JPH09273732A - Control method of combustion in incinerating furnace - Google Patents

Control method of combustion in incinerating furnace

Info

Publication number
JPH09273732A
JPH09273732A JP1691497A JP1691497A JPH09273732A JP H09273732 A JPH09273732 A JP H09273732A JP 1691497 A JP1691497 A JP 1691497A JP 1691497 A JP1691497 A JP 1691497A JP H09273732 A JPH09273732 A JP H09273732A
Authority
JP
Japan
Prior art keywords
grate
combustion
control
air
dry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1691497A
Other languages
Japanese (ja)
Inventor
Satoshi Fujii
聡 藤井
Manabu Kuroda
学 黒田
Yuichi Nogami
祐一 野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1691497A priority Critical patent/JPH09273732A/en
Publication of JPH09273732A publication Critical patent/JPH09273732A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To stabilize combustion and obtain a given generating amount of steam by a method wherein the amount of drying air and the speed of a drying grating are controlled in accordance with the fluctuation of the quality of wastes. SOLUTION: The temperature in a furnace at the upstream side of a combustion grating 3b is measured and the opening degree of air damper 12a below a drying grating and the like is corrected or the speed of a drying grating 3a is corrected employing a function, using the measured value as a parameter, whereby even humid wastes can be burnt under sufficiently dried condition. Fuzzy control is employed for the control of the amount of air and the speed of drying grating except linear control. According to this method, drying is enhanced immediately so as to be compatible even when the supplied wastes are changed to humid wastes whereby the condition of combustion is stabilized and a given generating amount of steam can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,火格子式ごみ焼却
炉の燃焼制御方法,そのうち特に燃焼状態を一定にする
ことによってボイラでの蒸気発生量を安定化することを
目的とする制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion control method for a grate type refuse incinerator, and more particularly to a control method for stabilizing the steam generation amount in a boiler by keeping the combustion state constant. .

【0002】[0002]

【従来の技術】都市ごみ焼却炉は,社会生活において排
出される様々な廃棄物を処理するという重要な役割を担
っている。近年では,廃棄物であるごみの焼却処理によ
って発生する膨大な熱エネルギの回収への関心が高ま
り,ボイラ発電設備のついたものが増加している。
2. Description of the Related Art Municipal solid waste incinerators play an important role in treating various wastes discharged in social life. In recent years, interest in recovering the enormous amount of heat energy generated by incineration of waste, which is waste, has increased, and the number of boilers equipped with a power generation facility has increased.

【0003】ごみ焼却炉では、ごみはクレーンによって
数10分の間隔で間欠的にホッパに投入され、このホッ
パの下に乾燥火格子があり、乾燥火格子によってごみは
炉内に送り込まれる。炉内の火格子は数段階からなり、
ごみは初段の乾燥火格子で乾燥された後、次の燃焼火格
子に流れ更に後燃焼火格子と流れて灰となり排出され
る。
In the refuse incinerator, the refuse is intermittently thrown into the hopper by a crane at intervals of several tens of minutes, and there is a drying grate under the hopper, and the drying grate feeds the refuse into the furnace. The grate in the furnace consists of several stages,
The waste is dried by the first-stage dry grate, then flows to the next combustion grate, and further flows to the post-combustion grate to be discharged as ash.

【0004】そして、良好な燃焼状態を維持するため
に、各火格子の下からはごみを乾燥し或いは燃焼するた
めの空気が吹き込まれ、空気量は各空気ダンパによって
調整される。乾燥火格子の下に吹き込まれる空気は、他
の火格子の下に吹き込まれる空気と区別するときは乾燥
空気と呼ばれるが、これらの空気を総称して呼ぶときは
燃焼空気と呼ばれ、炉壁の過熱を防ぐために別の吹き込
み口から吹き込まれる冷却空気と区別される。
In order to maintain a good combustion state, air for drying or burning dust is blown from under each grate, and the air amount is adjusted by each air damper. The air blown under the dry grate is called dry air to distinguish it from the air blown under other grate, but when these airs are collectively referred to as combustion air, the furnace wall It is distinguished from the cooling air blown from another blowing port to prevent overheating of the.

【0005】ごみの燃焼によって発生する燃焼ガスは、
炉出口に設けられた熱交換器でボイラ水に熱を与えた後
排気される。炉内温度は燃焼火格子上流部上方で測定さ
れ、他に、炉の出口即ち熱交換器の手前で炉出口温度が
測定される。このようなごみ焼却炉においては,炉出口
温度を一定に保ち蒸気を安定して供給するために,自動
燃焼制御が行われ、燃焼空気量,冷却空気量、火格子速
度等が制御される。
Combustion gas generated by the combustion of refuse is
Boiler water is heated by a heat exchanger provided at the furnace outlet and then discharged. The temperature inside the furnace is measured upstream of the combustion grate, and in addition, the temperature at the furnace outlet is measured at the exit of the furnace, i.e. before the heat exchanger. In such a refuse incinerator, automatic combustion control is performed in order to keep the furnace outlet temperature constant and stably supply steam, and the combustion air amount, cooling air amount, grate velocity, etc. are controlled.

【0006】ボイラでの蒸気発生量(以下、蒸発量と称
す)を安定化させるためには発生熱源であるごみの量を
制御するとともに、ごみの燃焼状況を制御し発熱量を一
定にする必要がある。ごみはその性状や成分が一定して
おらず、ごみ量の制御のみでは供給熱量は一定化しな
い。特に,水分の多いごみが供給された場合,乾燥火格
子上での乾燥が不十分なごみが燃焼火格子に運び込まれ
ても、すぐには燃焼しないため炉出口温度や蒸発量は下
がってしまう。
In order to stabilize the amount of steam generated in the boiler (hereinafter referred to as the amount of evaporation), it is necessary to control the amount of dust, which is a heat source, and to control the combustion state of the dust to keep the calorific value constant. There is. The properties and components of waste are not constant, and the amount of heat supplied is not constant only by controlling the amount of waste. In particular, when dust with a high water content is supplied, even if dust that has not been sufficiently dried on the dry grate is carried into the combustion grate, it will not burn immediately and the furnace outlet temperature and evaporation amount will decrease.

【0007】従来、上記の蒸発量の低下を防ぐために、
水分を含んだかさ比重の大きなごみと乾燥したかさ比重
の小さなごみとで、乾燥空気量を変えて燃焼させる方法
が提案されている。例えば,特開平2−106610号
公報には,クレーンのグラブバケットに掴まれたごみの
重量を測定し、グラブバケットの掴み容積で除すことに
よってかさ比重を算出し、このかさ比重に対応して、乾
燥火格子下の空気量を調整する制御方法が記載されてい
る。
Conventionally, in order to prevent the above-mentioned decrease in the evaporation amount,
A method has been proposed in which waste having a large bulk specific gravity containing water and dry waste having a small bulk specific gravity are burned by changing the amount of dry air. For example, in Japanese Unexamined Patent Application Publication No. 2-106610, the weight of dust caught in a grab bucket of a crane is measured, and the bulk specific gravity is calculated by dividing the weight by the grip volume of the grab bucket. Corresponding to this bulk specific gravity , A control method for adjusting the amount of air under a dry grate is described.

