JPH09273730A - Restraining method of unburnt constituent in exhaust gas of incinerating furnace - Google Patents

Restraining method of unburnt constituent in exhaust gas of incinerating furnace

Info

Publication number
JPH09273730A
JPH09273730A JP7999896A JP7999896A JPH09273730A JP H09273730 A JPH09273730 A JP H09273730A JP 7999896 A JP7999896 A JP 7999896A JP 7999896 A JP7999896 A JP 7999896A JP H09273730 A JPH09273730 A JP H09273730A
Authority
JP
Japan
Prior art keywords
post
combustion
amount
temperature
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7999896A
Other languages
Japanese (ja)
Inventor
Satoshi Fujii
聡 藤井
Shinji Tomiyama
伸司 富山
Yuichi Nogami
祐一 野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP7999896A priority Critical patent/JPH09273730A/en
Publication of JPH09273730A publication Critical patent/JPH09273730A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To restrain unburned constituents in exhaust gas by burning and reducing to ashes completely on a rear combustion grating. SOLUTION: The condition of wastes on a rear combustion grating 3C is judged based on the measuring values of a main flue thermometer 14, a concentration meter 16 of O2 in exhaust gas, a CO concentration meter 17, an air pressure meter 18a under rear combustion grating and the like to judge a tendency of falling into shortage of temperature, shortage of air or shortage of fuel quickly and control the amount of air to the rear combustion grating, the amount of air after combustion and grating speed after combustion. According to this method, incomplete combustion condition is improved in the stage of primary combustion and the generation of unburned constituents, such as PCDDS (polychlorinated-dibenzo-p-dioxins), carbon monoxide and the like, can be restrained and, at the same time, blowing of unnecessary secondary air can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,火格子式ごみ焼却
炉の燃焼制御により排ガス中未燃焼成分を抑制する方法
で、特に炉内の未燃焼成分の完全燃焼を目的とした後燃
焼空気量や後燃焼火格子速度の制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for suppressing unburned components in exhaust gas by controlling combustion in a grate-type waste incinerator, and in particular, the amount of post-combustion air for complete combustion of unburned components in the furnace. And a post-combustion grate velocity control method.

【0002】[0002]

【従来の技術】都市ごみ焼却炉は,社会生活において排
出される様々な廃棄物を処理するという重要な役割を担
っている。これに加えごみの燃焼により発生する熱を利
用し蒸気発電を行う等、ごみネエルギの有効な活用が図
られている。
2. Description of the Related Art Municipal solid waste incinerators play an important role in treating various wastes discharged in social life. In addition to this, the heat generated by the combustion of waste is used to generate steam, and the waste neergi is effectively used.

【0003】ごみ焼却炉では、ごみはクレーンによって
数十分の間隔で間欠的にホッパに投入され一時的に貯留
される。そして、このホッパの下にフィーダを兼ねた乾
燥火格子がありごみは炉内に一定の供給量で送り込まれ
る。送り込まれたごみは数段の火格子上で各火格子の下
から吹き込まれる一次空気によって燃焼し、炉の後方で
は灰となり排出される。これらの火格子の最終段が後燃
焼火格子である。
[0003] In a refuse incinerator, refuse is intermittently put into a hopper at intervals of several tens of minutes by a crane and temporarily stored. Under the hopper, there is a dry grate that also serves as a feeder, and the refuse is sent into the furnace at a constant supply rate. The sent-in waste is burned on several levels of grate by primary air blown from under each grate, and is discharged as ash behind the furnace. The final stage of these grate is the post-combustion grate.

【0004】一方、燃焼帯の上方には二次空気が吹き込
まれ、未燃焼成分を酸化するとともに炉の過熱を防ぐ。
二次空気は直接炉出口へ向かわず燃焼ガスと良く混ざる
ように、吹き込み口上方に隔壁が設けられている。燃焼
ガスはこの隔壁を迂回して炉の上方へ向かうが、隔壁の
炉前方側の迂回路は副煙道、後方側の迂回路は主煙道と
呼ばれている。両煙道を通った燃焼ガスは隔壁上方の混
合室で合わさる。混合室の狙いは前方の燃焼ガス中の未
燃焼成分を更に除くことにあり、二次燃焼室とも呼ばれ
る。炉の後方即ち後燃焼火格子で発生した燃焼ガスは殆
どが主煙道を通って混合室に入る。混合室を出たガスは
炉出口にある熱交換器を通って、保有するエネルギを回
収された後に排気される。
On the other hand, secondary air is blown above the combustion zone to oxidize unburned components and prevent overheating of the furnace.
A partition is provided above the blow-in port so that the secondary air does not go directly to the furnace outlet and mixes well with the combustion gas. The combustion gas bypasses this partition wall and goes to the upper part of the furnace. The bypass path on the furnace front side of the partition wall is called the secondary flue and the bypass path on the rear side is called the main flue. Combustion gases passing through both flues combine in the mixing chamber above the partition. The purpose of the mixing chamber is to further remove unburned components in the combustion gas in the front, and it is also called a secondary combustion chamber. Most of the combustion gases generated in the rear of the furnace or in the post combustion grate enter the mixing chamber through the main flue. The gas exiting the mixing chamber passes through a heat exchanger at the exit of the furnace to recover the energy it has and then exhaust it.

【0005】このようなごみ焼却炉で、一般には、炉内
へのごみの送り速度や空気量或いは排ガス温度、排ガス
成分等は、ごみをホッパに投入する度にこれらの基準値
を定め、それに従って制御されて来た。
In such a refuse incinerator, in general, the feed rate of the refuse into the furnace, the amount of air, the exhaust gas temperature, the exhaust gas component, etc. are set to these reference values each time the garbage is put into the hopper, and according to this, It has been controlled.

【0006】中でも、近年では焼却量の増加に伴い、排
ガス成分特に有害成分例えばダイオキシン類やCO等の
発生を抑制することが益々重要な課題となり、これらの
厳密な制御が必要になってきている。
In particular, with the increase in the amount of incineration in recent years, it has become more and more important to suppress the generation of exhaust gas components, particularly harmful components such as dioxins and CO, and strict control of these has become necessary. .

【0007】そのために、高温状態(800℃以上)で
燃焼ガスが長い時間滞留するようにするとともに、煙道
や混合室においても燃焼により発生したガスを空気と充
分に混合し完全燃焼させることを期している。
Therefore, the combustion gas is allowed to stay in a high temperature state (800 ° C. or higher) for a long time, and the gas generated by the combustion is sufficiently mixed with the air in the flue and the mixing chamber to be completely burned. It is expected.

【0008】そして、これらの条件が満たされるよう
に、ごみ投入時の基準値の設定に加えて、排ガス中未燃
焼成分を代表するCO濃度を目安とし、その濃度を抑制
するよう管理されている。
In order to satisfy these conditions, in addition to the setting of the standard value at the time of throwing in the waste, the CO concentration representing the unburned components in the exhaust gas is used as a standard, and the concentration is controlled so as to be suppressed. .

【0009】従来、その管理方法として,炉内の排ガス
中のCO濃度もしくはO2 濃度を測定し,測定した値に
基づいて主として二次燃焼室に吹き込む二次空気量を制
御して未燃焼成分の完全燃焼を図り、補助的に一次空気
量を調整することが提案されている。例えば,特開平5
−248618号公報には,後燃焼帯側の燃焼ガス温度
を基準温度に維持するように二次空気量をコントロール
し、それでも基準温度以下の場合に、後燃焼帯側の燃焼
ガス中のO2 濃度を測定し、O2 が過剰なときに一次空
気を減らして、CO濃度を制御する方法が記載されてい
る。
Conventionally, as a control method thereof, the CO concentration or the O 2 concentration in the exhaust gas in the furnace is measured, and the amount of secondary air blown mainly into the secondary combustion chamber is controlled on the basis of the measured value to control the unburned components. It has been proposed that the primary air amount be supplementarily adjusted to achieve complete combustion of. For example, JP-A-5
In JP-A-248618, the amount of secondary air is controlled so as to maintain the combustion gas temperature on the post-combustion zone side at a reference temperature, and when the temperature is still below the reference temperature, O 2 in the combustion gas on the post-combustion zone side is controlled. A method of measuring the concentration and reducing the primary air when O 2 is in excess to control the CO concentration is described.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、ごみの
性状や成分は一定しておらず、後燃焼火格子に達したご
みは、既に灰になっている場合もあれば、反対に未燃ご
みを多く含んでいる場合もある。しかも、このようなご
みの状態は徐々に移行するとは限らす、急激に移行する
ことも珍しくない。
However, the properties and components of the waste are not constant, and the waste that has reached the post-combustion grate may already be ash. It may contain a lot. Moreover, such a state of dust does not always change gradually, and it is not unusual for it to change rapidly.

【0011】例えば、燃え易いごみに続いて燃え難いご
みが炉内に送り込まれた場合、後燃焼火格子上の堆積物
は灰を主体とするものから未燃ごみの多いものに変わ
る。未燃ごみが多いと,後燃焼帯側の燃焼ガス温度は高
くなるが,燃焼に必要な空気が不足してCO等未燃焼成
分が発生する。このような場合、後燃焼火格子に供給す
る一次空気の量即ち後燃焼空気量を増やし未燃ごみの燃
焼を促進しなければ、後燃焼火格子上の未燃ごみを完全
に灰にすることはできない。この場合、未燃焼成分の完
全燃焼を二次空気に頼るだけでは、根本的解決にならな
い。
For example, when incombustible refuse is sent into the furnace subsequent to inflammable refuse, the deposits on the post-combustion grate change from ash-based deposits to unburned-rich deposits. If the amount of unburned waste is large, the temperature of the combustion gas on the side of the post-combustion zone becomes high, but the air required for combustion is insufficient and unburned components such as CO are generated. In such a case, if the amount of primary air supplied to the post-combustion grate, that is, the amount of post-combustion air, is not increased and the combustion of unburned waste is not promoted, the unburned waste on the post-combustion grate should be completely ashed. I can't. In this case, just relying on secondary air for complete combustion of unburned components is not a fundamental solution.

【0012】しかし、特開平5−248618号公報に
記載される抑制方法では、二次空気量をコントロールす
るだけであり、寧ろ一次空気は後燃焼帯側のO2 濃度が
多いときには減らすことになる。
However, in the suppression method described in Japanese Patent Laid-Open No. 5-248618, only the amount of secondary air is controlled, and rather the primary air is reduced when the O 2 concentration on the post combustion zone side is high. .

