WO2018003223A1 - Refuse incineration facility and control method for refuse incineration facility - Google Patents

Refuse incineration facility and control method for refuse incineration facility Download PDF

Info

Publication number
WO2018003223A1
WO2018003223A1 PCT/JP2017/014212 JP2017014212W WO2018003223A1 WO 2018003223 A1 WO2018003223 A1 WO 2018003223A1 JP 2017014212 W JP2017014212 W JP 2017014212W WO 2018003223 A1 WO2018003223 A1 WO 2018003223A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
gas
waste
incinerator
dust
Prior art date
Application number
PCT/JP2017/014212
Other languages
French (fr)
Japanese (ja)
Inventor
博史 奥田
陽介 岩崎
健 向井
宏史 田中
惇 三島
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to KR1020187037623A priority Critical patent/KR102236283B1/en
Publication of WO2018003223A1 publication Critical patent/WO2018003223A1/en
Priority to PH12018502692A priority patent/PH12018502692A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N3/00Regulating air supply or draught
    • F23N3/002Regulating air supply or draught using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2206/00Waste heat recuperation
    • F23G2206/20Waste heat recuperation using the heat in association with another installation
    • F23G2206/203Waste heat recuperation using the heat in association with another installation with a power/heat generating installation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Definitions

  • the present invention relates to a waste incineration facility and a method for controlling the waste incineration facility.
  • Patent Documents 1 and 2 control the combustion of the waste that is burned later based on the measurement result of the previously burned waste (that is, feedback control), Under circumstances where the contents change every moment, it is difficult to stably input heat to the boiler.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a waste incineration facility capable of stably inputting heat into a boiler.
  • a waste incineration facility includes an incinerator that burns waste dried in a drying unit in a combustion unit, a boiler that generates steam using heat generated by combustion of the waste, and the incinerator Based on the properties of the in-furnace gas obtained from the gas detection device, the gas detection device for detecting the properties of the in-furnace gas containing the gas generated in the drying unit, Control for calculating an optimum amount of deposition that generates a desired amount of heat when the dust in the drying section burns, and controlling the dust feeder so that the amount of dust deposition in the drying section becomes the optimum amount of deposition And a device.
  • the amount of deposition is adjusted based on the properties of the gas generated from the dust before combustion, and control is performed so that a desired amount of heat is generated when the dust burns (that is, feedforward control is performed). ing). Therefore, stable heat input to the boiler is possible even if the contents of the garbage supplied to the incinerator changes every moment.
  • the waste incineration facility further includes an air supply device that supplies air to the incinerator, and the control device burns waste in the drying unit based on a property of the in-furnace gas acquired from the gas detection device.
  • an optimum air supply amount that generates a desired amount of heat may be calculated, and the air supply device may be controlled so that the air supply amount to the incinerator becomes the optimum air supply amount.
  • control device may calculate the optimum accumulation amount in synchronization with driving of the dust supply device.
  • the optimum accumulation amount is calculated every time the garbage is supplied to the drying section. Therefore, even if the situation changes due to the waste being supplied to the drying section, the optimum deposition amount is calculated according to the change, so that the optimum deposition amount can be accurately calculated.
  • the control device is based on the accumulated height of the waste obtained from the level meter, the waste in the drying unit
  • the dust supply device may be controlled so that the amount of the accumulated amount becomes the optimum amount of accumulation.
  • the incinerator has an air gas holding space having a constricted portion in the downstream portion at least in a region including the drying portion, and the combustion gas generated in the combusting portion passes through the constricted portion. And you may be comprised so that it may flow toward the said boiler.
  • the air gas holding space is a space where there is almost no flame. Therefore, as a result of the air gas holding space being able to hold the furnace gas, the property of the furnace gas can be easily detected.
  • the waste incineration equipment includes an incinerator that burns waste dried in the drying section in the combustion section, a boiler that generates steam using heat generated by the combustion of the waste, A gas detection device that detects the properties of the in-furnace gas including the gas generated in the drying unit, and a control that calculates the amount of heat generated by the dust in the drying unit based on the properties of the in-furnace gas acquired from the gas detection device An apparatus.
  • the waste incinerator further includes a dust supply device that supplies waste to the drying unit of the incinerator, and a stoker that transports the waste in the incinerator, and the control device calculates the drying unit At least one of the dust supply device and the stoker may be controlled based on the amount of heat generated by the waste.
  • a control method includes an incinerator that burns garbage dried in a drying unit in a combustion unit, a boiler that generates steam using heat generated by combustion of the waste, and the incinerator
  • a method for controlling a waste incineration facility comprising: a dust supply device that supplies waste to the drying unit; and a gas detection device that detects a property of an in-furnace gas containing gas generated in the drying unit, Based on the property of the gas in the furnace obtained from the gas detector, the optimum amount of heat generated when the dust in the drying section burns is calculated, and the amount of dust deposition in the drying section is calculated as the optimum deposition amount.
  • the dust feeding device is controlled so as to be an amount.
  • the control method includes an incinerator that burns garbage dried in a drying unit in a combustion unit, a boiler that generates steam using heat generated by combustion of the waste,
  • a method for controlling a waste incineration facility comprising: a gas detection device that detects a property of an in-furnace gas including a gas generated in a drying unit, based on the property of the in-furnace gas acquired from the gas detection device And calculating the amount of heat generated by the garbage in the drying section.
  • the waste incineration facility further includes a dust supply device that supplies waste to the drying unit of the incinerator, and a stoker that transports the waste in the incinerator, and the calculated You may make it control at least one of the said dust feeder and the said stoker based on the emitted-heat amount of the waste in a drying part.
  • FIG. 1 is a schematic configuration diagram of a waste incineration facility.
  • FIG. 2 is a block diagram of a control system of the waste incineration facility.
  • FIG. 3 is a flowchart of control by the control device.
  • FIG. 1 is a schematic configuration diagram of a waste incineration facility 100.
  • the waste incineration facility 100 includes an incinerator 10, a boiler 30, a dust supply device 40, an air supply device 50, and a control device 60.
  • the incinerator 10 incineration is carried out while conveying garbage.
  • the incinerator 10 includes a drying unit 11, a combustion unit 12, a post-combustion unit 13, and a recombustion unit 14 in order from the upstream side.
  • the incinerator 10 of this embodiment is a parallel flow incinerator in which combustion gas generated by combustion of waste and waste flow in parallel.
  • the incinerator 10 may be an incinerator (for example, an intermediate flow incinerator) of a type in which combustion gas and dust flow in different directions.
  • the drying unit 11 is a part for drying the waste supplied to the incinerator 10. Garbage in the drying unit 11 is dried by primary air supplied from below the drying stoker 15 provided on the bottom surface of the drying unit 11 and radiant heat of combustion in the adjacent combustion unit 12. At that time, gas is generated from the garbage in the drying unit 11 by thermal decomposition. Moreover, the waste of the drying unit 11 is conveyed toward the combustion unit 12 by a drying stoker 15 provided on the bottom surface of the drying unit 11.
  • an air gas holding space 16 is formed above the region.
  • the air gas holding space 16 has a throttle portion 17 having a smaller flow path area than other portions in the downstream portion.
  • the air gas holding space 16 holds in-furnace gas including air supplied to the incinerator 10, gas generated from the dust in the drying unit 11, and gas generated from the dust in the upstream portion of the combustion unit 12.
  • the drying unit 11 is provided with a gas detection device 18 that detects the properties of the in-furnace gas held in the air gas holding space 16.
  • the gas detector 18 is used to detect the concentrations of H 2 O, CO 2 and CO in the furnace gas.
  • the position and number of the gas detectors 18 are not particularly limited.
  • the gas detection device 18 may be provided on both side surfaces of the incinerator 10 (the front side and the back side of the paper). In that case, both gas detectors 18 may be provided at different height positions.
  • the drying unit 11 is provided with an ultrasonic level meter 19 for detecting the accumulated height of dust in the drying unit 11.
  • the combustion part 12 is a part for burning the garbage dried in the drying part 11.
  • dust is burned and a flame is generated.
  • Garbage in the combustion unit 12 and ash generated by combustion are conveyed toward the rear combustion unit 13 by the combustion stalker 20 provided on the bottom surface of the combustion unit 12. Further, the combustion gas and flame generated in the combustion unit 12 pass through the throttle unit 17 and flow toward the rear combustion unit 13.
  • the combustion stoker 20 is provided at the same height as the dry stoker 15, but may be provided at a position lower than the dry stoker 15.
  • the post-combustion unit 13 is a part that burns garbage (unburned material) that could not be combusted in the combustion unit 12. As described above, in this embodiment, the combustion gas generated in the combustion unit 12 flows toward the post-combustion unit 13. In the post-combustion unit 13, combustion of unburned material that could not be combusted in the combustion unit 12 is promoted by the radiant heat of the combustion gas and the primary air. As a result, most of the unburned material becomes ash, and the unburned material decreases. The ash generated in the post-combustion unit 13 is conveyed toward the chute 22 by the post-combustion stalker 21 provided on the bottom surface of the post-combustion unit 13.
  • the ash conveyed to the chute 22 is discharged outside the waste incineration facility 100.
  • the post-combustion stoker 21 of this embodiment is provided at a position lower than the combustion stoker 20, but may be provided at the same height as the combustion stoker 20.
  • the reburning part 14 is a part for burning unburned gas.
  • the recombustion unit 14 extends upward from the post-combustion unit 13 and is inclined so that the horizontal position approaches the drying unit 11 as it progresses upward.
  • the combustion gas and unburned gas generated in the drying unit 11, the combustion unit 12, and the post-combustion unit 13 (hereinafter collectively referred to as “mainstream gas”) are the drying unit 11, the combustion unit 12, and the post-combustion unit. 13 flows obliquely downward along the line 13, passes through the throttle part 17, changes direction to a V shape, and flows into the reburning part 14. In the vicinity of the throttle unit 17, secondary air is supplied to the mainstream gas. As a result, the mainstream gas is mixed and agitated with air, and the unburned gas contained in the mainstream gas burns in the reburning section 14.
  • the boiler 30 is a part that generates steam using heat generated by combustion of garbage.
  • the boiler 30 generates steam (superheated steam) by exchanging heat with a large number of water pipes 31 and superheater pipes 32 provided on the flow path wall, and the generated steam is supplied to a steam turbine generator (not shown).
