロニーの画像を撮像する撮像装置と、請求項22に記載の幹細胞評価装置と、
     を備えることを特徴とするインキュベータ。
  24.  培養容器内で培養される複数の幹細胞からなる複数のコロニーが時系列に撮像されている複数の画像を読み込む第1のステップと、
     前記コロニーが撮像された対象画像において、前記コロニーが占める領域を抽出する第2のステップと、
     前記第2のステップで抽出された前記コロニーが占める領域の輝度分布を算出する第3のステップと、
     前記輝度分布に特異点があるかを評価する第4のステップと、
     をコンピュータに実行させるための幹細胞評価プログラム。
  25.  幹細胞からなるコロニーが撮像された未知属性撮像画像を、コロニーの輝度分布に基づいて属性毎に分類する分類モデルが記憶されているコロニー分類装置のコンピュータに、
     前記未知属性撮像画像から、個々のコロニーが占める領域を抽出する第1のステップと、
     前記第1のステップで抽出された前記コロニーが占める領域の輝度分布を算出する第2のステップと、
     前記輝度分布に特異点があるかを評価する第3のステップと、
     前記第3のステップによって、前記未知属性撮像画像から抽出された評価結果を、前記分類モデルに投入することによって、前記未知属性撮像画像内のコロニーを分類する第4のステップと、
     を実行させるための幹細胞評価プログラム。
PCT/JP2012/054282 2011-02-25 2012-02-22 細胞評価方法、細胞培養方法、細胞評価装置、インキュベータ、細胞評価プログラム、コロニー分類プログラム、幹細胞の培養方法、幹細胞評価装置および幹細胞評価プログラム WO2012115153A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-040689 2011-02-25
JP2011040689 2011-02-25

Publications (1)

Publication Number Publication Date
WO2012115153A1 true WO2012115153A1 (ja) 2012-08-30

Family

ID=46720929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054282 WO2012115153A1 (ja) 2011-02-25 2012-02-22 細胞評価方法、細胞培養方法、細胞評価装置、インキュベータ、細胞評価プログラム、コロニー分類プログラム、幹細胞の培養方法、幹細胞評価装置および幹細胞評価プログラム

Country Status (1)

Country Link
WO (1) WO2012115153A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025506A1 (ja) * 2013-08-22 2015-02-26 富士フイルム株式会社 幹細胞分化判定装置および方法並びにプログラム
WO2015025507A1 (ja) * 2013-08-22 2015-02-26 富士フイルム株式会社 幹細胞分化判定装置および方法並びにプログラム
WO2015025508A1 (ja) * 2013-08-22 2015-02-26 富士フイルム株式会社 細胞画像評価装置および方法並びにプログラム
JP2015065812A (ja) * 2013-09-26 2015-04-13 株式会社Screenホールディングス 培養品質評価方法
WO2015133193A1 (ja) * 2014-03-05 2015-09-11 富士フイルム株式会社 細胞画像評価装置および方法並びにプログラム
DE112013004463B4 (de) * 2012-09-13 2016-03-17 Hamamatsu Photonics K.K. Verfahren zur Unterscheidung des Differenzierungsgrades von pluripotenten Stammzellen
WO2016039010A1 (ja) * 2014-09-12 2016-03-17 富士フイルム株式会社 細胞培養評価システムおよび方法
JP2016059306A (ja) * 2014-09-17 2016-04-25 富士フイルム株式会社 細胞配置決定装置および方法並びにプログラム
WO2017038887A1 (ja) * 2015-08-31 2017-03-09 アイ・ピース株式会社 多能性幹細胞製造システム
WO2018100913A1 (ja) * 2016-11-29 2018-06-07 ソニー株式会社 情報処理装置、情報処理方法、プログラム及び観察システム
WO2020075591A1 (ja) * 2018-10-12 2020-04-16 株式会社ニコン 継代時期算出装置、継代時期算出方法、及びプログラム
CN112887604A (zh) * 2021-01-26 2021-06-01 深圳赛动生物自动化有限公司 一种干细胞图像采集方法、装置、系统及介质
JP7351311B2 (ja) 2018-10-12 2023-09-27 株式会社ニコン 画像処理装置、画像処理方法、プログラム、及び評価方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187777A (ja) * 1983-04-11 1984-10-24 Hitachi Electronics Eng Co Ltd コロニ−自動スクリ−ニング装置
WO2006095896A1 (ja) * 2005-03-08 2006-09-14 Nihon University 培養細胞監視システム
JP2011024485A (ja) * 2009-07-24 2011-02-10 Olympus Corp 細胞画像解析装置
WO2011043077A1 (ja) * 2009-10-09 2011-04-14 川崎重工業株式会社 未分化多能性幹細胞の識別方法及び装置並びに自動培養方法及び装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187777A (ja) * 1983-04-11 1984-10-24 Hitachi Electronics Eng Co Ltd コロニ−自動スクリ−ニング装置
WO2006095896A1 (ja) * 2005-03-08 2006-09-14 Nihon University 培養細胞監視システム
JP2011024485A (ja) * 2009-07-24 2011-02-10 Olympus Corp 細胞画像解析装置
WO2011043077A1 (ja) * 2009-10-09 2011-04-14 川崎重工業株式会社 未分化多能性幹細胞の識別方法及び装置並びに自動培養方法及び装置