【0013】このように、従来では、後燃焼火格子上の
堆積物の状態に応じて燃焼条件を制御し、排ガス中のC
O等未燃焼成分を抑制することができなかった。
As described above, conventionally, the combustion condition is controlled according to the state of the deposit on the post-combustion grate, and C in the exhaust gas is controlled.
Unburned components such as O could not be suppressed.

【0014】この発明は、この問題の根本的解決を目指
してなされたもので、後燃焼火格子上の堆積物の状態に
燃焼条件を適応させることによって、一次燃焼での完全
燃焼を図り、排ガス中のCO等未燃焼成分を抑制するこ
とを目的とする。
The present invention has been made for the purpose of fundamentally solving this problem. By adapting the combustion conditions to the state of deposits on the post-combustion grate, complete combustion in primary combustion is achieved, and exhaust gas is exhausted. The purpose is to suppress unburned components such as CO.

【0015】[0015]

【課題を解決するための手段】この目的を達成する手段
は、次の(1)〜(8)に記載する手段である。
Means for achieving this object are the means described in the following (1) to (8).

【0016】(1)の手段は、焼却炉の主煙道温度又は
主煙道温度と排ガス中O2 濃度、排ガス中CO濃度若し
くは後燃焼火格子上下の圧力差の一つ以上を測定し、各
々の測定値を周期的に各々の基準値と比較し、この比較
結果に基づいて、後燃焼空気量又は後燃焼空気量と後燃
焼火格子速度を制御することを特徴とするごみ焼却炉排
ガス中未燃焼成分の抑制方法である。
The means (1) measures one or more of the main flue temperature of the incinerator or the main flue temperature and the O 2 concentration in the exhaust gas, the CO concentration in the exhaust gas, or the pressure difference above and below the post-combustion grate, Waste incinerator exhaust gas characterized by periodically comparing each measured value with each reference value and controlling the amount of after-combustion air or the amount of after-combustion air and the after-combustion grate velocity based on this comparison result. This is a method for suppressing medium unburned components.

【0017】後燃焼火格子上でごみが燃焼し発生した燃
焼ガスは、二次空気の一部と混ざり主煙道を通って混合
室に導かれる。したがって、主煙道温度は後燃焼火格子
上の燃焼状態を反映する。
Combustion gas generated by burning dust on the post-combustion grate mixes with a part of the secondary air and is guided to the mixing chamber through the main flue. Therefore, the main flue temperature reflects the combustion conditions on the afterburning grate.

【0018】このため、主煙道温度を測定し測定値を基
準値と比較することによって、後燃焼火格子上のごみの
燃焼状態を把握することができる。そして、把握された
燃焼状態に基づいて後燃焼空気量を制御することによっ
て、後燃焼火格子上でごみを完全に灰化し未燃焼成分の
発生を抑制することができる。
Therefore, by measuring the main flue temperature and comparing the measured value with the reference value, the combustion state of dust on the post-combustion grate can be grasped. Then, by controlling the amount of post-combustion air based on the grasped combustion state, it is possible to completely incinerate the dust on the post-combustion grate and suppress the generation of unburned components.

【0019】主煙道温度の他に測定されるものとして、
排ガス中のO2 濃度やCO濃度更に後燃焼火格子上下の
圧力差等がある。排ガス中のO2 濃度やCO濃度は、後
燃焼火格子上のごみの燃焼状態を反映し、後燃焼火格子
上下の圧力差は後燃焼火格子上のごみの量を反映する。
In addition to the main flue temperature,
There are O 2 concentration and CO concentration in the exhaust gas as well as a pressure difference between the upper and lower sides of the post combustion grate. The O 2 concentration and CO concentration in the exhaust gas reflect the combustion state of dust on the post-combustion grate, and the pressure difference above and below the post-combustion grate reflects the amount of dust on the post-combustion grate.

【0020】したがって、主煙道温度の測定に加えて、
排ガス中のO2 濃度又はCO濃度を測定すると、主煙道
温度の測定情報に加えて空気量の過不足、又は未燃焼成
分についての直接的情報が得られるので、後燃焼火格子
上のごみの燃焼状態をより高い精度で把握することがで
き、後燃焼空気量の制御をより適切に行うことができ
る。即ち、主煙道温度の過不足値に加え、排ガス中成分
の適正値からの隔たり量を用いて制御することができ
る。
Therefore, in addition to the measurement of the main flue temperature,
When the O 2 concentration or CO concentration in the exhaust gas is measured, in addition to the measurement information of the main flue temperature, direct information about the excess or deficiency of the air amount or unburned components can be obtained. The combustion state of can be grasped with higher accuracy, and the amount of post-combustion air can be controlled more appropriately. That is, in addition to the excess and deficiency values of the main flue temperature, the amount of deviation of the components in the exhaust gas from the proper value can be used for control.

【0021】後燃焼空気量の他に制御されるものとし
て、後燃焼火格子速度がある。ごみの燃焼状態は、空気
量の他に送り込まれるごみの量によっても変わる。この
ため、後燃焼空気量を制御するとともに後燃焼火格子速
度を制御しごみ量を調整すると、ごみの燃焼状態がより
速やかに適切に調整される。
In addition to the amount of post-combustion air, another control is the post-combustion grate velocity. The state of combustion of waste depends on the amount of waste sent in addition to the amount of air. Therefore, when the amount of post-combustion air is controlled and the amount of dust is adjusted by controlling the post-combustion grate velocity, the combustion state of dust is adjusted more quickly and appropriately.

【0022】測定を周期的に行うことによって、常に後
燃焼火格子上のごみの燃焼状態を監視することになり、
異常状態につながる可能性がある僅かな変化を捉え事前
に後燃焼火格子速度を調節することができる。特に、非
常に燃え易いごみや反対に燃え難いごみが火格子上に来
た場合の急激な変化に対処することができる。そして、
測定の周期が短ければ短いほど制御頻度が高くなり、き
め細かな制御が可能となる。
By carrying out the measurement periodically, the combustion state of the refuse on the post-combustion grate is always monitored,
The post-combustion grate velocity can be adjusted in advance to catch small changes that can lead to abnormal conditions. In particular, it is possible to cope with a sudden change when very easily burnable refuse or, on the contrary, difficultly burnable refuse comes on the grate. And
The shorter the measurement cycle, the higher the control frequency, and the finer control becomes possible.

【0023】(2)の手段は、主煙道温度を測定し、こ
の主煙道温度が基準温度に達しないときは後燃焼空気量
を減らし、主煙道温度が基準温度を超えるときは後燃焼
空気量を増やすごみ焼却炉排ガス中未燃焼成分の抑制方
法である。
The means (2) measures the main flue temperature, reduces the amount of post combustion air when the main flue temperature does not reach the reference temperature, and reduces the post combustion air amount when the main flue temperature exceeds the reference temperature. This is a method of suppressing unburned components in exhaust gas from a refuse incinerator that increases the amount of combustion air.

【0024】後燃焼火格子上の堆積物には一般に灰が多
いが、特に急激に未燃ごみが少なく灰が多い状態に移行
した場合、ごみ量に対して後燃焼空気量が過剰になる。
その程度が大きいと後燃焼火格子上では堆積物が冷えて
温度不足状態となり、未燃ごみの着火が順調に進まず不
完全燃焼状態となる。この状態では、主煙道温度は通常
よりも低下する。
The deposits on the post-combustion grate generally have a large amount of ash, but especially when the state rapidly shifts to a state where there is little unburned waste and a large amount of ash, the amount of post-combustion air becomes excessive with respect to the amount of waste.
If the degree is large, the deposits will cool on the post-combustion grate and the temperature will be insufficient, and the ignition of unburned waste will not proceed smoothly, resulting in an incomplete combustion state. In this condition, the main flue temperature will be lower than normal.

【0025】このように、主煙道温度の低下によって、
後燃焼火格子上の温度不足状態が検知される。そして、
後燃焼火格子上では、未燃ごみが不完全燃焼状態で、未
燃焼成分が発生していることが推定される。
Thus, by lowering the main flue temperature,
An insufficient temperature condition on the afterburning grate is detected. And
On the post-combustion grate, it is estimated that unburned waste is incompletely burned and unburned components are generated.

【0026】主煙道温度と排ガス中CO濃度との関係を
調べた結果を図2に示す。(a)図は主煙道温度の変化
を示し、(b)図は排ガス中CO濃度を示す。後燃焼空
気量が基準量で操業されている状態で、主煙道温度及び
排ガス中CO濃度を同時に測定した結果である。
FIG. 2 shows the result of examining the relationship between the main flue temperature and the CO concentration in the exhaust gas. The (a) figure shows the change of the main flue temperature, and the (b) figure shows the CO concentration in the exhaust gas. It is a result of simultaneously measuring the main flue temperature and the CO concentration in the exhaust gas in a state where the post-combustion air amount is operating at the reference amount.

【0027】主煙道温度は測定開始から2時間足らずの
とき及び4時間目の直ぐ前と直ぐ後とで一時的に下がっ
ているが、これに呼応して排ガス中CO濃度も一時的に
高くなっている。即ち、主煙道温度が通常よりも低下し
たとき、未燃焼成分が発生している。これは、後燃焼火
格子上には未燃ごみが存在し、基準量の後燃焼空気量は
吹き込まれているが、燃焼に必要な三要素のうち温度が
不足して不完全燃焼状態となっていることを意味する。
The main flue temperature is temporarily lowered less than two hours after the start of measurement and immediately before and after the fourth hour, and in response to this, the CO concentration in the exhaust gas is also temporarily high. Has become. That is, when the main flue temperature is lower than normal, unburned components are generated. This is because there is unburned dust on the post-combustion grate and the standard amount of post-combustion air is blown in, but the temperature is insufficient among the three elements required for combustion, resulting in an incomplete combustion state. It means that

【0028】後燃焼火格子上では、その前の堆積物は殆
ど灰であって温度が下がっており、そこへ急に未燃ごみ
が到着したが着火されない状態である。低い温度で吹き
込まれる後燃焼空気は更に温度低下を助長するから、こ
の状態では後燃焼空気は基準量であっても、冷却効果面
で過剰量となる。
On the post-combustion grate, the deposits in front of it are mostly ash and the temperature has dropped, and unburned waste has arrived there suddenly but is not ignited. Since the post-combustion air blown at a low temperature further promotes the temperature decrease, in this state, the post-combustion air becomes an excessive amount in terms of the cooling effect even if it is the reference amount.

【0029】後燃焼空気量が過剰となり不完全燃焼状態
となる様子は、図3に示される。図3で、(a)図は後
燃焼空気量の経時変化を示し、(b)図は同時に測定し
た排ガス中CO濃度を示す。測定開始時と、測定開始か
ら約1時間後及び2.7時間後に後燃焼空気量は増えて
いるが、これに呼応して排ガス中CO濃度も高くなって
いる。即ち、後燃焼空気量を過剰に増やしたときに排ガ
ス中CO濃度が高くなり、この状態は後燃焼空気量が過
剰状態を脱すると解消する。
FIG. 3 shows how the amount of post combustion air becomes excessive and the state of incomplete combustion occurs. In FIG. 3, (a) shows the change with time of the post-combustion air amount, and (b) shows the CO concentration in the exhaust gas measured at the same time. Although the amount of post-combustion air increased at the start of measurement, and about 1 hour and 2.7 hours after the start of measurement, the CO concentration in the exhaust gas was correspondingly high. That is, when the amount of after combustion air is excessively increased, the CO concentration in the exhaust gas becomes high, and this state disappears when the amount of after combustion air goes out of excess.

【0030】このように、主煙道温度は後燃焼空気量が
後燃焼火格子上の未燃ごみ量に対して過剰のときに低下
し、このとき後燃焼火格子上は温度不足状態で未燃焼成
分を発生する。即ち、主煙道温度が基準温度より低い場
合は、後燃焼空気量が後燃焼火格子上の未燃ごみ量に対
して過剰で、このため後燃焼火格子上では温度が不足し
未燃焼成分が発生する。
As described above, the main flue temperature decreases when the amount of post-combustion air is excessive with respect to the amount of unburned waste on the post-combustion grate, and at this time, the temperature on the post-combustion grate is insufficient due to insufficient temperature. Generates combustion components. That is, when the main flue temperature is lower than the reference temperature, the amount of post-combustion air is excessive with respect to the amount of unburned waste on the post-combustion grate. Occurs.

【0031】したがって、主煙道温度が基準温度よりも
低い場合に後燃焼空気量を減らすと、温度低下が防がれ
正常な燃焼に戻るので未燃焼成分の発生を減らすことが
できる。
Therefore, if the amount of post-combustion air is reduced when the main flue temperature is lower than the reference temperature, the temperature decrease is prevented and normal combustion is restored, so that the generation of unburned components can be reduced.

【0032】後燃焼火格子では、前述したように、ごみ
の完全燃焼を期すので通常は理論量よりやや多めの空気
を供給する。しかし、難燃焼性のごみが特に多いときな
ど、後燃焼火格子上に未燃ごみが基準量よりも過剰に残
っていることがある。この状態では、供給される空気量
に相当する未燃ごみは燃焼するので、通常よりも主煙道
温度は高くなる。しかし、過剰分の未燃ごみの大半は酸
素不足状態となりこれから未燃焼成分が発生する。即
ち、主煙道温度が基準温度を超える場合は、後燃焼空気
量が後燃焼火格子上のごみ量に対し不足し、このため後
燃焼火格子上では燃焼に必要な三要素のうち酸素が不足
して未燃焼成分が発生する。
As described above, in the post-combustion grate, since the complete combustion of the waste is aimed at, a little more than the theoretical amount of air is usually supplied. However, when the amount of non-combustible dust is particularly large, unburned dust may remain in excess on the post-combustion grate above the reference amount. In this state, unburned refuse corresponding to the amount of supplied air burns, so the main flue temperature becomes higher than usual. However, most of the excess unburned waste is in an oxygen-deficient state, and unburned components are generated from this. That is, when the main flue temperature exceeds the reference temperature, the amount of post-combustion air is insufficient with respect to the amount of dust on the post-combustion grate, and therefore oxygen is one of the three elements required for combustion on the post-combustion grate. There is a shortage and unburned components are generated.

【0033】このため、主煙道温度が基準温度を超える
場合に後燃焼空気を増やすと、空気不足状態が解消し未
燃焼成分の発生を減らすことができる。
Therefore, if the amount of post-combustion air is increased when the main flue temperature exceeds the reference temperature, the air shortage state can be eliminated and the generation of unburned components can be reduced.

【0034】(3)の手段は、主煙道温度と排ガス中の
2 濃度を測定し、主煙道温度が基準温度に達せずO2
濃度が基準値を超えるときは後燃焼空気量を減らし,主
煙道温度が基準温度を超えO2 濃度が基準値に達しない
ときは後燃焼空気量を増やすごみ焼却炉排ガス中未燃焼
成分の抑制方法である。
[0034] (3) means of the O 2 concentration of the main flue temperature and the exhaust gas was measured, O 2 does not reach the main flue temperature to a reference temperature
When the concentration exceeds the reference value, the amount of post-combustion air is reduced, and when the main flue temperature exceeds the reference temperature and the O 2 concentration does not reach the reference value, the amount of post-combustion air is increased. It is a suppression method.

【0035】主煙道温度が基準温度より低い場合は、後
燃焼空気量が後燃焼火格子上の未燃ごみ量に対して過剰
で、このため後燃焼火格子上では温度が不足し未燃焼成
分が発生する。
When the main flue temperature is lower than the reference temperature, the amount of post-combustion air is excessive with respect to the amount of unburned waste on the post-combustion grate, and therefore the temperature is insufficient on the post-combustion grate and unburned. Ingredients are generated.

【0036】そして、排ガス中O2 濃度が高いことによ
って、後燃焼空気量が後燃焼火格子上の未燃ごみ量に対
して過剰であることが確認される。後燃焼空気量が過剰
であれば未反応のO2 が燃焼ガス中に多く含まれ、排ガ
ス中のO2 濃度が高くなるからである。
It is confirmed that the amount of post combustion air is excessive with respect to the amount of unburned waste on the post combustion grate due to the high concentration of O 2 in the exhaust gas. This is because if the amount of after combustion air is excessive, unreacted O 2 is contained in the combustion gas in a large amount, and the O 2 concentration in the exhaust gas becomes high.

【0037】したがって、主煙道温度が基準温度に達せ
ずO2 濃度が基準値を超えるときに後燃焼空気量を減ら
すと、後燃焼火格子上の温度低下が防がれるので正常な
燃焼に戻り、未燃焼成分の発生が減少する。
Therefore, if the amount of after-combustion air is reduced when the main flue temperature does not reach the reference temperature and the O 2 concentration exceeds the reference value, the temperature drop on the after-combustion grate is prevented, and normal combustion is achieved. Return, the generation of unburned components is reduced.

【0038】反対に、主煙道温度が基準値を超える場合
は、後燃焼空気量が後燃焼火格子上のごみ量に対し不足
し、このため後燃焼火格子上では酸素が不足して未燃焼
成分が発生する。
On the other hand, when the main flue temperature exceeds the reference value, the amount of post-combustion air is insufficient with respect to the amount of waste on the post-combustion grate. Combustion components are generated.

【0039】そして、排ガス中O2 濃度が低いことによ
って、後燃焼空気量が後燃焼火格子上の未燃ごみ量に対
して不足していることが確認される。後燃焼空気量が不
足すると未反応のO2 はなくなり、排ガス中のO2 濃度
が低くなるからである。
It is confirmed that the amount of post combustion air is insufficient with respect to the amount of unburned waste on the post combustion grate due to the low O 2 concentration in the exhaust gas. This is because if the amount of post-combustion air is insufficient, unreacted O 2 will disappear and the O 2 concentration in the exhaust gas will decrease.

【0040】したがって、主煙道温度が基準温度を超え
2 濃度が基準値に達しないときに、後燃焼空気量を増
やすと、空気量の不足状態が解消され未燃焼成分の発生
を減らすことができる。
Accordingly, when the main flue temperature exceeds the reference temperature and the O 2 concentration does not reach the reference value, increasing the amount of post-combustion air eliminates the insufficient amount of air and reduces the generation of unburned components. You can

【0041】(4)の手段は、主煙道温度と排ガス中の
CO濃度を測定し,主煙道温度が基準温度以下でCO濃
度が基準値を超えるときは後燃焼空気量を減らし,主煙
道温度が基準温度を超えCO濃度が基準値を超えるとき
は後燃焼空気量を増やすごみ焼却炉排ガス中未燃焼成分
の抑制方法である。
The means (4) measures the main flue temperature and the CO concentration in the exhaust gas, and when the main flue temperature is below the reference temperature and the CO concentration exceeds the reference value, the amount of post-combustion air is reduced to When the flue temperature exceeds the reference temperature and the CO concentration exceeds the reference value, it is a method of suppressing unburned components in the exhaust gas of the refuse incinerator that increases the amount of post-combustion air.

【0042】主煙道温度が基準温度より低い場合は、後
燃焼空気量が後燃焼火格子上の未燃ごみ量に対して過剰
で、このため後燃焼火格子上では温度が不足し未燃焼成
分が発生する。
When the main flue temperature is lower than the reference temperature, the amount of post-combustion air is excessive with respect to the amount of unburned waste on the post-combustion grate, and therefore the temperature is insufficient on the post-combustion grate and unburned. Ingredients are generated.

【0043】そして、COは未燃焼成分を代表するの
で、排ガス中CO濃度が高いことによって、後燃焼火格
子上の堆積物は未燃焼状態であることが確認される。こ
のCOは、後燃焼空気量が後燃焼火格子上の未燃ごみ量
に対して過剰となって温度不足状態を来し、CO2 にま
で酸化されない未燃焼のCOである。
Since CO represents an unburned component, it is confirmed that the deposits on the post-combustion grate are in an unburned state due to the high CO concentration in the exhaust gas. This CO is unburned CO in which the amount of post-combustion air is excessive with respect to the amount of unburned waste on the post-combustion grate, resulting in a temperature shortage state, and is not oxidized to CO 2 .