  • Power generation In order to perform stable power generation, it is necessary to stabilize the heat input to the boiler 30. That is, it is necessary to keep the heat input constant in order to keep the power generation amount constant, and in order to change the power generation amount quickly, it is necessary to smoothly change the heat input so that hunting does not occur.
  • the dust supply device 40 is a device that supplies the waste introduced into the waste introduction hopper 41 to the drying unit 11 of the incinerator 10.
  • the dust supply device 40 has a dust supply device main body 42 that is positioned at the bottom portion of the dust input hopper 41 and moves in the horizontal direction. By controlling the movement speed, the number of movements per unit time, the movement amount (stroke), and the position of the stroke end (movement range), the amount of dust supplied to the drying unit 11 is adjusted. can do.
  • the air supply device 50 is a device that supplies air to the incinerator 10.
  • the air supply device 50 according to this embodiment includes a primary air supply unit 51, a secondary air supply unit 52, and an exhaust gas supply unit 53.
  • the primary air supply unit 51 supplies primary air to the drying unit 11 through a gap formed in the drying stoker 15, and an upstream part and a downstream part of the combustion unit 12 through a gap formed in the combustion stoker 20. Primary air is supplied to each of these, and primary air is supplied to the post-combustion unit 13 through a gap formed in the post-combustion stoker 21. Moreover, the primary air supply part 51 can adjust the supply amount of the primary air to each part. In addition, a heater and an air cooling wall may be provided in the primary air supply part 51 so that the temperature of the primary air supplied to each part can be adjusted.
  • the secondary air supply unit 52 supplies secondary air to the air gas holding space 16 of the incinerator 10 from the upper part (ceiling part) and also supplies secondary air from the throttle part 17 to the part where the mainstream gas changes direction. To do. Moreover, the secondary air supply part 52 can adjust the supply amount of the secondary air to each part.
  • the exhaust gas supply unit 53 supplies (recirculates) the exhaust gas discharged from the waste incineration facility 100 to the incinerator 10.
  • the exhaust gas discharged from the waste incineration facility 100 is purified by a filtration dust collector, and a part of the exhaust gas is supplied from the both side surfaces (the front side and the back side of the paper surface) to the incinerator 10 by the exhaust gas supply unit 53. Supplied.
  • the position where the exhaust gas is supplied is not particularly limited.
  • exhaust gas may be supplied from the upper side (ceiling part) of the incinerator 10, or may be supplied only from one side surface.
  • the control device 60 is constituted by a CPU, a RAM, a ROM, and the like, performs various calculations, and controls the entire waste incineration facility 100.
  • FIG. 2 is a block diagram of a control system of the waste incineration facility 100.
  • the control device 60 is electrically connected to the gas detection device 18 and the level meter 19.
  • the control device 60 acquires the characteristics of the in-furnace gas and the accumulated height of the dust in the drying unit 11 based on the measurement signals transmitted from these devices.
  • the control device 60 is electrically connected to the dust supply device 40 and the air supply device 50.
  • the control device 60 transmits control signals to the dust supply device 40 and the air supply device 50 to control each device.
  • FIG. 3 is a flowchart of control by the control device 60.
  • the control device 60 determines the properties of the in-furnace gas (the gas held in the air gas holding space 16) including the gas generated in the drying unit 11 from the gas detection device 18 ( H 2 O, CO 2 and CO concentrations) are acquired (step S1).
  • the control device 60 calculates the amount of heat generated by the waste in the drying unit 11 based on the acquired property of the in-furnace gas (step S2).
  • the amount of heat generated by the garbage is almost determined by the amounts of C (carbon), H (hydrogen), and O (oxygen) contained in the garbage.
  • C, H and O contained in the waste are combined with each other to become CO, CO 2 and H 2 O.
  • CO, CO 2 , and H 2 O are generated by thermal decomposition even when the garbage is dried. Therefore, by measuring at least two kinds of components of CO, CO 2 , and H 2 O contained in the furnace gas and using the accumulated data, the calorific value of the waste can be calculated.
  • the heat generation amount of the waste may be calculated using CO / CO 2 as an index.
  • the ratio of CO to CO 2 tends to increase in the drying unit 11. This is because C is not in a stage where C is sufficiently combined with O in the drying unit 11. Further, when the amount of C contained in the garbage is large, the calorific value becomes large. Therefore, the calorific value of the waste can be calculated using CO / CO 2 as an index.
  • control device 60 stores map data indicating the relationship between the concentration of H 2 O, CO 2 , and CO in the furnace gas and the amount of heat generated by the dust in the drying unit 11. Therefore, the control device 60 can calculate the heat generation amount of the dust in the drying unit 11 based on the property of the in-furnace gas acquired in step S1 and the map data.
  • the in-furnace gas includes air supplied from the air supply device 50. Since the control device 60 can grasp the amounts of H 2 O, CO 2 , and CO in the air supplied from the air supply device 50, if the amount of heat generated by the waste in the drying unit 11 is calculated in consideration of this amount, Accurate values can be obtained.
  • the control device 60 sets a target heat input amount (step S3).
  • the control device 60 may set the target heat input from the input value (the amount of waste input to the incinerator 10 or the target value of the boiler heating value to be generated), and the value calculated by a predetermined calculation is set as the target heat input. It may be set. For example, when the heat input amount to the boiler 30 is kept constant, the target heat input amount is kept constant, and when the heat input amount to the boiler 30 is changed, the target heat input amount is sequentially changed.
  • the control device 60 calculates an optimum accumulation amount and an optimum air supply amount at which the heat amount generated when the dust in the drying unit 11 burns becomes the target heat input amount (step S4).
  • the amount of heat generated when the garbage is completely burned can be expressed by the product of the heat value and weight of the garbage. Therefore, the optimum amount of accumulation in which the amount of heat generated when the waste in the drying unit 11 burns becomes the target heat input amount is calculated based on the heat generation amount of the waste calculated in step S2 and the target heat input amount set in step S3. Can do.
  • the optimum air supply amount is also calculated.
  • the optimum air supply amount may be calculated for each of primary air, secondary air, and exhaust gas, or may be calculated for each air supply position. For example, when the concentration of H 2 O in the furnace gas is high, it may be calculated so that the optimum amount of primary air is increased in order to quickly dry wet waste.
  • control device 60 acquires the accumulation height of dust in the drying unit 11 from the level meter 19 (step S5).
  • the control device 60 calculates a dust accumulation amount in the drying unit 11 based on the dust accumulation height acquired in step S5 (step S6).
  • the specific gravity of the garbage is not constant, there is a correlation between the heat generation amount of the waste and the specific gravity of the waste, so that the specific gravity of the waste can be calculated based on the heat generation amount of the waste calculated in step S2. Based on the specific gravity of the waste, the amount of accumulated dust (weight) in the drying unit 11 can be calculated.
  • the control device 60 controls the dust supply device 40 and the air supply device 50 (step S7). Specifically, the control device 60 calculates the difference between the optimum accumulation amount calculated in step S4 and the accumulation weight of dust in the drying unit 11 calculated in step S6, and the difference becomes zero or decreases. As described above, the dust supply device 40 is controlled to additionally supply dust to the drying unit 11. Further, the control device 60 controls the air supply device 50 so that the air supply amount to the incinerator 10 becomes the optimum air supply amount calculated in step S4.
  • the drying unit 11 based on the property of the gas generated from the garbage in the drying unit 11 that is the garbage before combustion, the drying unit is set so that the amount of heat input when the garbage burns becomes an appropriate value. 11 adjusts the amount of accumulated dust and the amount of air supplied to the incinerator 10. That is, in this embodiment, feedforward control is performed. Therefore, even if the contents of the garbage supplied to the incinerator 10 change every moment, stable heat input to the boiler 30 is possible.
  • step S7 After passing through said step S7, it returns to step S1 and repeats step S1 to S7. That is, in this embodiment, the driving of the dust supply device 40 and the calculation of the optimum deposition amount are performed in synchronization.
  • the optimum accumulation amount is calculated every time the garbage is supplied to the drying unit 11, even if the situation changes due to the waste being supplied to the drying unit 11, the optimum accumulation amount is changed according to the change. It is calculated again, and the optimum deposition amount can be calculated with high accuracy.
  • the amount of heat generated by the dust in the drying unit 11 is calculated based on the properties of the furnace gas and the map data.
  • This calorific value is an absolute value that can be expressed using a fixed unit.
  • the optimum deposition amount and the optimum air supply amount may be calculated using a relative increase / decrease in the heat generation amount.
  • target waste the amount of heat generated from the waste (hereinafter referred to as “target waste”) for which the target heat input is obtained by combustion, and the amount of deposit when located in the drying unit 11 (the “target heat generation” and “target deposition, respectively”).
  • the amount of heat is stored, and a relative calorific value with respect to the target calorific value is calculated based on the properties of the gas in the furnace, and an optimum deposition amount is calculated based on the calculated relative calorific value and the target deposition amount.
  • the optimum air supply amount may be calculated.
  • the optimum accumulation amount and the optimum air supply amount may be calculated without obtaining the heat generation amount.
  • the property of the gas in the furnace hereinafter referred to as “reference property”
  • the stored reference properties may be compared, and the optimum accumulation amount and the optimum air supply amount may be calculated based on the comparison result and the target accumulation amount.
  • the calorific value calculated in step S2 is stored at a certain time interval or at the timing when the feeding device 40 operates, and the relative value of the calorific value newly calculated in step S2 with respect to the calorific value calculated at the previous timing is obtained.
  • the optimum deposition amount and the optimum air supply amount may be calculated by using them.
  • the incinerator 10 may be an intermediate flow incinerator.
  • the air gas holding space 16 is generally not formed.
  • the detection is possible. It is possible to perform stable heat input to the boiler 30 based on the properties of the in-furnace gas.
  • the drying stoker 15 and combustion based on the calorific value of the garbage in the drying part 11 were demonstrated. All or part of the stalker 20 and the post-combustion stalker 21 may be controlled. Garbage changes in quantity of heat when it comes into contact with air. When it is desired to increase the amount of heat input to the boiler 30, the chance that the waste comes into contact with air is increased, and combustion is activated. Specifically, by increasing the number of operations per unit time of each stalker 15, 20, and 21, the number of times that dust and air come into contact is increased.