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112013004463B4 (de) * 2012-09-13 2016-03-17 Hamamatsu Photonics K.K. Verfahren zur Unterscheidung des Differenzierungsgrades von pluripotenten Stammzellen
US9435786B2 (en) 2012-09-13 2016-09-06 Hamamatsu Photonics K.K. Method for determining differentiation level of pluripotent stem cells
DE112013006966B3 (de) * 2012-09-13 2017-06-22 Hamamatsu Photonics K.K. Verfahren und Vorrichtung zur Unterscheidung des Differenzierungsgrades von pluripotenten Stammzellen
US10504223B2 (en) 2013-08-22 2019-12-10 Fujifilm Corporation Cell image evaluation device, method, and program
JP2015061516A (ja) * 2013-08-22 2015-04-02 富士フイルム株式会社社 細胞画像評価装置および方法並びにプログラム
JP2015039342A (ja) * 2013-08-22 2015-03-02 富士フイルム株式会社 幹細胞分化判定装置および方法並びにプログラム
WO2015025508A1 (ja) * 2013-08-22 2015-02-26 富士フイルム株式会社 細胞画像評価装置および方法並びにプログラム
US10114003B2 (en) 2013-08-22 2018-10-30 Fujifilm Corporation Stem cell differentiation determination device, method, and program
WO2015025507A1 (ja) * 2013-08-22 2015-02-26 富士フイルム株式会社 幹細胞分化判定装置および方法並びにプログラム
WO2015025506A1 (ja) * 2013-08-22 2015-02-26 富士フイルム株式会社 幹細胞分化判定装置および方法並びにプログラム
JP2015065812A (ja) * 2013-09-26 2015-04-13 株式会社Screenホールディングス 培養品質評価方法
US9600874B2 (en) 2013-09-26 2017-03-21 SCREEN Holdings Co., Ltd. Method for evaluating culture quality
WO2015133193A1 (ja) * 2014-03-05 2015-09-11 富士フイルム株式会社 細胞画像評価装置および方法並びにプログラム
JP2015170047A (ja) * 2014-03-05 2015-09-28 富士フイルム株式会社 細胞画像評価装置および方法並びにプログラム
US10360676B2 (en) 2014-03-05 2019-07-23 Fujifilm Corporation Cell image evaluation device, method, and program
EP3192861A4 (en) * 2014-09-12 2017-08-30 Fujifilm Corporation Cell culture evaluation system and cell culture evaluation method
US10704072B2 (en) 2014-09-12 2020-07-07 Fujifilm Corporation Cell culture evaluation system and method
JP2016054724A (ja) * 2014-09-12 2016-04-21 富士フイルム株式会社 細胞培養評価システムおよび方法
WO2016039010A1 (ja) * 2014-09-12 2016-03-17 富士フイルム株式会社 細胞培養評価システムおよび方法
JP2016059306A (ja) * 2014-09-17 2016-04-25 富士フイルム株式会社 細胞配置決定装置および方法並びにプログラム
US11912977B2 (en) 2015-08-31 2024-02-27 I Peace, Inc. Pluripotent stem cell production system
US11518974B2 (en) 2015-08-31 2022-12-06 I Peace, Inc. Pluripotent stem cell production system
WO2017038887A1 (ja) * 2015-08-31 2017-03-09 アイ・ピース株式会社 多能性幹細胞製造システム
US10508260B2 (en) 2015-08-31 2019-12-17 I Peace, Inc. Pluripotent stem cell production system
US11286454B2 (en) 2015-08-31 2022-03-29 I Peace, Inc. Pluripotent stem cell manufacturing system and method for producing induced pluripotent stem cells
US11334988B2 (en) 2016-11-29 2022-05-17 Sony Corporation Information processing apparatus, information processing method, program, and observation system for cell image capture
JPWO2018100913A1 (ja) * 2016-11-29 2019-10-17 ソニー株式会社 情報処理装置、情報処理方法、プログラム及び観察システム
CN109983114A (zh) * 2016-11-29 2019-07-05 索尼公司 信息处理设备、信息处理方法、程序和观察系统
WO2018100913A1 (ja) * 2016-11-29 2018-06-07 ソニー株式会社 情報処理装置、情報処理方法、プログラム及び観察システム
WO2020075591A1 (ja) * 2018-10-12 2020-04-16 株式会社ニコン 継代時期算出装置、継代時期算出方法、及びプログラム
EP3865566A4 (en) * 2018-10-12 2022-08-03 Nikon Corporation SUB CULTURE LEVEL CALCULATION DEVICE AND SUB CULTURE LEVEL CALCULATION METHOD AND PROGRAM
JP7351311B2 (ja) 2018-10-12 2023-09-27 株式会社ニコン 画像処理装置、画像処理方法、プログラム、及び評価方法
JP7417950B2 (ja) 2018-10-12 2024-01-19 株式会社ニコン 継代時期算出装置、継代時期算出方法、及びプログラム
CN112887604A (zh) * 2021-01-26 2021-06-01 深圳赛动生物自动化有限公司 一种干细胞图像采集方法、装置、系统及介质