【0044】したがって、主煙道温度が基準温度に達せ
ずCO濃度が基準値を超えるときに、後燃焼空気量を減
らすと、後燃焼火格子上の温度低下が防がれるので正常
な燃焼に戻り未燃焼成分の発生を減らすことができる。
Therefore, when the main flue temperature does not reach the reference temperature and the CO concentration exceeds the reference value, if the amount of after-combustion air is reduced, the temperature drop on the after-combustion grate is prevented, so that normal combustion is achieved. The generation of returned unburned components can be reduced.

【0045】反対に、主煙道温度が基準温度を越える場
合は、後燃焼空気量が後燃焼火格子上の未燃ごみ量に対
して不足し、このため後燃焼火格子上では酸素が不足し
て未燃焼成分が発生する。
On the contrary, when the main flue temperature exceeds the reference temperature, the amount of post-combustion air is insufficient with respect to the amount of unburned waste on the post-combustion grate, so that oxygen is insufficient on the post-combustion grate. Then, unburned components are generated.

【0046】排ガス中CO濃度が高いのは、後燃焼空気
量が後燃焼火格子上の未燃ごみ量に対して不足し、後燃
焼火格子上の堆積物に未燃焼状態が起きているからであ
る。
The CO concentration in the exhaust gas is high because the amount of post-combustion air is insufficient with respect to the amount of unburned waste on the post-combustion grate, and the unburned state occurs in the deposits on the post-combustion grate. Is.

【0047】したがって、主煙道温度が基準温度を超え
CO濃度が基準値を超えるときに、後燃焼空気量を増や
すと、空気量の不足状態が解消されるので未燃焼成分の
発生を減らすことができる。
Therefore, when the main flue temperature exceeds the reference temperature and the CO concentration exceeds the reference value, if the post-combustion air amount is increased, the insufficient state of the air amount is eliminated, so that the generation of unburned components should be reduced. You can

【0048】(5)の手段は、後燃焼空気量の制御を行
うとともに、後燃焼火格子下の圧力と炉内圧力との差を
測定し、これらの測定値を比較し、比較結果に基づいて
後燃焼火格子速度を制御するごみ焼却炉排ガス中未燃焼
成分の抑制方法である。
The means (5) controls the amount of after combustion air, measures the difference between the pressure under the after combustion grate and the pressure in the furnace, compares these measured values, and based on the comparison result. This is a method of controlling unburned components in exhaust gas from a refuse incinerator by controlling the post combustion grate velocity.

【0049】主煙道温度や排ガス中のO2 濃度、CO濃
度が後燃焼火格子の燃焼状態を反映するのに対して、後
燃焼火格子下の圧力と炉内圧力との差は後燃焼火格子上
下のの圧力差であり、後燃焼火格子上の堆積物の量を反
映する。
While the main flue temperature, the O 2 concentration and the CO concentration in the exhaust gas reflect the combustion state of the post-combustion grate, the difference between the pressure under the post-combustion grate and the pressure in the furnace is the after-combustion. The pressure difference above and below the grate and reflects the amount of deposits on the post-combustion grate.

【0050】炉から燃焼中のガスが漏れないように、炉
内の圧力は火格子の上方に設置された圧力計により測定
され常に負圧にコントロールされている。この炉内圧力
と後燃焼火格子下の圧力を比較すると、後燃焼火格子下
には後燃焼空気が吹き込まれており、後燃焼火格子下の
圧力は炉内圧力より高く、堆積物の気流抵抗が大きいほ
ど後燃焼火格子下の圧力と炉内圧力との差(以下、単に
圧力差と称す)は大きくなる。即ち、圧力差が小さい場
合は、後燃焼火格子上の堆積物の大半が灰で体積が小さ
く、圧力差が大きい場合は、堆積物の大半が未燃ごみで
体積が大きい。
The pressure inside the furnace is measured by a pressure gauge installed above the grate and is constantly controlled to a negative pressure so that the gas during combustion does not leak from the furnace. Comparing this in-furnace pressure with the pressure under the post-combustion grate, the post-combustion air is blown under the after-combustion grate, the pressure under the after-combustion grate is higher than the pressure in the furnace, and The larger the resistance, the larger the difference between the pressure under the post-combustion grate and the pressure in the furnace (hereinafter simply referred to as the pressure difference). That is, when the pressure difference is small, most of the deposit on the post-combustion grate is ash and has a small volume, and when the pressure difference is large, most of the deposit is unburned waste and has a large volume.

【0051】後燃焼火格子上のごみの燃焼状態とともに
堆積物中の未燃ごみの多寡を周期的に把握することによ
って、後燃焼空気量の制御に加えて後燃焼火格子速度も
適切に制御することができる。例えば、ごみ量が過剰な
ときに後燃焼空気量を増やすだけでなく後燃焼火格子速
度を減速すれば、未燃ごみ量は徐々に減少し且つ時間を
かけて燃焼し尽くすことになる。
By periodically grasping the combustion state of the dust on the post-combustion grate as well as the amount of unburned dust in the deposit, the post-combustion grate velocity is appropriately controlled in addition to the control of the post-combustion air amount. can do. For example, if the post-combustion air amount is increased and the post-combustion grate velocity is reduced when the amount of waste is excessive, the amount of unburned waste gradually decreases and burns out over time.

【0052】(6)の手段は、主煙道温度、後燃焼火格
子下の圧力及び炉内圧力の差を測定し、主煙道温度が基
準温度に達せず且つ後燃焼火格子下の圧力と炉内圧力の
差が基準差に達しないときは後燃焼空気量を減らすとと
もに後燃焼火格子速度を増速し、主煙道温度が基準温度
を超え且つ後燃焼火格子下の圧力と炉内圧力の差が基準
差を超えるときは後燃焼空気量を増やすとともに後燃焼
火格子速度を減速するごみ焼却炉排ガス中未燃焼成分の
抑制方法である。
The means (6) measures the difference between the main flue temperature, the pressure under the post-combustion grate and the pressure in the furnace, and the main flue temperature does not reach the reference temperature and the pressure under the post-combustion grate. If the difference between the pressure in the furnace and the pressure in the furnace does not reach the standard difference, the amount of post-combustion air is reduced and the speed of post-combustion grate is increased, the main flue temperature exceeds the reference temperature, and the pressure under the post-combustion grate and the furnace When the difference in internal pressure exceeds the reference difference, it is a method of suppressing unburned components in the exhaust gas of a refuse incinerator, in which the amount of post combustion air is increased and the velocity of the post combustion grate is reduced.

【0053】主煙道温度が低い場合は、後燃焼空気量が
後燃焼火格子上の未燃ごみ量に対し過剰で、後燃焼火格
子上は温度不足状態となり未燃焼成分が発生する。そし
て、圧力差が小さいことによって、後燃焼火格子の堆積
物の大半が灰で未燃ごみ量が少ないことが判る。
When the main flue temperature is low, the amount of post combustion air is excessive with respect to the amount of unburned waste on the post combustion grate, and the temperature is insufficient on the post combustion grate, and unburned components are generated. It can be seen that, because the pressure difference is small, most of the deposits in the post-combustion grate are ash and the amount of unburned waste is small.

【0054】したがって、主煙道温度が基準温度に達せ
ず圧力差が基準差に達しないときに、後燃焼空気量を減
らすとともに後燃焼火格子速度を増速すると、温度低下
が防がれるとともに燃料であるごみが補給され、正常な
燃焼に戻るので未燃焼成分の発生を減らすことができ
る。
Therefore, when the main flue temperature does not reach the reference temperature and the pressure difference does not reach the reference difference, by reducing the amount of post-combustion air and increasing the post-combustion grate velocity, it is possible to prevent the temperature from decreasing. Since the dust that is the fuel is replenished and the normal combustion is restored, the generation of unburned components can be reduced.

【0055】反対に、主煙道温度が高い場合は、後燃焼
空気量が後燃焼火格子上の未燃ごみ量に対し不足し、後
燃焼火格子上では酸素不足状態となり未燃焼成分が発生
する。そして、圧力差が大きい場合は、後燃焼火格子上
の堆積物に未燃ごみ量が多く含まれている。
On the other hand, when the main flue temperature is high, the amount of post-combustion air is insufficient with respect to the amount of unburned waste on the post-combustion grate, and oxygen is insufficient on the post-combustion grate to generate unburned components. To do. When the pressure difference is large, the amount of unburned waste is large in the deposit on the post-combustion grate.

【0056】したがって、主煙道温度が基準温度を超え
且つ圧力差が基準差を超えるときに、後燃焼空気量を増
やすとともに後燃焼火格子速度を減速すると、酸素不足
状態と燃料過剰の状態が解消し、未燃焼成分の発生を減
らすことができる。
Therefore, when the main flue temperature exceeds the reference temperature and the pressure difference exceeds the reference difference, if the post combustion air amount is increased and the post combustion grate speed is decelerated, an oxygen shortage state and an excess fuel state occur. It is possible to eliminate this and reduce the generation of unburned components.

【0057】(7)の手段は、主煙道温度、排ガス中の
2 濃度、後燃焼火格子下の圧力の差及び炉内圧力を測
定し、主煙道温度が基準温度に達せずO2 濃度が基準値
を超え且つ後燃焼火格子下の圧力と炉内圧力の差が基準
差に達しないときは、後燃焼空気量を減らすとともに後
燃焼火格子速度を増速し、主煙道温度が基準温度を超え
2 濃度が基準値に達せず且つ後燃焼火格子下の圧力と
炉内圧力の差が基準差範囲上限を超えるときは、後燃焼
空気量を増やすとともに後燃焼火格子速度を減速するご
み焼却炉排ガス中未燃焼成分の抑制方法である。
The means (7) measures the main flue temperature, the O 2 concentration in the exhaust gas, the pressure difference under the post-combustion grate and the furnace pressure, and the main flue temperature does not reach the reference temperature. 2 When the concentration exceeds the reference value and the difference between the pressure under the post-combustion grate and the pressure in the furnace does not reach the reference difference, the amount of post-combustion air is decreased and the post-combustion grate velocity is increased to When the temperature exceeds the reference temperature, the O 2 concentration does not reach the reference value, and the difference between the pressure under the post-combustion grate and the pressure in the furnace exceeds the upper limit of the reference difference range, the post-combustion air amount is increased and the post-combustion grate is increased. This is a method of suppressing unburned components in the exhaust gas of a refuse incinerator that reduces the speed.

【0058】主煙道温度が低く排ガス中のO2 濃度が高
い場合は、後燃焼空気量過剰により後燃焼火格子上は温
度不足となり未燃焼成分が発生している。そして、圧力
差が基準差に達しないことにより後燃焼火格子上の堆積
物の殆どが灰となり、未燃ごみが残っていないことが判
る。
When the main flue temperature is low and the O 2 concentration in the exhaust gas is high, the temperature is insufficient on the post-combustion grate due to an excessive amount of post-combustion air, and unburned components are generated. It can be seen that, since the pressure difference does not reach the standard difference, most of the deposit on the post-combustion grate becomes ash, and no unburned dust remains.

【0059】したがって、主煙道温度が基準温度に達せ
ず排ガス中O2 濃度が基準値を超え且つ圧力差が基準差
に達しないときに、後燃焼空気量を減らすとともに後燃
焼火格子速度を増速すると、温度低下が防がれるととも
に燃料が補給されるので、正常な燃焼に戻り未燃焼成分
の発生を減らすことができる。
Therefore, when the main flue temperature does not reach the reference temperature, the O 2 concentration in the exhaust gas exceeds the reference value, and the pressure difference does not reach the reference difference, the amount of post combustion air is reduced and the post combustion grate velocity is reduced. When the speed is increased, the temperature drop is prevented and the fuel is replenished, so that the normal combustion is restored and the generation of unburned components can be reduced.

【0060】反対に、主煙道温度が高く、排ガス中O2
濃度が低い場合は、後燃焼空気量が後燃焼火格子上の未
燃ごみ量に対し不足し、後燃焼火格子上では酸素不足状
態となり未燃焼成分が発生している。そして、圧力差が
大きいことによって後燃焼火格子上の堆積物に未燃ごみ
量が多く含まれていることが判る。
On the contrary, the main flue temperature is high and the O 2 in the exhaust gas is
When the concentration is low, the amount of post-combustion air is insufficient with respect to the amount of unburned waste on the post-combustion grate, and the post-combustion grate is in an oxygen-deficient state and unburned components are generated. It can be seen that the large pressure difference causes a large amount of unburned waste to be contained in the deposit on the post-combustion grate.

【0061】したがって、主煙道温度が基準温度を超
え、排ガス中O2 濃度が基準値に達せず、且つ圧力差が
基準差を超えるときに、後燃焼空気量を増やすとともに
後燃焼火格子速度を減速すると、燃料過剰の状態と酸素
不足状態が解消し、未燃焼成分の発生を減らすことがで
きる。
Therefore, when the main flue temperature exceeds the reference temperature, the O 2 concentration in the exhaust gas does not reach the reference value, and the pressure difference exceeds the reference difference, the post combustion air amount is increased and the post combustion grate velocity is increased. By decelerating, the excess fuel state and the oxygen deficient state are eliminated, and the generation of unburned components can be reduced.

【0062】(8)の手段は、主煙道温度、排ガス中の
CO濃度、後燃焼火格子下の圧力及び炉内圧力の差を測
定し、主煙道温度が基準温度に達せずCO濃度が基準値
を超え且つ後燃焼火格子下の圧力と炉内圧力の差が基準
差に達しないときは後燃焼空気量を減らすとともに後燃
焼火格子速度を増速し、主煙道温度が基準温度を超えC
O濃度が基準値を超え且つ後燃焼火格子下の圧力と炉内
圧力の差が基準差を超えるときは後燃焼空気量を増やす
とともに後燃焼火格子速度を減速するごみ焼却炉排ガス
中未燃焼成分の抑制方法である。
The means (8) measures the main flue temperature, the CO concentration in the exhaust gas, the pressure under the post-combustion grate and the pressure in the furnace, and the main flue temperature does not reach the reference temperature and the CO concentration Exceeds the reference value and the difference between the pressure under the post-combustion grate and the pressure in the furnace does not reach the reference difference, the amount of post-combustion air is reduced and the post-combustion grate velocity is increased, and the main flue temperature is set to the standard. Over temperature C
When the O concentration exceeds the reference value and the difference between the pressure under the post-combustion grate and the pressure in the furnace exceeds the reference difference, the amount of post-combustion air is increased and the post-combustion grate velocity is reduced. It is a method of suppressing components.

【0063】主煙道温度が低く排ガス中のCO濃度が高
い場合は、後燃焼空気量過剰により後燃焼火格子上は温
度不足状態となり未燃焼成分が発生している。そして、
圧力差が大きいことにより後燃焼火格子上の堆積物の殆
どが灰とないることが判る。
When the main flue temperature is low and the CO concentration in the exhaust gas is high, the temperature of the post-combustion grate becomes insufficient due to an excessive amount of post-combustion air, and unburned components are generated. And
It can be seen that most of the deposits on the post-combustion grate are not ash due to the large pressure difference.

【0064】したがって、主煙道温度が基準温度に達せ
ず排ガス中のCO濃度が基準値を超え、且つ圧力差が基
準差に達しないときに、後燃焼空気量を減らすとともに
後燃焼火格子速度を増速すると、後燃焼火格子上の温度
低下が防がれるとともに燃料が補給されるので、正常な
燃焼に戻り未燃焼成分の発生を減らすことができる。
Therefore, when the main flue temperature does not reach the reference temperature, the CO concentration in the exhaust gas exceeds the reference value, and the pressure difference does not reach the reference difference, the amount of after combustion air is reduced and the after combustion grate velocity is reduced. When the speed is increased, the temperature drop on the post-combustion grate is prevented and the fuel is replenished, so that the normal combustion is restored and the generation of unburned components can be reduced.

【0065】反対に、主煙道温度が高く排ガス中CO濃
度が高い場合は、後燃焼空気量が後燃焼火格子上の未燃
ごみ量に対して不足して未燃焼成分が発生している。そ
して、圧力差が大きいことによって後燃焼火格子上の堆
積物に未燃ごみ量が多く含まれていることが判る。
On the contrary, when the main flue temperature is high and the CO concentration in the exhaust gas is high, the amount of post-combustion air is insufficient with respect to the amount of unburned waste on the post-combustion grate, and unburned components are generated. . It can be seen that the large pressure difference causes a large amount of unburned waste to be contained in the deposit on the post-combustion grate.

【0066】したがって、主煙道温度が基準温度を超
え、排ガス中CO濃度が基準値を超え、且つ圧力差が基
準差を超えるときに、後燃焼空気量を増やすとともに後
燃焼火格子速度を減速すると、酸素不足状態と未燃ごみ
過剰の状態が解消し、未燃焼成分の発生を減らすことが
できる。
Therefore, when the main flue temperature exceeds the reference temperature, the CO concentration in the exhaust gas exceeds the reference value, and the pressure difference exceeds the reference difference, the amount of post combustion air is increased and the post combustion grate speed is reduced. Then, the oxygen deficiency state and the unburned waste excess state are resolved, and the generation of unburned components can be reduced.

【0067】なお、後燃焼火格子速度の制御は、圧力差
を求めずに、主煙道温度又は主煙道温度と排ガス中O2
濃度若しくはCOの濃度を測定して後燃焼空気量を制御
するとともに、後燃焼火格子速度を制御することもでき
る。
The control of the post-combustion grate velocity is carried out by obtaining the main flue temperature or the main flue temperature and O 2 in the exhaust gas without obtaining the pressure difference.
It is also possible to control the post-combustion air amount and the post-combustion grate velocity by measuring the concentration or CO concentration.

【0068】[0068]

【発明の実施の形態】この発明の実施の形態を図を用い
て説明する。図1は、ごみ焼却炉と制御系の概念を示す
図である。1は焼却炉であり,ごみ投入口2から投入さ
れたごみは,乾燥火格子3a,燃焼火格子3b,後燃焼
火格子3cと順に送られて灰となり、灰は落下口4から
取り出される。各火格子は火格子駆動装置3dによって
駆動され、定められた速さでごみを送って行く。但し、
後燃焼火格子3cについてのみ図示する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing the concept of a refuse incinerator and a control system. Reference numeral 1 denotes an incinerator, and the waste introduced from the waste inlet 2 is sequentially sent to the dry grate 3a, the combustion grate 3b, and the post-combustion grate 3c to become ash, and the ash is taken out from the falling port 4. Each grate is driven by the grate driving device 3d and sends the garbage at a predetermined speed. However,
Only the afterburning grate 3c is shown.

【0069】各火格子の下には、一次空気ファン5によ
り供給される乾燥或いは燃焼用の一次空気が送られる。
乾燥火格子3aではごみが主として乾燥され,燃焼火格
子3bではごみが燃焼し,後燃焼火格子3cではごみが
完全に燃焼され灰となる。この灰は灰落下口4から落下
して炉外へ排出される。一次空気は,乾燥火格子空気量
を調節する乾燥火格子下空気ダンパ13a,燃焼火格子
前部空気量を調節する燃焼火格子前部下空気ダンパ13
b,燃焼火格子後部空気量を調節する燃焼火格子後部下
空気ダンパ13c,後燃火格子空気量を調節する後燃火
格子下空気ダンパ13dで配分される。
Under each grate, the primary air for drying or combustion supplied by the primary air fan 5 is sent.
Dust is mainly dried in the dry grate 3a, burned in the combustion grate 3b, and completely burned in the post-combustion grate 3c to become ash. This ash falls from the ash fall port 4 and is discharged outside the furnace. The primary air is a dry grate lower air damper 13a for adjusting the dry grate air amount, and a combustion grate front lower air damper 13 for adjusting the combustion grate front air amount.
b, a combustion grate rear lower air damper 13c that adjusts the combustion grate rear air amount, and a rear fuel grate lower air damper 13d that adjusts the after combustion grate air amount.

【0070】一方,燃焼帯の上方には、二次空気ファン
10から供給される二次空気が吹き込み口9から吹き込
まれ、未燃焼成分を酸化するとともに炉の過熱を防いで
いる。二次空気は直接炉出口に逃がさず、燃焼ガスと良
く混ざるように、吹き込み口9の上方に傾斜した隔壁1
1を設けている。隔壁11の前方の通路が副煙道、後方
の通路が主煙道である。両煙道を通った燃焼ガスは隔壁
11の上方の混合室6で再度混ざり合う。
On the other hand, above the combustion zone, the secondary air supplied from the secondary air fan 10 is blown from the blowing port 9 to oxidize unburned components and prevent overheating of the furnace. The secondary air does not escape directly to the furnace outlet, and the partition wall 1 is inclined above the blowing port 9 so as to mix well with the combustion gas.
1 is provided. The passage in front of the partition wall 11 is the secondary flue and the passage in the rear is the main flue. The combustion gas that has passed through both flues mixes again in the mixing chamber 6 above the partition wall 11.

