WO2019131626A1 - 細胞培養制御方法、細胞培養制御装置、細胞培養装置および細胞培養システム - Google Patents

細胞培養制御方法、細胞培養制御装置、細胞培養装置および細胞培養システム Download PDF

Info

Publication number
WO2019131626A1
WO2019131626A1 PCT/JP2018/047552 JP2018047552W WO2019131626A1 WO 2019131626 A1 WO2019131626 A1 WO 2019131626A1 JP 2018047552 W JP2018047552 W JP 2018047552W WO 2019131626 A1 WO2019131626 A1 WO 2019131626A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
cell
stirring
medium
control
Prior art date
Application number
PCT/JP2018/047552
Other languages
English (en)
French (fr)
Inventor
良介 村田
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2019561710A priority Critical patent/JPWO2019131626A1/ja
Publication of WO2019131626A1 publication Critical patent/WO2019131626A1/ja
Priority to US16/844,028 priority patent/US20200231926A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/48Automatic or computerized control
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/02Stirrer or mobile mixing elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30024Cell structures in vitro; Tissue sections in vitro

Definitions

  • the present invention relates to a cell culture control method, a cell culture control device, a cell culture device, and a cell culture system.
  • Patent Document 1 An industry has been developed which produces cells such as iPS cells using a culture vessel such as a bioreactor (see, for example, Patent Document 1).
  • the cells are cultured in suspension in liquid medium to form colonies.
  • the particle size of the colonies increases as the culture proceeds.
  • Patent Document 1 an image of the inside of a culture vessel is acquired, the particle size distribution and the number of particles of colonies in a culture medium are estimated from the image, and cell quality control and production control are performed based on the estimation result.
  • the cells are cultured while stirring the medium so that the cells are uniformly dispersed in the medium. Agitation of the medium physically stresses the cells, such as by contact between agitating blades and colonies.
  • the size of the colony changes with time in the course of culture, and depending on the size of the colony, the size of the stress due to the dispersion of the cells and the agitation is different.
  • Patent Document 1 since the culture medium is agitated at a constant speed, cells are affected by agitation not meeting the size of the colony. As a result, there is a disadvantage that the yield of the product cells is lowered.
  • the present invention has been made in view of the above-mentioned circumstances, and a cell culture control method, a cell culture control device, a cell culture device, and a cell culture system capable of appropriately stirring the culture medium according to the progress of culture. Intended to provide.
  • One embodiment of the present invention obtains an image signal obtained by imaging at least a part of the inside of a culture vessel, the culture vessel containing a liquid medium and floating cells suspended in the medium, and Calculating from the image signal a cell characteristic amount that correlates with the progress of the culture of the floating cells and the dispersion state of the floating cells in the culture medium; and stirring control for controlling the stirring of the culture medium in the culture vessel And C. generating a signal based on the cell characteristic amount.
  • the image signal of the floating cell cultured in the culture vessel is acquired, the cell characteristic amount is calculated from the image signal, and the agitation control signal based on the cell characteristic amount is generated.
  • the cell characteristic amount is an amount that correlates with the progress of suspension cell culture or the dispersion state of suspension cells in the culture medium. Therefore, according to the agitation control signal based on the cell characteristic amount, the culture medium can be appropriately agitated according to the progress of the culture.
  • the method further includes the step of imaging at least a part of the inside of the culture vessel with an imaging device to generate the image signal, and the step of acquiring the image signal communicates with the imaging device to generate the image signal from the imaging device It may include the step of receiving an image signal.
  • the step of calculating the cell characteristic amount may include the steps of: extracting the colony of the floating cell from the image signal; generating a histogram of the size of the colony; and the mode of the size in the histogram Setting any one of a value, a median, an average, a variance, and a half width to the cell feature amount.
  • the floating cells cultured while floating in the medium form substantially spherical colonies, and the size (diameter) of the colonies increases as the culture proceeds. That is, as the culture proceeds, the mode, median, mean, variance and half width of colony size become larger. Therefore, by using these values as cell feature quantities, it is possible to accurately know the progress of suspension cell culture.
  • the step of generating the agitation control signal is calculated in a step of referring to a table in which the cell feature amount and the agitation speed of the culture medium are associated, and calculating the cell feature amount. Selecting from the table a stirring speed corresponding to the cell feature and generating the stirring control signal to cause the culture medium to stir at the selected stirring speed. By doing this, the stirring speed of the culture medium can be controlled based on the cell characteristic amount.
  • the step of generating the agitation control signal includes the step of updating the table using the correspondence between the cell characteristic amount calculated in the past culture of floating cells and the agitation control signal. It may be By doing this, the table can be updated based on the culture performed in the past so that the correspondence between the cell feature amount and the agitation speed becomes more appropriate.
  • the step of generating the stirring control signal includes the step of acquiring the temperature of the culture medium in the culture vessel, and the step of generating the stirring control signal based on both the cell characteristic amount and the temperature. And may be included.
  • the optimal agitation conditions of the medium are also influenced by the temperature of the medium. Therefore, by considering the temperature of the culture medium in addition to the cell characteristic amount, it is possible to generate a stirring control signal that causes the culture medium to be stirred more appropriately.
  • Another aspect of the present invention comprises a processor, wherein the processor acquires an image signal obtained by imaging at least a part of the inside of a culture vessel, and the culture vessel contains a liquid medium and floating cells suspended in the medium. Containing, calculating a cell characteristic amount correlated with any of the progress of the culture of the floating cells and the dispersion state of the floating cells in the culture medium from the image signal, and controlling the agitation of the culture medium in the culture vessel
  • the cell culture control device generates a stirring control signal based on the cell characteristic amount.
  • the processor acquires the image signal of the floating cell cultured in the culture vessel, calculates the cell characteristic amount from the image signal, and generates the agitation control signal based on the cell characteristic amount.
  • the cell characteristic amount is an amount that correlates with the progress of suspension cell culture or the dispersion state of suspension cells in the culture medium. Therefore, according to the agitation control signal based on the cell characteristic amount, the culture medium can be appropriately agitated according to the progress of the culture.
  • the culture vessel containing the culture medium and the floating cells, an imaging device for imaging at least a part of the inside of the culture vessel to generate the image signal, and stirring the culture medium in the culture vessel And a stirring control unit configured to control the stirring unit according to the stirring control signal generated by the processor.
  • the cell culture control device can be realized as a cell culture device by providing the culture container, the imaging device, the stirring unit, and the stirring control unit which are configured as the cell culture device.
  • the above-mentioned mode it may have a communication part which transmits at least one of a result of processing concerning calculation of the above-mentioned cell feature, and a result of processing concerning generation of the above-mentioned stirring control signal to a server via a communication network.
  • a communication part which transmits at least one of a result of processing concerning calculation of the above-mentioned cell feature, and a result of processing concerning generation of the above-mentioned stirring control signal to a server via a communication network.
  • the culture container containing the culture medium and the floating cells, an imaging device for imaging at least a part of the inside of the culture container, a stirring unit for stirring the culture medium in the culture container, and Connected by a communication network and a cell culture device including a stirring control unit that controls the stirring unit according to the stirring control signal generated by a processor, and receiving the image signal from the imaging device via the communication network;
  • the communication control unit may include a communication unit that transmits the stirring control signal generated by the processor to the stirring control unit via the communication network.
  • Another aspect of the present invention is a cell culture apparatus for culturing cells using a liquid culture medium and a culture vessel containing floating cells suspended in the culture medium, wherein at least a part of the inside of the culture vessel is imaged
  • An image sensor for generating an image signal, a stirring unit for stirring the medium in the culture vessel, and the image signal transmitted to a cell culture control apparatus via a communication network, and the communication network for transmitting the image signal
  • An agitation control signal is received from the cell culture controller, and the agitation control signal is a cell feature that is calculated from the image signal and correlated with any of the progress of the culture of the floating cells and the dispersion state of the floating cells in the medium.
  • a cell culture apparatus comprising: a communication unit generated based on an amount; and a stirring control unit configured to control the stirring unit according to the stirring control signal received by the communication unit.
  • an image signal of floating cells being cultured in the culture vessel is generated by the imaging device, and the image signal is transmitted to the cell culture control device by the communication unit, based on the image signal from the cell culture control device.
  • An agitation control signal is received by the communication unit, and the agitation control unit operates the agitation unit according to the agitation control signal.
  • the agitation control signal generated in the cell culture controller is a signal based on a cell characteristic amount correlated with the progress of suspension cell culture or the dispersion state of suspension cells in the culture medium. Therefore, according to the agitation control signal, the culture medium can be appropriately agitated according to the progress of the culture.