【0008】[0008]

【発明が解決しようとする課題】しかし,現実には過去
に投入されたごみが現在炉内のどの部分にあるかを正確
には把握しにくいため,誤ったタイミングで乾燥空気量
を与えてしまうことがあった。例えば、かさ比重が大き
かった場合、グラブバケットによる投入と同時に乾燥空
気量を増やしても、その時点で乾燥火格子上には前々回
に投入されたごみが存在することが多い。
However, in reality, it is difficult to know exactly where in the furnace the dust thrown in the past is at present, so the amount of dry air is given at the wrong timing. There was an occasion. For example, when the bulk specific gravity is large, even if the amount of dry air is increased at the same time as the charging by the grab bucket, at that time, there is often dust that has been injected two times before on the dry grate.

【0009】したがって、投入後暫くの時間を経て乾燥
空気量を増やす必要があるが、そのタイミングを誤るこ
ともあった。また,グラブバケット内のごみの成分も一
定ではなく、一部のごみに多量の水分を含み、他のごみ
が正常なこともあり、かさ比重が大きいだけで水分が多
いごみと判断することもできない。このため、上記の方
法では充分に的確な制御が行われないという問題があっ
た。
Therefore, although it is necessary to increase the amount of dry air a short time after the charging, the timing may be wrong. In addition, the garbage component in the grab bucket is not constant, some of the garbage contains a large amount of water, and other garbage may be normal. Therefore, it may be judged that the garbage has a large amount of water only because it has a large bulk specific gravity. Can not. For this reason, the above method has a problem in that sufficiently accurate control cannot be performed.

【0010】この発明はこのような問題を解決するため
になされたもので、投入されたごみが燃焼するまでの時
間遅れを考慮して、燃焼しはじめたごみの乾湿状態を推
定することができる炉内温度の測定値に基づいて、空気
ダンパ制御を行い、或いは同時に乾燥火格子速度の制御
を併用することにより,蒸発量を安定化しようとするも
のである。
The present invention has been made in order to solve such a problem, and it is possible to estimate the dry and wet state of refuse which has begun to be burned in consideration of the time delay until the thrown refuse is burned. Based on the measured value of the temperature in the furnace, the air damper control is performed, or at the same time, the control of the dry grate velocity is also used to stabilize the evaporation amount.

【0011】[0011]

【課題を解決するための手段】第一の発明は、ごみを火
格子上を移動させながら火格子の下方より空気を送り炉
内で燃焼させるごみ焼却炉の燃焼方法において、燃焼火
格子上流部上方の炉内温度を測定し、この温度が、基準
値よりも高いときには乾燥火格子下空気ダンパ開度を減
らし、基準値よりも低いときには乾燥火格子下空気ダン
パ開度を増やす空気ダンパ制御を行うごみ焼却炉の燃焼
制御方法である。
A first aspect of the present invention is a combustion method for a refuse incinerator, in which air is fed from below the grate and burned in the furnace while moving the garbage on the grate, and a combustion grate upstream part. The upper furnace temperature is measured, and when this temperature is higher than the reference value, the air damper opening under the dry grate is reduced, and when it is lower than the reference value, the air damper control under the dry grate is increased. This is a combustion control method for a waste incinerator.

【0012】燃焼火格子上流部上方の炉内温度は,乾燥
火格子から燃焼火格子にかけてのごみの燃焼状態を反映
している。乾燥火格子から燃焼火格子へ移動しているご
みの水分が多いと、蒸発潜熱やごみの着火が悪いために
炉内温度が低下する。約30分から1時間程度経過し
て,この乾燥状態の悪いごみが、燃焼火格子の主燃焼部
分にきたときにすぐには燃焼しないため炉出口温度が下
がり一定の蒸発量を維持することができなくなる。
The temperature inside the furnace above the upstream part of the combustion grate reflects the combustion state of dust from the dry grate to the combustion grate. When the amount of water in the dust moving from the dry grate to the combustion grate is large, the internal temperature of the furnace decreases because of the latent heat of vaporization and poor ignition of the dust. About 30 minutes to 1 hour has passed, and this poorly-dried waste does not burn immediately when it reaches the main combustion part of the combustion grate, so the furnace outlet temperature decreases and a constant amount of evaporation can be maintained. Disappear.

【0013】燃焼火格子上流部上方の炉内温度を測定し
ていると、測定値が基準値を下まわり始めた時点で、乾
燥火格子から燃焼火格子にかけてのごみの燃焼状態が悪
化し始めたと判断することができる。このときに乾燥火
格子下空気のダンパ開度を増やし、乾燥空気を多く流す
ようにしてごみの乾燥を早めれば、ごみが燃焼火格子の
主燃焼部分に移動して来るまでに水分を蒸発させること
ができる。
When the temperature inside the furnace above the combustion grate is measured, when the measured value begins to fall below the reference value, the combustion state of dust from the dry grate to the combustion grate begins to deteriorate. You can judge that At this time, increase the damper opening of the air under the dry grate to increase the amount of dry air and accelerate the drying of the waste, so that the water vaporizes before the waste moves to the main combustion part of the combustion grate. Can be made.

【0014】また、ごみが乾燥されていると燃焼が活発
となり、燃焼火格子上流部上方の炉内温度が基準値より
高なる。温度が基準値を上まわりはじめたら、乾燥火格
子下空気のダンパ開度を減らし過剰の乾燥空気の吹き込
みを抑制する。
Further, if the dust is dried, combustion becomes active, and the temperature inside the furnace above the upstream part of the combustion grate becomes higher than the reference value. When the temperature starts to exceed the reference value, the damper opening of the air under the dry grate is reduced to prevent excessive dry air blowing.

【0015】第二の発明は、前記の空気ダンパ制御にお
ける乾燥火格子下空気ダンパ開度の補正と同期して燃焼
火格子上流部下空気ダンパ開度を補正して空気ダンパ制
御を行うごみ焼却炉の燃焼制御方法である。
A second aspect of the present invention is a refuse incinerator for performing air damper control by correcting the air damper opening below the combustion grate in synchronization with the correction of the air opening below the dry grate in the air damper control. It is a combustion control method.