【0071】混合室6を出たガスは炉出口に設置された
熱交換器8aを通って、エネルギを回収された後に排気
される。7は炉出口温度計、8bはボイラで、12は蒸
気量を測る流量計である。又、14は主煙道温度計、1
6は排ガスO2 濃度計,17は排ガスCO濃度計、18
aは炉内圧力計、18bは後燃焼火格子下圧力計であ
る。
The gas exiting the mixing chamber 6 passes through a heat exchanger 8a installed at the exit of the furnace and is exhausted after energy is recovered. Reference numeral 7 is a furnace outlet thermometer, 8b is a boiler, and 12 is a flow meter for measuring the amount of steam. Also, 14 is a main flue thermometer, 1
6 is an exhaust gas O 2 concentration meter, 17 is an exhaust gas CO concentration meter, 18
Reference numeral a is a furnace pressure gauge, and 18b is a post-combustion grate under pressure gauge.

【0072】15は制御装置であり,主煙道温度計1
4、排ガスO2 濃度計16、排ガスCO濃度計17、炉
内圧力計18a、後燃焼火格子下圧力計18bの各信号
を入力とし,後燃焼火格子下空気ダンパ13d及び火格
子駆動装置3dに制御値信号を出力する。制御装置15
には,例えば,コンピュータが使用されている。
Reference numeral 15 is a control device, which is a main flue thermometer 1
4, the exhaust gas O 2 concentration meter 16, the exhaust gas CO concentration meter 17, the in-furnace pressure gauge 18a, and the post-combustion grate lower pressure gauge 18b as inputs, and the post-combustion grate lower air damper 13d and the grate driving device 3d The control value signal is output to. Controller 15
For example, a computer is used for this.

【0073】制御装置15での入力信号に基づく制御値
の計算は周期的に行う。ごみの火格子上の移動は遅く、
後燃焼火格子上を通過するのに数10分を要するので、
計算は数10秒から数分の周期で行うのが適当である。
The control device 15 calculates the control value based on the input signal periodically. The movement of garbage on the grate is slow,
Since it takes several tens of minutes to pass over the post-combustion grate,
It is suitable to carry out the calculation at a cycle of several tens of seconds to several minutes.

【0074】制御値の計算は次のように行う。先ず、後
燃焼空気量の制御について説明する。
The control value is calculated as follows. First, the control of the amount of post combustion air will be described.

【0075】主煙道温度に基づいて後燃焼空気量を制御
するときは、主煙道の基準温度をT set 、今回の測定値
をTとして、後燃焼空気量の制御値Fn を次の(1)式
で計算する。
Control of post-combustion air amount based on main flue temperature
When you do, set the reference temperature of the main flue to T set, This time measured value
Where T is the control value F of the post combustion air amountnThe following equation (1)
Calculate with.

【0076】[0076]

【数1】 [Equation 1]

【0077】但し、Fn-1 は前回の制御値、kT は主煙
道温度についての制御パラメータで正である。
However, F n-1 is the previous control value, and k T is a control parameter for the main flue temperature, which is positive.

【0078】主煙道温度と排ガス中O2 濃度に基づい
て、後燃焼空気量を制御するときは、排ガス中O2 濃度
の基準値を〔O2 set 、今回の測定値を〔O2 〕とし
て、後燃焼空気量の制御値Fn を 次の(2)式で計算
する。
When the amount of post-combustion air is controlled on the basis of the main flue temperature and the O 2 concentration in the exhaust gas, the reference value of the O 2 concentration in the exhaust gas is [O 2 ] set and the measured value this time is [O 2 ], The control value F n of the post combustion air amount is calculated by the following equation (2).

【0079】[0079]

【数2】 [Equation 2]

【0080】但し、kO2は排ガス中O2 濃度についての
制御パラメータであるが、主煙道温度の測定値Tが基準
温度Tset より小で且つ排ガス中O2 濃度の測定値〔O
2 〕が基準値〔O2 set よりも大のとき、又は主煙道
温度の測定値Tが基準温度値Tset より大で且つ排ガス
中O2 濃度の測定値〔O2 〕が基準値〔O2 set より
も小のとき負であり、それ以外のときは零である。
However, k O2 is a control parameter for the O 2 concentration in the exhaust gas, but the measured value T of the main flue temperature is lower than the reference temperature T set and the measured value of the O 2 concentration in the exhaust gas [O
2 ] is larger than the reference value [O 2 ] set , or the measured value T of the main flue temperature is larger than the reference temperature value T set and the measured value [O 2 ] of the O 2 concentration in the exhaust gas is the reference value. It is negative when it is smaller than [O 2 ] set , and zero otherwise.

【0081】主煙道温度と排ガス中CO濃度に基づい
て、後燃焼空気量を制御するときは、排ガス中CO濃度
の基準値を〔CO〕set 、今回の測定値を〔CO〕とし
て、後燃焼空気量の制御値Fn を次の(3)式で計算す
る。
When the amount of post-combustion air is controlled on the basis of the main flue temperature and the CO concentration in the exhaust gas, the standard value of the CO concentration in the exhaust gas is [CO] set , and the measured value this time is [CO]. The control value F n of the combustion air amount is calculated by the following equation (3).

【0082】[0082]

【数3】 (Equation 3)

【0083】但し、kCOは排ガス中CO濃度についての
制御パラメータであるが、主煙道温度の測定値Tが基準
値Tset より小で且つ排ガス中CO濃度の測定値〔C
O〕が基準値〔CO〕set よりも大であるとき負であ
り、主煙道温度の測定値Tが基準値Tset より大で且つ
排ガス中CO濃度の測定値〔CO〕が基準値〔CO〕
setよりも大のとき正であり、それ以外のときは零であ
る。
However, k CO is a control parameter for the CO concentration in the exhaust gas, but the measured value T of the main flue temperature is smaller than the reference value T set and the measured value of the CO concentration in the exhaust gas [C
O] is negative when it is larger than the reference value [CO] set, the measured value T of the main flue temperature is larger than the reference value T set , and the measured value [CO] of the CO concentration in the exhaust gas is the reference value [CO]. CO]
It is positive when it is greater than set , and zero otherwise.

【0084】次に、後燃焼空気量とともに後燃焼火格子
速度を制御する場合について説明する。
Next, the case of controlling the post combustion grate velocity together with the amount of post combustion air will be described.

【0085】主煙道温度に基づいて後燃焼空気量を制御
するとともに、圧力差に基づいて後燃焼火格子速度を制
御するときは、(1)式を用いて後燃焼空気量の制御値
nを求め、後燃焼火格子速度の制御値Gn を、圧力差
をΔP、基準差をΔPset として、次の(4)式で計算
する。
When the post combustion air amount is controlled based on the main flue temperature and the post combustion grate velocity is controlled based on the pressure difference, the control value F of the post combustion air amount is calculated using the equation (1). The n is obtained, and the control value G n of the post-combustion grate velocity is calculated by the following equation (4), where the pressure difference is ΔP and the reference difference is ΔP set .

【0086】[0086]

【数4】 (Equation 4)

【0087】但し、Gn-1 は前回の制御値、hP は圧力
差についての制御パラメータで負である。
However, G n-1 is the previous control value, and h P is a control parameter for the pressure difference and is negative.

【0088】主煙道温度と排ガス中O2 濃度に基づいて
後燃焼空気量を制御するとともに、圧力差に基づいて後
燃焼火格子速度を制御するときは、(2)式を用いて後
燃焼空気量の制御値Fn を求め、(4)式を用いて後燃
焼火格子速度の制御値Gn を求める。
When the post combustion air amount is controlled based on the main flue temperature and the O 2 concentration in the exhaust gas, and the post combustion grate velocity is controlled based on the pressure difference, the post combustion is performed using the equation (2). obtains a control value F n of the air quantity, obtains a control value G n of the post-combustion grate velocity using equation (4).

【0089】主煙道温度と排ガス中CO濃度に基づいて
後燃焼空気量を制御するとともに、圧力差に基づいて後
燃焼火格子速度を制御するときは、(3)式を用いて後
燃焼空気量の制御値Fn を求め、(4)式を用いて後燃
焼火格子速度の制御値Gn を求める。
When the amount of after-combustion air is controlled based on the main flue temperature and the CO concentration in the exhaust gas, and the after-combustion grate velocity is controlled based on the pressure difference, the after-combustion air is calculated using the equation (3). The control value F n of the quantity is obtained, and the control value G n of the post-combustion grate velocity is obtained using the equation (4).

【0090】なお、圧力差を求めずに、主煙道温度或い
は主煙道温度と排ガス中成分濃度を測定して後燃焼空気
量を制御するとともに、後燃焼火格子速度を制御するこ
ともできる。その一例として、主煙道温度と排ガス中C
O濃度に基づいて制御する場合を説明する。
It is also possible to measure the main flue temperature or the main flue temperature and the exhaust gas component concentration to control the amount of post combustion air and to control the post combustion grate velocity without obtaining the pressure difference. . As an example, main flue temperature and exhaust gas C
A case of controlling based on the O concentration will be described.

【0091】後燃焼空気量の制御値Fn を(3)式を用
いて求め、次の(5)式を用いて後燃焼火格子速度の制
御値Gn を求める。
The control value F n of the post-combustion air amount is obtained by using the equation (3), and the control value G n of the after-combustion grate velocity is obtained by using the following equation (5).