  • Another aspect of the present invention is a cell culture apparatus for culturing cells using a liquid culture medium and a culture vessel containing floating cells suspended in the culture medium, wherein at least a part of the inside of the culture vessel is imaged
  • a stirring control signal is received from a cell culture control apparatus, and the image signal is a cell feature which is correlated with any of the progress of the culture of the floating cells and the dispersion state of the floating cells in the medium, and the cell characteristics
  • an image signal of floating cells being cultured in the culture vessel is generated by the imaging device, and the image signal is transmitted to the cell culture control device by the communication unit, based on the image signal from the cell culture control device.
  • An agitation control signal is received by the communication unit, and the agitation control unit operates the agitation unit according to the agitation control signal.
  • the image signal transmitted to the cell culture control device is used to calculate the cell characteristic amount correlated with the progress of the culture of the floating cells or the dispersion state of the floating cells in the medium. Therefore, according to the agitation control signal based on the cell characteristic amount, the culture medium can be appropriately agitated according to the progress of the culture.
  • Another aspect of the present invention is a cell culture apparatus for culturing cells using a liquid culture medium and a culture vessel containing floating cells suspended in the culture medium, and a cell culture apparatus connected to the cell culture apparatus by a communication network
  • An imaging device including a control device, wherein the cell culture device captures at least a part of the inside of the culture container to generate an image signal, a stirring unit that stirs the culture medium in the culture container, and the cell culture And a stirring control unit for controlling the stirring unit in accordance with a stirring control signal received from a control device, wherein the cell culture control device is any of the progress of the culture of the floating cells and the dispersion state of the floating cells in the medium.
  • a cell feature quantity that is correlated with heel is calculated from the image signal, and the agitation control signal that controls agitation of the culture medium in the culture vessel is generated based on the cell feature quantity.
  • a cell culture system comprising a processor.
  • the image signal generated by the imaging device is transmitted from the cell culture device to the cell culture control device via the communication network, and the agitation control signal generated by the processor is communicated from the cell culture control device to the cell culture device Sent over the network.
  • the agitation control unit operates the agitation unit in accordance with the agitation control signal.
  • the agitation control signal generated by the cell culture control device is a signal based on the cell characteristic amount correlated with the progress of suspension cell culture in the cell culture device or the dispersion state of the suspension cells in the culture medium. Therefore, according to the agitation control signal, the culture medium can be appropriately agitated according to the progress of the culture.
  • the cell culture system 100 includes a cell culture device 1 that produces cells by culturing and growing cells, and a control server that controls the cell culture device 1 (cell culture control Device) 2).
  • the cell culture apparatus 1 and the control server 2 are mutually connected via the communication network 3.
  • the communication network 3 is, for example, the Internet, an intranet, a LAN (Local Area Network), a WAN (Wide Area Network), or a combination thereof.
  • the communication network 3 may be either wireless or wired.
  • the cell culture apparatus 1 is provided with a culture vessel 4, a case 5 for containing the culture vessel 4, and a stirring device (stirring unit) 6 for stirring the medium M in the culture vessel 4.
  • Control device for controlling the imaging device 7 for capturing the inside of the container 4, the communication device (communication unit) 8 for communicating with the control server 2 via the communication network 3, the stirring device 6, the imaging device 7 and the communication device 8 (Stirring control unit) 9 is provided.
  • the imaging device 7, the communication device 8 and the control device 9 are fixed to the housing 5.
  • the culture container 4 is a container for mass culture of cells, for example, a bag or a cylindrical chamber used as a bioreactor.
  • the culture vessel 4 contains liquid medium M and cells suspended in the medium M. At least a part of the culture vessel 4 is transparent, and the inside of the culture vessel 4 can be imaged by the imaging device 7 disposed outside the culture vessel 4.
  • Culture vessel 4 has supply port 4a and discharge port 4b, medium M containing cells is supplied into culture vessel 4 from supply port 4a, and medium M containing cells is discharged out of culture vessel 4 from discharge port 4b. Ru.
  • the cells are floating cells that grow and proliferate in the medium M. In the medium M, the cells are present alone or in the form of approximately spherical colony C.
  • the housing 5 can adjust the internal temperature, humidity, carbon dioxide concentration and the like, and maintain the internal environment in an environment suitable for cell culture.
  • Stirring device 6 includes a stirring blade 6a disposed inside culture vessel 4, a stirring drive device 6b disposed outside culture vessel 4, and a shaft 6c connecting stirring blade 6a and stirring drive device 6b. Have.
  • the shaft 6 c is inserted from the outside to the inside of the culture vessel 4 while maintaining the hermeticity in the culture vessel 4.
  • the agitation drive device 6b rotates the agitation blade 6a around the shaft 6c by rotationally driving the shaft 6c around the longitudinal axis of the shaft 6c.
  • the imaging device 7 has an imaging element 7a.
  • the imaging device 7 may be a general-purpose camera.
  • the imaging range of the imaging element 7a is determined by the angle of view of the imaging device 7 and the depth of field.
  • the imaging range is located inside the culture vessel 4 in the housing 5.
  • the imaging element 7a captures an imaging range and generates an image signal including an image of a single cell and a colony C as shown in FIG.
  • One imaging device 7 may perform imaging at a plurality of positions while moving with respect to the culture container 4 so that the whole or a wide range of the inside of the culture container 4 can be imaged, A plurality of imaging devices 7 may be provided.
  • the communication device 8 receives an image signal from the imaging element 7 a and transmits the image signal to the control server 2 via the communication network 3.
  • the communication device 8 receives the agitation control signal from the control server 2 via the communication network 3 and sends the agitation control signal to the control device 9.
  • the control device 9 causes the imaging device 7 to periodically perform imaging according to a preset imaging schedule, and causes the communication device 8 to transmit the image signal generated by the imaging element 7 a to the control server 2. As shown in FIG. 4, the control device 9 may cause the imaging element 7 a to execute imaging a plurality of times at a time, and transmit a plurality of time-series image signals to the control server 2.
  • the control device 9 controls the stirring drive device 6 b of the stirring device 6 in accordance with the stirring control signal received from the control server 2 via the communication device 8.
  • Such a control device 9 is realized by a processor and a memory.
  • the memory stores a program for causing the processor to execute control processing of the stirring device 6, the imaging device 7 and the communication device 8.
  • the configuration of at least a part of the cell culture device 1 may be disposable.
  • the culture vessel 4 in direct contact with the culture medium M, the stirring wing 6a and the shaft 6c are preferably disposable in order to reliably prevent contamination.
  • the housing 5, the imaging device 7 and the communication device 8 are preferably used repeatedly.
  • the control server 2 is, for example, a cloud server.
  • the cloud server is installed on the Internet and provides a cloud service to the cell culture device 1 via the communication network 3.
  • the control server 2 may be a computer installed at any place.
  • the control server 2 includes a processor 11, a memory 12, and a communication device (communication unit) 13 that communicates with the cell culture device 1 via the communication network 3.
  • the memory 12 stores a cell feature amount calculation program and a stirring control signal generation program.
  • the processor 11 receives an image signal from the imaging device 7 of the cell culture device 1 by communication between the communication devices 8 and 13. Next, the processor 11 executes the process of calculating the cell feature amount from the image signal in accordance with the cell feature amount calculation program stored in the memory 12. Specifically, processor 11 extracts the annular edge of colony C from the image signal by edge extraction, and recognizes the area surrounded by the edge as colony C. Next, the processor 11 measures the size (diameter) of each colony C, and counts the number of colonies C of each size as shown in FIG. Next, the processor 11 generates a histogram of the size of colony C as shown in FIG. In the histogram, the horizontal axis is the size of colony C, and the vertical axis is the number of colony C.
  • the processor 11 calculates a cell feature amount from the histogram.
  • the cell feature amount is an amount that satisfies the following three conditions 1, 2 and 3.
  • Condition 1 An amount obtained from an image signal
  • Condition 2 An amount related to the appearance of cells
  • Condition 3 an amount correlated with any of the progress of cell culture and the dispersion state of cells in the medium
  • Preferred cell feature quantities that satisfy the above conditions 1, 2 and 3 are the mode (the size at which the number of colonies C is the largest), median, mean, variance, or half width of the histogram. As the culture proceeds, the size of colony C generally increases, and the variation in size among colonies C also increases. Thus, as culture proceeds, the mode, median, mean, variance, and half-width increase.
  • the processor 11 acquires a plurality of time-series image signals from the imaging device 7 of the cell culture device 1, the processor 11 may calculate one cell feature amount from the plurality of image signals.
  • the method of extracting cells from the image signal is not limited to edge extraction, and may be another method.
  • the colony C may be detected from the image signal by a neural network such as deep learning.
  • cells may be extracted one by one from the image signal to detect the shape and number of cells.
  • the processor 11 executes processing for generating a stirring control signal based on the cell feature amount according to the stirring control signal generation program stored in the memory 12.
  • the agitation control signal is a signal that instructs the agitation device 6 on a parameter that can control the state of agitation of the culture medium M.
  • the processor 11 estimates the degree of progress of the culture based on the cell characteristic amount, sets parameters suitable for the degree of progress, and generates a stirring control signal that causes the stirring device 6 to stir the culture medium M with the set parameters.