【0016】主たる燃焼は燃焼火格子上で行われ、火格
子の中で燃焼火格子は最も長い。このため、燃焼火格子
の下には二箇所から空気を吹き込む。乾燥火格子に近い
燃焼火格子上流部の下と後燃焼火格子に近い燃焼火格子
下流部の下の二箇所であり、空気量は各々燃焼火格子上
流部下空気ダンパ及び燃焼火格子下流部下空気ダンパに
よって調整される。
The main combustion takes place on the combustion grate, with the combustion grate being the longest. Therefore, air is blown into the combustion grate from two places. There are two locations, below the combustion grate upstream near the dry grate and below the combustion grate downstream near the post-combustion grate. Adjusted by damper.

【0017】乾燥火格子下空気のダンパ開度を補正する
だけでなく、この補正と同期して燃焼火格子上流部下空
気のダンパ開度も補正する。即ち、燃焼火格子上流部上
方の炉内温度が、基準値よりも高いときには乾燥火格子
下空気ダンパ開度と燃焼火格子上流部下空気ダンパ開度
を減らし、基準値よりも低いときには乾燥火格子下空気
ダンパ開度と燃焼火格子上流部下空気ダンパ開度を増や
す。
Not only is the damper opening of the air below the dry grate corrected, but the damper opening of the air below the combustion grate is also corrected in synchronization with this correction. That is, when the furnace temperature above the combustion grate upstream is higher than the reference value, the dry grate lower air damper opening and the combustion grate upstream lower air damper opening are decreased, and when it is lower than the reference value, the dry grate is lower. Increase the lower air damper opening and the lower air damper opening upstream of the combustion grate.

【0018】これらの補正によって、制御効果は一層大
きくなる。水分を多く含んだ特に乾燥しにくいごみで
は、乾燥火格子上を通過しても未だ乾燥不充分なことも
あるが、燃焼火格子上流部下空気のダンパ開度を同期さ
せることによって乾燥が強化され、良質のごみに変わり
安定した燃焼を維持することができる。
These corrections further enhance the control effect. For waste that contains a large amount of water and is particularly difficult to dry, it may still be insufficient to dry even if it passes over the dry grate, but the dryness is enhanced by synchronizing the damper opening of the air under the combustion grate. , It can be turned into good quality waste and maintain stable combustion.

【0019】第三の発明は、前記空気ダンパ制御にファ
ジィ制御を用いる第一の発明又は第二の発明のごみ焼却
炉の燃焼制御方法である。
A third invention is a combustion control method for a refuse incinerator according to the first invention or the second invention, wherein fuzzy control is used for the air damper control.

【0020】上記で示したように、燃焼火格子上流部上
方の炉内温度を測定し、これをパラメータとして空気量
を制御するが、前述したようにごみの性状は不定で、燃
焼熱量が一定でない。このため、温度の変化を細かく捉
えて空気量を線形的に逐一変えてもよいが、わずかな温
度変化に対応しすぎるきらいがある。温度は、高いか、
普通か、低いか程度に把握し、空気量と非線形的に関係
づける方が現実に則している。このような、炉内温度に
対する空気量ダンパ制御として、ファジイ制御が適して
いる。
As described above, the temperature in the furnace above the upstream part of the combustion grate is measured, and the amount of air is controlled using this as a parameter. However, as described above, the property of dust is indefinite, and the amount of combustion heat is constant. Not. For this reason, the change in temperature may be finely detected and the air amount may be linearly changed one by one, but there is a tendency to cope with a slight change in temperature too much. Is the temperature high?
It is more realistic to grasp whether it is normal or low and to relate it to the air volume in a non-linear manner. Fuzzy control is suitable as the air amount damper control for the furnace temperature.

【0021】第四の発明は、第一の発明の空気ダンパ制
御を行うとともに、燃焼火格子上流部上方の炉内温度
が、基準値よりも高いときには乾燥火格子速度を増速
し、基準値よりも低いときには乾燥火格子速度を減速す
る火格子速度制御を行うごみ焼却炉の燃焼制御方法であ
る。
A fourth aspect of the present invention performs the air damper control of the first aspect of the present invention, and increases the dry grate speed to a reference value when the temperature inside the furnace above the upstream portion of the combustion grate is higher than the reference value. It is a combustion control method for a refuse incinerator that performs grate speed control to reduce the dry grate speed when the temperature is lower than the above.

【0022】ごみが乾燥されていると燃焼が活発とな
り、燃焼火格子上流部上方の炉内温度が基準値より高な
る。このときは、乾燥火格子下空気のダンパ開度を減ら
し、過剰な乾燥空気の吹き込みを抑制するとともに、乾
燥火格子速度を増速し乾燥しているごみを速く通過させ
る。
When the dust is dried, combustion becomes active, and the temperature inside the furnace above the upstream part of the combustion grate becomes higher than the reference value. At this time, the damper opening of the air under the dry grate is reduced to suppress excessive blowing of the dry air, and the dry grate speed is increased to allow the dry dust to pass faster.

【0023】反対に、ごみが水分を多く含んでいると燃
焼が不活発となり、燃焼火格子上流部上方の炉内温度が
基準値より低くなる。このときは、乾燥火格子下空気の
ダンパ開度を増やして乾燥空気の吹き込み量を増加する
とともに、乾燥火格子速度を減速して乾燥時間を長くし
乾燥に余裕をもたせる。
On the contrary, if the dust contains a large amount of water, the combustion becomes inactive, and the temperature in the furnace above the combustion grate upstream becomes lower than the reference value. At this time, the damper opening of the air under the dry grate is increased to increase the amount of the dry air blown in, and the speed of the dry grate is decelerated to lengthen the drying time so that there is a margin for drying.

【0024】乾燥火格子下空気ダンパの制御と乾燥火格
子速度制御を併用することによって、炉内の燃焼全体を
一層安定させ、ボイラの蒸気発生量を一定に維持するこ
とができる。
By using the control of the air damper under the dry grate and the control of the dry grate speed together, the combustion in the furnace as a whole can be further stabilized and the steam generation amount of the boiler can be kept constant.

【0025】第五の発明は、第二の発明の空気ダンパ制
御を行うとともに、燃焼火格子上流部上方の炉内温度
が、基準値よりも高いときには乾燥火格子速度を増速
し、基準値よりも低いときには乾燥火格子速度を減速す
る火格子速度制御を行うごみ焼却炉の燃焼制御方法であ
る。
A fifth aspect of the present invention performs the air damper control of the second aspect of the present invention, and increases the dry grate speed to a reference value when the furnace temperature above the upstream part of the combustion grate is higher than the reference value. It is a combustion control method for a refuse incinerator that performs grate speed control to reduce the dry grate speed when the temperature is lower than the above.