Abstract

A refuse incineration facility according to one aspect of the present invention comprises: an incinerator in which the refuse dried by a drying unit is burned by a combustion unit; a boiler which generates steam using the heat generated by burning refuse; a refuse feeding device which feeds refuse to the drying unit of the incinerator; a gas detection device which detects the properties of furnace gas containing the gas generated by the dry unit; and a control device which calculates, on the basis of the properties of the furnace gas detected by the gas detection device, an optimum accumulation amount such that a desired heating value is generated when the refuse in the drying unit is burned, and which controls the refuse feeding device so that the amount of refuse accumulated in the drying unit becomes the optimum accumulation amount.

Description

ごみ焼却設備及びごみ焼却設備の制御方法Waste incineration equipment and control method of waste incineration equipment
 本発明はごみ焼却設備及びごみ焼却設備の制御方法に関する。 The present invention relates to a waste incineration facility and a method for controlling the waste incineration facility.
 ボイラを備えたごみ焼却設備では、ごみの燃焼で発生した熱を用いて蒸気が生成される。ただし、ごみはその内容によって発熱量(単位重量あたりのごみが完全燃焼したときに発生する熱量)が異なることから、同じ重量のごみを燃焼させてもボイラへの入熱量は必ずしも同じにはならない。そこで、特許文献1及び2では、ごみの燃焼によって発生した排ガスの成分や炉内温度を測定し、その測定結果に基づいてボイラの入熱量が一定になるように空気の供給量等を制御する方法が開示されている。 In a waste incineration facility equipped with a boiler, steam is generated using heat generated by the combustion of waste. However, because the amount of heat generated by the garbage varies depending on the content (the amount of heat generated when the waste per unit weight is completely burned), the amount of heat input to the boiler is not necessarily the same even if the same weight of waste is burned. . Therefore, in Patent Documents 1 and 2, the components of the exhaust gas generated by the combustion of garbage and the temperature in the furnace are measured, and the supply amount of air and the like are controlled based on the measurement results so that the heat input amount of the boiler is constant. A method is disclosed.
特開昭55-56514号公報Japanese Patent Laid-Open No. 55-56514 特開平9-273732号公報JP-A-9-273732
 しかしながら、特許文献1及び2に記載の方法は、先に燃焼したごみの燃焼時における測定結果に基づいて、後に燃焼するごみの燃焼を制御するもの(つまり、フィードバック制御)であるため、ごみの内容が刻々と変化する状況下では、ボイラへの安定した入熱は困難である。 However, since the methods described in Patent Documents 1 and 2 control the combustion of the waste that is burned later based on the measurement result of the previously burned waste (that is, feedback control), Under circumstances where the contents change every moment, it is difficult to stably input heat to the boiler.
 本発明は、以上のような事情に鑑みてなされたものであり、ボイラへの安定した入熱が可能なごみ焼却設備を提供することを目的としている。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a waste incineration facility capable of stably inputting heat into a boiler.
 本発明の一態様に係るごみ焼却設備は、乾燥部で乾燥させたごみを燃焼部で燃焼させる焼却炉と、ごみの燃焼によって発生した熱を利用して蒸気を生成するボイラと、前記焼却炉の前記乾燥部にごみを供給する給じん装置と、前記乾燥部で発生したガスを含む炉内ガスの性状を検出するガス検出装置と、前記ガス検出装置から取得した炉内ガスの性状に基づいて、前記乾燥部におけるごみが燃焼したときに所望の熱量が発生する最適堆積量を算出し、前記乾燥部におけるごみの堆積量が前記最適堆積量となるように前記給じん装置を制御する制御装置と、を備えている。 A waste incineration facility according to one aspect of the present invention includes an incinerator that burns waste dried in a drying unit in a combustion unit, a boiler that generates steam using heat generated by combustion of the waste, and the incinerator Based on the properties of the in-furnace gas obtained from the gas detection device, the gas detection device for detecting the properties of the in-furnace gas containing the gas generated in the drying unit, Control for calculating an optimum amount of deposition that generates a desired amount of heat when the dust in the drying section burns, and controlling the dust feeder so that the amount of dust deposition in the drying section becomes the optimum amount of deposition And a device.
 この構成では、燃焼前のごみから発生するガスの性状に基づいて堆積量を調整し、そのごみが燃焼したときに所望の熱量が発生するよう制御を行っている(つまり、フィードフォワード制御を行っている)。そのため、焼却炉に供給されるごみの内容が刻々と変化しても、ボイラへの安定した入熱が可能となる。 In this configuration, the amount of deposition is adjusted based on the properties of the gas generated from the dust before combustion, and control is performed so that a desired amount of heat is generated when the dust burns (that is, feedforward control is performed). ing). Therefore, stable heat input to the boiler is possible even if the contents of the garbage supplied to the incinerator changes every moment.
 上記のごみ焼却設備において、前記焼却炉に空気を供給する空気供給装置をさらに備え、前記制御装置は、前記ガス検出装置から取得した炉内ガスの性状に基づいて、前記乾燥部におけるごみが燃焼したときに所望の熱量が発生する最適空気供給量を算出し、前記焼却炉への空気供給量が前記最適空気供給量となるように前記空気供給装置を制御するようにしてもよい。 The waste incineration facility further includes an air supply device that supplies air to the incinerator, and the control device burns waste in the drying unit based on a property of the in-furnace gas acquired from the gas detection device. In this case, an optimum air supply amount that generates a desired amount of heat may be calculated, and the air supply device may be controlled so that the air supply amount to the incinerator becomes the optimum air supply amount.
 この構成によれば、乾燥部におけるごみの堆積量のみならず、焼却炉への空気供給量も調整されるため、ボイラへの入熱をより一層安定させることができる。 According to this configuration, not only the amount of dust accumulated in the drying section but also the amount of air supplied to the incinerator is adjusted, so that the heat input to the boiler can be further stabilized.
 上記のごみ焼却設備において、前記制御装置は前記給じん装置の駆動に同期して前記最適堆積量を算出するようにしてもよい。 In the above-described waste incineration facility, the control device may calculate the optimum accumulation amount in synchronization with driving of the dust supply device.
 この構成によれば、ごみが乾燥部に供給されるたびに最適堆積量が算出される。そのため、ごみが乾燥部に供給されることにより状況が変化したとしても、その変化に応じて最適堆積量が算出されるため、最適堆積量の算出を精度よく行うことができる。 According to this configuration, the optimum accumulation amount is calculated every time the garbage is supplied to the drying section. Therefore, even if the situation changes due to the waste being supplied to the drying section, the optimum deposition amount is calculated according to the change, so that the optimum deposition amount can be accurately calculated.
 上記のごみ焼却設備において、前記乾燥部におけるごみの堆積高さを検出するレベル計をさらに備え、前記制御装置は、前記レベル計から取得したごみの堆積高さに基づいて、前記乾燥部におけるごみの堆積量が前記最適堆積量となるように前記給じん装置を制御するようにしてもよい。 In the above-mentioned waste incineration equipment, further comprising a level meter for detecting the accumulated height of the waste in the drying unit, the control device is based on the accumulated height of the waste obtained from the level meter, the waste in the drying unit The dust supply device may be controlled so that the amount of the accumulated amount becomes the optimum amount of accumulation.
 この構成によれば、ごみの堆積高さから乾燥部におけるごみの堆積量が推定できるため、乾燥部に適切な量のごみを供給することができる。 According to this configuration, since the amount of dust accumulated in the drying section can be estimated from the height of dust accumulation, an appropriate amount of garbage can be supplied to the drying section.
 上記のごみ焼却設備において、前記焼却炉は、少なくとも乾燥部を含む領域において下流部分に絞り部を有する空気ガス保有空間が形成されており、前記燃焼部で発生した燃焼ガスは前記絞り部を通過して前記ボイラに向かって流れるよう構成されていてもよい。 In the above-mentioned waste incineration facility, the incinerator has an air gas holding space having a constricted portion in the downstream portion at least in a region including the drying portion, and the combustion gas generated in the combusting portion passes through the constricted portion. And you may be comprised so that it may flow toward the said boiler.
 この構成によれば、空気ガス保有空間は火炎がほとんど存在しない空間となる。そのため、空気ガス保有空間が炉内ガスを保有することができる結果、炉内ガスの性状の検出が容易となる。 According to this configuration, the air gas holding space is a space where there is almost no flame. Therefore, as a result of the air gas holding space being able to hold the furnace gas, the property of the furnace gas can be easily detected.
 また、本発明の他の態様に係るごみ焼却設備は、乾燥部で乾燥させたごみを燃焼部で燃焼させる焼却炉と、ごみの燃焼によって発生した熱を利用して蒸気を生成するボイラと、前記乾燥部で発生したガスを含む炉内ガスの性状を検出するガス検出装置と、前記ガス検出装置から取得した炉内ガスの性状に基づいて、前記乾燥部におけるごみの発熱量を算出する制御装置と、を備える。 Moreover, the waste incineration equipment according to another aspect of the present invention includes an incinerator that burns waste dried in the drying section in the combustion section, a boiler that generates steam using heat generated by the combustion of the waste, A gas detection device that detects the properties of the in-furnace gas including the gas generated in the drying unit, and a control that calculates the amount of heat generated by the dust in the drying unit based on the properties of the in-furnace gas acquired from the gas detection device An apparatus.
 この構成によれば、乾燥部におけるこみの発熱量を算出することができる。そのため、この発熱量に基づいて、ボイラへ適切な入熱を行えるよう焼却炉に適切な量のごみを供給することができ又は適切な量の空気を供給することができる。 According to this configuration, the amount of heat generated by the dust in the drying section can be calculated. Therefore, based on this calorific value, an appropriate amount of garbage can be supplied to the incinerator or an appropriate amount of air can be supplied so that appropriate heat can be input to the boiler.
 上記のごみ焼却設備において、前記焼却炉の前記乾燥部にごみを供給する給じん装置と、前記焼却炉内のごみを搬送するストーカと、をさらに備え、前記制御装置は、算出した前記乾燥部におけるごみの発熱量に基づいて、前記給じん装置及び前記ストーカの少なくとも一方を制御するようにしてもよい。 In the above waste incineration facility, the waste incinerator further includes a dust supply device that supplies waste to the drying unit of the incinerator, and a stoker that transports the waste in the incinerator, and the control device calculates the drying unit At least one of the dust supply device and the stoker may be controlled based on the amount of heat generated by the waste.
 本発明の一態様に係る制御方法は、乾燥部で乾燥させたごみを燃焼部で燃焼させる焼却炉と、ごみの燃焼によって発生した熱を利用して蒸気を生成するボイラと、前記焼却炉の前記乾燥部にごみを供給する給じん装置と、前記乾燥部で発生したガスを含む炉内ガスの性状を検出するガス検出装置と、を備えた、ごみ焼却設備の制御方法であって、前記ガス検出装置から取得した炉内ガスの性状に基づいて、前記乾燥部におけるごみが燃焼したときに所望の熱量が発生する最適堆積量を算出し、前記乾燥部におけるごみの堆積量が前記最適堆積量となるように前記給じん装置を制御する。 A control method according to an aspect of the present invention includes an incinerator that burns garbage dried in a drying unit in a combustion unit, a boiler that generates steam using heat generated by combustion of the waste, and the incinerator A method for controlling a waste incineration facility, comprising: a dust supply device that supplies waste to the drying unit; and a gas detection device that detects a property of an in-furnace gas containing gas generated in the drying unit, Based on the property of the gas in the furnace obtained from the gas detector, the optimum amount of heat generated when the dust in the drying section burns is calculated, and the amount of dust deposition in the drying section is calculated as the optimum deposition amount. The dust feeding device is controlled so as to be an amount.