Similar Documents

Publication Publication Date Title
WO2012115153A1 (ja) 細胞評価方法、細胞培養方法、細胞評価装置、インキュベータ、細胞評価プログラム、コロニー分類プログラム、幹細胞の培養方法、幹細胞評価装置および幹細胞評価プログラム
JP5145487B2 (ja) 観察プログラムおよび観察装置
JP5707399B2 (ja) 微生物検出方法、微生物検出装置及びプログラム
JP5659158B2 (ja) 画像処理装置、培養観察装置、及び画像処理方法
US20160370569A1 (en) Cell image acquisition device, method, and program
JP6291388B2 (ja) 細胞培養評価システムおよび方法
JP2018525746A5 (ja)
US11954926B2 (en) Image feature detection
JPWO2009031283A1 (ja) 培養装置、培養情報管理方法およびプログラム
US10942170B2 (en) Quantitative measurement of human blastocyst and morula morphology developmental kinetics
WO2015193951A1 (ja) 観察装置、観察方法、観察システム、そのプログラム、および細胞の製造方法
JP6143365B2 (ja) 細胞画像評価装置および方法並びにプログラム
AU2017287141B2 (en) Image acquisition method, image acquisition device, program and culture container
US9530043B2 (en) Cell analysis apparatus and method
TWI782557B (zh) 細胞計數與培養判讀方法、系統及電腦可讀儲存媒介
US20210200986A1 (en) Control device, control method, and program
JP2024513984A (ja) 微細藻類培養物サンプルの顕微鏡画像の解析
KR20210121861A (ko) 광 생물 반응기용 스마트 제어 시스템 및 방법
JP5732201B2 (ja) 分類モデル生成装置、細胞分類装置、インキュベータ、細胞の培養方法及びプログラム
JP6642751B2 (ja) 細胞の成熟度を判定する方法、観察装置、プログラム、制御装置、および細胞の製造方法
CN101799427B (zh) 基于图像处理的植物愈伤组织繁殖量在线观测方法及系统
TW202120906A (zh) 利用光動力學技術之人工智慧的細胞檢測方法及其系統
JP6544426B2 (ja) 培養状態の評価を行う装置、プログラム及び方法
Dirvanauskas et al. Embryo Spatial Model Reconstruction
JP2023117361A (ja) 細胞画像解析方法およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12748985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12748985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP