JP2002147729A - Refuse incinerator - Google Patents

Refuse incinerator

Info

Publication number
JP2002147729A
JP2002147729A JP2000331728A JP2000331728A JP2002147729A JP 2002147729 A JP2002147729 A JP 2002147729A JP 2000331728 A JP2000331728 A JP 2000331728A JP 2000331728 A JP2000331728 A JP 2000331728A JP 2002147729 A JP2002147729 A JP 2002147729A
Authority
JP
Japan
Prior art keywords
gas
temperature
combustion
refuse
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000331728A
Other languages
Japanese (ja)
Inventor
Manabu Kuroda
学 黒田
Satoshi Fujii
聡 藤井
Hiroyuki Shimamoto
拓幸 島本
Shigeyuki Doi
茂行 土井
Michio Nagaseki
三千男 永関
Tomonori Nakagawa
知紀 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2000331728A priority Critical patent/JP2002147729A/en
Publication of JP2002147729A publication Critical patent/JP2002147729A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To control and suppress production of non-combustion gas involving CO and dioxins by rapidly detecting variations of combustion waste gas and temperature variations owing to the nature of refuse in the refuse incinerator, and ensure stabilization of combustion in the incinerator, suppression of production of dioxins in the course of combustion, and production of refuse non- combustion by rapidly controlling a change in a rapid combustion state in the incinerator. SOLUTION: A refuse incinerator includes control means for controlling the amount of combustion air blown from under a grate based upon gas temperature of a gas mixing section, where combustible gas produced in a drying process for refuse and combustion waste gas produced in a later combustion process join.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ごみ焼却炉に関
し、特にCO、ダイオキシン類等を含んだ未燃ガスの発生
を抑制できるごみ焼却炉に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refuse incinerator, and more particularly to a refuse incinerator capable of suppressing generation of unburned gas containing CO, dioxins and the like.

【0002】[0002]

【従来の技術】従来より、炉内の燃焼排ガス温度等を測
定して燃焼用空気量を調整することで、燃焼排ガス中の
ダイオキシン類を除去することが行われている。
2. Description of the Related Art Conventionally, dioxins in flue gas have been removed by measuring the temperature of flue gas in a furnace and adjusting the amount of combustion air.

【0003】燃焼排ガス温度を測定する技術としては、
例えば保護管付き熱電対を用いて燃焼排ガス温度を測定
する手法(これを第1従来例という)が知られている。
Techniques for measuring the temperature of flue gas include:
For example, a technique of measuring the temperature of combustion exhaust gas using a thermocouple with a protection tube (this is referred to as a first conventional example) is known.

【0004】また、例えば特開平11-142259 号公報(こ
れを第2従来例という)に示されているように、燃焼排
ガス流路の外部に音速定数測定用の恒温槽を設けるとと
もに、恒温槽内に音波の送信機と受信機を設置し、燃焼
排ガスの一部を分取して恒温槽に導き、恒温槽における
燃焼排ガスの音速定数を得て、この音速定数と測定され
た送信機と受信機間の音速から、送信機と受信機間を流
れる燃焼排ガスの温度を演算により求めるようにしたも
のも提案されている。
Further, as shown in Japanese Patent Application Laid-Open No. 11-142259 (this is referred to as a second conventional example), a thermostatic chamber for measuring a sonic constant is provided outside a flue gas flow path, and a thermostatic chamber is provided. A transmitter and receiver for sound waves are installed in the chamber, a part of the flue gas is separated and guided to a thermostat, and the sonic constant of the flue gas in the thermostat is obtained. There has also been proposed a method in which the temperature of combustion exhaust gas flowing between a transmitter and a receiver is calculated from the sound speed between the receivers.

【0005】また、投入ごみの性状や燃焼状態に応じて
燃焼に過不足ない空気を火格子下より供給する事で、燃
焼排ガス中のダイオキシン類の発生を抑制することが行
われている。
[0005] Further, the generation of dioxins in combustion exhaust gas has been suppressed by supplying air that is not excessive or insufficient for combustion from below the grate according to the properties and combustion state of the injected waste.

【0006】この燃焼空気量の制御に当たり、燃焼状態
を判断する指標としては、ボイラの蒸気発生量が広く用
いられている。
In controlling the amount of combustion air, the amount of steam generated by a boiler is widely used as an index for judging the combustion state.

【0007】例えば、特開平4−371712号公報
(これを第3従来例という)には、蒸気発生量の急激な
変化に対して、燃焼室を構成するボイラ水管パネル部で
の蒸気発生量を測定し、測定値に基づき火格子下の燃焼
空気流量と炉室へ直接吹き込まれる冷却空気流量の割合
を総風量一定で調整する制御方法が記載されている。こ
の制御では、蒸気発生量が設定値を上回るときは一次空
気量を減らし、下回った場合は増やすことにより燃焼状
態の制御を行うものである。
For example, Japanese Unexamined Patent Publication No. Hei 4-371712 (hereinafter referred to as a third conventional example) discloses that the amount of steam generated in a boiler water pipe panel constituting a combustion chamber is changed in response to a sudden change in the amount of steam generated. A control method is described in which the ratio of the flow rate of combustion air below the grate to the flow rate of cooling air blown directly into the furnace chamber is measured and the total air flow is adjusted based on the measured values. In this control, the combustion state is controlled by decreasing the primary air amount when the steam generation amount exceeds the set value, and increasing the primary air amount when the steam generation amount falls below the set value.

【0008】また、特開平9−273733号公報(こ
れを第4従来例という)には、蒸気発生量の測定値に基
づき、蒸気発生量が一定の範囲内に入るように一次空気
ダンパの開度を制御すると同時に、各所に分配される乾
燥火格子前部下空気ダンパ,燃焼火格子前部下空気ダン
パ,燃焼火格子後部下空気ダンパ,後燃焼火格子後部下
空気ダンパの各々の開度を制御する方法が記載されてい
る。
Japanese Patent Application Laid-Open No. 9-273733 (hereinafter referred to as a fourth conventional example) discloses that a primary air damper is opened based on a measured value of a steam generation amount so that the steam generation amount falls within a certain range. At the same time as controlling the degree of opening, the opening degree of each of the dry grate front lower air damper, combustion grate front lower air damper, combustion grate rear lower air damper, and post-combustion grate rear lower air damper distributed to various places A method is described.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、炉内の
燃焼排ガス温度を熱電対で測定する第1従来例にあって
は、熱電対を直に炉内に挿入して測定すると、高温ガス
や有害ガスの影響により寿命が短くなるため、既述した
ように熱電対を保護する金属もしくは磁器の材質からな
る保護管に入れて温度を測定する必要がある。熱電対は
数ミリの径であることから、熱電対で直接燃焼排ガス温
度を測定する場合には、燃焼排ガス温度変化に対して迅
速に応答する。しかし、熱電対を保護管に入れて燃焼排
ガス温度を測定すると、保護管の熱容量が大きいため
に、燃焼排ガスの温度変化に対して熱電対の温度変化の
指示が遅く、燃焼排ガスの温度変化に対して迅速な温度
測定ができない。
However, in the first conventional example in which the temperature of the combustion exhaust gas in the furnace is measured by a thermocouple, if a thermocouple is directly inserted into the furnace and measured, high-temperature gas or harmful Since the life is shortened due to the influence of the gas, it is necessary to measure the temperature by placing the thermocouple in a protective tube made of metal or porcelain as described above. Since the thermocouple has a diameter of several millimeters, when the temperature of the combustion exhaust gas is directly measured by the thermocouple, it responds quickly to a change in the temperature of the combustion exhaust gas. However, when the temperature of the flue gas is measured by inserting a thermocouple into the protective tube, the temperature change of the thermocouple is slow in response to the temperature change of the flue gas due to the large heat capacity of the protective tube. On the other hand, quick temperature measurement is not possible.

【0010】また、音速の変動を測定して、測定された
音速から燃焼排ガスの温度を演算により求める第2従来
例にあっては、音速が温度だけでなく燃焼排ガス成分に
も依存して変動するため、分取した燃焼排ガスを恒温槽
に取り込み音速を測定することで音速定数を算出し、音
速定数を用いて音速を補正することで燃焼排ガス成分の
変動分を保証している。このため、煙道から燃焼排ガス
を分岐して恒温槽に燃焼直後の高温で変動し易く飛灰が
多い燃焼排ガスを取り込み、恒温槽内で一定温度に維持
しなければならない。このとき、高温で除塵できるフィ
ルタ、腐食性ガスに耐え得る装置が必要となり、設備が
複雑化して設備費が嵩む問題がある。
Further, in the second conventional example in which the fluctuation of the sound velocity is measured and the temperature of the combustion exhaust gas is calculated from the measured sound velocity, the sound velocity varies not only depending on the temperature but also on the combustion exhaust gas component. To this end, the collected flue gas is taken into a thermostat, the sonic speed is measured by measuring the sonic speed, and the sonic speed is corrected using the sonic speed constant, thereby guaranteeing the fluctuation of the flue gas component. For this reason, it is necessary to branch the flue gas from the flue, take in the flue gas which fluctuates at a high temperature immediately after combustion and has a lot of fly ash into the constant temperature bath, and keep the temperature constant in the constant temperature bath. At this time, a filter that can remove dust at high temperature and a device that can withstand corrosive gas are required, and there is a problem that the equipment becomes complicated and the equipment cost increases.

【0011】また、前記第3従来例の特開平4−371
712号公報及び第4従来例の特開平9−273733
号公報では蒸気発生量に基づいた制御方法が開示されて
いるが、これは、蒸気発生量の変化は炉内温度を測定す
る目的で設置されている保護管付き熱電対に比べ60〜
120sec程度応答が速く、炉内の燃焼状態をより早
く検知するのに適しているためである。
The third prior art is disclosed in Japanese Patent Laid-Open No. 4-371.
No. 712 and the fourth conventional example of Japanese Patent Application Laid-Open No. 9-273733.
Japanese Patent Application Laid-Open Publication No. H11-209,086 discloses a control method based on the amount of generated steam. However, the control method is based on the fact that the change in the amount of generated steam is 60 to 60 compared with a thermocouple with a protection tube installed for the purpose of measuring the furnace temperature.
This is because the response is fast for about 120 seconds, which is suitable for detecting the combustion state in the furnace earlier.

【0012】しかし、蒸気発生量の変化にもある程度の
遅れが伴うため、急激な燃焼状態の変化に対しては迅速
に対処できず、炉内燃焼状態の不安定化、ダイオキシン
類の発生量の増加といった問題があった。
However, since the change in the amount of generated steam is accompanied with a certain delay, it is not possible to cope with a rapid change in the combustion state, and the combustion state in the furnace is destabilized and the amount of generated dioxins is reduced. There was a problem such as an increase.

【0013】本発明の技術的課題は、ごみ性状による燃
焼排ガスの変動や温度変動を迅速に検出できて、CO、
ダイオキシン類等を含んだ未燃ガスの発生を管理、抑制
できるようにすることにある。
The technical problem of the present invention is to quickly detect fluctuations in combustion exhaust gas and fluctuations in temperature due to the nature of waste, and to reduce CO,
An object of the present invention is to enable management and suppression of generation of unburned gas containing dioxins and the like.

【0014】さらに、炉内の急激な燃焼状態の変化に対
して迅速な制御を行うことにより、炉内燃焼の安定化、
燃焼過程におけるダイオキシン類の発生の抑制、ごみ未
燃の発生防止を図ることができるごみ焼却炉の燃焼制御
方法を提供することを目的とする。
Further, by performing quick control for a rapid change in the combustion state in the furnace, stabilization of combustion in the furnace,
An object of the present invention is to provide a combustion control method of a refuse incinerator that can suppress generation of dioxins in a combustion process and prevent generation of unburned refuse.

【0015】[0015]

【課題を解決するための手段】上記の課題は次の発明に
より解決される。 [1]ごみの乾燥過程で発生した可燃性ガスと後燃焼過
程で発生した燃焼排ガスが合流するガス混合部のガス温
度に基づき火格子下より吹き込む燃焼空気量を制御する
制御手段を備えたことを特徴とするごみ焼却炉。 [2]上記[1]において、前記制御手段は、ガス混合
部のガス温度の計測値と所定の温度目標値との偏差およ
び/またはガス混合部のガス温度の計測値と所定時間前
に計測したガス混合部のガス温度の計測値との差分値に
基づき火格子下より吹き込む燃焼空気量を制御すること
を特徴とするごみ焼却炉。 [3]上記[2]において、前記制御手段は、所定の温
度目標値を、別途設定されるボイラ蒸発量及びごみの発
熱量により算出することを特徴とするごみ焼却炉。 [4]上記[1]乃至[3]のいずれかにおいて、ガス
混合部の特定成分の吸収波長帯における熱放射エネルギ
ーを検出することによりガス混合部のガス温度を計測す
る計測手段を備えたことを特徴とするごみ焼却炉。 [5]上記[4]において、前記計測手段は、特定成分
としてCO2を用いることを特徴とするごみ焼却炉。 [6]上記[1]乃至[5]のいずれかにおいて、前記
制御手段は、ファジィ制御を用いて火格子下より吹き込
む燃焼空気量を制御することを特徴とするごみ焼却炉。 [7]上記[1]乃至[6]のいずれかにおいて、ガス
混合部のガス温度が所定値以下となる境界領域に、複数
の温度計を燃焼排ガス流れ方向に配置して設けたことを
特徴とするごみ焼却炉。 [8]上記[1]乃至[7]のいずれかにおいて、ガス
混合部のガス温度が所定値以下となる境界領域に設けた
複数の温度計の検出結果に基づいて火格子下より吹き込
む燃焼空気量を補正制御する制御手段を設けたことを特
徴とするごみ焼却炉。 [9]炉内で、ごみの乾燥過程で発生した可燃性ガスと
後燃焼過程で発生した燃焼排ガスを合流させて再燃焼ま
で開始させるごみ焼却炉システムにおいて、前記可燃性
ガスと燃焼排ガスの合流域内の下流側に、燃焼排ガス温
度を測定する放射温度計を配置するとともに、該放射温
度計の検出結果に基づいて火格子装置への燃焼用空気の
吹き込み量を制御する制御装置を設けたことを特徴とす
るごみ焼却炉。 [10]焼却炉内で燃焼した一次燃焼排ガスに含まれる
未燃成分を、二次燃焼用空気と攪拌して二次燃焼させる
ごみ焼却炉システムにおいて、前記二次燃焼用空気の吹
き込み領域内の下流側に、二次燃焼排ガス温度を測定す
る放射温度計を配置するとともに、該放射温度計の検出
結果に基づいて一次および二次燃焼用空気の吹き込み量
を制御する制御装置を設けたことを特徴とするごみ焼却
炉。 [11]上記[9]又は[10]において、焼却炉の燃
焼排ガス出口に接続された煙道内の、該煙道を流れる燃
焼排ガスの温度が所定値以下となる境界領域に、複数の
放射温度計を燃焼排ガス流れ方向に配置して設けたこと
を特徴とするごみ焼却炉。 [12]上記[11]において、燃焼排ガスの温度が所
定値以下となる境界領域に設けた複数の放射温度計の検
出結果に基づいて燃焼用空気の吹き込み量を補正制御す
る制御装置を設けたことを特徴とするごみ焼却炉。
The above object is achieved by the following invention. [1] Control means for controlling the amount of combustion air blown from below the grate based on the gas temperature of the gas mixing section where the combustible gas generated in the refuse drying process and the flue gas generated in the post-combustion process merge. A refuse incinerator characterized by the following. [2] In the above [1], the control means may measure a deviation between a measured value of the gas temperature of the gas mixing section and a predetermined temperature target value and / or a predetermined time before the measured value of the gas temperature of the gas mixing section. A refuse incinerator characterized in that the amount of combustion air blown from below the grate is controlled based on the difference between the measured gas temperature of the gas mixing section and the measured value. [3] The refuse incinerator according to [2], wherein the control means calculates the predetermined temperature target value based on a separately set boiler evaporation amount and waste heat value. [4] In any one of the above [1] to [3], a measuring means for measuring a gas temperature of the gas mixing section by detecting thermal radiation energy in an absorption wavelength band of a specific component of the gas mixing section is provided. A refuse incinerator characterized by the following. [5] The refuse incinerator according to [4], wherein the measuring means uses CO 2 as a specific component. [6] A refuse incinerator according to any one of [1] to [5], wherein the control means controls the amount of combustion air blown from below the grate using fuzzy control. [7] In any one of the above [1] to [6], a plurality of thermometers are arranged and provided in a flow direction of the combustion exhaust gas in a boundary region where the gas temperature of the gas mixing section is equal to or lower than a predetermined value. And garbage incinerator. [8] In any one of the above [1] to [7], combustion air blown from below the grate based on detection results of a plurality of thermometers provided in a boundary region where the gas temperature of the gas mixing section is equal to or lower than a predetermined value. A refuse incinerator comprising a control means for correcting and controlling the amount. [9] In the refuse incinerator system in which the combustible gas generated in the process of drying the refuse and the flue gas generated in the post-combustion process are merged in the furnace and the process is started until reburning, the flammable gas and the flue gas are merged. A radiation thermometer for measuring the temperature of the combustion exhaust gas is arranged on the downstream side in the region, and a control device for controlling the amount of combustion air blown into the grate device based on the detection result of the radiation thermometer is provided. A refuse incinerator characterized by the following. [10] In a refuse incinerator system in which unburned components contained in primary combustion exhaust gas burned in an incinerator are agitated with secondary combustion air to perform secondary combustion, in the incineration system of the secondary combustion air, On the downstream side, a radiation thermometer for measuring the temperature of the secondary combustion exhaust gas is arranged, and a control device for controlling the blowing amounts of the primary and secondary combustion air based on the detection result of the radiation thermometer is provided. Characterized garbage incinerator. [11] In the above [9] or [10], a plurality of radiant temperatures are set in a boundary region in the flue connected to the flue gas outlet of the incinerator where the temperature of the flue gas flowing through the flue is equal to or lower than a predetermined value. A refuse incinerator characterized in that a meter is arranged in the flow direction of the flue gas. [12] In the above [11], a control device is provided for correcting and controlling the blowing amount of the combustion air based on the detection results of the plurality of radiation thermometers provided in the boundary region where the temperature of the combustion exhaust gas is equal to or lower than a predetermined value. A refuse incinerator characterized in that:

【0016】[0016]

【発明の実施の形態】実施形態1.以下、本発明の第1
の実施形態に係るごみ焼却炉を図1乃至図4により説明
する。図1はこの第1実施形態に係るごみ焼却炉のシス
テム構成図、図2はその燃焼排ガス温度を放射温度計と
熱電対で測定したときの時系列データを示すグラフ、図
3はその燃焼領域温度とCO濃度の関係を示す図、図4
はその放射温度計で測定した温度とCO濃度の時系列デ
ータを示す図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. Hereinafter, the first of the present invention.
The refuse incinerator according to the embodiment will be described with reference to FIGS. FIG. 1 is a system configuration diagram of the refuse incinerator according to the first embodiment, FIG. 2 is a graph showing time-series data when the temperature of the combustion exhaust gas is measured by a radiation thermometer and a thermocouple, and FIG. Diagram showing the relationship between temperature and CO concentration, FIG.
FIG. 3 is a diagram showing time series data of temperature and CO concentration measured by the radiation thermometer.

【0017】まず、この第1実施形態のごみ焼却炉のシ
ステムについて説明すると、ごみ焼却炉20は、ホッパ
21から投入されたごみ22が、給塵装置23によって
炉内に送り込まれ、火格子装置24のごみ送り量とごみ
の下から送り込まれる燃焼空気装置25からの燃焼用空
気によって運転される。炉内のごみ乾燥領域41で発生
した可燃性ガスと後燃焼領域42で発生した燃焼排ガス
は合流されて、その合流域内の下流側43で再燃焼し、
炉出口に接続された煙道26に配置されているボイラ2
7で熱交換され、燃焼排ガス処理装置28で除塵、有害
物質が除去され、クリーンとなった空気は煙突29から
大気へ放出される。
First, the system of the refuse incinerator according to the first embodiment will be described. In the refuse incinerator 20, refuse 22 input from a hopper 21 is fed into the furnace by a dust supply device 23, and a grate device is provided. It is driven by the amount of refuse 24 and the combustion air from the combustion air device 25 sent from below the refuse. The combustible gas generated in the refuse drying area 41 in the furnace and the flue gas generated in the post-combustion area 42 are merged and recombusted on the downstream side 43 in the merged area.
Boiler 2 arranged in flue 26 connected to furnace outlet
The heat is exchanged in 7, dust and harmful substances are removed in the flue gas treatment device 28, and the clean air is discharged from the chimney 29 to the atmosphere.

【0018】可燃性ガスと燃焼排ガスの合流域内の下流
側43位置には、燃焼排ガス温度を測定する放射温度計
44が配置され、自動燃焼制御装置50に電気的に接続
されている。自動燃焼制御装置50は、供給されるごみ
質やごみ性状の変化による燃焼変動を、放射温度計44
が測定した燃焼排ガス温度から検出して、火格子装置2
4への燃焼用空気の吹き込み量を制御して、燃焼を安定
化させる機能を有している。
A radiation thermometer 44 for measuring the temperature of the flue gas is arranged at a position 43 on the downstream side in the merging area of the combustible gas and the flue gas, and is electrically connected to the automatic combustion control device 50. The automatic combustion control device 50 measures combustion fluctuations caused by changes in the supplied waste quality and waste properties by using the radiation thermometer 44.
Is detected from the flue gas temperature measured by
4 has a function of controlling the amount of combustion air blown into the combustion chamber 4 to stabilize combustion.

【0019】火格子装置24への燃焼用空気の供給系
は、ごみ焼却炉入口側から出口側にかけて、4つに分割
され、それぞれに燃焼空気装置25の配管31から分岐
する分岐管32,33,34,35が接続されており、
これら分岐管32,33,34,35の途中には、それ
ぞれ遠隔操作可能なバルブ36,37,38,39が独
立して設けられていて、各バルブ36,37,38,3
9が自動燃焼制御装置50に電気的に接続されている。
すなわち、自動燃焼制御装置50は、放射温度計44の
測定結果に基づき、各バルブ36,37,38,39の
開度を制御することで、4つに分割された燃焼用空気供
給系のエリア毎に火格子装置24への燃焼用空気の吹き
込み量を制御できるようになっている。
The supply system of the combustion air to the grate device 24 is divided into four from the entrance side of the refuse incinerator to the exit side, and branch pipes 32 and 33 branching from the pipe 31 of the combustion air unit 25 respectively. , 34, 35 are connected,
In the middle of these branch pipes 32, 33, 34, 35, remotely controllable valves 36, 37, 38, 39 are provided independently, and each of the valves 36, 37, 38, 3 is provided.
9 is electrically connected to the automatic combustion control device 50.
That is, the automatic combustion control device 50 controls the degree of opening of each of the valves 36, 37, 38, and 39 based on the measurement result of the radiation thermometer 44, thereby dividing the area of the combustion air supply system divided into four. Each time, the amount of combustion air blown into the grate device 24 can be controlled.

【0020】この第1実施形態のごみ焼却炉において、
ごみの乾燥過程で発生した可燃性ガス中には、CO、炭
化水素系のガスが多く含まれており、またごみの後燃焼
過程では、ごみ中に灰分が多ことから酸素が多く含まれ
た燃焼排ガスとなっている。単一ブロワ方式におけるこ
れらの未燃成分が多い可燃性ガスと酸素が多い燃焼排ガ
スが合流する領域では、酸素が多い燃焼排ガスによって
未燃ガスが燃焼し、CO、ダイオキシン類を含む未燃ガ
スが除去される。
In the waste incinerator of the first embodiment,
The combustible gas generated during the drying process of refuse contains a large amount of CO and hydrocarbon gases, and the post-combustion process of refuse contains a large amount of oxygen due to the high ash content in the refuse. It has become combustion exhaust gas. In the region where the combustible gas containing a large amount of unburned components and the combustion exhaust gas containing a large amount of oxygen in the single blower system are combined, the combustion exhaust gas containing a large amount of oxygen burns the unburned gas, and the unburned gas containing CO and dioxins is removed. Removed.

【0021】図2に示すように、従来の保護管に挿入さ
れた熱電対で測定した燃焼排ガス温度の測定結果と本実
施形態に係る放射温度計44で測定した燃焼排ガス温度
の測定結果との比較から明らかなように、高温で変動し
ている燃焼排ガスの測定値は熱電対に比べて2分程度は
やく測定することができる。この特性を有効に利用でき
るよう、ここでは放射温度計44の配置位置を、ごみ性
状による温度変動を考慮して、可燃性ガスと燃焼排ガス
の合流域内の下流側43位置、つまり燃焼排ガス温度が
850℃〜1000℃となる範囲内において、最上流位
置とし、燃焼温度管理制御に必要な前記温度範囲内の燃
焼排ガス温度をよりはやく測定できるようにしている。
As shown in FIG. 2, the measurement result of the combustion exhaust gas temperature measured by the thermocouple inserted into the conventional protection tube and the measurement result of the combustion exhaust gas temperature measured by the radiation thermometer 44 according to the present embodiment are shown. As is clear from the comparison, the measurement value of the flue gas fluctuating at a high temperature can be measured about 2 minutes faster than that of the thermocouple. In order to make effective use of this characteristic, here, the arrangement position of the radiation thermometer 44 is determined in consideration of the temperature fluctuation due to the property of the waste, and the position of the downstream side 43 in the confluence area of the combustible gas and the combustion exhaust gas, that is, the temperature of the combustion exhaust gas Within the range of 850 ° C. to 1000 ° C., it is located at the most upstream position, so that the temperature of the combustion exhaust gas within the above-mentioned temperature range required for combustion temperature management control can be measured more quickly.

【0022】図3に示す温度と燃焼排ガス中のCO濃度
の関係から明らかなように、温度を高く維持することで
CO濃度を低く維持することができ、また図4に示すよ
うに放射温度計44で測定される温度は、未燃ガスの発
生量の代表値として測定している燃焼排ガス中のCO濃
度よりも数分はやく測定することができる。従って、燃
焼状態の変化に対して迅速に応答する放射温度計44を
用いて可燃性ガスと燃焼排ガスの合流域内の下流側43
位置の燃焼排ガス温度を測定し、この測定結果に基づい
て火格子装置24への燃焼用空気の吹き込み量を各バル
ブ36,37,38,39の開度により調整して、可燃
性ガスと燃焼排ガスの合流域内の下流側43の温度管理
を適正に行うことで、CO、ダイオキシン類等の未燃成
分の発生量を大幅に抑えることができる。 実施形態2.図5は本発明の第2の実施形態に係るごみ
焼却炉のシステム構成図であり、図中、前述の第1実施
形態(図1)のものと同一部分には同一符号を付してあ
る。
As is clear from the relationship between the temperature shown in FIG. 3 and the CO concentration in the combustion exhaust gas, the CO concentration can be kept low by keeping the temperature high, and as shown in FIG. The temperature measured at 44 can be measured several minutes earlier than the CO concentration in the combustion exhaust gas measured as a representative value of the amount of unburned gas generated. Therefore, by using the radiation thermometer 44 which responds quickly to the change of the combustion state, the downstream side 43 in the confluence area of the combustible gas and the combustion exhaust gas is used.
The temperature of the combustion exhaust gas at the position is measured, and the amount of combustion air blown into the grate device 24 is adjusted based on the measurement result by the degree of opening of each of the valves 36, 37, 38, and 39, and the flammable gas and combustion By appropriately controlling the temperature of the downstream side 43 in the exhaust gas merging area, the amount of unburned components such as CO and dioxins can be significantly reduced. Embodiment 2. FIG. FIG. 5 is a system configuration diagram of a refuse incinerator according to a second embodiment of the present invention. In the figure, the same parts as those of the above-described first embodiment (FIG. 1) are denoted by the same reference numerals. .

【0023】まず、この第2実施形態に係るごみ焼却炉
のシステムについて説明すると、ごみ焼却炉20は、ホ
ッパ21から投入されたごみ22が、給塵装置23によ
って炉内に送り込まれ、火格子装置24のごみ送り量と
ごみの下から送り込まれる燃焼空気装置25からの一次
燃用焼空気、及び炉壁の吹き出し口(図示せず)から供
給される二次燃焼空気装置12の二次燃焼用空気によっ
て運転される。炉内で燃焼した燃焼排ガスは、炉出口で
二次燃焼用空気と攪拌、燃焼が行われ、燃焼排ガス中の
未燃成分が燃焼し、炉出口に接続された煙道26に配置
されているボイラ27で熱交換され、燃焼排ガス処理装
置28で除塵、有害物質が除去され、クリーンとなった
空気は煙突29から大気へ放出される。
First, the system of the refuse incinerator according to the second embodiment will be described. In the refuse incinerator 20, refuse 22 input from a hopper 21 is fed into the furnace by a dust supply device 23, The amount of refuse sent from the device 24 and the primary combustion air from the combustion air device 25 sent from under the refuse, and the secondary combustion from the secondary combustion air device 12 supplied from the outlet (not shown) of the furnace wall It is driven by air. The flue gas burned in the furnace is agitated and burned with the secondary combustion air at the furnace outlet, and unburned components in the flue gas are burned and disposed in a flue 26 connected to the furnace outlet. Heat is exchanged in the boiler 27, dust and harmful substances are removed in the flue gas treatment device 28, and the clean air is discharged from the chimney 29 to the atmosphere.