【0092】[0092]

【数5】 (Equation 5)

【0093】但し、hT は主煙道温度についての制御パ
ラメータで負である。hCOは排ガス中CO濃度について
のパラメータで主煙道温度の測定値Tが基準値Tset
り小で且つ排ガス中CO濃度の測定値〔CO〕が基準値
〔CO〕set よりも大であるとき正であり、主煙道温度
の測定値Tが基準値Tset より大で且つ排ガス中CO濃
度の測定値〔CO〕が基準値〔CO〕set よりも大のと
き負であり、それ以外のときは零である。
However, h T is a control parameter for the main flue temperature and is negative. h CO is a parameter for the CO concentration in the exhaust gas, and the measured value T of the main flue temperature is smaller than the reference value T set and the measured value [CO] of the CO concentration in the exhaust gas is larger than the reference value [CO] set. Is positive when the measured value T of the main flue temperature is greater than the reference value T set and the measured value [CO] of the CO concentration in the exhaust gas is greater than the reference value [CO] set , and otherwise Is zero when.

【0094】以上の計算に際して、主煙道温度、排ガス
中O2 濃度、排ガス中CO濃度、圧力差等の基準値に幅
がある場合は、基準値として上限値或いは下限値を用
い、測定値が限界範囲内であれば測定値と基準値との差
を零として計算を行えばよい。
In the above calculation, if the reference values such as the main flue temperature, the O 2 concentration in the exhaust gas, the CO concentration in the exhaust gas, the pressure difference, etc. are wide, the upper limit value or the lower limit value is used as the reference value and the measured value is used. If is within the limit range, the difference between the measured value and the reference value may be set to zero for calculation.

【0095】又、以上の計算の他、主煙道温度、排ガス
中O2 濃度又はCO濃度の測定以外に、排ガス中O2
度の測定と同時にCO濃度の測定を行って、これらの項
を加えて計算を行ってもよい。
In addition to the above calculation, in addition to the measurement of the main flue temperature, the O 2 concentration in the exhaust gas or the CO concentration, the CO concentration is measured at the same time as the measurement of the O 2 concentration in the exhaust gas. In addition, calculation may be performed.

【0096】測定値に関しても、二次空気量、各火格子
下への一次空気量の測定を行い、これら空気量の変動を
把握し、O2 濃度やCO濃度を補正して用いてもよい。
Regarding the measured values, the secondary air amount and the primary air amount under each grate may be measured, the fluctuations in these air amounts may be grasped, and the O 2 concentration and CO concentration may be corrected before use. .

【0097】更に、他の制御方法と併用することも可能
であり、例えば、炉出口温度或いは発生蒸気量を測定
し、これらを一定に保つために二次空気量を制御する方
法と、この発明の制御方法を併用することもできる。
Further, it is also possible to use in combination with other control methods, for example, a method of measuring the furnace outlet temperature or the amount of generated steam and controlling the secondary air amount to keep these constant, and the present invention. It is also possible to use the above control method together.

【0098】[0098]

【実施例】図1に示した制御系により、主煙道温度を測
定し後燃焼空気量を制御し、排ガス中のCO濃度を調べ
た。
EXAMPLE The main flue temperature was measured by the control system shown in FIG. 1, the amount of post-combustion air was controlled, and the CO concentration in the exhaust gas was investigated.

【0099】主煙道温度の基準値Tset は850℃で制
御値の演算周期は1分であった。調べた結果を主煙道温
度の測定値ととも図4に示す。図4で、(a)図は主煙
道温度の変化を示し、(b)図は同時に測定した排ガス
中CO濃度を示す。
The reference value T set of the main flue temperature was 850 ° C., and the calculation cycle of the control value was 1 minute. The results of the examination are shown in Fig. 4 together with the measured values of the main flue temperature. In FIG. 4, (a) figure shows the change of the main flue temperature, and (b) figure shows the CO concentration in the exhaust gas measured at the same time.

【0100】測定は5時間にわたって行われたが、後燃
焼火格子上では後燃焼空気量の制御による燃焼制御が行
われでいるので、主煙道温度は820℃〜930℃の範
囲に制御され、排ガス中CO濃度は20ppm 以下に抑制
されていた。
The measurement was carried out for 5 hours, but since the combustion control was carried out on the after-combustion grate by controlling the amount of after-combustion air, the main flue temperature was controlled within the range of 820 ° C to 930 ° C. The CO concentration in the exhaust gas was suppressed to 20 ppm or less.

【0101】この結果を従来の二次空気量の調整を主と
する完全燃焼制御と比較した。従来の結果を図5に示
す。図5で、(a)図は主煙道温度の変化を示し、
(b)図は同時に測定した排ガス中CO濃度を示す。主
煙道温度は750℃〜1050℃の範囲で変動し、主煙
道温度が高いときには排ガス中CO濃度は200ppm 以
上にも高くなっていた。
This result was compared with the conventional complete combustion control mainly for adjusting the secondary air amount. The conventional results are shown in FIG. In FIG. 5, (a) figure shows the change of main flue temperature,
The figure (b) shows the CO concentration in the exhaust gas measured at the same time. The main flue temperature fluctuated in the range of 750 ° C to 1050 ° C, and when the main flue temperature was high, the CO concentration in the exhaust gas was as high as 200 ppm or more.

【0102】なお、後燃焼火格子で空気不足の状態が出
現する場合は、前段の火格子でも未燃焼ガスの発生が多
い。この未燃焼ガスは副煙道を通って混合室に導入され
るが、同時にこの発明に基づき増やされた後燃焼空気が
高温状態で主煙道から混合室に導入されるので、ここで
副煙道ガスに含まれる未燃焼成分の燃焼に寄与する。こ
のため、未燃焼ガスの燃焼のために二次空気の増加量を
その分だけ減ずることができ、常温で吹き込まれる二次
空気の不必要な冷却効果によるエネルギ損失を減ずるこ
とができる。
When an air-deficient state appears in the post-combustion grate, unburned gas is often generated in the front-stage grate. This unburned gas is introduced into the mixing chamber through the auxiliary flue, but at the same time, after the combustion air that has been increased according to the present invention is introduced into the mixing chamber from the main flue in a high temperature state, the auxiliary smoke is introduced here. It contributes to the combustion of unburned components contained in the flue gas. Therefore, the increase amount of the secondary air due to the combustion of the unburned gas can be reduced by that amount, and the energy loss due to the unnecessary cooling effect of the secondary air blown at room temperature can be reduced.

【0103】[0103]

【発明の効果】以上に述べてきたように、この発明によ
れば、主煙道温度等を測定することによって後燃焼火格
子上のごみの状態を判断し、温度不足や空気不足或いは
燃料不足に陥らないように後燃焼空気量又は後燃焼空気
量と後燃焼火格子速度を制御する。このため、一次燃焼
段階で不完全燃焼状態が直ちに改善されダイオキシン類
や一酸化炭素等の未燃焼成分の発生が抑制される。同時
に、不必要な二次空気の吹き込みも防止されている。こ
のように、完全燃焼を達成するとともにごみエネルギの
効率的な活用を可能としたこの発明の効果は大きい。
As described above, according to the present invention, the state of dust on the post-combustion grate is judged by measuring the temperature of the main flue, etc., and the temperature is insufficient, the air is insufficient, or the fuel is insufficient. The post-combustion air amount or the post-combustion air amount and the post-combustion grate velocity are controlled so as not to fall into. Therefore, the incomplete combustion state is immediately improved in the primary combustion stage, and the generation of unburned components such as dioxins and carbon monoxide is suppressed. At the same time, unnecessary blowing of secondary air is prevented. As described above, the effect of the present invention that achieves complete combustion and enables efficient use of waste energy is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】発明の実施例に用いたごみ焼却炉とその制御系
の概念図である。
FIG. 1 is a conceptual diagram of a refuse incinerator and its control system used in an embodiment of the invention.

【図2】主煙道温度と排ガス中CO濃度の関係を説明す
るための両者の変化を示すグラフである。
FIG. 2 is a graph showing changes in the main flue temperature and the CO concentration in exhaust gas for explaining the relationship between the two.

【図3】後燃焼空気量と排ガス中CO濃度の関係を説明
するための両者の変化をグラフである。
FIG. 3 is a graph showing changes in both of the post-combustion air amount and the CO concentration in exhaust gas in order to explain the relationship between them.

【図4】発明の一実施例による主煙道温度及び排ガス中
CO濃度の変化を示すグラフである。
FIG. 4 is a graph showing changes in main flue temperature and CO concentration in exhaust gas according to an embodiment of the invention.

【図5】従来の制御方法による主煙道温度及び排ガス中
CO濃度の変化を示すグラフでる。
FIG. 5 is a graph showing changes in main flue temperature and CO concentration in exhaust gas according to a conventional control method.

【符号の説明】[Explanation of symbols]

1 焼却炉 3c 後燃焼火格子 3d 火格子駆動装置 4 落下口 5 一次空気ファン 10 二次空気ファン 11 隔壁 13d 後燃焼火格子下空気ダンパ 14 主煙道温度計 15 制御装置 16 排ガスO2 濃度計 17 排ガスCO濃度計 18a 炉内圧力計 18b 後燃焼火格子下圧力計。1 Incinerator 3c Post-combustion grate 3d Grate drive 4 Droplet 5 Primary air fan 10 Secondary air fan 11 Partition 13d Post-combustion grate below air damper 14 Main flue thermometer 15 Controller 16 Exhaust gas O 2 concentration meter 17 Exhaust gas CO concentration meter 18a In-furnace pressure gauge 18b Post-combustion grate pressure gauge.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F23G 5/50 ZAB F23G 5/50 ZABP ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display area F23G 5/50 ZAB F23G 5/50 ZABP