 また、本発明の他の形態に係る制御方法は、乾燥部で乾燥させたごみを燃焼部で燃焼させる焼却炉と、ごみの燃焼によって発生した熱を利用して蒸気を生成するボイラと、前記乾燥部で発生したガスを含む炉内ガスの性状を検出するガス検出装置と、を備えた、ごみ焼却設備の制御方法であって、前記ガス検出装置から取得した炉内ガスの性状に基づいて、前記乾燥部におけるごみの発熱量を算出することを含む。 The control method according to another aspect of the present invention includes an incinerator that burns garbage dried in a drying unit in a combustion unit, a boiler that generates steam using heat generated by combustion of the waste, A method for controlling a waste incineration facility, comprising: a gas detection device that detects a property of an in-furnace gas including a gas generated in a drying unit, based on the property of the in-furnace gas acquired from the gas detection device And calculating the amount of heat generated by the garbage in the drying section.
 上記の制御方法において、前記ごみ焼却設備は、前記焼却炉の前記乾燥部にごみを供給する給じん装置と、前記焼却炉内のごみを搬送するストーカと、をさらに備えており、算出した前記乾燥部におけるごみの発熱量に基づいて、前記給じん装置及び前記ストーカの少なくとも一方を制御するようにしてもよい。 In the above control method, the waste incineration facility further includes a dust supply device that supplies waste to the drying unit of the incinerator, and a stoker that transports the waste in the incinerator, and the calculated You may make it control at least one of the said dust feeder and the said stoker based on the emitted-heat amount of the waste in a drying part.
 前述のとおり、上記のごみ焼却設備によれば、ボイラへ安定した入熱が可能である。つまり、発電量を一定に保つ際には入熱量を一定に保つことができ、発電量を変化させる際には入熱量を滑らかに変化させてハンチングの発生を抑えることができる。 As described above, according to the above-mentioned waste incineration facility, stable heat input to the boiler is possible. That is, when the power generation amount is kept constant, the heat input amount can be kept constant, and when the power generation amount is changed, the heat input amount can be smoothly changed to suppress the occurrence of hunting.
図1は、ごみ焼却設備の概略構成図である。FIG. 1 is a schematic configuration diagram of a waste incineration facility. 図2は、ごみ焼却設備の制御系のブロック図である。FIG. 2 is a block diagram of a control system of the waste incineration facility. 図3は、制御装置による制御のフロー図である。FIG. 3 is a flowchart of control by the control device.
 <ごみ焼却装置の全体構造>
 はじめに、実施形態に係るごみ焼却設備100の全体構造について説明する。図1は、ごみ焼却設備100の概略構成図である。図1に示すように、ごみ焼却設備100は、焼却炉10と、ボイラ30と、給じん装置40と、空気供給装置50と、制御装置60と、を備えている。
<Overall structure of waste incinerator>
First, the overall structure of the waste incineration facility 100 according to the embodiment will be described. FIG. 1 is a schematic configuration diagram of a waste incineration facility 100. As shown in FIG. 1, the waste incineration facility 100 includes an incinerator 10, a boiler 30, a dust supply device 40, an air supply device 50, and a control device 60.
 焼却炉10では、ごみを搬送しながら焼却を行う。焼却炉10は、上流側から順に、乾燥部11と、燃焼部12と、後燃焼部13と、再燃焼部14と、を有している。本実施形態の焼却炉10は、ごみの燃焼によって発生した燃焼ガスとごみが並行して流れる並行流焼却炉である。ただし、焼却炉10は、燃焼ガスとごみが異なる方向に流れる方式の焼却炉(例えば、中間流焼却炉)であってもよい。 In the incinerator 10, incineration is carried out while conveying garbage. The incinerator 10 includes a drying unit 11, a combustion unit 12, a post-combustion unit 13, and a recombustion unit 14 in order from the upstream side. The incinerator 10 of this embodiment is a parallel flow incinerator in which combustion gas generated by combustion of waste and waste flow in parallel. However, the incinerator 10 may be an incinerator (for example, an intermediate flow incinerator) of a type in which combustion gas and dust flow in different directions.
 乾燥部11は、焼却炉10に供給されたごみを乾燥させる部分である。乾燥部11のごみは、乾燥部11の底面に設けられた乾燥ストーカ15の下から供給される一次空気及び隣接する燃焼部12における燃焼の輻射熱によって乾燥する。その際、熱分解によって乾燥部11のごみからガスが発生する。また、乾燥部11のごみは、乾燥部11の底面に設けられた乾燥ストーカ15によって燃焼部12に向かって搬送される。 The drying unit 11 is a part for drying the waste supplied to the incinerator 10. Garbage in the drying unit 11 is dried by primary air supplied from below the drying stoker 15 provided on the bottom surface of the drying unit 11 and radiant heat of combustion in the adjacent combustion unit 12. At that time, gas is generated from the garbage in the drying unit 11 by thermal decomposition. Moreover, the waste of the drying unit 11 is conveyed toward the combustion unit 12 by a drying stoker 15 provided on the bottom surface of the drying unit 11.
 乾燥部11から燃焼部12にかけての領域には、それらの領域の上部に空気ガス保有空間16が形成されている。空気ガス保有空間16は、その下流部分に他の部分よりも流路面積の小さい絞り部17を有している。この空気ガス保有空間16では、焼却炉10に供給された空気、乾燥部11のごみから発生したガス、及び燃焼部12の上流側部分のごみから発生したガスを含む炉内ガスを保有する。 In the region from the drying unit 11 to the combustion unit 12, an air gas holding space 16 is formed above the region. The air gas holding space 16 has a throttle portion 17 having a smaller flow path area than other portions in the downstream portion. The air gas holding space 16 holds in-furnace gas including air supplied to the incinerator 10, gas generated from the dust in the drying unit 11, and gas generated from the dust in the upstream portion of the combustion unit 12.
 また、乾燥部11には、空気ガス保有空間16が保有する炉内ガスの性状を検出するガス検出装置18が設けられている。本実施形態では、ガス検出装置18を用いて炉内ガス中におけるH2O、CO2、COの濃度を検出する。ガス検出装置18の位置及び数は特に限定されない。例えば、ガス検出装置18は、焼却炉10の両側面(紙面手前側及び紙面奥側の面)に設けられていてもよい。その場合、両ガス検出装置18は互いに異なる高さ位置に設けられていてもよい。さらに、乾燥部11には、乾燥部11におけるごみの堆積高さを検出する超音波式のレベル計19が設けられている。 Further, the drying unit 11 is provided with a gas detection device 18 that detects the properties of the in-furnace gas held in the air gas holding space 16. In this embodiment, the gas detector 18 is used to detect the concentrations of H 2 O, CO 2 and CO in the furnace gas. The position and number of the gas detectors 18 are not particularly limited. For example, the gas detection device 18 may be provided on both side surfaces of the incinerator 10 (the front side and the back side of the paper). In that case, both gas detectors 18 may be provided at different height positions. Further, the drying unit 11 is provided with an ultrasonic level meter 19 for detecting the accumulated height of dust in the drying unit 11.
 燃焼部12は、乾燥部11で乾燥したごみを燃焼させる部分である。燃焼部12では、ごみが燃焼し火炎が発生する。燃焼部12におけるごみ及び燃焼により発生した灰は、燃焼部12の底面に設けられた燃焼ストーカ20によって後燃焼部13に向かって搬送される。また、燃焼部12で発生した燃焼ガス及び火炎は、絞り部17を通過して後燃焼部13に向かって流れる。なお、燃焼ストーカ20は、乾燥ストーカ15と同じ高さ位置に設けられているが、乾燥ストーカ15よりも低い位置に設けられていてもよい。 The combustion part 12 is a part for burning the garbage dried in the drying part 11. In the combustion unit 12, dust is burned and a flame is generated. Garbage in the combustion unit 12 and ash generated by combustion are conveyed toward the rear combustion unit 13 by the combustion stalker 20 provided on the bottom surface of the combustion unit 12. Further, the combustion gas and flame generated in the combustion unit 12 pass through the throttle unit 17 and flow toward the rear combustion unit 13. The combustion stoker 20 is provided at the same height as the dry stoker 15, but may be provided at a position lower than the dry stoker 15.
 後燃焼部13は、燃焼部12で燃焼しきれなかったごみ(未燃物)を燃焼させる部分である。前述のとおり、本実施形態では燃焼部12で発生した燃焼ガスが後燃焼部13に向かって流れる。後燃焼部13では、燃焼ガスの輻射熱と一次空気によって、燃焼部12で燃焼しきれなかった未燃物の燃焼が促進される。その結果、未燃物のほとんどが灰となって、未燃物は減少する。なお、後燃焼部13で発生した灰は、後燃焼部13の底面に設けられた後燃焼ストーカ21によってシュート22に向かって搬送される。シュート22に搬送された灰は、ごみ焼却設備100の外部に排出される。なお、本実施形態の後燃焼ストーカ21は、燃焼ストーカ20よりも低い位置に設けられているが、燃焼ストーカ20と同じ高さ位置に設けられていてもよい。 The post-combustion unit 13 is a part that burns garbage (unburned material) that could not be combusted in the combustion unit 12. As described above, in this embodiment, the combustion gas generated in the combustion unit 12 flows toward the post-combustion unit 13. In the post-combustion unit 13, combustion of unburned material that could not be combusted in the combustion unit 12 is promoted by the radiant heat of the combustion gas and the primary air. As a result, most of the unburned material becomes ash, and the unburned material decreases. The ash generated in the post-combustion unit 13 is conveyed toward the chute 22 by the post-combustion stalker 21 provided on the bottom surface of the post-combustion unit 13. The ash conveyed to the chute 22 is discharged outside the waste incineration facility 100. Note that the post-combustion stoker 21 of this embodiment is provided at a position lower than the combustion stoker 20, but may be provided at the same height as the combustion stoker 20.
 再燃焼部14は、未燃ガスを燃焼させる部分である。再燃焼部14は、後燃焼部13から上方に向かって延び、上方に進むにつれて水平方向位置が乾燥部11に近づくように傾斜している。乾燥部11、燃焼部12、及び後燃焼部13で発生した燃焼ガス及び未燃ガス(以下、これらを合わせて「主流ガス」と称する)は、乾燥部11、燃焼部12、及び後燃焼部13に沿って斜め下に向かって流れ、絞り部17を通過した後、V字状に方向転換して再燃焼部14に流入する。絞り部17付近では、主流ガスに二次空気が供給される。これにより、主流ガスは空気と混合及び攪拌され、主流ガスに含まれる未燃ガスが再燃焼部14で燃焼する。 The reburning part 14 is a part for burning unburned gas. The recombustion unit 14 extends upward from the post-combustion unit 13 and is inclined so that the horizontal position approaches the drying unit 11 as it progresses upward. The combustion gas and unburned gas generated in the drying unit 11, the combustion unit 12, and the post-combustion unit 13 (hereinafter collectively referred to as “mainstream gas”) are the drying unit 11, the combustion unit 12, and the post-combustion unit. 13 flows obliquely downward along the line 13, passes through the throttle part 17, changes direction to a V shape, and flows into the reburning part 14. In the vicinity of the throttle unit 17, secondary air is supplied to the mainstream gas. As a result, the mainstream gas is mixed and agitated with air, and the unburned gas contained in the mainstream gas burns in the reburning section 14.
 ボイラ30は、ごみの燃焼によって発生した熱を利用して蒸気を生成する部分である。ボイラ30は、流路壁に設けられた多数の水管31及び過熱器管32で熱交換を行うことにより蒸気(過熱蒸気)を生成し、生成した蒸気は図外の蒸気タービン発電機に供給されて発電が行われる。安定した発電を行うには、ボイラ30への入熱を安定させる必要がある。つまり、発電量を一定に保つには入熱量を一定に保つ必要があり、発電量を速やかに変化させるにはハンチングが生じないように入熱量を滑らかに変化させる必要がある。 The boiler 30 is a part that generates steam using heat generated by combustion of garbage. The boiler 30 generates steam (superheated steam) by exchanging heat with a large number of water pipes 31 and superheater pipes 32 provided on the flow path wall, and the generated steam is supplied to a steam turbine generator (not shown). Power generation. In order to perform stable power generation, it is necessary to stabilize the heat input to the boiler 30. That is, it is necessary to keep the heat input constant in order to keep the power generation amount constant, and in order to change the power generation amount quickly, it is necessary to smoothly change the heat input so that hunting does not occur.
 給じん装置40は、ごみ投入ホッパ41に投入されたごみを焼却炉10の乾燥部11に供給する装置である。給じん装置40は、ごみ投入ホッパ41の底部分に位置し、水平方向に移動する給じん装置本体42を有している。この給じん装置本体42の移動速度、単位時間あたりの移動回数、移動量(ストローク)、及びストローク端の位置(移動範囲)を制御することにより、乾燥部11に供給するごみの供給量を調整することができる。 The dust supply device 40 is a device that supplies the waste introduced into the waste introduction hopper 41 to the drying unit 11 of the incinerator 10. The dust supply device 40 has a dust supply device main body 42 that is positioned at the bottom portion of the dust input hopper 41 and moves in the horizontal direction. By controlling the movement speed, the number of movements per unit time, the movement amount (stroke), and the position of the stroke end (movement range), the amount of dust supplied to the drying unit 11 is adjusted. can do.