【0026】ごみが乾燥されていると燃焼が活発とな
り、燃焼火格子上流部上方の炉内温度が基準値より高な
る。このときは、乾燥火格子下空気のダンパ開度と燃焼
火格子上流部下空気のダンパ開度を減らし、過剰な乾燥
空気の吹き込みと炉の前半の燃焼空気の吹き込みを一層
抑制するとともに、乾燥火格子速度を増速し乾燥してい
るごみを速く通過させる。
When the dust is dried, combustion becomes active and the temperature inside the furnace above the upstream part of the combustion grate becomes higher than the reference value. At this time, the damper opening of the air under the dry grate and the damper opening of the air under the combustion grate upstream are reduced to further suppress the excessive blowing of the dry air and the blowing of the combustion air in the first half of the furnace, and the drying fire. The grid speed is increased to allow dry debris to pass faster.

【0027】反対に、ごみが水分を多く含んでいると燃
焼が不活発となり、燃焼火格子上流部上方の炉内温度が
基準値より低くなる。このときは、乾燥火格子下空気の
ダンパ開度と燃焼火格子上流部下空気のダンパ開度を増
やして乾燥空気の吹き込み量を増加するとともに、乾燥
火格子速度を減速して乾燥時間を長くし乾燥に余裕をも
たせる。
On the contrary, if the dust contains a large amount of water, the combustion becomes inactive, and the temperature inside the furnace above the upstream part of the combustion grate becomes lower than the reference value. At this time, the damper opening of the air below the dry grate and the damper opening of the air below the combustion grate upstream are increased to increase the amount of dry air blown in, and the drying grate speed is reduced to lengthen the drying time. Allow some time to dry.

【0028】乾燥火格子下空気ダンパ及び燃焼火格子上
流部下空気ダンパの制御と乾燥火格子速度制御を併用す
ることによって、炉内の燃焼全体をなお一層安定させ、
ボイラの蒸気発生量を一定に維持することができる。
By combining the control of the air damper under the dry grate and the air damper under the combustion grate upstream and the dry grate velocity control together, the overall combustion in the furnace is further stabilized,
The amount of steam generated by the boiler can be kept constant.

【0029】第六の発明は、前記乾燥火格子速度制御に
ファジィ制御を用いる第四の発明又は第五の発明のごみ
焼却炉の燃焼制御方法である。
A sixth invention is a combustion control method for a refuse incinerator according to the fourth invention or the fifth invention, wherein fuzzy control is used for the dry grate velocity control.

【0030】乾燥火格子速度制御においても、空気ダン
パ制御と同様に、温度の変化を細かく捉えて空気量を線
形的に逐一変えるよりも、温度とごみの供給量とを非線
形的に関係づける方が現実に則している。このような、
炉内温度に対する空気量ダンパ制御として、ファジイ制
御が適している。
In the dry grate speed control as well as in the air damper control, a method in which the temperature and the amount of supplied dust are nonlinearly related to each other rather than linearly changing the air amount by finely grasping the temperature change. Conforms to reality. like this,
Fuzzy control is suitable as an air amount damper control for the furnace temperature.

【0031】[0031]

【発明の実施の形態】この発明に係わる空気量の制御方
法を適用した一例を図を用いて説明する。図1はごみ焼
却炉と制御手段の概念を示す図である。図1において,
1は炉であり,ごみ投入口2,乾燥火格子3a,燃焼火
格子3b,後燃焼火格子3c,灰落下口4を有する。ご
み投入口から投入されたごみは,燃焼空気ブロワ5から
供給される空気によって、乾燥或いは燃焼される。
BEST MODE FOR CARRYING OUT THE INVENTION An example in which the air amount control method according to the present invention is applied will be described with reference to the drawings. FIG. 1 is a diagram showing the concept of a refuse incinerator and control means. In Figure 1,
Reference numeral 1 denotes a furnace, which has a dust inlet 2, a dry grate 3a, a combustion grate 3b, a post-combustion grate 3c, and an ash drop port 4. The dust introduced from the dust inlet is dried or burned by the air supplied from the combustion air blower 5.

【0032】燃焼空気ブロワ5からの空気は,乾燥火格
子下空気ダンパ13a,燃焼火格子上流部下空気ダンパ
13b,燃焼火格子下流部下空気ダンパ13c,後燃焼
火格子下空気ダンパ13dによって配分され、各々、乾
燥火格子空気量、燃焼火格子上流部空気量、燃焼火格子
下流部空気量、後燃火格子空気量が調節される。
The air from the combustion air blower 5 is distributed by a dry grate lower air damper 13a, a combustion grate upstream lower air damper 13b, a combustion grate downstream lower air damper 13c, and a post combustion grate lower air damper 13d. The dry grate air amount, the combustion grate upstream air amount, the combustion grate downstream air amount, and the post-combustion grate air amount are adjusted respectively.

【0033】乾燥火格子3aではごみは主として乾燥さ
れ,燃焼火格子3bではごみが燃焼し,後燃焼火格子3
cではごみが完全に燃焼し尽くされ灰となる。燃焼後、
灰は灰落下口4から落下して炉外へ排出され、燃焼によ
って生じた排ガスは炉出口6から煙突7に導かれて炉外
へ排出される。排ガスが放出される炉出口には熱交換器
8aを備えた蒸気発生用のボイラ8bが設置されてい
る。又、炉内の温度が過度に上昇しないように冷却空気
吹き込み口9から冷却空気10が吹き込まれる。
The waste is mainly dried in the dry grate 3a, the waste is burned in the combustion grate 3b, and the post-combustion grate 3 is used.
In c, the dust is completely burned out and becomes ash. After burning,
The ash drops from the ash drop port 4 and is discharged to the outside of the furnace, and the exhaust gas generated by combustion is guided from the furnace outlet 6 to the chimney 7 and discharged to the outside of the furnace. A steam generator boiler 8b equipped with a heat exchanger 8a is installed at the exit of the furnace where the exhaust gas is discharged. Further, cooling air 10 is blown from the cooling air blowing port 9 so that the temperature in the furnace does not rise excessively.

【0034】11は排ガス中の炉出口温度を測る温度
計,12は蒸発量を測る流量計である。14は燃焼火格
子3bの上流側の炉内の温度を測る炉内温度計で、燃焼
火格子3bの前部上方に配置されている。15は制御手
段であり,炉内温度計の信号を入力とし,乾燥火格子下
空気ダンパ13a、燃焼火格子上流部下空気ダンパ13
b、および乾燥火格子駆動装置16に信号を出力する。
制御手段15には,例えば,コンピュータが使用されて
いる。
Reference numeral 11 is a thermometer for measuring the furnace outlet temperature in the exhaust gas, and 12 is a flow meter for measuring the evaporation amount. Reference numeral 14 denotes an in-furnace thermometer that measures the temperature in the furnace upstream of the combustion grate 3b, and is arranged above the front part of the combustion grate 3b. Reference numeral 15 is a control means, which receives a signal from the in-core thermometer as an input, and uses a dry grate lower air damper 13a and a combustion grate upstream lower air damper 13
b, and outputs signals to the dry grate drive 16.
A computer is used for the control means 15, for example.