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】焼却炉の主煙道温度又は主煙道温度と排ガ
ス中O2 濃度、排ガス中CO濃度若しくは後燃焼火格子
上下の圧力差の一つ以上を測定し、各々の測定値を周期
的に各々の基準値と比較し、この比較結果に基づいて、
後燃焼空気量又は後燃焼空気量と後燃焼火格子速度を制
御することを特徴とするごみ焼却炉排ガス中未燃焼成分
の抑制方法。
1. A main flue temperature of an incinerator or one or more of a main flue temperature and an O 2 concentration in exhaust gas, a CO concentration in exhaust gas, or a pressure difference above and below a post-combustion grate is measured, and each measured value is measured. Periodically compare with each reference value, based on this comparison result,
A method for suppressing unburned components in exhaust gas of a refuse incinerator, which comprises controlling the amount of afterburning air or the amount of afterburning air and the velocity of afterburning grate.
【請求項2】焼却炉の主煙道温度を測定し、この主煙道
温度が基準温度に達しないときは後燃焼空気量を減ら
し、主煙道温度が基準温度を超えるときは後燃焼空気量
を増やすことを特徴とするごみ焼却炉排ガス中未燃焼成
分の抑制方法。
2. The main flue temperature of the incinerator is measured, and when the main flue temperature does not reach the reference temperature, the amount of post combustion air is reduced, and when the main flue temperature exceeds the reference temperature, the post combustion air. A method for suppressing unburned components in exhaust gas from a refuse incinerator, which is characterized by increasing the amount.
【請求項3】焼却炉の主煙道温度と排ガス中のO2 濃度
を測定し、主煙道温度が基準温度に達せず排ガス中O2
濃度が基準値を超えるときは後燃焼空気量を減らし,主
煙道温度が基準温度を超えO2 濃度が基準値に達しない
ときは後燃焼空気量を増やすことを特徴とするごみ焼却
炉排ガス中未燃焼成分の抑制方法。
3. The main flue temperature and O 2 concentration in the exhaust gas of the incinerator is measured, the main smoke in the exhaust gases not reach the road temperature is the reference temperature O 2
Waste incinerator exhaust gas characterized by decreasing the amount of after combustion air when the concentration exceeds the reference value, and increasing the amount of after combustion air when the main flue temperature exceeds the reference temperature and the O 2 concentration does not reach the reference value Medium Unburned component control method.
【請求項4】焼却炉の主煙道温度と排ガス中のCO濃度
を測定し,主煙道温度が基準温度以下でCO濃度が基準
値を超えるときは後燃焼空気量を減らし,主煙道温度が
基準温度を超えCO濃度が基準値を超えるときは後燃焼
空気量を増やすことを特徴とするごみ焼却炉排ガス中未
燃焼成分の抑制方法。
4. The main flue temperature of the incinerator and the CO concentration in the exhaust gas are measured, and when the main flue temperature is below the reference temperature and the CO concentration exceeds the reference value, the amount of post-combustion air is reduced to reduce the main flue gas. A method for suppressing unburned components in exhaust gas of a refuse incinerator, which comprises increasing the amount of post-combustion air when the temperature exceeds the reference temperature and the CO concentration exceeds the reference value.
【請求項5】焼却炉の主煙道温度又は主煙道温度と排ガ
ス中O2 濃度、排ガス中CO濃度若しくは後燃焼火格子
上下の圧力差の一つ以上を測定し、各々の測定値を周期
的に各々の基準値と比較し、この比較結果に基づいて後
燃焼空気量の制御を行うとともに、後燃焼火格子下の圧
力と炉内圧力との差を測定し、これらの測定値を比較
し、比較結果に基づいて後燃焼火格子速度を制御するこ
とを特徴とする焼却炉排ガス中未燃焼成分の抑制方法。
5. The main flue temperature of the incinerator or one or more of the main flue temperature and the O 2 concentration in the exhaust gas, the CO concentration in the exhaust gas, or the pressure difference above and below the post-combustion grate is measured, and each measured value is measured. Periodically compared with each reference value, while controlling the amount of post-combustion air based on the result of this comparison, the difference between the pressure under the post-combustion grate and the pressure in the furnace is measured, these measured values A method for suppressing unburned components in exhaust gas of an incinerator, comprising: comparing and controlling a post-combustion grate velocity based on the comparison result.
【請求項6】焼却炉の主煙道温度、後燃焼火格子下の圧
力及び炉内圧力の差を測定し、主煙道温度が基準温度に
達せず且つ後燃焼火格子下の圧力と炉内圧力の差が基準
差に達しないときは後燃焼空気量を減らすとともに後燃
焼火格子速度を増速し、主煙道温度が基準温度を超え且
つ後燃焼火格子下の圧力と炉内圧力の差が基準差を超え
るときは後燃焼空気量を増やすとともに後燃焼火格子速
度を減速することを特徴とするごみ焼却炉排ガス中未燃
焼成分の抑制方法。
6. The difference between the main flue temperature of the incinerator, the pressure below the post-combustion grate and the pressure inside the furnace is measured, and the main flue temperature does not reach the reference temperature and the pressure below the post-combustion grate and the furnace. When the difference in internal pressure does not reach the standard difference, the amount of post combustion air is reduced and the post combustion grate velocity is increased, the main flue temperature exceeds the reference temperature, and the pressure under the post combustion grate and the furnace pressure When the difference exceeds the standard difference, the method for suppressing unburned components in the exhaust gas of a refuse incinerator is characterized by increasing the amount of post-combustion air and decelerating the speed of post-combustion grate.
【請求項7】焼却炉の主煙道温度、排ガス中のO2
度、後燃焼火格子下の圧力及び炉内圧力の差を測定し、
主煙道温度が基準温度に達せずO2 濃度が基準値を超え
且つ後燃焼火格子下の圧力と炉内圧力の差が基準差に達
しないときは、後燃焼空気量を減らすとともに後燃焼火
格子速度を増速し、主煙道温度が基準温度を超えO2
度が基準値に達せず且つ後燃焼火格子下の圧力と炉内圧
力の差が基準差を超えるときは、後燃焼空気量を増やす
とともに後燃焼火格子速度を減速することを特徴とする
ごみ焼却炉排ガス中未燃焼成分の抑制方法。
7. The difference between the main flue temperature of the incinerator, the O 2 concentration in the exhaust gas, the pressure below the post-combustion grate and the pressure inside the furnace is measured,
When the main flue temperature does not reach the reference temperature, the O 2 concentration exceeds the reference value, and the difference between the pressure under the post-combustion grate and the pressure in the furnace does not reach the reference difference, the post-combustion air amount is reduced and the post-combustion is performed. When the grate velocity is increased, the main flue temperature exceeds the reference temperature, the O 2 concentration does not reach the reference value, and the difference between the pressure under the post-combustion grate and the pressure in the furnace exceeds the reference difference, the post-combustion is performed. A method for suppressing unburned components in exhaust gas from a refuse incinerator, which comprises increasing the amount of air and reducing the velocity of a post-combustion grate.
【請求項8】焼却炉の主煙道温度、排ガス中のCO濃
度、後燃焼火格子下の圧力及び炉内圧力の差を測定し、
主煙道温度が基準温度に達せずCO濃度が基準値を超え
且つ後燃焼火格子下の圧力と炉内圧力の差が基準差に達
しないときは後燃焼空気量を減らすとともに後燃焼火格
子速度を増速し、主煙道温度が基準温度を超えCO濃度
が基準値を超え且つ後燃焼火格子下の圧力と炉内圧力の
差が基準差を超えるときは後燃焼空気量を増やすととも
に後燃焼火格子速度を減速することを特徴とするごみ焼
却炉排ガス中未燃焼成分の抑制方法。
8. The difference between the main flue temperature of the incinerator, the CO concentration in the exhaust gas, the pressure below the post-combustion grate and the pressure inside the furnace is measured,
When the main flue temperature does not reach the reference temperature, the CO concentration exceeds the reference value, and the difference between the pressure under the post-combustion grate and the pressure in the furnace does not reach the reference difference, the amount of post-combustion air is reduced and the post-combustion grate is reduced. When the speed is increased, the main flue temperature exceeds the reference temperature, the CO concentration exceeds the reference value, and the difference between the pressure under the post-combustion grate and the pressure in the furnace exceeds the reference difference, the post-combustion air amount is increased. A method for suppressing unburned components in exhaust gas from a refuse incinerator, which comprises reducing the speed of a post-combustion grate.
JP7999896A 1996-04-02 1996-04-02 Restraining method of unburnt constituent in exhaust gas of incinerating furnace Pending JPH09273730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7999896A JPH09273730A (en) 1996-04-02 1996-04-02 Restraining method of unburnt constituent in exhaust gas of incinerating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7999896A JPH09273730A (en) 1996-04-02 1996-04-02 Restraining method of unburnt constituent in exhaust gas of incinerating furnace

Publications (1)

Publication Number Publication Date
JPH09273730A true JPH09273730A (en) 1997-10-21

Family

ID=13705972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7999896A Pending JPH09273730A (en) 1996-04-02 1996-04-02 Restraining method of unburnt constituent in exhaust gas of incinerating furnace

Country Status (1)

Country Link
JP (1) JPH09273730A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111578284A (en) * 2020-05-18 2020-08-25 扬州大学 Chain grate furnace for biomass and household garbage collaborative combustion and operation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111578284A (en) * 2020-05-18 2020-08-25 扬州大学 Chain grate furnace for biomass and household garbage collaborative combustion and operation method thereof
CN111578284B (en) * 2020-05-18 2022-04-15 扬州大学 Chain grate furnace for biomass and household garbage collaborative combustion and operation method thereof

Similar Documents

Publication Publication Date Title
KR100304244B1 (en) Combustion control method and apparatus for waste incinerators
JP2008064361A (en) Stoker-type incinerator and combustion control method therefor
JPH1068514A (en) Combustion controlling method for refuse incinerating furnace
JPH11294740A (en) Exhaust gas complete combustion control method and apparatus
JP3956862B2 (en) Combustion control method for waste incinerator and waste incinerator
JPH09273730A (en) Restraining method of unburnt constituent in exhaust gas of incinerating furnace
JP3309387B2 (en) Waste incinerator
JPH0240410A (en) Automatic combustion control of municipal waste incinerating furnace
JP2001033017A (en) Method for controlling combustion of refuse incinerator
JP7237654B2 (en) Automatic combustion control method for garbage incinerator
JPH0470528B2 (en)
JPH09273733A (en) Control method of combustion in incinerating furnace
JPH09273732A (en) Control method of combustion in incinerating furnace
JPH0468534B2 (en)
JP3556078B2 (en) Dust supply speed control method for refuse incinerator and refuse incinerator
JP2002147732A (en) Refuse incinerator
KR100306291B1 (en) Control method of flue gas mixture discharged from garbage incinerator
JPH10141631A (en) Restraining method for nox and unburnt constituent in exhaust gas of waste incinerator
JP7307294B1 (en) rotary waste incinerator system
JP2889117B2 (en) Garbage incinerator
JPH10332121A (en) Combustion controlling method for refuse incinerator
JPH11351558A (en) Method and apparatus for controlling combustion of combustion furnace
JP3598882B2 (en) Two-stream waste incinerator and its operation method
JP2000111022A (en) Method for removing dioxins in waste incinerator
JP2003114016A (en) Refuse incineration device