 空気供給装置50は、焼却炉10に空気を供給する装置である。本実施形態の空気供給装置50は、一次空気供給部51と、二次空気供給部52と、排ガス供給部53と、を有している。 The air supply device 50 is a device that supplies air to the incinerator 10. The air supply device 50 according to this embodiment includes a primary air supply unit 51, a secondary air supply unit 52, and an exhaust gas supply unit 53.
 一次空気供給部51は、乾燥ストーカ15に形成された隙間を介して乾燥部11に一次空気を供給し、燃焼ストーカ20に形成された隙間を介して燃焼部12の上流側部分及び下流側部分のそれぞれに一次空気を供給し、後燃焼ストーカ21に形成された隙間を介して後燃焼部13に一次空気を供給する。また、一次空気供給部51は、各部への一次空気の供給量を調整することができる。なお、一次空気供給部51にヒータ及び空冷壁を設け、各部に供給する一次空気の温度を調整できるようにしてもよい。 The primary air supply unit 51 supplies primary air to the drying unit 11 through a gap formed in the drying stoker 15, and an upstream part and a downstream part of the combustion unit 12 through a gap formed in the combustion stoker 20. Primary air is supplied to each of these, and primary air is supplied to the post-combustion unit 13 through a gap formed in the post-combustion stoker 21. Moreover, the primary air supply part 51 can adjust the supply amount of the primary air to each part. In addition, a heater and an air cooling wall may be provided in the primary air supply part 51 so that the temperature of the primary air supplied to each part can be adjusted.
 二次空気供給部52は、焼却炉10の空気ガス保有空間16にその上部(天井部)から二次空気を供給するとともに、絞り部17から主流ガスが方向転換する部分に二次空気を供給する。また、二次空気供給部52は、各部への二次空気の供給量を調整することができる。 The secondary air supply unit 52 supplies secondary air to the air gas holding space 16 of the incinerator 10 from the upper part (ceiling part) and also supplies secondary air from the throttle part 17 to the part where the mainstream gas changes direction. To do. Moreover, the secondary air supply part 52 can adjust the supply amount of the secondary air to each part.
 排ガス供給部53は、ごみ焼却設備100から排出された排ガスを焼却炉10に供給する(再循環させる)。ごみ焼却設備100から排出された排ガスはろ過式集じん器で浄化され、その一部が排ガス供給部53によって燃焼部12の両側面(紙面手前側及び紙面奥側の面)から焼却炉10へ供給される。なお、排ガスが供給される位置は、特に限定されない。例えば、排ガスは焼却炉10の上方(天井部)から供給されてもよく、一方の側面のみから供給されてもよい。排ガスを焼却炉10に供給することで、焼却炉10内の酸素濃度が低下し、燃焼温度の局所的な過上昇を抑えることができる。その結果、NOxの発生を抑えることができる。 The exhaust gas supply unit 53 supplies (recirculates) the exhaust gas discharged from the waste incineration facility 100 to the incinerator 10. The exhaust gas discharged from the waste incineration facility 100 is purified by a filtration dust collector, and a part of the exhaust gas is supplied from the both side surfaces (the front side and the back side of the paper surface) to the incinerator 10 by the exhaust gas supply unit 53. Supplied. The position where the exhaust gas is supplied is not particularly limited. For example, exhaust gas may be supplied from the upper side (ceiling part) of the incinerator 10, or may be supplied only from one side surface. By supplying the exhaust gas to the incinerator 10, the oxygen concentration in the incinerator 10 is reduced, and a local excessive increase in the combustion temperature can be suppressed. As a result, generation of NOx can be suppressed.
 制御装置60は、CPU、RAM、ROM等によって構成されており、種々の演算を行うとともに、ごみ焼却設備100全体を制御する。図2は、ごみ焼却設備100の制御系のブロック図である。制御装置60は、ガス検出装置18及びレベル計19と電気的に接続されている。制御装置60は、これらの機器から送信される測定信号に基づいて、炉内ガスの性状及び乾燥部11におけるごみの堆積高さを取得する。また、制御装置60は、給じん装置40及び空気供給装置50と電気的に接続されている。制御装置60は、給じん装置40及び空気供給装置50に制御信号を送信し、各装置を制御する。 The control device 60 is constituted by a CPU, a RAM, a ROM, and the like, performs various calculations, and controls the entire waste incineration facility 100. FIG. 2 is a block diagram of a control system of the waste incineration facility 100. The control device 60 is electrically connected to the gas detection device 18 and the level meter 19. The control device 60 acquires the characteristics of the in-furnace gas and the accumulated height of the dust in the drying unit 11 based on the measurement signals transmitted from these devices. The control device 60 is electrically connected to the dust supply device 40 and the air supply device 50. The control device 60 transmits control signals to the dust supply device 40 and the air supply device 50 to control each device.
 <制御内容>
 次に、制御装置60による制御内容について説明する。図3は、制御装置60による制御のフロー図である。
<Control details>
Next, the contents of control by the control device 60 will be described. FIG. 3 is a flowchart of control by the control device 60.
 図3に示すように、制御が開始されると、制御装置60は、ガス検出装置18から乾燥部11で発生したガスを含む炉内ガス(空気ガス保有空間16が保有するガス)の性状(H2O、CO2、COの濃度)を取得する(ステップS1)。 As shown in FIG. 3, when the control is started, the control device 60 determines the properties of the in-furnace gas (the gas held in the air gas holding space 16) including the gas generated in the drying unit 11 from the gas detection device 18 ( H 2 O, CO 2 and CO concentrations) are acquired (step S1).
 続いて、制御装置60は、取得した炉内ガスの性状に基づいて、乾燥部11におけるごみの発熱量を算出する(ステップS2)。ここで、ガスの性状とごみの発熱量の関係について説明する。ごみの発熱量は、そのごみに含まれるC(炭素)、H(水素)、及びO(酸素)の量によってほぼ決まる。また、ごみが燃焼すると、ごみに含まれるC、H、Oは互いに結合して、CO、CO2、H2Oになる。そして、焼却炉10の乾燥部11において、ごみが乾燥することによっても熱分解によってCO、CO2、H2Oが発生する。そのため、炉内ガスに含まれるCO、CO2、H2Oのうち少なくとも2種類の成分を測定し、これを蓄積したデータを用いれば、ごみの発熱量を算出することができる。 Subsequently, the control device 60 calculates the amount of heat generated by the waste in the drying unit 11 based on the acquired property of the in-furnace gas (step S2). Here, the relationship between the properties of gas and the amount of heat generated by dust will be described. The amount of heat generated by the garbage is almost determined by the amounts of C (carbon), H (hydrogen), and O (oxygen) contained in the garbage. Further, when the waste burns, C, H and O contained in the waste are combined with each other to become CO, CO 2 and H 2 O. In the drying section 11 of the incinerator 10, CO, CO 2 , and H 2 O are generated by thermal decomposition even when the garbage is dried. Therefore, by measuring at least two kinds of components of CO, CO 2 , and H 2 O contained in the furnace gas and using the accumulated data, the calorific value of the waste can be calculated.
 また、CO/CO2を指標として、ごみの発熱量を算出してもよい。ごみに含まれるCの量が多いと、乾燥部11ではCO2に対するCOの割合が大きくなる傾向にある。これは、乾燥部11においてはCがOと十分に結合する段階ではないからである。また、ごみに含まれるCの量が多いと発熱量は大きくなる。そのため、CO/CO2を指標として、ごみの発熱量を算出することができる。 Further, the heat generation amount of the waste may be calculated using CO / CO 2 as an index. When the amount of C contained in the garbage is large, the ratio of CO to CO 2 tends to increase in the drying unit 11. This is because C is not in a stage where C is sufficiently combined with O in the drying unit 11. Further, when the amount of C contained in the garbage is large, the calorific value becomes large. Therefore, the calorific value of the waste can be calculated using CO / CO 2 as an index.
 本実施形態では、制御装置60には、炉内ガスにおけるH2O、CO2、COの濃度と乾燥部11におけるごみの発熱量との関係を示したマップデータが保存されている。そのため、制御装置60は、ステップS1で取得した炉内ガスの性状及び上記のマップデータに基づいて、乾燥部11におけるごみの発熱量を算出することができる。 In the present embodiment, the control device 60 stores map data indicating the relationship between the concentration of H 2 O, CO 2 , and CO in the furnace gas and the amount of heat generated by the dust in the drying unit 11. Therefore, the control device 60 can calculate the heat generation amount of the dust in the drying unit 11 based on the property of the in-furnace gas acquired in step S1 and the map data.
 なお、炉内ガスには、空気供給装置50から供給された空気も含まれる。制御装置60は、空気供給装置50から供給された空気中のH2O、CO2、COの量は把握できるため、これを考慮して乾燥部11におけるごみの発熱量を算出すれば、より正確な値を得ることができる。 The in-furnace gas includes air supplied from the air supply device 50. Since the control device 60 can grasp the amounts of H 2 O, CO 2 , and CO in the air supplied from the air supply device 50, if the amount of heat generated by the waste in the drying unit 11 is calculated in consideration of this amount, Accurate values can be obtained.
 続いて、制御装置60は、目標入熱量を設定する(ステップS3)。制御装置60は入力された値(焼却炉10へのごみ投入量もしくは発生させたいボイラ発熱量目標値)から目標入熱量を設定してもよく、所定の演算によって算出した値を目標入熱量に設定してもよい。例えば、ボイラ30への入熱量を一定に保つ場合には目標入熱量は一定のままとし、ボイラ30への入熱量を変更する場合には順次目標入熱量を変化させてゆく。 Subsequently, the control device 60 sets a target heat input amount (step S3). The control device 60 may set the target heat input from the input value (the amount of waste input to the incinerator 10 or the target value of the boiler heating value to be generated), and the value calculated by a predetermined calculation is set as the target heat input. It may be set. For example, when the heat input amount to the boiler 30 is kept constant, the target heat input amount is kept constant, and when the heat input amount to the boiler 30 is changed, the target heat input amount is sequentially changed.
 続いて、制御装置60は、乾燥部11におけるごみが燃焼したときに発生する熱量が目標入熱量となる最適堆積量及び最適空気供給量を算出する(ステップS4)。ごみが完全燃焼したときに発生する熱量は、そのごみの発熱量と重量の積で表すことができる。そのため、乾燥部11におけるごみが燃焼したときに発生する熱量が目標入熱量となる最適堆積量は、ステップS2で算出したごみの発熱量とステップS3で設定した目標入熱量に基づいて算出することができる。 Subsequently, the control device 60 calculates an optimum accumulation amount and an optimum air supply amount at which the heat amount generated when the dust in the drying unit 11 burns becomes the target heat input amount (step S4). The amount of heat generated when the garbage is completely burned can be expressed by the product of the heat value and weight of the garbage. Therefore, the optimum amount of accumulation in which the amount of heat generated when the waste in the drying unit 11 burns becomes the target heat input amount is calculated based on the heat generation amount of the waste calculated in step S2 and the target heat input amount set in step S3. Can do.
 ただし、ごみの燃焼状態は、焼却炉10への空気供給量によって左右されるため、最適空気供給量も算出する。なお、最適空気供給量は、一次空気、二次空気、排ガスのそれぞれについて算出してもよく、空気の供給位置ごとに算出してもよい。例えば、炉内ガスにおけるH2Oの濃度が高い場合には、湿ったごみを速やかに乾燥させるために一次空気の最適空気量が多くなるよう算出されるようにしてもよい。 However, since the combustion state of the garbage depends on the air supply amount to the incinerator 10, the optimum air supply amount is also calculated. The optimum air supply amount may be calculated for each of primary air, secondary air, and exhaust gas, or may be calculated for each air supply position. For example, when the concentration of H 2 O in the furnace gas is high, it may be calculated so that the optimum amount of primary air is increased in order to quickly dry wet waste.
 続いて、制御装置60は、レベル計19から乾燥部11におけるごみの堆積高さを取得する(ステップS5)。 Subsequently, the control device 60 acquires the accumulation height of dust in the drying unit 11 from the level meter 19 (step S5).