  • the processor 11 transmits a stirring control signal to the cell culture device 1 by communication between the communication devices 8 and 13.
  • the parameter is the number of rotations (stirring speed) of the stirring blade 6a.
  • the number of rotations is set to a higher value as the mode, average or median of the size of colony C is larger.
  • a table stored in advance in the memory 12 is used to determine the number of revolutions. In the table, the cell feature amount and the number of rotations are associated.
  • the processor 11 reads the table from the memory 12, refers to the table, selects the rotation number corresponding to the calculated cell feature amount from the table, and generates a stirring control signal for rotating the stirring blade 6a at the selected rotation number. Do.
  • the control server 2 may be connected to only one cell culture device 1 via the communication network 3, but as shown in FIG. 1, it is connected to a plurality of cell culture devices 1. It is also good.
  • a plurality of control servers 2 corresponding to the types of cells cultured by the cell culture apparatus 1 may be provided.
  • one control server 2 generates a stirring control signal optimized for culturing cell A
  • the other control server 2 optimizes for culturing cell B of a type different from cell A. Generate a controlled agitation control signal.
  • each cell culture device 1 communicates with, for example, the control server 2 corresponding to the type of cell, and performs transmission of an image signal and reception of a stirring control signal with the control server 2.
  • the type of cell is, for example, specified by the user.
  • the medium M containing cells is supplied from the supply port 4a into the culture vessel 4, and the culture vessel 4 containing the medium M and the cells is housed in the housing 5;
  • the cells are cultured in an environment suitable for culturing the cells in the housing 5.
  • the medium M is agitated by the rotation of the stirring wing 6a disposed in the medium M so that the cells are uniformly dispersed in the medium M.
  • Cell culture system 100 controls agitation of culture medium M in culture according to the cell culture control method shown in FIGS. 7 and 8.
  • the cell culture control method includes step S1 of imaging the inside of the culture vessel 4 by the imaging device 7a to generate an image signal, step S2 of the control server 2 acquiring an image signal, and cell characteristics from the image signal. It includes a step S3 of calculating the amount, a step S4 of generating a stirring control signal based on the cell characteristic amount, and a step S5 of controlling the stirring device 6 according to the stirring control signal.
  • step S1 the control device 9 causes the imaging element 7a to perform imaging, whereby an image signal of at least a part of the culture vessel 4 is generated.
  • the image signal is transmitted from the communication device 8 of the cell culture device 1 to the communication device 13 of the control server 2 via the communication network 3.
  • step S2 the processor 11 receives an image signal from the communication device 13.
  • step S3 the processor 11 extracts the colony C of the cells from the image signal (step S31), measures the size of each of the extracted colonies C, and generates a histogram of the size of the colony C (step S32). ).
  • the processor 11 sets the mode, the median, the average, the variance, or the half width of the histogram as the cell feature (step S33).
  • step S4 the processor 11 refers to the table stored in the memory 12 (step S41).
  • the processor 11 selects from the table the number of rotations corresponding to the cell feature value calculated in step S3 (step S42), and generates a stirring control signal to rotate the stirring blade 6a at the selected number of rotations (step S43) .
  • the processor 11 transmits a stirring control signal to the control device 9 via the communication device 13, the communication network 3 and the communication device 8 (step S6).
  • step S5 the control device 9 controls the stirring drive device 6b according to the stirring control signal. For example, the control device 9 determines whether the current rotation number of the stirring blade 6a is within the allowable range (step S51).
  • the allowable range of the rotational speed is a range determined based on the rotational speed of the agitation control signal. If the current rotation speed is within the allowable range (YES in step S51), the controller 9 maintains the current rotation speed. On the other hand, when the current rotation speed is out of the allowable range (NO in step S51), the control device 9 changes the rotation speed of the stirring blade 6a to the rotation speed of the stirring control signal by controlling the stirring drive device 6b. (Step S52).
  • the cell culture apparatus 1 In order to produce homogeneous cells by the cell culture apparatus 1, it is important to keep the environment in the culture vessel 4 homogeneous. On the other hand, the colony C of cells moves downward in the medium M by gravity. Therefore, the cells are cultured while stirring the medium M by the rotation of the stirring wing 6a in order to uniformly disperse the colony C of the cells in the medium M.
  • the size of colony C increases as the culture proceeds.
  • the dispersing effect of the cells by the stirring device 6 differs.
  • the stirring speed of the medium M is constant, as the colony C becomes larger, the effect of dispersing the colony C becomes less, and the density of the colony C in the medium M may be biased.
  • the inside of the culture container 4 is periodically imaged by the imaging device 7 during the culture of the cells. Then, a cell characteristic amount correlated with the progress degree of culture is calculated from the image signal, a stirring control signal is generated based on the cell characteristic amount, and the stirring speed of the culture medium M by the stirring device 6 is controlled according to the stirring control signal. That is, according to the time change of the size of the colony C of cells, the stirring speed of the culture medium M also changes time.
  • the culture medium M can be appropriately stirred depending on the progress of the culture, and homogeneous cells can be produced.
  • the culture vessel 4 is configured to be disposable, unlike when using a sensor or the like in contact with the liquid level. be able to.
  • the number of rotations of the stirring blade 6a is controlled by the stirring control signal, but instead of or in addition to this, the shape of the stirring blade 6a may be controlled by the stirring control signal .
  • the shape of the stirring blade 6a is variable, and the stirring drive device 6b can change the shape of the stirring blade 6a.
  • the stirring device 6 may have a plurality of stirring blades 6a and can rotate the plurality of stirring blades 6a at mutually independent rotational speeds.
  • the number of rotations of the plurality of stirring blades 6a may be controlled to be different from each other.
  • the stirring control signal may be controlled by the stirring control signal so that the stirring blade 6a at the shallow position is rotated at a low rotation speed and the stirring blade 6a at the deep position is rotated at the high rotation speed.
  • the temperature of the culture medium M and the amount of the culture medium M in the culture vessel 4 affect the effect of dispersing the cells by agitation of the culture medium M, in addition to the rotation number (stirring speed). Therefore, the processor 11 may obtain the information on the temperature and amount of the culture medium M from the cell culture apparatus 1 and determine the number of rotations in consideration of the temperature and amount of the culture medium M in addition to the cell characteristic amount.
  • the temperature of the culture medium M is measured, for example, by a non-contact thermometer placed outside the culture vessel 4.
  • the amount of culture medium M is input to the cell culture apparatus 1 by the user, for example.
  • the processor 11 and the memory 12 are provided in the control server 2 different from the cell culture apparatus 1, and calculation of the cell feature amount and generation of the agitation control signal are performed in the control server 2,
  • the cell culture apparatus 10 may be provided with a processor 11 and a memory 12. That is, the cell culture apparatus 10 may be a cell culture control apparatus.
  • the processor 11 and the memory 12 may be provided separately from the controller 9 and may be a processor and a memory of the controller 9.
  • the cell culture device 10 of FIG. 9 may transmit the processing result related to the calculation of the cell feature amount and the processing result related to the generation of the agitation control signal to the server via the communication network 3.
  • the server may be the control server 2 or another server.
  • the server receives the above processing result from each of the plurality of cell culture apparatuses 10, stores the received processing result in the memory 12, and associates the cell feature amount in the past culture with the agitation control signal with each other. Accumulate.
  • step S4 the processor 11 obtains the cell feature amount and agitation control signal accumulated so far from the server prior to table reference (step S41).
  • step S41 the processor 11 updates the table based on the acquired cell feature amount and the agitation control signal. In this manner, the table can be efficiently updated by the plurality of cell culture apparatuses 10 sharing the cell feature amount and the agitation control signal with each other.
  • the evaluation result of the quality of the produced cell may be input by the user to the processor 11, and the evaluation result may be transmitted to the server in association with the cell feature amount and the agitation control signal in the culture of the cell.
  • the server receives the evaluation result as well as the processing result, and accumulates the processing result and the evaluation result.
  • the processor 11 of the cell culture apparatus 10 receives the evaluation result from the server together with the cell feature amount and the agitation control signal, and updates the table using the cell feature amount of the culture whose evaluation result was good and the agitation control signal. Good.
  • an amount that correlates with the degree of progress of culture of cells is used as the cell feature amount, but instead, an amount that correlates with the dispersion state of cells in the medium may be used.
  • an amount that correlates with the dispersion state of cells in the culture medium for example, the dispersion value or half width of a histogram can be used.
  • the stirring device 6 that stirs the culture medium M by rotation of the stirring blade 6a is used, but instead, a stirring device of another type may be used.
  • a stirring device of a method of convecting the medium M, a method of rotating a magnetic stirrer, or a method of shaking the culture vessel 4 may be used.
  • the imaging device 7 is being fixed to the housing
  • cell culture system 1 cell culture apparatus 10 cell culture apparatus (cell culture control apparatus) 2 Control server (cell culture controller) 3 communication network 4 culture vessel 5 housing 6 stirring device (stirring unit) 7 imaging device 7a imaging device 8 communication device (communication unit) 9 Control device (stirring control unit) 11 processor 12 memory 13 communication device (communication unit) M medium C colony