【0024】ところで、ダイオキシンガイドラインに基
づいてCO、ダイオキシン類の発生を抑制するために
は、燃焼排ガス温度を850℃以上で2秒以上維持する
ことが必要とされる。従って、煙道26はこれが可能と
なるように設計されている。つまり、煙道26は、ごみ
性状による変動があっても、850℃以上の温度の二次
燃焼排ガスが通過するのに2秒以上かかる長さに設定さ
れている。図中の符号61で示す領域は、850℃〜1
000℃の温度の二次燃焼排ガスが通過するのに2秒以
上かかる領域すなわち2ブロワ方式における二次燃焼領
域である。
Meanwhile, in order to suppress the generation of CO and dioxins based on the dioxin guidelines, it is necessary to maintain the temperature of the combustion exhaust gas at 850 ° C. or more for 2 seconds or more. Accordingly, the flue 26 is designed to allow this. In other words, the length of the flue 26 is set to take at least 2 seconds for the secondary combustion exhaust gas having a temperature of 850 ° C. or more to pass even if there is a variation due to the property of the dust. The region indicated by reference numeral 61 in the figure is 850 ° C. to 1
This is a region where it takes 2 seconds or more for the secondary combustion exhaust gas having a temperature of 000 ° C. to pass, that is, a secondary combustion region in a two-blower system.

【0025】二次燃焼用空気の吹き込み領域内の下流側
に、換言すれば二次燃焼領域61の最上流位置には、二
次燃焼排ガス温度を測定する放射温度計62が配置さ
れ、自動燃焼制御装置60に電気的に接続されている。
自動燃焼制御装置60は、供給されるごみ質やごみ性状
の変化による燃焼変動を、放射温度計62が測定した燃
焼排ガス温度から検出して、火格子装置24への一次燃
焼用空気や二次燃焼用空気の吹き込み量を制御して、燃
焼を安定化させる機能を有している。
A radiation thermometer 62 for measuring the temperature of the secondary combustion exhaust gas is arranged at the downstream side of the secondary combustion air blowing region, in other words, at the most upstream position of the secondary combustion region 61, for automatic combustion. It is electrically connected to the control device 60.
The automatic combustion control device 60 detects a combustion variation due to a change in the supplied refuse quality or refuse property from the combustion exhaust gas temperature measured by the radiation thermometer 62, and outputs primary combustion air or secondary gas to the grate device 24. It has a function of controlling the blowing amount of combustion air to stabilize combustion.

【0026】火格子装置24への燃焼用空気の供給系
は、ごみ焼却炉入口側から出口側にかけて、4つに分割
され、それぞれに燃焼空気装置25の配管31から分岐
する分岐管32,33,34,35が接続されており、
これら分岐管32,33,34,35の途中には、それ
ぞれ遠隔操作可能なバルブ36,37,38,39が独
立して設けられていて、各バルブ36,37,38,3
9が自動燃焼制御装置60に電気的に接続されている。
すなわち、自動燃焼制御装置60は、放射温度計62の
測定結果に基づき、各バルブ36,37,38,39の
開度を制御することで、4つに分割された燃焼用空気供
給系のエリア毎に火格子装置24への燃焼空気装置25
の一次燃焼用空気の吹き込み量を制御するとともに、二
次燃焼空気装置12の二次燃焼用空気の吹き込み量を制
御することで、二次燃焼用空気の吹き込み量を制御する
ようになっている。
The supply system of the combustion air to the grate device 24 is divided into four from the inlet side of the refuse incinerator to the outlet side, and branch pipes 32 and 33 branching from the pipe 31 of the combustion air unit 25 respectively. , 34, 35 are connected,
In the middle of these branch pipes 32, 33, 34, 35, remotely controllable valves 36, 37, 38, 39 are provided independently, and each of the valves 36, 37, 38, 3 is provided.
9 is electrically connected to the automatic combustion control device 60.
That is, the automatic combustion control device 60 controls the degree of opening of each of the valves 36, 37, 38, and 39 based on the measurement result of the radiation thermometer 62, thereby dividing the area of the combustion air supply system divided into four. Combustion air device 25 to grate device 24
By controlling the blowing amount of the primary combustion air, and controlling the blowing amount of the secondary combustion air of the secondary combustion air device 12, the blowing amount of the secondary combustion air is controlled. .

【0027】前述の図2で説明したように、放射温度計
62は二次燃焼排ガス温度を迅速に測定することができ
る。この特性を有効に利用できるよう、ここでは放射温
度計62の配置位置を、ごみ性状による温度変動を考慮
して、前述したように二次燃焼領域61中で最上流位置
とし、燃焼温度管理制御に必要な燃焼排ガス温度をより
はやく測定できるようにしている。これにより、未燃ガ
スを一次燃焼および二次燃焼させるための温度管理を高
レスポンスで行うことができる。
As described above with reference to FIG. 2, the radiation thermometer 62 can quickly measure the temperature of the secondary combustion exhaust gas. In order to make effective use of this characteristic, the position of the radiation thermometer 62 is set to the most upstream position in the secondary combustion region 61 as described above in consideration of the temperature fluctuation due to the property of the refuse. The temperature of the flue gas required for the measurement can be measured more quickly. Thereby, the temperature management for performing the primary combustion and the secondary combustion of the unburned gas can be performed with high response.

【0028】前述の図3で説明したように、温度を高く
維持することでCO濃度を低く維持することができ、ま
た前述の図4で説明したように、放射温度計62で測定
される温度は、燃焼排ガス中のCO濃度よりも数分はや
く測定することができる。従って、燃焼状態の変化に対
して迅速に応答する放射温度計62を用いて二次燃焼領
域61の二次燃焼排ガス温度を測定し、この測定結果に
基づいて火格子装置24への一次燃焼用空気や二次燃焼
用空気の吹き込み量を適正に行うことで、CO、ダイオ
キシン類等の未燃成分の発生量を大幅に抑えることがで
きる。 実施形態3.図6は本発明の第3の実施形態に係るごみ
焼却炉のシステム構成図であり、図中、前述の第1実施
形態(図1)のものと同一部分には同一符号を付してあ
る。
As described with reference to FIG. 3, the CO concentration can be kept low by keeping the temperature high, and the temperature measured by the radiation thermometer 62 can be maintained as described with reference to FIG. Can be measured several minutes faster than the CO concentration in the combustion exhaust gas. Therefore, the temperature of the secondary combustion exhaust gas in the secondary combustion area 61 is measured using the radiation thermometer 62 that responds quickly to changes in the combustion state, and based on the measurement result, the primary combustion By appropriately blowing the air or the secondary combustion air, the amount of unburned components such as CO and dioxins can be significantly reduced. Embodiment 3 FIG. FIG. 6 is a system configuration diagram of a refuse incinerator according to a third embodiment of the present invention. In the figure, the same parts as those of the above-described first embodiment (FIG. 1) are denoted by the same reference numerals. .

【0029】この第3実施形態に係るごみ焼却炉の基本
システム(単一ブロワ方式)は前述の第1実施形態のも
のと同一であり、この第1実施形態のもつ機能を全て備
えている。この第3実施形態のごみ焼却炉は、炉出口に
接続された煙道26内の、この煙道26を流れる燃焼排
ガスの温度が所定値(ここでは850℃)以下となる境
界領域に、複数(ここでは4つ)の放射温度計71,7
2,73,74を燃焼排ガス流れ方向に配置し、自動燃
焼制御装置70に電気的に接続している点が、前述の第
1実施形態のものと異なっている。
The basic system (single blower system) of the refuse incinerator according to the third embodiment is the same as that of the first embodiment, and has all the functions of the first embodiment. The refuse incinerator according to the third embodiment includes a plurality of flue gas in a flue 26 connected to a furnace outlet, in a boundary region where the temperature of the combustion exhaust gas flowing through the flue 26 is equal to or lower than a predetermined value (850 ° C. in this case). (Here, four) radiation thermometers 71, 7
The second embodiment differs from the first embodiment in that 2, 73 and 74 are arranged in the flow direction of the combustion exhaust gas and are electrically connected to the automatic combustion control device 70.

【0030】すなわち、ごみ性状による変動に伴って燃
焼排ガスの温度が850℃以下となる境界(以下、単に
境界という)も変動する。従って、この境界位置の変動
を検出することで、ごみ焼却炉20内におけるCO、ダ
イオキシン類等の未燃成分の発生量を把握することがで
きる。
That is, the boundary where the temperature of the combustion exhaust gas becomes 850 ° C. or less (hereinafter simply referred to as a boundary) also changes with the fluctuation due to the dust property. Therefore, by detecting the change in the boundary position, the amount of unburned components such as CO and dioxins in the incinerator 20 can be grasped.

【0031】また、温度管理を行うには、火格子装置2
4への4つに分割された燃焼用空気供給系のうち、特に
第2、第3燃焼用空気供給系の燃焼用空気吹き込み量、
換言すれば第2、第3バルブ37,38の開度を制御す
ることが重要であり、かつ効率的である。
To perform temperature control, the grate device 2
4, among the four combustion air supply systems divided into four, in particular, the combustion air blowing amount of the second and third combustion air supply systems,
In other words, controlling the degree of opening of the second and third valves 37 and 38 is important and efficient.

【0032】したがって、ここでは各放射温度計71,
72,73,74によって境界位置の変動を検出し、こ
の検出結果に基づいて自動燃焼制御装置70が火格子装
置24への第2、第3燃焼用空気供給系すなわち第2、
第3バルブ37,38の開度を補正制御するように設定
した。しかし、これはあくまで一例であり、今後データ
採取により第1、第4燃焼用空気供給系の燃焼用空気吹
き込み量の補正制御も有効となることが判明すれば、第
1、第4バルブ36,39の開度をも共に補正制御する
ことになる。
Therefore, here, each radiation thermometer 71,
The fluctuation of the boundary position is detected by 72, 73, 74, and based on the detection result, the automatic combustion control device 70 causes the second and third combustion air supply systems to the grate device 24, that is, the second and third combustion air supply systems.
The degree of opening of the third valves 37 and 38 was set to be corrected and controlled. However, this is only an example, and if it becomes clear from the data collection that the correction control of the combustion air blowing amount of the first and fourth combustion air supply systems will be effective in the future, the first and fourth valves 36, Correction control is also performed on the opening degree 39.

【0033】これによって、単一ブロワ方式における可
燃性ガスと燃焼排ガスの合流域内の下流側43では、よ
り適正に温度管理された酸素が多い燃焼排ガスによって
未燃ガスが燃焼し、CO、ダイオキシン類を含む未燃ガ
スを大幅に除去することができる。
Thus, on the downstream side 43 in the confluence area of the combustible gas and the flue gas in the single blower system, the unburned gas is combusted by the flue gas containing a large amount of oxygen whose temperature is more appropriately controlled, and CO, dioxins and the like are burned. The unburned gas containing is greatly removed.

【0034】なお、ここでは燃焼排ガスの温度が850
℃以下となる境界を検出するようにしたものを例に挙げ
て説明したが、この温度に限定されるものでなく、それ
よりも高い温度の境界、あるいは低い温度の境界を検出
してもよく、そのような場合でも、ごみ焼却炉20内に
おけるCO、ダイオキシン類等の未燃成分の発生量を把
握することができる。 実施形態4.図7は本発明の第4の実施形態に係るごみ
焼却炉のシステム構成図であり、図中、前述の第2実施
形態(図5)のものと同一部分には同一符号を付してあ
る。
Here, the temperature of the flue gas is 850.
Although described as an example that detects the boundary below ℃, but is not limited to this temperature, it may detect a higher temperature boundary, or a lower temperature boundary may be detected Even in such a case, the amount of unburned components such as CO and dioxins generated in the incinerator 20 can be grasped. Embodiment 4. FIG. FIG. 7 is a system configuration diagram of a refuse incinerator according to a fourth embodiment of the present invention. In the figure, the same components as those of the above-described second embodiment (FIG. 5) are denoted by the same reference numerals. .

【0035】この第4実施形態に係るごみ焼却炉の基本
システム(2ブロワ方式)は前述の第2実施形態のもの
と同一であり、この第2実施形態のもつ機能を全て備え
ている。この第4実施形態のごみ焼却炉は、炉出口に接
続された煙道26内の、この煙道26を流れる燃焼排ガ
スの温度が所定値(ここでは850℃)以下となる境界
領域に、複数(ここでも4つ)の放射温度計71,7
2,73,74を燃焼排ガス流れ方向に配置し、自動燃
焼制御装置80に電気的に接続している点が、前述の第
2実施形態のものと異なっている。
The basic system (two-blower system) of the refuse incinerator according to the fourth embodiment is the same as that of the second embodiment, and has all the functions of the second embodiment. The refuse incinerator according to the fourth embodiment has a plurality of flue gas in a flue gas line 26 connected to the furnace outlet, in a boundary region where the temperature of the combustion exhaust gas flowing through the flue gas line 26 becomes equal to or lower than a predetermined value (850 ° C. in this case). (Again, four) radiation thermometers 71, 7
The second embodiment differs from the second embodiment in that 2, 73 and 74 are arranged in the flow direction of the flue gas and are electrically connected to the automatic combustion control device 80.

【0036】この第4実施形態に係るごみ焼却炉におい
ても、前述の第3実施形態と同様、境界位置の変動を検
出することができ、ごみ焼却炉20内におけるCO、ダ
イオキシン類等の未燃成分の発生量を把握することがで
き、自動燃焼制御装置80により、火格子装置24への
第2、第3燃焼用空気供給系すなわち第2、第3バルブ
37,38の開度を補正制御することができる。しか
し、これもあくまで一例であり、今後データ採取により
第1、第4燃焼用空気供給系の燃焼用空気吹き込み量の
補正制御や二次燃焼空気装置12の二次燃焼用空気吹き
込み量の補正制御も有効となることが判明すれば、第
1、第4バルブ36,39の開度や二次燃焼空気装置1
2をも共に補正制御することになる。
In the refuse incinerator according to the fourth embodiment, similarly to the third embodiment, the fluctuation of the boundary position can be detected, and the unburned CO, dioxins and the like in the refuse incinerator 20 can be detected. The generation amount of the component can be grasped, and the automatic combustion control device 80 corrects and controls the degree of opening of the second and third combustion air supply systems to the grate device 24, that is, the second and third valves 37 and 38. can do. However, this is only an example, and correction control of the combustion air blowing amount of the first and fourth combustion air supply systems and correction control of the secondary combustion air blowing amount of the secondary combustion air device 12 will be performed by collecting data in the future. Is also effective, the opening degrees of the first and fourth valves 36 and 39 and the secondary combustion air device 1
2 is also subjected to correction control.