 続いて、制御装置60は、ステップS5で取得したごみの堆積高さに基づいて、乾燥部11におけるごみの堆積量を算出する(ステップS6)。ごみの比重は一定ではないが、ごみの発熱量とごみの比重に相関があるため、ステップS2で算出したごみの発熱量に基づいてごみの比重は算出することができる。このごみの比重に基づけば、乾燥部11におけるごみの堆積量(重量)を算出することができる。 Subsequently, the control device 60 calculates a dust accumulation amount in the drying unit 11 based on the dust accumulation height acquired in step S5 (step S6). Although the specific gravity of the garbage is not constant, there is a correlation between the heat generation amount of the waste and the specific gravity of the waste, so that the specific gravity of the waste can be calculated based on the heat generation amount of the waste calculated in step S2. Based on the specific gravity of the waste, the amount of accumulated dust (weight) in the drying unit 11 can be calculated.
 続いて、制御装置60は、給じん装置40及び空気供給装置50を制御する(ステップS7)。具体的には、制御装置60は、ステップS4で算出した最適堆積量とステップS6で算出した乾燥部11におけるごみの堆積重量との差を算出し、その差がゼロとなるように又は少なくなるように、給じん装置40を制御して乾燥部11にごみを追加供給する。また、制御装置60は、焼却炉10への空気の供給量がステップS4で算出した最適空気供給量となるように空気供給装置50を制御する。 Subsequently, the control device 60 controls the dust supply device 40 and the air supply device 50 (step S7). Specifically, the control device 60 calculates the difference between the optimum accumulation amount calculated in step S4 and the accumulation weight of dust in the drying unit 11 calculated in step S6, and the difference becomes zero or decreases. As described above, the dust supply device 40 is controlled to additionally supply dust to the drying unit 11. Further, the control device 60 controls the air supply device 50 so that the air supply amount to the incinerator 10 becomes the optimum air supply amount calculated in step S4.
 以上のとおり、本実施形態では、燃焼前のごみである乾燥部11におけるごみから発生するガスの性状に基づいて、そのごみが燃焼したときの入熱量が適切な値となるように、乾燥部11におけるごみの堆積量及び焼却炉10への空気供給量を調整している。つまり、本実施形態では、フィードフォワード制御を行っている。そのため、焼却炉10に供給されるごみの内容が刻々と変化しても、ボイラ30への安定した入熱が可能である。 As described above, in the present embodiment, based on the property of the gas generated from the garbage in the drying unit 11 that is the garbage before combustion, the drying unit is set so that the amount of heat input when the garbage burns becomes an appropriate value. 11 adjusts the amount of accumulated dust and the amount of air supplied to the incinerator 10. That is, in this embodiment, feedforward control is performed. Therefore, even if the contents of the garbage supplied to the incinerator 10 change every moment, stable heat input to the boiler 30 is possible.
 なお、上記のステップS7を経た後はステップS1に戻って、ステップS1からS7を繰り返す。つまり、本実施形態では給じん装置40の駆動と最適堆積量の算出が同期して行われる。これにより、ごみが乾燥部11に供給されるたびに最適堆積量が算出されるため、ごみが乾燥部11に供給されることにより状況が変化しても、その変化に応じて最適堆積量が再度算出され、最適堆積量の算出を精度よく行うことができる。 In addition, after passing through said step S7, it returns to step S1 and repeats step S1 to S7. That is, in this embodiment, the driving of the dust supply device 40 and the calculation of the optimum deposition amount are performed in synchronization. Thus, since the optimum accumulation amount is calculated every time the garbage is supplied to the drying unit 11, even if the situation changes due to the waste being supplied to the drying unit 11, the optimum accumulation amount is changed according to the change. It is calculated again, and the optimum deposition amount can be calculated with high accuracy.
 なお、上記の実施形態では、炉内ガスの性状及びマップデータに基づいて乾燥部11におけるごみの発熱量を算出している。この発熱量は決まった単位を用いて表すことができる絶対値である。ただし、発熱量の相対的な増減を用いて最適堆積量及び最適空気供給量を算出してもよい。例えば、燃焼によって目標入熱量が得られたごみ(以下、「目標ごみ」と称する)の発熱量及び乾燥部11に位置していたときの堆積量(それぞれ、「目標発熱量」及び「目標堆積量」と称する)を記憶しておき、炉内ガスの性状に基づいて目標発熱量に対する相対的な発熱量を算出し、算出した相対的な発熱量と目標堆積量とに基づいて最適堆積量及び最適空気供給量を算出するようにしてもよい。 In the above-described embodiment, the amount of heat generated by the dust in the drying unit 11 is calculated based on the properties of the furnace gas and the map data. This calorific value is an absolute value that can be expressed using a fixed unit. However, the optimum deposition amount and the optimum air supply amount may be calculated using a relative increase / decrease in the heat generation amount. For example, the amount of heat generated from the waste (hereinafter referred to as “target waste”) for which the target heat input is obtained by combustion, and the amount of deposit when located in the drying unit 11 (the “target heat generation” and “target deposition, respectively”). The amount of heat) is stored, and a relative calorific value with respect to the target calorific value is calculated based on the properties of the gas in the furnace, and an optimum deposition amount is calculated based on the calculated relative calorific value and the target deposition amount. The optimum air supply amount may be calculated.
 また、発熱量を求めることなく、最適堆積量及び最適空気供給量を算出してもよい。例えば、基準ごみが乾燥部11に位置していたときの炉内ガスの性状(以下、「基準性状」と称する)及び前述の目標堆積量を記憶しておき、取得した炉内ガスの性状と記憶した基準性状を対比し、対比した結果と目標堆積量に基づいて最適堆積量及び最適空気供給量を算出してもよい。 Further, the optimum accumulation amount and the optimum air supply amount may be calculated without obtaining the heat generation amount. For example, the property of the gas in the furnace (hereinafter referred to as “reference property”) when the standard waste is located in the drying unit 11 and the above-described target deposition amount are stored, The stored reference properties may be compared, and the optimum accumulation amount and the optimum air supply amount may be calculated based on the comparison result and the target accumulation amount.
 さらに、ステップS2において算出した発熱量を一定時間間隔もしくは給じん装置40が作動するタイミングで記憶し、1つ前のタイミングで算出した発熱量に対する新たにステップS2で算出した発熱量の相対値を用いて最適堆積量及び最適空気供給量を算出してもよい。 Further, the calorific value calculated in step S2 is stored at a certain time interval or at the timing when the feeding device 40 operates, and the relative value of the calorific value newly calculated in step S2 with respect to the calorific value calculated at the previous timing is obtained. The optimum deposition amount and the optimum air supply amount may be calculated by using them.
 また、本実施形態の焼却炉10は前述のとおり並行流焼却炉であって、乾燥部11を含む領域において絞り部17を有する空気ガス保有空間16が形成されており、燃焼部12で発生した燃焼ガスは絞り部17を通過してボイラ30に向かって流れるよう構成されている。そのため、空気ガス保有空間16は火炎がほとんど存在しない空間となり、その空間に炉内ガスを保有することができる。その結果、炉内ガスの性状の検出を容易に行うことができる。 Further, the incinerator 10 of the present embodiment is a parallel flow incinerator as described above, and the air gas holding space 16 having the throttle portion 17 is formed in the region including the drying portion 11, and is generated in the combustion portion 12. The combustion gas is configured to flow toward the boiler 30 through the throttle portion 17. Therefore, the air gas holding space 16 is a space where there is almost no flame, and the furnace gas can be held in that space. As a result, the property of the in-furnace gas can be easily detected.
 なお、以上では、焼却炉10が並行流焼却炉である場合について説明したが、焼却炉10が中間流焼却炉であってもよい。中間流焼却炉は一般的に空気ガス保有空間16が形成されていないが、中間流焼却炉であっても乾燥部11で発生したガスを含む炉内ガスの性状を検出することができれば、検出した炉内ガスの性状に基づいてボイラ30への安定した入熱を行うことが可能である。 In addition, although the case where the incinerator 10 is a parallel flow incinerator was demonstrated above, the incinerator 10 may be an intermediate flow incinerator. In the intermediate flow incinerator, the air gas holding space 16 is generally not formed. However, even if the intermediate flow incinerator is used, if the property of the in-furnace gas including the gas generated in the drying unit 11 can be detected, the detection is possible. It is possible to perform stable heat input to the boiler 30 based on the properties of the in-furnace gas.
 また、以上では、乾燥部11におけるごみの発熱量に基づいて給じん装置40及び空気供給装置50を制御する場合について説明したが、乾燥部11におけるごみの発熱量に基づいて乾燥ストーカ15、燃焼ストーカ20、及び後燃焼ストーカ21の全部又は一部を制御してもよい。ごみは空気と接触することで熱量にかわる。ボイラ30への入熱量を増加させたい場合には、ごみが空気と接触する機会を増やして燃焼を活発にする。具体的には、各ストーカ15、20、21の単位時間当たりの稼働回数を増やすことで、ごみと空気が接触する回数を増やす。または、各ストーカ15、20、21の作動速度を大きくすることで、各ストーカ15、20、21に載っているごみを崩し、ごみの空気と接触する面積を増加させる。一方、ボイラ30への入熱量を抑制したい場合には、各ストーカ15、20、21の単位時間当たりの稼働回数を減らし、又は、動作速度を小さくすればよい。 Moreover, although the case where the dust supply apparatus 40 and the air supply apparatus 50 were controlled based on the calorific value of the dust in the drying part 11 was demonstrated above, the drying stoker 15 and combustion based on the calorific value of the garbage in the drying part 11 were demonstrated. All or part of the stalker 20 and the post-combustion stalker 21 may be controlled. Garbage changes in quantity of heat when it comes into contact with air. When it is desired to increase the amount of heat input to the boiler 30, the chance that the waste comes into contact with air is increased, and combustion is activated. Specifically, by increasing the number of operations per unit time of each stalker 15, 20, and 21, the number of times that dust and air come into contact is increased. Alternatively, by increasing the operating speed of each stalker 15, 20, 21, the trash placed on each stalker 15, 20, 21 is broken, and the area of the trash that contacts the air is increased. On the other hand, when it is desired to suppress the amount of heat input to the boiler 30, the number of operations per unit time of each stalker 15, 20, 21 may be reduced or the operation speed may be reduced.
 また、以上では、炉内ガスの性状のみに基づいて、乾燥部11におけるごみの発熱量を算出し、最適堆積量及び最適空気供給量を算出する場合について説明したが、炉内ガスの性状と他の要素に基づいて、各量を算出してもよい。例えば、炉内ガスの性状に基づいて算出した乾燥部11におけるごみの発熱量と、ボイラ30で生成された蒸気の流量に基づいて算出したごみの発熱量とに基づいて、最適堆積量及び最適空気供給量を算出してもよい。この場合、炉内ガスの性状に基づいて算出した乾燥部11におけるごみの発熱量は、主として用いられてもよく、補正的に用いられてもよい。 In the above description, the case where the amount of heat generated by the dust in the drying unit 11 is calculated based on only the properties of the furnace gas and the optimum deposition amount and the optimum air supply amount are calculated has been described. Each amount may be calculated based on other factors. For example, based on the heat generation amount of the waste in the drying unit 11 calculated based on the properties of the gas in the furnace and the heat generation amount of the waste calculated based on the flow rate of the steam generated in the boiler 30, the optimum deposition amount and the optimal The air supply amount may be calculated. In this case, the heat generation amount of the waste in the drying unit 11 calculated based on the property of the furnace gas may be mainly used or may be used in a corrective manner.
10 焼却炉
11 乾燥部
12 燃焼部
15 乾燥ストーカ
16 空気ガス保有空間
17 絞り部
18 ガス検出装置
19 レベル計
20 燃焼ストーカ
21 後燃焼ストーカ
30 ボイラ
40 給じん装置
50 空気供給装置
60 制御装置
100 ごみ焼却設備
DESCRIPTION OF SYMBOLS 10 Incinerator 11 Drying part 12 Combustion part 15 Dry stoker 16 Air gas holding space 17 Restriction part 18 Gas detector 19 Level meter 20 Combustion stoker 21 Post combustion stoker 30 Boiler 40 Dust supply apparatus 50 Air supply apparatus 60 Control apparatus 100 Waste incineration Facility