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Quality & Reliability (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Computer Hardware Design (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

細胞培養制御方法は、培養容器の内部の少なくとも一部を撮像した画像信号を取得するステップ(S2)と、浮遊細胞の培養の進行度合いおよび培地中の浮遊細胞の分散状況のいずれかと相関する細胞特徴量を画像信号から算出するステップ(S3)と、培養容器内の培地の撹拌を制御する撹拌制御信号を細胞特徴量に基づいて生成するステップ(S4)とを含む。

Description

細胞培養制御方法、細胞培養制御装置、細胞培養装置および細胞培養システム
 本発明は、細胞培養制御方法、細胞培養制御装置、細胞培養装置および細胞培養システムに関するものである。
 近年、バイオリアクタのような培養容器を使用し、iPS細胞等の細胞を生産する産業が興りつつある(例えば、特許文献1参照。)。細胞は、液状の培地内で浮遊しながら培養され、コロニーを形成する。コロニーの粒径は、培養が進むにつれて大きくなる。特許文献1では、培養容器の内部の画像を取得し、培地内のコロニーの粒径分布および粒子数を画像から推定し、推定結果に基づいて細胞の品質管理および生産管理を行っている。
特開2017-140006号公報
 均質な細胞を生産するためには、培養容器内の環境を均質に保つことが重要である。したがって、細胞が培地中に均一に分散するように培地を撹拌しながら、細胞は培養される。培地の撹拌は、撹拌翼とコロニーとの接触等によって細胞に物理的なストレスを与える。また、コロニーの大きさは培養の過程で継時的に変化し、コロニーの大きさに応じて、細胞の分散されやすさや撹拌に因るストレスの大きさが異なる。しかしながら、特許文献1では、一定の速度で培地を撹拌しているため、コロニーの大きさに見合わない撹拌によって細胞が影響を受ける。その結果、生産物である細胞の収率の低下を招くという不都合がある。
 本発明は、上述した事情に鑑みてなされたものであって、培養の進み具合に応じて適切に培地を撹拌することができる細胞培養制御方法、細胞培養制御装置、細胞培養装置および細胞培養システムを提供することを目的とする。
 上記目的を達成するため、本発明は以下の手段を提供する。
 本発明の一態様は、培養容器の内部の少なくとも一部を撮像した画像信号を取得し、前記培養容器は液状の培地および該培地中に浮遊する浮遊細胞を収容している、ステップと、前記浮遊細胞の培養の進行度合いおよび前記培地中の前記浮遊細胞の分散状況のいずれかと相関する細胞特徴量を前記画像信号から算出するステップと、前記培養容器内の前記培地の撹拌を制御する撹拌制御信号を前記細胞特徴量に基づいて生成するステップとを含む細胞培養制御方法である。
 本態様によれば、培養容器内で培養されている浮遊細胞の画像信号が取得され、画像信号から細胞特徴量が算出され、細胞特徴量に基づく撹拌制御信号が生成される。細胞特徴量は、浮遊細胞の培養の進行度合いまたは培地中の浮遊細胞の分散状況と相関する量である。したがって、細胞特徴量に基づく撹拌制御信号に従って、培養の進み具合に応じて適切に培地を撹拌することができる。
 上記態様においては、前記培養容器の内部の少なくとも一部を撮像素子によって撮像し前記画像信号を生成するステップを含み、前記画像信号を取得するステップが、前記撮像素子と通信し該撮像素子から前記画像信号を受信するステップを含んでいてもよい。
 上記態様においては、前記細胞特徴量を算出するステップが、前記画像信号から前記浮遊細胞のコロニーを抽出するステップと、前記コロニーのサイズのヒストグラムを生成するステップと、前記ヒストグラムにおける前記サイズの最頻値、中央値、平均値、分散および半値幅のいずれかを前記細胞特徴量に設定するステップとを含んでいてもよい。
 培地中に浮遊しながら培養される浮遊細胞は略球状のコロニーを形成し、培養が進むにつれてコロニーのサイズ(直径)が大きくなる。すなわち、培養が進むにつれて、コロニーのサイズの最頻値、中央値、平均値、分散および半値幅は大きくなる。したがって、これらの値を細胞特徴量として用いることで、浮遊細胞の培養の進行度合いを正確に知ることができる。
 上記態様においては、前記撹拌制御信号を生成するステップが、前記細胞特徴量と前記培地の撹拌速度とが対応付けられたテーブルを参照するステップと、前記細胞特徴量を算出するステップにおいて算出された前記細胞特徴量と対応する撹拌速度を前記テーブルから選択し、選択された前記撹拌速度で前記培地を撹拌させる前記撹拌制御信号を生成するステップとを含んでいてもよい。
 このようにすることで、細胞特徴量に基づいて培地の撹拌速度を制御することができる。
 上記態様においては、前記撹拌制御信号を生成するステップが、過去の浮遊細胞の培養において算出された前記細胞特徴量と前記撹拌制御信号との対応関係を用いて前記テーブルを更新するステップを含んでいてもよい。
 このようにすることで、細胞特徴量と撹拌速度との対応関係がより適切になるように、過去に行われた培養に基づいてテーブルを更新することができる。
 上記態様においては、前記撹拌制御信号を生成するステップが、前記培養容器内の前記培地の温度を取得するステップと、前記撹拌制御信号を前記細胞特徴量および前記温度の両方に基づいて生成するステップとを含んでいてもよい。
 培地の最適な撹拌条件は、培地の温度にも影響される。したがって、細胞特徴量に加えて培地の温度も考慮することで、培地をより適切に撹拌させる撹拌制御信号を生成することができる。
 本発明の他の態様は、プロセッサを備え、該プロセッサが、培養容器の内部の少なくとも一部を撮像した画像信号を取得し、前記培養容器は液状の培地および該培地中に浮遊する浮遊細胞を収容し、前記浮遊細胞の培養の進行度合いおよび前記培地中の前記浮遊細胞の分散状況のいずれかと相関する細胞特徴量を前記画像信号から算出し、前記培養容器内の前記培地の撹拌を制御する撹拌制御信号を前記細胞特徴量に基づいて生成する細胞培養制御装置である。
 本態様によれば、プロセッサによって、培養容器内で培養されている浮遊細胞の画像信号が取得され、画像信号から細胞特徴量が算出され、細胞特徴量に基づく撹拌制御信号が生成される。細胞特徴量は、浮遊細胞の培養の進行度合いまたは培地中の浮遊細胞の分散状況と相関する量である。したがって、細胞特徴量に基づく撹拌制御信号に従って、培養の進み具合に応じて適切に培地を撹拌することができる。
 上記態様においては、前記培地および前記浮遊細胞を収容する前記培養容器と、該培養容器の内部の少なくとも一部を撮像し前記画像信号を生成する撮像素子と、前記培養容器内の前記培地を撹拌する撹拌部と、前記プロセッサによって生成された前記撹拌制御信号に従って前記撹拌部を制御する撹拌制御部とを備えていてもよい。
 このように、細胞培養装置としての構成である培養容器、撮像素子、撹拌部および撹拌制御部を備えることで、細胞培養装置として細胞培養制御装置を実現することができる。
 上記態様においては、前記細胞特徴量の算出に係る処理の結果および前記撹拌制御信号の生成に係る処理の結果の少なくとも一方を通信ネットワークを経由してサーバに送信する通信部を備えていてもよい。
 このようにすることで、細胞特徴量および撹拌制御信号に関する情報をサーバに蓄積し、蓄積された情報を、サーバに接続された複数の細胞培養制御装置間で共有することができる。
 上記態様においては、前記培地および前記浮遊細胞を収容する前記培養容器と、該培養容器の内部の少なくとも一部を撮像する撮像素子と、前記培養容器内の前記培地を撹拌する撹拌部と、前記プロセッサによって生成された前記撹拌制御信号に従って前記撹拌部を制御する撹拌制御部とを備える細胞培養装置と通信ネットワークによって接続され、前記画像信号を前記通信ネットワークを経由して前記撮像素子から受信し、前記プロセッサによって生成された前記撹拌制御信号を前記通信ネットワークを経由して前記撹拌制御部に送信する通信部を備えていてもよい。
 このような通信部を備えることで、細胞培養装置の撹拌制御部による撹拌部の動作を遠隔制御することができる。
 本発明の他の態様は、液状の培地および該培地中に浮遊する浮遊細胞を収容する培養容器を用いて細胞を培養する細胞培養装置であって、前記培養容器の内部の少なくとも一部を撮像し画像信号を生成する撮像素子と、前記培養容器内の前記培地を撹拌する撹拌部と、通信ネットワークを経由して細胞培養制御装置に前記画像信号を送信し、前記通信ネットワークを経由して前記細胞培養制御装置から撹拌制御信号を受信し、該撹拌制御信号は、前記画像信号から算出され前記浮遊細胞の培養の進行度合いおよび前記培地中の前記浮遊細胞の分散状況のいずれかと相関する細胞特徴量に基づいて生成される、通信部と、該通信部によって受信された前記撹拌制御信号に従って前記撹拌部を制御する撹拌制御部とを備える細胞培養装置である。
 本態様によれば、培養容器内で培養されている浮遊細胞の画像信号が撮像素子によって生成され、画像信号が通信部によって細胞培養制御装置に送信され、細胞培養制御装置からの画像信号に基づく撹拌制御信号が通信部によって受信され、撹拌制御信号に従って撹拌制御部が撹拌部を作動させる。
 この場合に、細胞培養制御装置において生成された撹拌制御信号は、浮遊細胞の培養の進行度合いまたは培地中の浮遊細胞の分散状況と相関する細胞特徴量に基づく信号である。したがって、撹拌制御信号に従って、培養の進み具合に応じて適切に培地を撹拌することができる。
 本発明の他の態様は、液状の培地および該培地中に浮遊する浮遊細胞を収容する培養容器を用いて細胞を培養する細胞培養装置であって、前記培養容器の内部の少なくとも一部を撮像し画像信号を生成する撮像素子と、前記培養容器内の前記培地を撹拌する撹拌部と、通信ネットワークを経由して細胞培養制御装置に前記画像信号を送信し、前記通信ネットワークを経由して前記細胞培養制御装置から撹拌制御信号を受信し、前記画像信号は、前記浮遊細胞の培養の進行度合いおよび前記培地中の前記浮遊細胞の分散状況のいずれかと相関する細胞特徴量の算出ならびに該細胞特徴量に基づく前記撹拌制御信号の生成に使用される、通信部と、該通信部によって受信された前記撹拌制御信号に従って前記撹拌部を制御する撹拌制御部とを備える細胞培養装置である。