【0037】これによって、2ブロワ方式における二次
燃焼領域61では、より適正に温度管理された酸素が多
い燃焼排ガスによって未燃ガスが燃焼し、CO、ダイオ
キシン類を含む未燃ガスを大幅に除去することができ
る。
As a result, in the secondary combustion region 61 of the two-blower system, the unburned gas is burned by the combustion exhaust gas containing a large amount of oxygen whose temperature is more appropriately controlled, and the unburned gas containing CO and dioxins is largely removed. can do.

【0038】なお、ここでも燃焼排ガスの温度が850
℃以下となる境界を検出するようにしたものを例に挙げ
て説明したが、この温度に限定されるものでなく、それ
よりも高い温度の境界、あるいは低い温度の境界を検出
してもよく、そのような場合でも、ごみ焼却炉20内に
おけるCO、ダイオキシン類等の未燃成分の発生量を把
握することができる。 実施形態5.図8は、本発明の燃焼制御方法を実施する
ためのごみ焼却炉の一実施形態を示す概念図である。
Here, the temperature of the combustion exhaust gas is also 850.
Although described as an example that detects the boundary below ℃, but is not limited to this temperature, it may detect a higher temperature boundary, or a lower temperature boundary may be detected Even in such a case, the amount of unburned components such as CO and dioxins generated in the incinerator 20 can be grasped. Embodiment 5 FIG. FIG. 8 is a conceptual diagram showing one embodiment of a refuse incinerator for implementing the combustion control method of the present invention.

【0039】図8に示すごみ焼却炉101は火格子10
4を有する火格子式の焼却炉であり、ごみ投入口10
2、ごみ焼却炉101の出口側に設けられたガス混合部
107、ガス混合部107の下流側に設置された熱交換
器109aを備えたボイラ109bを有している。
The refuse incinerator 101 shown in FIG.
4 is a grate-type incinerator having a 4
2. It has a gas mixing unit 107 provided on the outlet side of the refuse incinerator 101 and a boiler 109b provided with a heat exchanger 109a installed downstream of the gas mixing unit 107.

【0040】ごみ投入口102から投入されたごみは、
給塵装置103によって火格子104へ送り込まれる。
火格子104は往復運動し、その往復運動によってごみ
の撹拌および移動が行われる。火格子104上のごみ
は、燃焼空気ブロア106により火格子104の下から
供給される燃焼空気の吹き込みにより乾燥が行われた後
に燃焼が行われ、排ガスと灰に分解される。灰は、灰落
下口105から落下して炉外に排出される。なお、火格
子104の下から供給される燃焼空気は火格子下に設け
られた風箱で分割されており、各風箱毎の燃焼空気量
は、風箱毎に分岐された燃焼空気供給配管に設けられた
ダンパによって調整される。
The refuse input from the refuse input port 102 is
The dust is supplied to the grate 104 by the dust supply device 103.
The grate 104 reciprocates, and the reciprocating movement causes agitation and movement of the refuse. The refuse on the grate 104 is dried by blowing combustion air supplied from below the grate 104 by the combustion air blower 106, and then burnt, and is decomposed into exhaust gas and ash. The ash falls from the ash falling port 105 and is discharged outside the furnace. Note that the combustion air supplied from below the grate 104 is divided by wind boxes provided below the grate, and the amount of combustion air for each wind box is determined by a combustion air supply pipe branched for each wind box. It is adjusted by the damper provided in.

【0041】図8に示した例では、火格子104の下を
ごみ搬送方向に対し4つの風箱で分割して燃焼空気を供
給する構成としているが、ごみ焼却炉の規模及び目的に
応じて適宜変更可能であり4つの風箱の場合に限られる
ものではないことは言うまでもない。
In the example shown in FIG. 8, the combustion air is supplied by dividing the space under the grate 104 by four wind boxes in the garbage transport direction, but depending on the scale and purpose of the garbage incinerator. Needless to say, it can be changed as appropriate and is not limited to the case of four wind boxes.

【0042】火格子104の下から炉内に供給される燃
焼空気の総量は燃焼空気ブロア106の直近に設けた燃
焼空気ダンパ114により調整され、また、各風箱に供
給される燃焼空気量は、各風箱に燃焼空気を供給する各
配管に設けられた火格子下燃焼空気ダンパ114a,1
14b,114c,114dにより調整される。
The total amount of combustion air supplied into the furnace from below the grate 104 is adjusted by a combustion air damper 114 provided immediately adjacent to the combustion air blower 106, and the amount of combustion air supplied to each wind box is adjusted. , A sub-grate combustion air damper 114a, 1 provided in each pipe for supplying combustion air to each wind box.
It is adjusted by 14b, 114c, 114d.

【0043】また、炉壁に設けられた冷却空気吹き込み
口110からは、冷却空気ブロア111により冷却空気
が吹き込まれ、燃焼ガス中の未燃焼成分を完全燃焼させ
ると共に、炉壁の温度が過度に上昇することを防止す
る。
Further, cooling air is blown from a cooling air blow port 110 provided on the furnace wall by a cooling air blower 111 to completely burn unburned components in the combustion gas and to increase the temperature of the furnace wall excessively. Prevent it from rising.

【0044】一方、火格子104の上流側のごみ乾燥過
程で発生した可燃性ガスと下流側の後燃焼過程で発生し
た燃焼排ガスは、ごみ焼却炉101の出口側に設けられ
たガス混合部107で合流し再度攪拌混合され2次燃焼
が行われる。ガス混合部107の下流側には熱交換器1
09aを備えたボイラ109bが設置されており、2次
燃焼ガスはここで熱エネルギーを回収された後に煙突1
08から外部に排気される。
On the other hand, the combustible gas generated in the refuse drying process on the upstream side of the grate 104 and the flue gas generated in the post-combustion process on the downstream side are mixed in the gas mixing section 107 provided on the outlet side of the refuse incinerator 101. And are stirred and mixed again to perform secondary combustion. The heat exchanger 1 is located downstream of the gas mixing section 107.
A boiler 109b equipped with a fuel cell 09a is provided, and the secondary combustion gas is collected here in a stack 1 after thermal energy is recovered.
08 to the outside.

【0045】なお、ごみ焼却炉101内には図8に仮想
線で示したような中間天井118を設けても良い。中間
天井118を炉内に設けることにより、炉内のガスを火
格子104の上流側のごみ乾燥過程で発生した可燃性ガ
スと下流側の後燃焼過程で発生した燃焼排ガスに2分し
て排出することができ、この2分して排出したガスをガ
ス混合部7で再合流させることにより、ガス混合部での
ガスの攪拌混合がさらに促進され、混合室107内での
燃焼がより安定化し、燃焼過程におけるダイオキシン類
の発生のさらなる抑制、ごみ未燃の発生防止を図ること
ができる。
The intermediate incinerator 101 may be provided with an intermediate ceiling 118 as shown by a virtual line in FIG. By providing the intermediate ceiling 118 in the furnace, the gas in the furnace is divided into two parts, a combustible gas generated in a refuse drying process on the upstream side of the grate 104 and a combustion exhaust gas generated in a post-combustion process on the downstream side. By recombining the gas discharged in two parts in the gas mixing section 7, the stirring and mixing of the gas in the gas mixing section is further promoted, and the combustion in the mixing chamber 107 is further stabilized. Further, the generation of dioxins in the combustion process can be further suppressed, and the generation of unburned waste can be prevented.