Claims (10)

  1.  乾燥部で乾燥させたごみを燃焼部で燃焼させる焼却炉と、
     ごみの燃焼によって発生した熱を利用して蒸気を生成するボイラと、
     前記焼却炉の前記乾燥部にごみを供給する給じん装置と、
     前記乾燥部で発生したガスを含む炉内ガスの性状を検出するガス検出装置と、
     前記ガス検出装置から取得した炉内ガスの性状に基づいて、前記乾燥部におけるごみが燃焼したときに所望の熱量が発生する最適堆積量を算出し、前記乾燥部におけるごみの堆積量が前記最適堆積量となるように前記給じん装置を制御する制御装置と、を備えた、ごみ焼却設備。
    An incinerator for burning the waste dried in the drying section in the combustion section;
    A boiler that generates steam using heat generated by the combustion of garbage;
    A dust supply device for supplying garbage to the drying section of the incinerator;
    A gas detection device for detecting the properties of the gas in the furnace including the gas generated in the drying unit;
    Based on the property of the in-furnace gas acquired from the gas detection device, an optimum accumulation amount that generates a desired amount of heat when the garbage in the drying section burns is calculated, and the accumulation amount of the dust in the drying section is the optimum amount. A waste incineration facility comprising: a control device that controls the dust supply device so as to obtain a deposition amount.
  2.  前記焼却炉に空気を供給する空気供給装置をさらに備え、
     前記制御装置は、前記ガス検出装置から取得した炉内ガスの性状に基づいて、前記乾燥部におけるごみが燃焼したときに所望の熱量が発生する最適空気供給量を算出し、前記焼却炉への空気供給量が前記最適空気供給量となるように前記空気供給装置を制御する、請求項1に記載のごみ焼却設備。
    An air supply device for supplying air to the incinerator;
    The control device calculates an optimum air supply amount that generates a desired amount of heat when the dust in the drying section burns based on the properties of the in-furnace gas acquired from the gas detection device, and supplies the incinerator to the incinerator The refuse incineration facility according to claim 1, wherein the air supply device is controlled so that an air supply amount becomes the optimum air supply amount.
  3.  前記制御装置は前記給じん装置の駆動に同期して前記最適堆積量を算出する、請求項1又は2に記載のごみ焼却設備。 The waste incineration facility according to claim 1 or 2, wherein the control device calculates the optimum accumulation amount in synchronization with driving of the dust supply device.
  4.  前記乾燥部におけるごみの堆積高さを検出するレベル計をさらに備え、
     前記制御装置は、前記レベル計から取得したごみの堆積高さに基づいて、前記乾燥部におけるごみの堆積量が前記最適堆積量となるように前記給じん装置を制御する、請求項1乃至3のうちいずれか一の項に記載のごみ焼却設備。
    Further comprising a level meter for detecting the accumulated height of dust in the drying section,
    The said control apparatus controls the said dust supply apparatus so that the deposition amount of the dust in the said drying part may become the said optimal deposition amount based on the deposition height of the garbage acquired from the said level meter. The waste incineration facility according to any one of the above.
  5.  前記焼却炉は、少なくとも乾燥部を含む領域において下流部分に絞り部を有する空気ガス保有空間が形成されており、前記燃焼部で発生した燃焼ガスは前記絞り部を通過して前記ボイラに向かって流れるよう構成されている、請求項1乃至4のうちいずれか一の項に記載のごみ焼却設備。 In the incinerator, an air gas holding space having a constricted portion in a downstream portion is formed in a region including at least a dry portion, and combustion gas generated in the combusting portion passes through the constricted portion toward the boiler. The refuse incineration facility according to any one of claims 1 to 4, wherein the facility is configured to flow.
  6.  乾燥部で乾燥させたごみを燃焼部で燃焼させる焼却炉と、
     ごみの燃焼によって発生した熱を利用して蒸気を生成するボイラと、
     前記乾燥部で発生したガスを含む炉内ガスの性状を検出するガス検出装置と、
     前記ガス検出装置から取得した炉内ガスの性状に基づいて、前記乾燥部におけるごみの発熱量を算出する制御装置と、を備えた、ごみ焼却設備。
    An incinerator for burning the waste dried in the drying section in the combustion section;
    A boiler that generates steam using heat generated by the combustion of garbage;
    A gas detection device for detecting the properties of the gas in the furnace including the gas generated in the drying unit;
    A waste incineration facility comprising: a control device that calculates the amount of heat generated by the waste in the drying unit based on the property of the in-furnace gas acquired from the gas detection device.
  7.  前記焼却炉の前記乾燥部にごみを供給する給じん装置と、
     前記焼却炉内のごみを搬送するストーカと、をさらに備え、
     前記制御装置は、算出した前記乾燥部におけるごみの発熱量に基づいて、前記給じん装置及び前記ストーカの少なくとも一方を制御する、請求項6に記載のごみ焼却設備。
    A dust supply device for supplying garbage to the drying section of the incinerator;
    A stalker that transports the waste in the incinerator,
    The waste incineration facility according to claim 6, wherein the control device controls at least one of the dust feeding device and the stoker based on the calorific value of the waste in the drying unit.
  8.  乾燥部で乾燥させたごみを燃焼部で燃焼させる焼却炉と、ごみの燃焼によって発生した熱を利用して蒸気を生成するボイラと、前記焼却炉の前記乾燥部にごみを供給する給じん装置と、前記乾燥部で発生したガスを含む炉内ガスの性状を検出するガス検出装置と、を備えた、ごみ焼却設備の制御方法であって、
     前記ガス検出装置から取得した炉内ガスの性状に基づいて、前記乾燥部におけるごみが燃焼したときに所望の熱量が発生する最適堆積量を算出し、前記乾燥部におけるごみの堆積量が前記最適堆積量となるように前記給じん装置を制御する、制御方法。
    An incinerator for burning the waste dried in the drying section in the combustion section, a boiler for generating steam using heat generated by the combustion of the garbage, and a dust feeder for supplying the waste to the drying section of the incinerator And a method for controlling a waste incineration facility, comprising: a gas detection device that detects a property of the in-furnace gas including the gas generated in the drying unit,
    Based on the property of the in-furnace gas acquired from the gas detection device, an optimum accumulation amount that generates a desired amount of heat when the garbage in the drying section burns is calculated, and the accumulation amount of the dust in the drying section is the optimum amount. A control method of controlling the dust supply device so as to obtain a deposition amount.
  9.  乾燥部で乾燥させたごみを燃焼部で燃焼させる焼却炉と、ごみの燃焼によって発生した熱を利用して蒸気を生成するボイラと、前記乾燥部で発生したガスを含む炉内ガスの性状を検出するガス検出装置と、を備えた、ごみ焼却設備の制御方法であって、
     前記ガス検出装置から取得した炉内ガスの性状に基づいて、前記乾燥部におけるごみの発熱量を算出することを含む、制御方法。
    The incinerator for burning the waste dried in the drying section in the combustion section, the boiler that generates steam using the heat generated by the combustion of the waste, and the properties of the gas in the furnace including the gas generated in the drying section A method for controlling a waste incineration facility comprising a gas detection device for detecting,
    A control method comprising calculating a heating value of dust in the drying unit based on a property of the in-furnace gas acquired from the gas detection device.
  10.  前記ごみ焼却設備は、前記焼却炉の前記乾燥部にごみを供給する給じん装置と、前記焼却炉内のごみを搬送するストーカと、をさらに備えており、
     算出した前記乾燥部におけるごみの発熱量に基づいて、前記給じん装置及び前記ストーカの少なくとも一方を制御する、請求項9に記載の制御方法。
    The waste incineration facility further includes a dust supply device that supplies waste to the drying unit of the incinerator, and a stalker that transports the waste in the incinerator,
    The control method according to claim 9, wherein at least one of the dust feeder and the stoker is controlled based on the calculated amount of heat generated by the waste in the drying unit.
PCT/JP2017/014212 2016-06-28 2017-04-05 Refuse incineration facility and control method for refuse incineration facility WO2018003223A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187037623A KR102236283B1 (en) 2016-06-28 2017-04-05 Garbage incineration facility and control method of waste incineration facility
PH12018502692A PH12018502692A1 (en) 2016-06-28 2018-12-19 Refuse incineration plant and method of controlling refuse incineration plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016128052A JP7015103B2 (en) 2016-06-28 2016-06-28 Waste incinerator and control method of waste incinerator
JP2016-128052 2016-06-28