 本態様によれば、培養容器内で培養されている浮遊細胞の画像信号が撮像素子によって生成され、画像信号が通信部によって細胞培養制御装置に送信され、細胞培養制御装置からの画像信号に基づく撹拌制御信号が通信部によって受信され、撹拌制御信号に従って撹拌制御部が撹拌部を作動させる。
 この場合に、細胞培養制御装置に送信される画像信号は、浮遊細胞の培養の進行度合いまたは培地中の浮遊細胞の分散状況と相関する細胞特徴量を算出に使用される。したがって、細胞特徴量に基づく撹拌制御信号に従って、培養の進み具合に応じて適切に培地を撹拌することができる。
 本発明の他の態様は、液状の培地および該培地中に浮遊する浮遊細胞を収容する培養容器を用いて細胞を培養する細胞培養装置と、該細胞培養装置と通信ネットワークによって接続された細胞培養制御装置とを備え、前記細胞培養装置が、前記培養容器の内部の少なくとも一部を撮像し画像信号を生成する撮像素子と、前記培養容器内の前記培地を撹拌する撹拌部と、前記細胞培養制御装置から受信した撹拌制御信号に従って前記撹拌部を制御する撹拌制御部とを備え、前記細胞培養制御装置が、前記浮遊細胞の培養の進行度合いおよび前記培地中の前記浮遊細胞の分散状況のいずれかと相関する細胞特徴量を前記画像信号から算出し、前記培養容器内の前記培地の撹拌を制御する前記撹拌制御信号を前記細胞特徴量に基づいて生成するプロセッサを備える細胞培養システムである。
 本態様によれば、撮像素子によって生成された画像信号が細胞培養装置から細胞培養制御装置へ通信ネットワーク経由で送信され、プロセッサによって生成された撹拌制御信号が細胞培養制御装置から細胞培養装置へ通信ネットワーク経由で送信される。細胞培養装置では、撹拌制御信号に従って撹拌制御部が撹拌部を作動させる。
 この場合に、細胞培養制御装置によって生成される撹拌制御信号は、細胞培養装置における浮遊細胞の培養の進行度合いまたは培地中の浮遊細胞の分散状況と相関する細胞特徴量に基づく信号である。したがって、撹拌制御信号に従って、培養の進み具合に応じて適切に培地を撹拌することができる。
 本発明によれば、培養の進み具合に応じて適切に培地を撹拌することができるという効果を奏する。
本発明の一実施形態に係る細胞培養システムの全体構成図である。 図1の細胞培養システムの細胞培養装置の全体構成図である。 図2の細胞培養装置の撮像装置によって生成される画像信号の一例である。 図2の細胞培養装置の撮像装置によって生成される時系列の画像信号の一例である。 図1の細胞培養システムの制御サーバによるコロニーの計数結果の一例を示す図である。 図1の細胞培養システムの制御サーバによって生成されるヒストグラムの一例を示す図である。 図1の細胞培養システムによる細胞培養制御方法を示すフローチャートである。 図7のフローチャートの続きである。 図2の細胞培養装置の変形例の全体構成図である。
 以下に、本発明の一実施形態に係る細胞培養システム100について図面を参照して説明する。
 本実施形態に係る細胞培養システム100は、図1に示されるように、細胞を培養および増殖させることによって細胞を生産する細胞培養装置1と、細胞培養装置1を制御する制御サーバ(細胞培養制御装置)2とを備えている。
 細胞培養装置1と制御サーバ2は、通信ネットワーク3を経由して相互に接続されている。通信ネットワーク3は、例えば、インターネット、イントラネット、LAN(Local Area Network)、WAN(Wide Area Network)、またはこれらの組み合わせである。通信ネットワーク3は、無線および有線のいずれであってもよい。
 細胞培養装置1は、図2に示されるように、培養容器4と、培養容器4を収容する筐体5と、培養容器4内の培地Mを撹拌する撹拌装置(撹拌部)6と、培養容器4の内部を撮像する撮像装置7と、通信ネットワーク3を経由して制御サーバ2と通信する通信装置(通信部)8と、撹拌装置6、撮像装置7および通信装置8を制御する制御装置(撹拌制御部)9とを備えている。撮像装置7、通信装置8および制御装置9は、筐体5に固定されている。
 培養容器4は、細胞の大量培養用の容器であり、例えば、バイオリアクタとして使用されるバッグまたは円筒形のチャンバである。培養容器4は、液状の培地Mおよび培地M中に浮遊する細胞を収容する。培養容器4の少なくとも一部は透明であり、培養容器4の外部に配置された撮像装置7によって培養容器4の内部を撮像することができるようになっている。培養容器4は供給口4aおよび排出口4bを有し、細胞を含む培地Mが供給口4aから培養容器4内へ供給され、細胞を含む培地Mが排出口4bから培養容器4外へ排出される。細胞は、培地M中に浮遊した状態で成長および増殖する浮遊細胞である。培地M中において、細胞は、単独で、または、略球状のコロニーCの形態で存在する。
 筐体5は、内部の温度、湿度、および二酸化炭素濃度等を調整することができ、内部の環境を細胞の培養に適した環境に維持するようになっている。
 撹拌装置6は、培養容器4の内部に配置された撹拌翼6aと、培養容器4の外部に配置された撹拌駆動装置6bと、撹拌翼6aと撹拌駆動装置6bとを接続するシャフト6cとを備えている。シャフト6cは、培養容器4内の密閉性を維持しながら培養容器4の外部から内部へ挿入されている。撹拌駆動装置6bは、シャフト6cを該シャフト6cの長手軸回りに回転駆動することで撹拌翼6aをシャフト6c回りに回転させる。
 撮像装置7は、撮像素子7aを有している。撮像装置7は、汎用のカメラであってもよい。撮像素子7aの撮像範囲は、撮像装置7の画角および被写界深度によって決まる。撮像範囲は、筐体5内の培養容器4の内部に位置している。撮像素子7aは、撮像範囲を撮像し、図3に示されるように、単独の細胞およびコロニーCの像を含む画像信号を生成する。
 培養容器4の内部の全体または広範囲を撮像することができるように、1台の撮像装置7が培養容器4に対して移動しながら複数の位置で撮像を実行してもよく、複数の位置に複数台の撮像装置7が設けられていてもよい。
 通信装置8は、撮像素子7aから画像信号を受信し、画像信号を通信ネットワーク3を経由して制御サーバ2に送信する。通信装置8は、制御サーバ2から通信ネットワーク3を経由して撹拌制御信号を受信し、撹拌制御信号を制御装置9に送る。
 制御装置9は、予め設定された撮像スケジュールに従って定期的に撮像装置7に撮像を実行させ、撮像素子7aによって生成された画像信号を通信装置8から制御サーバ2に送信させる。図4に示されるように、制御装置9は、一度に複数回の撮像を撮像素子7aに実行させ、時系列の複数の画像信号を制御サーバ2に送信させてもよい。制御装置9は、制御サーバ2から通信装置8を経由して受信した撹拌制御信号に従って撹拌装置6の撹拌駆動装置6bを制御する。
 このような制御装置9は、プロセッサと、メモリとによって実現される。メモリには、撹拌装置6、撮像装置7および通信装置8の制御処理をプロセッサに実行させるためのプログラムが記憶されている。
 細胞培養装置1の少なくとも一部の構成は、使い捨てであってもよい。培地Mと直接接触する培養容器4、撹拌翼6aおよびシャフト6cは、コンタミネーションを確実に防止するために、使い捨てであることが好ましい。筐体5、撮像装置7および通信装置8は、繰り返し使用することが好ましい。
 制御サーバ2は、例えばクラウドサーバである。クラウドサーバは、インターネット上に設置され、通信ネットワーク3を経由して細胞培養装置1にクラウドサービスを提供する。あるいは、制御サーバ2は、任意の場所に設置されたコンピュータであってもよい。
 制御サーバ2は、プロセッサ11と、メモリ12と、通信ネットワーク3を経由して細胞培養装置1と通信する通信装置(通信部)13とを備えている。メモリ12には、細胞特徴量算出プログラムおよび撹拌制御信号生成プログラムが記憶されている。
 プロセッサ11は、通信装置8,13間の通信によって、細胞培養装置1の撮像装置7から画像信号を受信する。
 次に、プロセッサ11は、メモリ12に記憶されている細胞特徴量算出プログラムに従って、画像信号から細胞特徴量を算出する処理を実行する。具体的には、プロセッサ11は、エッジ抽出によってコロニーCの環状の縁を画像信号から抽出し、縁によって囲まれる領域をコロニーCと認識する。次に、プロセッサ11は、各コロニーCのサイズ(直径)を計測し、図5に示されるように各サイズのコロニーCの数をカウントする。次に、プロセッサ11は、図6に示されるようなコロニーCのサイズのヒストグラムを生成する。ヒストグラムにおいて、横軸はコロニーCのサイズであり、縦軸はコロニーCの数である。
 次に、プロセッサ11は、ヒストグラムから細胞特徴量を算出する。細胞特徴量は、以下の3つの条件1,2,3を満たす量である。
 条件1:画像信号から得られる量
 条件2:細胞の外観に関する量
 条件3:細胞の培養の進行度合いおよび培地中の細胞の分散状況のいずれかと相関する量
 上記の条件1,2,3を満たす好ましい細胞特徴量は、ヒストグラムの最頻値(コロニーCの数が最大であるサイズ)、中央値、平均値、分散、または半値幅である。培養が進行するにつれて、コロニーCのサイズは全体的に大きくなり、コロニーC間のサイズのばらつきも大きくなる。したがって、培養が進行するにつれて、最頻値、中央値、平均値、分散値、および半値幅は大きくなる。
 プロセッサ11が、時系列の複数の画像信号を細胞培養装置1の撮像装置7から取得する場合、プロセッサ11は、複数の画像信号から1つの細胞特徴量を算出してもよい。
 画像信号から細胞を抽出する方法は、エッジ抽出に限らず、他の方法であってもよい。例えば、深層学習等のニューラルネットワークによって画像信号からコロニーCを検出してもよい。
 また、細胞種または画像解析の精度によっては、画像信号から1つ1つの細胞を抽出し、各細胞の形状および細胞数を検出してもよい。
 次に、プロセッサ11は、メモリ12に記憶されている撹拌制御信号生成プログラムに従って、細胞特徴量に基づいて撹拌制御信号を生成する処理を実行する。撹拌制御信号は、培地Mの撹拌の状況を制御することができるパラメータを撹拌装置6に指示する信号である。プロセッサ11は、細胞特徴量に基づいて培養の進行度合いを推定し、進行度合いに適したパラメータを設定し、設定されたパラメータで撹拌装置6に培地Mを撹拌させる撹拌制御信号を生成する。
 プロセッサ11は、撹拌制御信号を通信装置8,13間の通信によって細胞培養装置1へ送信する。