【0035】以下に、乾燥火格子下空気ダンパの制御の
手法を説明する。制御は表1に示す規則にしたがって行
われる。
A method of controlling the air damper under the dry grate will be described below. The control is performed according to the rules shown in Table 1.

【0036】[0036]

【表1】 [Table 1]

【0037】乾燥火格子下空気ダンパの開度の補正は,
(1)から(3)の条件を満たす場合に,矢印(⇒)で
示した制御を実行することによって行われる。この
(1)から(3)の条件の判断を一定周期ごとに行い、
各周期ごとの補正量を計算し、計算結果をその周期にお
ける増減量とし,この増減量を通常の燃焼制御からの開
度に加算させたものが今回の乾燥火格子下空気ダンパ開
度の出力値となる。
The correction of the opening of the air damper under the dry grate is as follows.
When the conditions (1) to (3) are satisfied, the control indicated by the arrow (⇒) is executed. The determination of the conditions (1) to (3) is performed at regular intervals,
The correction amount for each cycle is calculated, the calculation result is used as the increase / decrease amount in that cycle, and this increase / decrease amount is added to the opening degree from normal combustion control to output the air damper opening under the dry grate this time. It becomes a value.

【0038】補正量および出力値の算出について具体的
に述べると以下のようである。先ず線形制御の場合につ
いて説明する。燃焼火格子上流部上方の炉内温度の基準
範囲上限値をT1 、下限値をT2 、測定値をT、開度の
補正量をZ1 とし、表1の規則にしたがって、次の
(1)式、(2)式、および(3)式から、Z1 を計算
する。
The calculation of the correction amount and the output value will be specifically described as follows. First, the case of linear control will be described. Assuming that the reference range upper limit value of the furnace temperature above the combustion grate upstream part is T 1 , the lower limit value is T 2 , the measured value is T, and the opening correction amount is Z 1 , the following (1 Z 1 is calculated from the equations (1), (2), and (3).

【0039】[0039]

【数1】 [Equation 1]

【0040】[0040]

【数2】 [Equation 2]

【0041】[0041]

【数3】 (Equation 3)

【0042】但し、k1 、k2 は制御パラメータであ
る。そして、計算したZ1 を(4)式により通常の燃焼
制御から決まるダンパ開度Z0 に加え、ダンパ開度出力
信号Zを算出する。
However, k 1 and k 2 are control parameters. Then, the calculated Z 1 is added to the damper opening Z 0 determined by the normal combustion control by the equation (4) to calculate the damper opening output signal Z.

【0043】[0043]

【数4】 (Equation 4)

【0044】以上、乾燥火格子下空気ダンパについて、
その補正の具体的手法を説明したが、燃焼火格子上流部
下空気ダンパについても同様である。即ち、上の説明の
中で、乾燥火格子下空気ダンパを燃焼火格子上流部下空
気ダンパと読み変えて燃焼火格子上流部下空気ダンパを
制御する。そして、乾燥火格子下空気ダンパ開度ととも
に燃焼火格子上流部下空気ダンパも制御する場合は、両
方の制御を同期して行う。
Above, regarding the air damper under the dry grate,
Although the specific method of the correction has been described, the same applies to the air damper upstream of the combustion grate. That is, in the above description, the dry grate lower air damper is read as the combustion grate upstream lower air damper to control the combustion grate upstream lower air damper. When controlling the air damper opening below the dry grate as well as the air damper upstream of the combustion grate, both controls are performed in synchronization.

【0045】なお、乾燥火格子下空気ダンパのみを制御
する場合と、乾燥火格子下空気ダンパと同期して燃焼火
格子上流部下空気ダンパも制御する場合との選択につい
ては、何ら限定するものではないが、例えば、常時は乾
燥火格子下空気ダンパ開度のみの補正を行い、同じ条件
のみが続いて出現した場合に、乾燥火格子下空気ダンパ
開度とともに燃焼火格子上流部下空気ダンパ開度を同じ
ように補正する方法を採用する等の選択が行われる。
The choice between controlling only the air damper under the dry grate and controlling the air damper under the upstream part of the combustion grate in synchronization with the air damper under the dry grate is not limited at all. However, if, for example, only the air damper opening under the dry grate is corrected at all times and only the same conditions continue to appear, the air damper opening under the dry grate and the air damper opening under the combustion grate upstream part are opened together. Are selected in the same manner.

【0046】次に,空気ダンパ制御にファジイ制御を用
いる場合の手法を乾燥火格子下空気ダンパ開度の例で説
明する。
Next, a method in which fuzzy control is used for air damper control will be described with an example of the air damper opening under the dry grate.

【0047】制御は表2に示す規則にしたがって行われ
る。又、制御量を演算するために、入力と出力を整理
し、制御パラメータYを定めて表3に示す。
The control is performed according to the rules shown in Table 2. Further, in order to calculate the control amount, the inputs and outputs are organized, and the control parameter Y is determined and shown in Table 3.

【0048】[0048]

【表2】 [Table 2]

【0049】[0049]

【表3】 [Table 3]

【0050】規則(1)〜(3)の演算は,図2に示し
たメンバーシップ関数に基づいて行われる。ダンパ開度
制御手段によって求まった各規則の後件部推論結果を統
合して,規則全体の推論結果が出力される。各規則の後
件部推論結果の統合には,ファジィ演算の一般的な手
法,例えば,min−max重心法やシングルトン法等
が用いられる。
The operations of rules (1) to (3) are performed based on the membership function shown in FIG. The inference result of the consequent part of each rule obtained by the damper opening control means is integrated, and the inference result of the entire rule is output. A general method of fuzzy operation, such as a min-max centroid method or a singleton method, is used for integrating the consequent part inference results of each rule.

【0051】演算時間が短く実用的なシングルトン法に
ついて、図2を用いて説明する。先ず、表3の規則の前
件部の条件に対する適合度を求める。炉内温度の測定値
がTのとき、規則(1)の条件に対する適合度は、図2
(a)図からX1 である。同様に、規則(2)及び規則
(3)の条件に対する適合度は、各々X2 、X3であ
る。
A practical singleton method with a short calculation time will be described with reference to FIG. First, the degree of conformity with the condition of the antecedent part of the rule of Table 3 is obtained. When the measured value of the furnace temperature is T, the conformity to the condition of rule (1) is shown in FIG.
(A) From the figure, it is X 1 . Similarly, the goodnesses of fit for the conditions of rule (2) and rule (3) are X 2 and X 3 , respectively.

【0052】次に、後件部において推論を行うために、
開度変更パラメータY1 、Y2 、Y 3 を定める。Y1
開度を増やす場合で正、例えば1であり、Y2 は通常開
度を維持する場合で零、Y3 は開度を減らす場合で負、
例えば−1である。
Next, in order to make an inference in the consequent part,
Opening change parameter Y1, YTwo, Y ThreeIs determined. Y1Is
Positive when increasing the opening, for example 1, and YTwoIs normally open
Zero when maintaining degrees, YThreeIs negative when decreasing the opening,
For example, -1.