Publications (1)

Publication Number Publication Date
WO2018003223A1 true WO2018003223A1 (en) 2018-01-04

Family

ID=60787121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014212 WO2018003223A1 (en) 2016-06-28 2017-04-05 Refuse incineration facility and control method for refuse incineration facility

Country Status (5)

Country Link
JP (1) JP7015103B2 (en)
KR (1) KR102236283B1 (en)
CN (2) CN207019078U (en)
PH (1) PH12018502692A1 (en)
WO (1) WO2018003223A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189544A1 (en) * 2018-03-30 2019-10-03 川崎重工業株式会社 Incineration facility
WO2020137502A1 (en) * 2018-12-27 2020-07-02 川崎重工業株式会社 Garbage incinerator and control method therefor
WO2020137598A1 (en) * 2018-12-28 2020-07-02 川崎重工業株式会社 Garbage supply speed estimation device and garbage supply speed estimation method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7195753B2 (en) * 2018-04-04 2022-12-26 川崎重工業株式会社 Waste incinerator
JP7150291B2 (en) * 2018-08-27 2022-10-11 株式会社エム・アイ・エス Combustion device
JP7382285B2 (en) * 2020-06-08 2023-11-16 三菱重工業株式会社 Control device, control method and program
JP7016386B2 (en) * 2020-07-16 2022-02-04 博志 西村 Incinerator and incinerator method
KR102396523B1 (en) 2021-11-11 2022-05-12 케이엘씨에스엠 주식회사 Remodeled vessel for treating and incinerating waste using used LNG carrier and remodeling method of it

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074628A (en) * 1993-06-15 1995-01-10 Kubota Corp Controlling method for combustion in incinerator using thermal fluid analysis
JPH1137436A (en) * 1997-07-16 1999-02-12 Sumitomo Heavy Ind Ltd Refuse feed control system for horizontal stoker type refuse incinerator
JPH1194227A (en) * 1997-09-26 1999-04-09 Sumitomo Heavy Ind Ltd Method of presuming low heating value of combustible waste and presuming heating value of combustible part of garbage of garbage incinerator
JP2000018549A (en) * 1998-06-25 2000-01-18 Hitachi Ltd Incineration plant operation control method and apparatus
JP2000097422A (en) * 1998-09-22 2000-04-04 Hitachi Ltd Waste incinerating plant, apparatus and method for controlling the same, and method for predicting gas composition distribution thereof
JP2002106821A (en) * 2000-09-29 2002-04-10 Kawasaki Heavy Ind Ltd Method and device for controlling combustion in refuse incineration plant
JP2003254523A (en) * 2002-03-04 2003-09-10 Kawasaki Heavy Ind Ltd In-furnace garbage stay distribution estimating method in incinerator, and combustion control method and device using method
JP2006064300A (en) * 2004-08-27 2006-03-09 Takuma Co Ltd Combustion information monitoring controlling device for stoker type refuse incinerator
JP2009150626A (en) * 2007-12-21 2009-07-09 Takuma Co Ltd Combustion control system for combustion furnace and its combustion control method
JP2010127475A (en) * 2008-11-25 2010-06-10 Takuma Co Ltd Combustion control system and method of combustion furnace

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5556514A (en) 1978-10-20 1980-04-25 Takuma Co Ltd Method of automatic combustion control for refuse incinerating furnace
JPH09273732A (en) 1996-02-06 1997-10-21 Nkk Corp Control method of combustion in incinerating furnace
JPH1068514A (en) * 1996-06-21 1998-03-10 Nkk Corp Combustion controlling method for refuse incinerating furnace
CA2205766C (en) * 1996-09-12 2001-02-20 Mitsubishi Denki Kabushiki Kaisha Combustion system and operation control method thereof
JP2002188809A (en) * 2000-12-19 2002-07-05 Mitsubishi Heavy Ind Ltd Combustion control method and combustion control device for combustion furnace
JP4230925B2 (en) * 2004-01-06 2009-02-25 株式会社神戸製鋼所 Calorific value estimation device, calorific value estimation method, and combustion control device
DE602004001972T2 (en) * 2004-04-23 2007-09-06 Abb Research Ltd. Model and regulation of a waste incineration process
JP4925947B2 (en) * 2007-07-04 2012-05-09 日立造船株式会社 Waste supply amount control method and waste supply amount control device in waste incineration facility
CN102840586B (en) * 2012-09-13 2015-11-18 宁明辉 Domestic waste incineration automatic combustion control system
CN103234207B (en) * 2012-11-28 2015-04-15 上海康恒环境股份有限公司 Automatic incineration garbage layer thickness control system of household garbage incinerator
CN103343973B (en) * 2013-06-18 2016-03-02 浙江睿洋科技有限公司 The control method of garbage pyrolysis furnace
CN203757728U (en) * 2013-12-30 2014-08-06 川崎重工业株式会社 Stocker type incinerator
CN106594750A (en) * 2016-12-20 2017-04-26 四川雷鸣环保装备有限公司 Horizontal chain grate pyrolysis gasifier

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074628A (en) * 1993-06-15 1995-01-10 Kubota Corp Controlling method for combustion in incinerator using thermal fluid analysis
JPH1137436A (en) * 1997-07-16 1999-02-12 Sumitomo Heavy Ind Ltd Refuse feed control system for horizontal stoker type refuse incinerator
JPH1194227A (en) * 1997-09-26 1999-04-09 Sumitomo Heavy Ind Ltd Method of presuming low heating value of combustible waste and presuming heating value of combustible part of garbage of garbage incinerator
JP2000018549A (en) * 1998-06-25 2000-01-18 Hitachi Ltd Incineration plant operation control method and apparatus
JP2000097422A (en) * 1998-09-22 2000-04-04 Hitachi Ltd Waste incinerating plant, apparatus and method for controlling the same, and method for predicting gas composition distribution thereof
JP2002106821A (en) * 2000-09-29 2002-04-10 Kawasaki Heavy Ind Ltd Method and device for controlling combustion in refuse incineration plant
JP2003254523A (en) * 2002-03-04 2003-09-10 Kawasaki Heavy Ind Ltd In-furnace garbage stay distribution estimating method in incinerator, and combustion control method and device using method
JP2006064300A (en) * 2004-08-27 2006-03-09 Takuma Co Ltd Combustion information monitoring controlling device for stoker type refuse incinerator
JP2009150626A (en) * 2007-12-21 2009-07-09 Takuma Co Ltd Combustion control system for combustion furnace and its combustion control method
JP2010127475A (en) * 2008-11-25 2010-06-10 Takuma Co Ltd Combustion control system and method of combustion furnace

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189544A1 (en) * 2018-03-30 2019-10-03 川崎重工業株式会社 Incineration facility
JP2019178806A (en) * 2018-03-30 2019-10-17 川崎重工業株式会社 Incineration equipment
CN111556947A (en) * 2018-03-30 2020-08-18 川崎重工业株式会社 Incineration equipment
CN111556947B (en) * 2018-03-30 2022-08-09 川崎重工业株式会社 Incineration equipment
WO2020137502A1 (en) * 2018-12-27 2020-07-02 川崎重工業株式会社 Garbage incinerator and control method therefor
JP2020106216A (en) * 2018-12-27 2020-07-09 川崎重工業株式会社 Waste incinerator and control method for the same
CN113227654A (en) * 2018-12-27 2021-08-06 川崎重工业株式会社 Garbage incinerator and control method thereof
JP7231406B2 (en) 2018-12-27 2023-03-01 川崎重工業株式会社 Garbage incinerator and its control method
CN113227654B (en) * 2018-12-27 2023-09-22 川崎重工业株式会社 Garbage incinerator and control method thereof
WO2020137598A1 (en) * 2018-12-28 2020-07-02 川崎重工業株式会社 Garbage supply speed estimation device and garbage supply speed estimation method
JP2020106243A (en) * 2018-12-28 2020-07-09 川崎重工業株式会社 Waste supply speed estimation device and waste supply speed estimation method
JP7150596B2 (en) 2018-12-28 2022-10-11 川崎重工業株式会社 Garbage supply speed estimation device and garbage supply speed estimation method

Also Published As

Publication number Publication date
KR102236283B1 (en) 2021-04-05
CN107543174B (en) 2019-08-09
JP7015103B2 (en) 2022-02-02
KR20190011282A (en) 2019-02-01
JP2018004113A (en) 2018-01-11
CN207019078U (en) 2018-02-16
PH12018502692A1 (en) 2019-10-14
CN107543174A (en) 2018-01-05

Similar Documents

Publication Publication Date Title
WO2018003223A1 (en) Refuse incineration facility and control method for refuse incineration facility
JP6927127B2 (en) Waste incinerator method
JP6696790B2 (en) Stoker incinerator
JP2019052822A (en) In-furnace condition determination method, combustion control method, and waste incinerator
JP2022069679A (en) Device and method for controlling combustion of stoker furnace and device and method for detecting fuel movement amount
JP2010216990A (en) Device and method for measurement of moisture percentage in waste
CN203757728U (en) Stocker type incinerator
JP6695160B2 (en) Stoker incinerator
JP2019178848A (en) Waste incinerator and waste incineration method
JP6695161B2 (en) Stoker incinerator
JP2018105590A (en) Garbage incineration appliance
JP4099195B2 (en) Combustion control system for waste incinerator without boiler equipment
JP2005024126A (en) Combustion control method
JP2011149658A (en) Operation control method for circulating fluidized bed boiler
JP6686633B2 (en) Waste treatment furnace device and method
JP2019219108A (en) In-furnace situation determination method and evaporation amount control method
JP6624451B2 (en) Waste treatment furnace equipment
JP6744843B2 (en) Flame end position detection method, automatic combustion control method, and waste incinerator
JP5767486B2 (en) Heat recovery plant and operation control method thereof
JP2021143768A (en) Waste incineration device and waste incineration method
CN114568031A (en) Waste combustion device and waste combustion method
JP2019007699A (en) Primary combustion gas supply control method, evaporation amount stabilization method, power generation amount stabilization method and fire grate type waste incinerator
CN104748129B (en) Grate type incinerator
JP6973246B2 (en) Waste incinerator method
JP3946603B2 (en) Waste incinerator and incineration method using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17819592

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187037623

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17819592

Country of ref document: EP

Kind code of ref document: A1