 例えば、パラメータは、撹拌翼6aの回転数(撹拌速度)である。回転数は、コロニーCのサイズの最頻値、平均値または中央値が大きい程、高い値に設定される。回転数の決定には、メモリ12に予め記憶されたテーブルが用いられる。テーブルには、細胞特徴量と回転数とが対応付けられている。プロセッサ11は、メモリ12からテーブルを読み出し、テーブルを参照し、算出された細胞特徴量と対応する回転数をテーブルから選択し、選択された回転数で撹拌翼6aを回転させる撹拌制御信号を生成する。
 制御サーバ2は、通信ネットワーク3を経由して、1台のみの細胞培養装置1と接続されていてもよいが、図1に示されるように、複数台の細胞培養装置1と接続されていてもよい。
 また、細胞培養装置1によって培養される細胞の種類に対応する複数台の制御サーバ2が設けられていてもよい。例えば、一の制御サーバ2は、細胞Aの培養用に最適化された撹拌制御信号を生成し、他の一の制御サーバ2は、細胞Aとは異なる種類の細胞Bの培養用に最適化された撹拌制御信号を生成する。この場合、各細胞培養装置1は、例えば、細胞の種類に対応する制御サーバ2と通信し、該制御サーバ2との間で画像信号の送信および撹拌制御信号の受信を行う。細胞の種類は、例えば、ユーザによって指定される。
 次に、細胞培養システム100による細胞培養制御方法について図7および図8を参照して説明する。
 細胞培養システム100によって細胞を生産するためには、細胞を含む培地Mを供給口4aから培養容器4内へ供給し、培地Mおよび細胞を収容する培養容器4を筐体5内に収容し、筐体5内の細胞の培養に適した環境下で細胞を培養する。培養中、細胞が培地M中に均一に分散するように、培地M中に配置された撹拌翼6aの回転によって培地Mが撹拌される。細胞培養システム100は、図7および図8に示される細胞培養制御方法に従って培養中の培地Mの撹拌を制御する。
 本実施形態に係る細胞培養制御方法は、撮像素子7aによって培養容器4の内部を撮像し画像信号を生成するステップS1と、制御サーバ2が画像信号を取得するステップS2と、画像信号から細胞特徴量を算出するステップS3と、細胞特徴量に基づいて撹拌制御信号を生成するステップS4と、撹拌制御信号に従って撹拌装置6を制御するステップS5とを含む。
 ステップS1において、制御装置9が撮像素子7aに撮像を実行させることによって、培養容器4の少なくとも一部の画像信号が生成される。画像信号は、細胞培養装置1の通信装置8から通信ネットワーク3を経由して制御サーバ2の通信装置13へ送信される。
 次に、ステップS2において、プロセッサ11は、通信装置13から画像信号を受信する。
 次に、ステップS3において、プロセッサ11は、画像信号から細胞のコロニーCを抽出し(ステップS31)、抽出された各コロニーCのサイズを計測し、コロニーCのサイズのヒストグラムを生成する(ステップS32)。次に、プロセッサ11は、ヒストグラムの最頻値、中央値、平均値、分散、または半値幅を細胞特徴量に設定する(ステップS33)。
 次に、ステップS4において、プロセッサ11は、メモリ12に記憶されているテーブルを参照する(ステップS41)。プロセッサ11は、ステップS3において算出された細胞特徴量と対応する回転数をテーブルから選択し(ステップS42)、選択された回転数で撹拌翼6aを回転させる撹拌制御信号を生成する(ステップS43)。
 プロセッサ11は、通信装置13、通信ネットワーク3および通信装置8を経由して撹拌制御信号を制御装置9へ送信する(ステップS6)。
 次に、ステップS5において、制御装置9は、撹拌制御信号に従って撹拌駆動装置6bを制御する。
 例えば、制御装置9は、撹拌翼6aの現在の回転数が許容範囲内であるか否かを判断する(ステップS51)。回転数の許容範囲は、撹拌制御信号の回転数に基づいて決定される範囲である。現在の回転数が許容範囲内である場合(ステップS51のYES)、制御装置9は、現在の回転数を維持する。一方、現在の回転数が許容範囲外である場合(ステップS51のNO)、制御装置9は、撹拌駆動装置6bを制御することによって、撹拌翼6aの回転数を撹拌制御信号の回転数に変更させる(ステップS52)。
 細胞培養装置1によって均質な細胞を生産するためには、培養容器4内の環境を均質に保つことが重要である。一方、細胞のコロニーCは、重力によって培地M内で下方へ移動する。したがって、細胞のコロニーCを培地M中に均一に分散させるために撹拌翼6aの回転によって培地Mを撹拌しながら、細胞は培養される。
 ここで、コロニーCのサイズは培養が進むにつれて大きくなる。コロニーCのサイズに応じて、撹拌装置6による細胞の分散効果は異なる。例えば、培地Mの撹拌速度が一定である場合、コロニーCが大きくなるにつれて、コロニーCを分散させる効果が低くなって培地M中のコロニーCの密度に偏りが生じ得る。コロニーCが大きくなり過ぎると、コロニーCの中心部分と周辺部分との間で栄養の供給等に差が生じる。したがって、培地Mの撹拌によってコロニーCをばらばらにすることで、コロニーCのサイズを一定のサイズ以下に保つことが好ましい。
 また、撹拌による細胞への影響を抑えるために、培地Mの撹拌速度は必要最低限に抑えることが好ましい。
 本実施形態によれば、細胞の培養中に培養容器4の内部が撮像装置7によって定期的に撮像される。そして、培養の進行度合いと相関する細胞特徴量が画像信号から算出され、細胞特徴量に基づいて撹拌制御信号が生成され、撹拌制御信号に従って撹拌装置6による培地Mの撹拌速度が制御される。すなわち、細胞のコロニーCのサイズの時間変化に応じて培地Mの撹拌速度も時間変化する。これにより、培養の進み具合に応じて適切に培地Mを撹拌することができ、均質な細胞を生産することができるという利点がある。
 また、培養の進行度合いの検知に培地Mに非接触で得ることができる画像信号を用いることで、液面に接するセンサ等を使用する場合と異なり、培養容器4を使い捨てに好適な構成とすることができる。
 本実施形態においては、撹拌制御信号によって撹拌翼6aの回転数を制御することとしたが、これに代えて、またはこれに加えて、撹拌制御信号によって撹拌翼6aの形状を制御してもよい。この場合、撹拌翼6aの形状は可変であり、撹拌駆動装置6bは、撹拌翼6aの形状を変化させることができる。
 撹拌装置6が、複数の撹拌翼6aを有し、複数の撹拌翼6aを相互に独立した回転数で回転可能であってもよい。この場合には、複数の撹拌翼6aの回転数を相互に異なる回転数に制御してもよい。例えば、浅い位置の撹拌翼6aを低い回転数で回転させ、深い位置の撹拌翼6aを高い回転数で回転させるように、撹拌制御信号によって制御してもよい。
 培地Mの撹拌によって細胞を分散させる効果には、回転数(撹拌速度)に加えて、培地Mの温度と、培養容器4内の培地Mの量が影響する。したがって、プロセッサ11が、培地Mの温度および量の情報を細胞培養装置1から取得し、細胞特徴量に加えて培地Mの温度および量を考慮して回転数を決定してもよい。培地Mの温度は、例えば、培養容器4の外部に配置された非接触式の温度計によって測定される。培地Mの量は、例えば、ユーザによって細胞培養装置1に入力される。
 本実施形態においては、細胞培養装置1とは別の制御サーバ2にプロセッサ11およびメモリ12が設けられ、細胞特徴量の算出および撹拌制御信号の生成が制御サーバ2において行われることとしたが、これに代えて、図9に示されるように、細胞培養装置10にプロセッサ11およびメモリ12が設けられていてもよい。すなわち、細胞培養装置10が、細胞培養制御装置であってもよい。プロセッサ11およびメモリ12は、制御装置9とは別に設けられていてもよく、制御装置9のプロセッサおよびメモリであってもよい。
 図9の細胞培養装置10は、細胞特徴量の算出に係る処理結果および撹拌制御信号の生成に係る処理結果を、通信ネットワーク3経由でサーバに送信してもよい。サーバは、制御サーバ2であってもよく、他のサーバであってもよい。
 サーバは、複数台の細胞培養装置10の各々から上記の処理結果を受信し、受信した処理結果をメモリ12に記憶させることで過去の培養における細胞特徴量と撹拌制御信号とを相互に対応付けて蓄積する。
 ステップS4において、プロセッサ11は、テーブルの参照(ステップS41)に先立ち、サーバから、それまでに蓄積されている細胞特徴量および撹拌制御信号を取得する。次に、プロセッサ11は、取得された細胞特徴量と撹拌制御信号とに基づき、テーブルを更新する。
 このように、複数台の細胞培養装置10が細胞特徴量および撹拌制御信号を相互に共有することで、テーブルを効率的に更新することができる。
 生産された細胞の良否の評価結果がユーザによってプロセッサ11に入力され、評価結果がその細胞の培養における細胞特徴量および撹拌制御信号と対応付けてサーバへ送信されてもよい。サーバは、処理結果と共に評価結果も受信し、処理結果および評価結果を蓄積する。細胞培養装置10のプロセッサ11は、細胞特徴量および撹拌制御信号と共に評価結果をサーバから受信し、評価結果が良好であった培養の細胞特徴量および撹拌制御信号を用いてテーブルを更新してもよい。
 本実施形態においては、細胞特徴量として、細胞の培養の進行度合いと相関する量を用いることとしたが、これに代えて、培地中の細胞の分散状況と相関する量を用いてもよい。
 培地中の細胞の分散状況と相関する細胞特徴量としては、例えば、ヒストグラムの分散値または半値幅を用いることができる。
 本実施形態においては、撹拌翼6aの回転によって培地Mを撹拌する撹拌装置6を用いることとしたが、これに代えて、他の方式の撹拌装置を用いてもよい。例えば、培地Mの対流させる方式、マグネティックスターラを回転させる方式、または培養容器4を震盪させる方式の撹拌装置を用いてもよい。
 上記実施形態およびその各変形例には、細胞培養装置1,10の筐体5に撮像装置7が固定されている態様を示したが、撮像装置7が培養容器4に取り付けおよび取り外し可能となっている態様であってもよい。
 100 細胞培養システム
 1 細胞培養装置
 10 細胞培養装置(細胞培養制御装置)
 2 制御サーバ(細胞培養制御装置)
 3 通信ネットワーク
 4 培養容器
 5 筐体
 6 撹拌装置(撹拌部)
 7 撮像装置
 7a 撮像素子
 8 通信装置(通信部)
 9 制御装置(撹拌制御部)
 11 プロセッサ
 12 メモリ
 13 通信装置(通信部)
 M 培地
 C コロニー