【0053】そして、(5)式により補正量Uを推論す
る。
Then, the correction amount U is deduced from the equation (5).

【0054】[0054]

【数5】 (Equation 5)

【0055】最後に、求められた補正量を、(6)式に
より、通常開度Z0 に加えて出力値Zを算出する。
Finally, the calculated correction amount is added to the normal opening Z 0 by the equation (6) to calculate the output value Z.

【0056】[0056]

【数6】 (Equation 6)

【0057】但し、kは制御パラメータである。上記の
手法を燃焼火格子上流部下空気ダンパに適用すれば、燃
焼火格子上流部下空気ダンパ開度の出力値が得られる。
そして、乾燥火格子下空気ダンパ開度とともに燃焼火格
子上流部下空気ダンパも制御する場合は、両方の制御を
同期して行う。
However, k is a control parameter. If the above method is applied to the air damper upstream of the combustion grate, the output value of the air damper opening upstream of the combustion grate can be obtained.
When controlling the air damper opening below the dry grate as well as the air damper upstream of the combustion grate, both controls are performed in synchronization.

【0058】以上が、空気ダンパ制御の手法であるが、
次に火格子速度制御の手法について説明する。制御は表
4に示す規則にしたがって行われる。
The above is the method of controlling the air damper.
Next, the method of grate velocity control will be described. The control is performed according to the rules shown in Table 4.

【0059】[0059]

【表4】 [Table 4]

【0060】乾燥火格子速度の補正は,(1)から
(3)の条件を満たす場合に,矢印(⇒)で示した制御
を実行することによって行われる。この(1)から
(3)の条件の判断を一定周期ごとに行い、各周期ごと
の補正量を計算し、計算結果をその周期における増減量
とし,この増減量を通常の燃焼制御からの火格子速度に
加算させたものが今回の乾燥火格子速度の出力値とな
る。
The correction of the dry grate velocity is performed by executing the control shown by the arrow (⇒) when the conditions (1) to (3) are satisfied. The determination of the conditions (1) to (3) is performed for each constant cycle, the correction amount for each cycle is calculated, and the calculation result is used as the increase / decrease amount in that cycle. The output value of the dry grate velocity this time is added to the lattice velocity.

【0061】以下に、補正量および出力値の算出につい
て具体的に述べる。先ず線形制御の場合について説明す
る。燃焼火格子上流部上方の炉内温度の基準範囲上限値
をT 1 、下限値をT2 、測定値をT、速度の補正量をS
1 とし、表4の規則にしたがって、次の(7)式、
(8)式、および(9)式から、S1 を計算する。
The calculation of the correction amount and output value will be described below.
Will be specifically described. First, the case of linear control will be described.
You. Upper limit of reference range of furnace temperature above combustion grate upstream
To T 1, The lower limit is TTwo, The measured value is T, and the speed correction amount is S
1Then, according to the rule of Table 4, the following expression (7),
From equation (8) and equation (9), S1Is calculated.

【0062】[0062]

【数7】 (Equation 7)

【0063】[0063]

【数8】 (Equation 8)

【0064】[0064]

【数9】 [Equation 9]

【0065】但し、p1 、p2 は制御パラメータであ
る。そして、計算したS1 を(10)式により通常の燃
焼制御から決まる火格子速度に加え乾燥火格子速度出力
信号Sを算出する。
However, p 1 and p 2 are control parameters. Then, the calculated S 1 is added to the grate velocity determined by the normal combustion control by the equation (10) to calculate the dry grate velocity output signal S.

【0066】[0066]

【数10】 (Equation 10)

【0067】次に,乾燥火格子速度制御手段が,ファジ
ィ制御である場合について説明する。
Next, the case where the dry grate speed control means is fuzzy control will be described.

【0068】ファジィ制御の規則を表5に示す。また、
入力と出力を整理して表6に示す。
Table 5 shows the rules for fuzzy control. Also,
Table 6 summarizes the inputs and outputs.

【0069】[0069]

【表5】 [Table 5]

【0070】[0070]

【表6】 [Table 6]

【0071】規則(1)〜(3)の演算は,図2に示し
たメンバーシップ関数に基づいて行われる。ダンパ開度
制御手段によって求まった各規則の後件部推論結果を統
合して,規則全体の推論結果が出力される。各規則の後
件部推論結果の統合には,ファジィ演算の一般的な手
法,例えば,min−max重心法やシングルトン法等
が用いられる。
The operations of rules (1) to (3) are performed based on the membership function shown in FIG. The inference result of the consequent part of each rule obtained by the damper opening control means is integrated, and the inference result of the entire rule is output. A general method of fuzzy operation, such as a min-max centroid method or a singleton method, is used for integrating the consequent part inference results of each rule.

【0072】演算時間が短く実用的なシングルトン法に
ついて、図2を用いて説明する。先ず、表3の規則の前
件部の条件に対する適合度を求める。炉内温度の測定値
がTのとき、規則(1)の条件に対する適合度は、図2
(a)図からX1 である。同様に、規則(2)及び規則
(3)の条件に対する適合度は、各々X2 、X3であ
る。
A practical singleton method with a short calculation time will be described with reference to FIG. First, the degree of conformity with the condition of the antecedent part of the rule of Table 3 is obtained. When the measured value of the furnace temperature is T, the conformity to the condition of rule (1) is shown in FIG.
(A) From the figure, it is X 1 . Similarly, the goodnesses of fit for the conditions of rule (2) and rule (3) are X 2 and X 3 , respectively.

【0073】次に、後件部において推論を行うために、
速度変更パラメータV1 、V2 、V 3 を定める。V1
増速する場合で正、例えば1であり、V2 は通常の燃焼
制御による速度を維持する場合で零、V3 は減速する場
合で負、例えば−1である。
Next, in order to make an inference in the consequent part,
Speed change parameter V1, VTwo, V ThreeIs determined. V1Is
Positive when accelerating, eg 1 and VTwoIs normal burning
Zero when maintaining speed by control, VThreeIs the place to slow down
The sum is negative, for example, -1.

【0074】そして、(11)式により補正量S1 を推
論する。
Then, the correction amount S 1 is inferred from the equation (11).

【0075】[0075]

【数11】 [Equation 11]

【0076】最後に、求められた補正量を、(12)式
により、通常の速度S0 に加えて出力値Sを算出する。
Finally, the calculated correction amount is added to the normal speed S 0 by the equation (12) to calculate the output value S.

【0077】[0077]

【数12】 (Equation 12)

【0078】但し、ks は制御パラメータである。な
お、ファジィ制御では演算時間は非常に短いので、炉内
温度を連続的に測定し演算頻度を高くすれば、空気ダン
パ制御においても乾燥火格子速度制御においても、10
0Hz以上の頻度で補正することもできる。しかし、通
常は数秒間隔で補正すれば充分である。
However, k s is a control parameter. Since the calculation time in fuzzy control is very short, if the temperature in the furnace is continuously measured and the calculation frequency is increased, it is possible to obtain 10 times in both air damper control and dry grate speed control.
It is also possible to correct at a frequency of 0 Hz or higher. However, it is usually sufficient to make corrections at intervals of several seconds.

【0079】[0079]

【実施例】図1に示したごみ焼却炉を用いて、乾燥火格
子下空気ダンパ開度の補正をファジィ制御系により10
秒ごとに実施し、ボイラ水の蒸発量変化を調べ従来例と
比較した。調査の結果を図3及び図4に示す。
[Embodiment] Using the refuse incinerator shown in FIG. 1, the air damper opening under the dry grate is corrected by a fuzzy control system.
It was carried out every second, and the change in the evaporation amount of boiler water was examined and compared with the conventional example. The results of the investigation are shown in FIGS. 3 and 4.

【0080】図3は本発明の乾燥火格子下空気ダンパ開
度のみの制御方法による制御試験結果であり,各々
(a)図は炉内温度、(b)図は乾燥火格子下空気量、
(c)図はボイラ水の蒸発量の変化を示す。図4は従来
のごみのかさ比重に基づいて乾燥火格子下の空気量を制
御する方法による制御試験結果であり、各々(a)図は
炉内温度、(b)図はボイラ水の蒸発量の変化を示す。
FIG. 3 shows the results of a control test by the method of controlling only the air damper opening under the dry grate according to the present invention. FIG. 3A is a furnace temperature, FIG. 3B is an air amount under the dry grate, and FIG.
The figure (c) shows the change in the evaporation amount of boiler water. Fig. 4 shows the results of a control test by a method of controlling the amount of air under a dry grate based on the bulk density of conventional waste. Fig. 4 (a) is the furnace temperature, and Fig. 4 (b) is the evaporation amount of boiler water. Shows the change of.

【0081】本発明では,図3(a)図において,測定
を開始して約0.3時間後に炉内温度が低下している
が、このとき図3(b)図に示すように乾燥火格子下空
気量が増えている。そのため,図3(c)図に示すよう
に,蒸発量の長時間落ち込みが回避され,安定した燃焼
が実現されている。
In the present invention, in FIG. 3 (a), the temperature in the furnace decreases about 0.3 hours after the start of measurement. At this time, as shown in FIG. The air volume under the grid is increasing. Therefore, as shown in FIG. 3 (c), the evaporation amount is prevented from dropping for a long time, and stable combustion is realized.

【0082】これに対して、従来の制御方法では,図4
(a)図において,測定を開始して約0.5時間後に炉
内温度が低下してしている。しかし、乾燥火格子下空気
ダンパ開度の制御はホッパへのごみ投入時の比重に基づ
いて行われるため、この炉内温度低下が見逃されて乾燥
火格子下空気量の補正が行われず、乾燥空気量が対応し
ていない。そのため,図4(b)図に示すように、炉内
温度低下以降約0.3時間にわたって蒸発量が低下した
状態が続いている。
On the other hand, in the conventional control method, as shown in FIG.
In the figure (a), the temperature in the furnace has fallen about 0.5 hours after starting the measurement. However, since the control of the air damper opening under the dry grate is performed based on the specific gravity at the time of dumping dust into the hopper, this decrease in the temperature inside the furnace is overlooked and the amount of air under the dry grate is not corrected and The air volume is not compatible. Therefore, as shown in FIG. 4 (b), the state in which the evaporation amount continues to decrease for about 0.3 hours after the temperature inside the furnace has decreased.

【0083】[0083]

【発明の効果】以上述べてきたように、この発明によれ
ば炉内温度を測定し、これをパラメータとした関数を用
いて、乾燥火格子や燃焼火格子に送られる空気量を制御
し、或いは空気量とともに乾燥火格子速度を制御するこ
とによりごみの乾燥状態を改善する。このため、燃焼熱
の発生が安定し、したがってボイラでの水の蒸発量が一
定に保たれる。このように、廃棄物であるごみの焼却処
理によって発生する膨大な熱エネルギを有効に利用する
ことを実現したこの発明の効果は大きい。
As described above, according to the present invention, the temperature in the furnace is measured, and the amount of air sent to the dry grate or the combustion grate is controlled by using the function with this as a parameter, Alternatively, the dryness of the refuse is improved by controlling the dry grate speed together with the air volume. For this reason, the generation of combustion heat is stabilized, and the amount of water evaporated in the boiler is kept constant. As described above, the effect of the present invention, which realizes effective use of the enormous amount of heat energy generated by incineration of waste as waste, is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】発明の実施の形態を説明するためのごみ焼却炉
とその制御系の概念図である。
FIG. 1 is a conceptual diagram of a refuse incinerator and its control system for explaining an embodiment of the invention.

【図2】前件部のメンバーシップ関数を示す図である。FIG. 2 is a diagram showing a membership function of an antecedent part.

【図3】発明の燃焼制御方法よる制御試験結果を示す図
であり、(a)図は炉内温度変化、(b)図は乾燥火格
子下空気量変化、(c)図は蒸発量を各々示す。
FIG. 3 is a diagram showing a control test result by the combustion control method of the present invention, in which (a) is a temperature change in the furnace, (b) is a change in air amount under the dry grate, and (c) is an evaporation amount. Each is shown.

【図4】従来の燃焼制御方法による制御試験結果を示す
図であり、(a)図は炉内温度変化、(b)図は蒸発量
を各々示す。
4A and 4B are diagrams showing a control test result by a conventional combustion control method, in which FIG. 4A shows a temperature change in a furnace, and FIG. 4B shows an evaporation amount.

【符号の説明】[Explanation of symbols]