Claims (13)

  1.  培養容器の内部の少なくとも一部を撮像した画像信号を取得し、前記培養容器は液状の培地および該培地中に浮遊する浮遊細胞を収容している、ステップと、
     前記浮遊細胞の培養の進行度合いおよび前記培地中の前記浮遊細胞の分散状況のいずれかと相関する細胞特徴量を前記画像信号から算出するステップと、
     前記培養容器内の前記培地の撹拌を制御する撹拌制御信号を前記細胞特徴量に基づいて生成するステップとを含む細胞培養制御方法。
  2.  前記培養容器の内部の少なくとも一部を撮像素子によって撮像し前記画像信号を生成するステップを含み、
     前記画像信号を取得するステップが、前記撮像素子と通信し該撮像素子から前記画像信号を受信するステップを含む請求項1に記載の細胞培養制御方法。
  3.  前記細胞特徴量を算出するステップが、
     前記画像信号から前記浮遊細胞のコロニーを抽出するステップと、
     前記コロニーのサイズのヒストグラムを生成するステップと、
     前記ヒストグラムにおける前記サイズの最頻値、中央値、平均値、分散および半値幅のいずれかを前記細胞特徴量に設定するステップとを含む請求項1または請求項2に記載の細胞培養制御方法。
  4.  前記撹拌制御信号を生成するステップが、
     前記細胞特徴量と前記培地の撹拌速度とが対応付けられたテーブルを参照するステップと、
     前記細胞特徴量を算出するステップにおいて算出された前記細胞特徴量と対応する撹拌速度を前記テーブルから選択し、選択された前記撹拌速度で前記培地を撹拌させる前記撹拌制御信号を生成するステップとを含む請求項1から請求項3のいずれかに記載の細胞培養制御方法。
  5.  前記撹拌制御信号を生成するステップが、
     過去の浮遊細胞の培養において算出された前記細胞特徴量と前記撹拌制御信号との対応関係を用いて前記テーブルを更新するステップを含む請求項4に記載の細胞培養制御方法。
  6.  前記撹拌制御信号を生成するステップが、
     前記培養容器内の前記培地の温度を取得するステップと、
     前記撹拌制御信号を前記細胞特徴量および前記温度の両方に基づいて生成するステップとを含む請求項1から請求項5のいずれかに記載の細胞培養制御方法。
  7.  プロセッサを備え、
     該プロセッサが、
     培養容器の内部の少なくとも一部を撮像した画像信号を取得し、前記培養容器は液状の培地および該培地中に浮遊する浮遊細胞を収容し、
     前記浮遊細胞の培養の進行度合いおよび前記培地中の前記浮遊細胞の分散状況のいずれかと相関する細胞特徴量を前記画像信号から算出し、
     前記培養容器内の前記培地の撹拌を制御する撹拌制御信号を前記細胞特徴量に基づいて生成する細胞培養制御装置。
  8.  前記培地および前記浮遊細胞を収容する前記培養容器と、
     該培養容器の内部の少なくとも一部を撮像し前記画像信号を生成する撮像素子と、
     前記培養容器内の前記培地を撹拌する撹拌部と、
     前記プロセッサによって生成された前記撹拌制御信号に従って前記撹拌部を制御する撹拌制御部とを備える請求項7に記載の細胞培養制御装置。
  9.  前記細胞特徴量の算出に係る処理の結果および前記撹拌制御信号の生成に係る処理の結果の少なくとも一方を通信ネットワークを経由してサーバに送信する通信部を備える請求項7または請求項8に記載の細胞培養制御装置。
  10.  前記培地および前記浮遊細胞を収容する前記培養容器と、該培養容器の内部の少なくとも一部を撮像する撮像素子と、前記培養容器内の前記培地を撹拌する撹拌部と、前記プロセッサによって生成された前記撹拌制御信号に従って前記撹拌部を制御する撹拌制御部とを備える細胞培養装置と通信ネットワークによって接続され、
     前記画像信号を前記通信ネットワークを経由して前記撮像素子から受信し、前記プロセッサによって生成された前記撹拌制御信号を前記通信ネットワークを経由して前記撹拌制御部に送信する通信部を備える請求項7に記載の細胞培養制御装置。
  11.  液状の培地および該培地中に浮遊する浮遊細胞を収容する培養容器を用いて細胞を培養する細胞培養装置であって、
     前記培養容器の内部の少なくとも一部を撮像し画像信号を生成する撮像素子と、
     前記培養容器内の前記培地を撹拌する撹拌部と、
     通信ネットワークを経由して細胞培養制御装置に前記画像信号を送信し、前記通信ネットワークを経由して前記細胞培養制御装置から撹拌制御信号を受信し、該撹拌制御信号は、前記画像信号から算出され前記浮遊細胞の培養の進行度合いおよび前記培地中の前記浮遊細胞の分散状況のいずれかと相関する細胞特徴量に基づいて生成される、通信部と、
     該通信部によって受信された前記撹拌制御信号に従って前記撹拌部を制御する撹拌制御部とを備える細胞培養装置。
  12.  液状の培地および該培地中に浮遊する浮遊細胞を収容する培養容器を用いて細胞を培養する細胞培養装置であって、
     前記培養容器の内部の少なくとも一部を撮像し画像信号を生成する撮像素子と、
     前記培養容器内の前記培地を撹拌する撹拌部と、
     通信ネットワークを経由して細胞培養制御装置に前記画像信号を送信し、前記通信ネットワークを経由して前記細胞培養制御装置から撹拌制御信号を受信し、前記画像信号は、前記浮遊細胞の培養の進行度合いおよび前記培地中の前記浮遊細胞の分散状況のいずれかと相関する細胞特徴量の算出ならびに該細胞特徴量に基づく前記撹拌制御信号の生成に使用される、通信部と、
     該通信部によって受信された前記撹拌制御信号に従って前記撹拌部を制御する撹拌制御部とを備える細胞培養装置。
  13.  液状の培地および該培地中に浮遊する浮遊細胞を収容する培養容器を用いて細胞を培養する細胞培養装置と、
     該細胞培養装置と通信ネットワークによって接続された細胞培養制御装置とを備え、
     前記細胞培養装置が、
     前記培養容器の内部の少なくとも一部を撮像し画像信号を生成する撮像素子と、
     前記培養容器内の前記培地を撹拌する撹拌部と、
     前記細胞培養制御装置から受信した撹拌制御信号に従って前記撹拌部を制御する撹拌制御部とを備え、
     前記細胞培養制御装置が、
     前記浮遊細胞の培養の進行度合いおよび前記培地中の前記浮遊細胞の分散状況のいずれかと相関する細胞特徴量を前記画像信号から算出し、前記培養容器内の前記培地の撹拌を制御する前記撹拌制御信号を前記細胞特徴量に基づいて生成するプロセッサを備える細胞培養システム。
PCT/JP2018/047552 2017-12-28 2018-12-25 細胞培養制御方法、細胞培養制御装置、細胞培養装置および細胞培養システム WO2019131626A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019561710A JPWO2019131626A1 (ja) 2017-12-28 2018-12-25 細胞培養制御方法、細胞培養制御装置、細胞培養装置および細胞培養システム
US16/844,028 US20200231926A1 (en) 2017-12-28 2020-04-09 Cell culturing control method, cell culturing control device, cell culturing device, and cell culturing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-253381 2017-12-28
JP2017253381 2017-12-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/844,028 Continuation US20200231926A1 (en) 2017-12-28 2020-04-09 Cell culturing control method, cell culturing control device, cell culturing device, and cell culturing system