1 炉 2 ごみ投入口 3a 乾燥火格子 3b 燃焼火格子 3c 後燃焼火格子 4 灰落下口 5 燃焼空気ブロワ 6 炉出口 8a 熱交換器 8b ボイラ 12 流量計 13a 乾燥火格子下空気ダンパ 13b 燃焼火格子上流部下ダンパ 13c 燃焼火格子下流部下空気ダンパ 14 炉内温度計 15 制御手段。 1 Furnace 2 Waste Inlet 3a Dry Grate 3b Combustion Grate 3c Post Combustion Grate 4 Ash Drop Port 5 Combustion Air Blower 6 Furnace Outlet 8a Heat Exchanger 8b Boiler 12 Flowmeter 13a Dry Grate Under Air Damper 13b Combustion Grate Upstream lower damper 13c Combustion grate downstream lower air damper 14 Reactor thermometer 15 Control means.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ごみを火格子上を移動させながら火格子
の下方より空気を送り炉内で燃焼させるごみ焼却炉の燃
焼方法において、燃焼火格子上流部上方の炉内温度を測
定し、この温度が、基準値よりも高いときには乾燥火格
子下空気ダンパ開度を減らし、基準値よりも低いときに
は乾燥火格子下空気ダンパ開度を増やす空気ダンパ制御
を行うことを特徴とするごみ焼却炉の燃焼制御方法。
1. In a combustion method of a refuse incinerator, in which air is fed from below the grate and burned in the furnace while moving the garbage on the grate, the temperature inside the furnace above the combustion grate is measured, and When the temperature is higher than the reference value, the air damper opening under the dry grate is reduced, and when the temperature is lower than the reference value, the air damper opening under the dry grate is increased. Combustion control method.
【請求項2】 請求項1記載の空気ダンパ制御における
乾燥火格子下空気ダンパ開度の補正と同期して燃焼火格
子上流部下空気ダンパ開度を補正して空気ダンパ制御を
行うことを特徴とするごみ焼却炉の燃焼制御方法。
2. The air damper control is carried out by correcting the air damper opening below the combustion grate in synchronization with the correction of the air damper opening below the dry grate in the air damper control according to claim 1. Combustion control method for rubbish incinerator.
【請求項3】 前記空気ダンパ制御にファジィ制御を用
いる請求項1又は請求項2記載のごみ焼却炉の燃焼制御
方法。
3. The combustion control method for a refuse incinerator according to claim 1, wherein fuzzy control is used for the air damper control.
【請求項4】 請求項1記載の空気ダンパ制御を行うと
ともに、燃焼火格子上流側の炉内温度が、基準値よりも
高いときには乾燥火格子速度を増速し、基準値よりも低
いときには乾燥火格子速度を減速する火格子速度制御を
行うことを特徴とするごみ焼却炉の燃焼制御方法。
4. The air damper control according to claim 1 is performed, and when the temperature inside the furnace on the upstream side of the combustion grate is higher than the reference value, the drying grate speed is increased, and when it is lower than the reference value, the drying grate is dried. A combustion control method for a refuse incinerator, characterized by performing grate speed control for reducing the grate speed.
【請求項5】 請求項2記載の空気ダンパ制御を行うと
ともに、燃焼火格子上流側の炉内温度が、基準値よりも
高いときには乾燥火格子速度を増速し、基準値よりも低
いときには乾燥火格子速度を減速する火格子速度制御を
行うことを特徴とするごみ焼却炉の燃焼制御方法。
5. The air damper control according to claim 2 is performed, and when the furnace temperature on the upstream side of the combustion grate is higher than a reference value, the drying grate speed is increased, and when it is lower than the reference value, drying is performed. A combustion control method for a refuse incinerator, characterized by performing grate speed control for reducing the grate speed.
【請求項6】 前記火格子速度制御にファジィ制御を用
いる請求項4又は請求項5記載のごみ焼却炉の燃焼制御
方法。
6. The combustion control method for a refuse incinerator according to claim 4, wherein fuzzy control is used for the grate velocity control.
JP1691497A 1996-02-06 1997-01-30 Control method of combustion in incinerating furnace Pending JPH09273732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1691497A JPH09273732A (en) 1996-02-06 1997-01-30 Control method of combustion in incinerating furnace

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-20273 1996-02-06
JP2027396 1996-02-06
JP1691497A JPH09273732A (en) 1996-02-06 1997-01-30 Control method of combustion in incinerating furnace

Publications (1)

Publication Number Publication Date
JPH09273732A true JPH09273732A (en) 1997-10-21

Family

ID=26353358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1691497A Pending JPH09273732A (en) 1996-02-06 1997-01-30 Control method of combustion in incinerating furnace

Country Status (1)

Country Link
JP (1) JPH09273732A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998051968A1 (en) * 1997-05-12 1998-11-19 Nkk Corporation Method and apparatus for controlling refuse feeding quantity of industrial waste incinerator
JP2000154912A (en) * 1998-11-20 2000-06-06 Nkk Corp Combustion control method for refuse incinerator
JP2002147729A (en) * 1999-11-01 2002-05-22 Nkk Corp Refuse incinerator
KR20190011282A (en) 2016-06-28 2019-02-01 카와사키 주코교 카부시키 카이샤 Control method of waste incineration plant and waste incineration plant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998051968A1 (en) * 1997-05-12 1998-11-19 Nkk Corporation Method and apparatus for controlling refuse feeding quantity of industrial waste incinerator
JP2000154912A (en) * 1998-11-20 2000-06-06 Nkk Corp Combustion control method for refuse incinerator
JP2002147729A (en) * 1999-11-01 2002-05-22 Nkk Corp Refuse incinerator
KR20190011282A (en) 2016-06-28 2019-02-01 카와사키 주코교 카부시키 카이샤 Control method of waste incineration plant and waste incineration plant

Similar Documents

Publication Publication Date Title
KR100304244B1 (en) Combustion control method and apparatus for waste incinerators
JPH0781701B2 (en) A device for estimating unburned content in ash of a coal combustion furnace
JP3822328B2 (en) Method for estimating the lower heating value of combustion waste in refuse incinerators
JPH1068514A (en) Combustion controlling method for refuse incinerating furnace
JP3030614B2 (en) Estimation method of waste layer thickness index and combustion control method of waste incinerator using the method
JP3688644B2 (en) Method for estimating in-furnace waste retention distribution in incinerator and combustion control method and apparatus using the method
JPH09273732A (en) Control method of combustion in incinerating furnace
JP2955431B2 (en) Incinerator combustion control device
JP4099195B2 (en) Combustion control system for waste incinerator without boiler equipment
JPH0240410A (en) Automatic combustion control of municipal waste incinerating furnace
JPH0470528B2 (en)
JP3556078B2 (en) Dust supply speed control method for refuse incinerator and refuse incinerator
JPH09273733A (en) Control method of combustion in incinerating furnace
JP3844333B2 (en) Combustion control system for waste incinerator without boiler equipment
JP3356946B2 (en) Garbage quality determination method and apparatus, and combustion control device for garbage incinerator
JP2001033019A (en) Method for controlling combustion in refuse incinerator and refuse incinerator
JPH09273731A (en) Control method of combustion in incinerating furnace
JP2004239508A (en) Combustion control method of refuse incinerator, and refuse incinerator
JP2000320824A (en) Combustion control method for garbage incinerator
JP2004316960A (en) Automatic combustion control method and device of garbage incineration plant
JP2965142B2 (en) Adaptive and predictive control method and apparatus for combustion furnace
JPH09273730A (en) Restraining method of unburnt constituent in exhaust gas of incinerating furnace
JP2004085093A (en) Combustion air temperature control method for incinerator
JP2761187B2 (en) Garbage incinerator
JPH1114027A (en) Method of controlling combustion of incinerator

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021217