Publications (1)

Publication Number Publication Date
WO2019131626A1 true WO2019131626A1 (ja) 2019-07-04

Family

ID=67063703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047552 WO2019131626A1 (ja) 2017-12-28 2018-12-25 細胞培養制御方法、細胞培養制御装置、細胞培養装置および細胞培養システム

Country Status (3)

Country Link
US (1) US20200231926A1 (ja)
JP (1) JPWO2019131626A1 (ja)
WO (1) WO2019131626A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4170009A4 (en) * 2021-02-01 2024-05-29 PHC Holdings Corporation CELL CULTURE CONTROL DEVICE, CELL CULTURE DEVICE THEREOF, CELL CULTURE CONTROL METHOD AND CELL CULTURE CONTROL PROGRAM

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0775550A (ja) * 1993-09-10 1995-03-20 Ebara Corp 細胞培養装置
WO2010103748A1 (ja) * 2009-03-09 2010-09-16 東洋製罐株式会社 細胞培養方法、細胞培養装置、容器内の計数対象物の計数方法、及び計数用装置
JP2011050344A (ja) * 2009-09-03 2011-03-17 Nikon Corp 細胞培養装置
JP2012530485A (ja) * 2008-04-25 2012-12-06 イー−フューエルコーポレイション エタノール生成のためのマイクロ精製システム
JP2014124107A (ja) * 2012-12-25 2014-07-07 Dainippon Printing Co Ltd 培養用情報管理システム
JP2016059329A (ja) * 2014-09-18 2016-04-25 富士フイルム株式会社 細胞培養装置および方法
JP2017140006A (ja) * 2016-02-12 2017-08-17 大日本印刷株式会社 培養状態解析システム及び培養状態解析方法、並びに、プログラム
JP2017221187A (ja) * 2015-08-31 2017-12-21 剛士 田邊 多能性幹細胞製造システム
JP2018050550A (ja) * 2016-09-29 2018-04-05 佐竹化学機械工業株式会社 撹拌培養装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006309684A1 (en) * 2005-11-01 2007-05-10 Medinet Co., Ltd. Shaker for cell culture and shaken culture system in cell culture method
JP5243038B2 (ja) * 2005-11-01 2013-07-24 株式会社メディネット 細胞培養装置
WO2011005773A2 (en) * 2009-07-06 2011-01-13 Genentech, Inc. Method of culturing eukaryotic cells
CN103068962B (zh) * 2010-08-12 2015-08-05 株式会社日立制作所 自动培养装置
EP2832847B1 (en) * 2012-03-29 2019-02-06 Hitachi, Ltd. Culture vessel and automated culture apparatus
KR101750148B1 (ko) * 2012-04-27 2017-06-22 아사히 가세이 가부시키가이샤 세포 배양 시스템 및 세포 배양 방법
WO2014141477A1 (ja) * 2013-03-15 2014-09-18 株式会社日立製作所 細胞培養装置
EP2781591B1 (en) * 2013-03-19 2017-05-03 Unisense Fertilitech A/S A tray, a system and a method for monitoring and culturing of a cell culture
WO2014183118A1 (en) * 2013-05-10 2014-11-13 The Regents Of The University Of California Digital microfluidic platform for creating, maintaining and analyzing 3-dimensional cell spheroids
EP3175302B1 (en) * 2014-08-01 2021-12-29 The Regents of the University of California Device and method for iterative phase recovery based on pixel super-resolved on-chip holography
JP6291388B2 (ja) * 2014-09-12 2018-03-14 富士フイルム株式会社 細胞培養評価システムおよび方法
CN106604984B (zh) * 2014-09-17 2020-02-28 东洋制罐集团控股株式会社 细胞培养装置
US11478789B2 (en) * 2014-11-26 2022-10-25 Medica Corporation Automated microscopic cell analysis
WO2016121737A1 (ja) * 2015-01-29 2016-08-04 株式会社カネカ 細胞凝集塊の作製方法
US20160272932A1 (en) * 2015-03-16 2016-09-22 Thomas Allen Precht Cell culture apparatus with mechanical and temperature control
FR3038620B1 (fr) * 2015-07-09 2019-05-24 Biomerieux Procede de detection d'une presence ou d'une absence d'au moins une premiere zone d'inhibition
EP3150696A1 (en) * 2015-09-30 2017-04-05 Shibuya Corporation Apparatus for producing cell mass sheet and method for producing cell mass sheet
WO2017107837A1 (zh) * 2015-12-23 2017-06-29 上海吉凯基因科技有限公司 全自动细胞连续培养系统
JP6787585B2 (ja) * 2016-01-21 2020-11-18 国立大学法人大阪大学 細胞の培養方法
EP3480291A4 (en) * 2016-07-01 2019-07-03 Sony Corporation PHOTOGRAPHING PROCESS, PICTURE DEVICE, PROGRAM AND CULTURAL VESSEL
CA3036691A1 (en) * 2016-09-14 2018-03-22 Vbc Holdings Llc Systems, apparatus and methods for controlling a movement of a cell culture to optimize cell growth
WO2018161052A1 (en) * 2017-03-03 2018-09-07 Fenologica Biosciences, Inc. Phenotype measurement systems and methods
JPWO2019058512A1 (ja) * 2017-09-22 2020-10-15 オリンパス株式会社 観察システム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0775550A (ja) * 1993-09-10 1995-03-20 Ebara Corp 細胞培養装置
JP2012530485A (ja) * 2008-04-25 2012-12-06 イー−フューエルコーポレイション エタノール生成のためのマイクロ精製システム
WO2010103748A1 (ja) * 2009-03-09 2010-09-16 東洋製罐株式会社 細胞培養方法、細胞培養装置、容器内の計数対象物の計数方法、及び計数用装置
JP2011050344A (ja) * 2009-09-03 2011-03-17 Nikon Corp 細胞培養装置
JP2014124107A (ja) * 2012-12-25 2014-07-07 Dainippon Printing Co Ltd 培養用情報管理システム
JP2016059329A (ja) * 2014-09-18 2016-04-25 富士フイルム株式会社 細胞培養装置および方法
JP2017221187A (ja) * 2015-08-31 2017-12-21 剛士 田邊 多能性幹細胞製造システム
JP2017140006A (ja) * 2016-02-12 2017-08-17 大日本印刷株式会社 培養状態解析システム及び培養状態解析方法、並びに、プログラム
JP2018050550A (ja) * 2016-09-29 2018-04-05 佐竹化学機械工業株式会社 撹拌培養装置

Also Published As

Publication number Publication date
US20200231926A1 (en) 2020-07-23
JPWO2019131626A1 (ja) 2020-12-10

Similar Documents

Publication Publication Date Title
CN105531031B (zh) 具有自动取样和控制的离心机及其方法
US8973531B2 (en) Automated continuous zooplankton culture system
WO2019131626A1 (ja) 細胞培養制御方法、細胞培養制御装置、細胞培養装置および細胞培養システム
CN106690391B (zh) 一种调控烟草滚筒干燥在制品多点加工强度一致性的方法
Watano Direct control of wet granulation processes by image processing system
JP2019532796A (ja) ローラシステムの粉砕ラインの自動最適化のための監視及び制御装置と対応する方法
KR20200080569A (ko) 3d 이미지센서 기반의 실시간 재고관리 시스템 및 이를 이용한 방법
US20230284600A1 (en) Smart aquaculture grow out system
CN110730818A (zh) 用于被监视的细胞生长的恒温箱、系统和方法
US11555768B2 (en) Ground engagement accelerated wear testing device and method
CN109923386A (zh) 被处理物的温度测定装置和温度测定方法以及搅拌消泡方法
JP2007202500A (ja) 培養槽の運転制御装置
US10822666B2 (en) Method for obtaining crystals from a mother solution, and crystallization device suitable for this purpose
CN106521147A (zh) 一种造球盘控制系统及方法
KR20190053892A (ko) 세포 성장을 최적화하기 위해 세포 배양물의 움직임을 제어하기 위한 시스템, 장치 및 방법
JP2006320226A (ja) 細胞培養装置
JP6374929B2 (ja) 撹拌培養装置
CA3200773A1 (en) Image analysis and non-invasive data collection from cell culture devices
CN107766880B (zh) 基于ba-lssvm的光合细菌发酵过程关键参量的软测量方法
CN109507971A (zh) 一种机制砂质量智能监控系统及监控方法
JP2007260645A (ja) 洗浄液の濃度管理方法及び管理装置
JP2016154450A (ja) 培養液の培養状態解析システム及び培養状態解析方法、並びに、プログラム
JP2018170977A (ja) 培養装置、培養容器及び培養容器へのガス供給条件の最適化方法
CN109874688A (zh) 饲喂系统
EP4222247A1 (en) Method and apparatus for bioprocess monitoring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895051

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019561710

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18895051

Country of ref document: EP

Kind code of ref document: A1