【0046】このような装置構成において、本発明に係
るごみ焼却炉は、ごみの乾燥過程で発生した可燃性ガス
と後燃焼過程で発生した燃焼排ガスが合流するガス混合
部のガス温度に基づき火格子下より吹き込む燃焼空気量
を制御する制御手段を備えたものである。
In such an apparatus configuration, the refuse incinerator according to the present invention performs the fire based on the gas temperature of the gas mixing section where the combustible gas generated in the drying process of the refuse and the flue gas generated in the post-combustion process merge. It is provided with control means for controlling the amount of combustion air blown from below the grid.

【0047】ごみの乾燥過程で発生した可燃性ガスと後
燃焼過程で発生した燃焼排ガスが合流するガス混合部の
ガス温度は、ごみ焼却炉の燃焼状態によって敏感に変化
し、炉内燃焼の安定化、ダイオキシン類の発生抑制、ご
み未燃分の発生防止を図る上で重要である。さらに、1
997年1月に出されたダイオキシン類発生防止等ガイ
ドラインでは、「炉内燃焼温度:850℃以上(900℃以上
が望ましい)、燃焼温度におけるガス滞留時間:2秒以
上を管理するようモニタすること。」が定められてお
り、ガス混合部のガス温度の測定は重要である。
The gas temperature of the gas mixing section where the combustible gas generated in the drying process of the refuse and the flue gas generated in the post-combustion process are changed sensitively depending on the combustion state of the refuse incinerator, and the combustion in the furnace is stabilized. It is important to reduce the generation of dioxins and prevent the generation of unburned waste. In addition, 1
According to the guideline for prevention of dioxin emission issued in January 997, it is necessary to monitor to control the combustion temperature in the furnace: 850 ° C or more (preferably 900 ° C or more), and the gas residence time at the combustion temperature: 2 seconds or more. Is defined, and measurement of the gas temperature in the gas mixing section is important.

【0048】また、ガス混合部のガス温度はボイラ10
9bの蒸発量にも直接影響を与える。
The gas temperature of the gas mixing section is controlled by the boiler 10.
It also directly affects the amount of evaporation of 9b.

【0049】ここで、火格子下より吹き込む燃焼空気量
は、炉内の燃焼状態を制御する重要なパラメータの一つ
であるので、ガス混合部のガス温度に基づき火格子下よ
り吹き込む燃焼空気量を制御する制御手段を備えたこと
により、炉の燃焼状態の変化に迅速に対応した制御が可
能となる。
Since the amount of combustion air blown from below the grate is one of the important parameters for controlling the combustion state in the furnace, the amount of combustion air blown from below the grate based on the gas temperature of the gas mixing section. Is provided, control can be quickly performed in response to changes in the combustion state of the furnace.

【0050】ガス混合部のガス温度を計測する計測手段
としては、例えばシース熱電対や放射温度計を用いるこ
とができる。これらの温度計は、ボイラ蒸発量に比べガ
ス混合部のガス温度の変化に対し60〜120sec程
度応答が速いため、より迅速に炉の燃焼状態の変化を検
知することが可能となる。
As a measuring means for measuring the gas temperature of the gas mixing section, for example, a sheath thermocouple or a radiation thermometer can be used. These thermometers respond quickly to changes in the gas temperature of the gas mixing section for about 60 to 120 seconds compared to the boiler evaporation amount, so that changes in the combustion state of the furnace can be detected more quickly.

【0051】ここで、放射温度計を用いる場合、ガス混
合部内の特定成分の吸収波長帯における熱放射エネルギ
ーを非接触で検出することにより、ガス混合部のガス温
度を計測する方法を用いることが好ましい。広い波長帯
の熱放射エネルギーを検出することによる温度計測は、
ガス混合部内に存在する水蒸気等による熱放射エネルギ
ーの吸収や炉壁からの熱放射エネルギー(炉壁温度)の
影響を受け正確なガス温度の計測が困難であった。本発
明においては、波長帯のフィルタリング技術を応用する
ことにより、ガス混合部内の特定成分の吸収波長帯にお
ける熱放射エネルギーを非接触で検出することが可能と
なったので、ガス混合部内に存在する水蒸気等による熱
放射エネルギーの吸収や炉壁温度の影響を受けることな
く正確なガス温度の計測が可能となった。
Here, when using a radiation thermometer, a method of measuring the gas temperature of the gas mixing section by detecting the heat radiation energy in the absorption wavelength band of the specific component in the gas mixing section in a non-contact manner may be used. preferable. Temperature measurement by detecting thermal radiation energy in a wide wavelength band,
Accurate measurement of gas temperature was difficult due to the influence of thermal radiation energy (furnace wall temperature) from the absorption of thermal radiation energy by water vapor and the like present in the gas mixing section and from the furnace wall. In the present invention, by applying the filtering technology of the wavelength band, it becomes possible to detect the heat radiation energy in the absorption wavelength band of the specific component in the gas mixing portion in a non-contact manner, so that it is present in the gas mixing portion. Accurate gas temperature measurement has become possible without being affected by heat radiation energy absorption by the steam or the furnace wall temperature.

【0052】さらに、前記特定成分としては、CO2
用いることが好ましい。CO2はガス混合部内に大量に
存在し、他の成分、例えばN2と比較して吸収波長帯に
おける熱放射エネルギーが大きいため正確な計測が可能
となる。
Further, it is preferable to use CO 2 as the specific component. CO 2 is present in a large amount in the gas mixing section and has a large thermal radiation energy in an absorption wavelength band as compared with other components, for example, N 2 , so that accurate measurement is possible.

【0053】また、ガス混合部のガス温度に基づき火格
子下より吹き込む燃焼空気量を制御する場合において、
ガス混合部のガス温度の計測値と所定の温度目標値との
偏差および/または前記ガス混合部のガス温度の計測値
と所定時間前に計測したガス混合部のガス温度の計測値
との差分値に基づき火格子下より吹き込む燃焼空気量を
制御する制御手段を備えることが好ましい。
When controlling the amount of combustion air blown from below the grate based on the gas temperature of the gas mixing section,
Deviation between the measured value of the gas temperature of the gas mixing section and a predetermined temperature target value and / or the difference between the measured value of the gas temperature of the gas mixing section and the measured value of the gas temperature of the gas mixing section measured a predetermined time ago It is preferable to provide control means for controlling the amount of combustion air blown from below the grate based on the value.

【0054】ガス混合部のガス温度は、ダイオキシン類
の発生を抑制するという観点からは高温で、しかもガス
の滞留時間を長くすることが望ましいが、例えば操業上
設定されたボイラ蒸発量にも追従させる必要がある。従
って、目標とするボイラ蒸発量の設定値によって、ガス
混合部の所定の温度目標値を変える必要がある。
The gas temperature in the gas mixing section is preferably high from the viewpoint of suppressing the generation of dioxins, and it is desirable to prolong the residence time of the gas. For example, the gas temperature follows the boiler evaporation set in operation. Need to be done. Therefore, it is necessary to change the predetermined temperature target value of the gas mixing section according to the set value of the target boiler evaporation amount.

【0055】さらに、燃焼状態の変化の速さを評価する
ために、所定時間前に測定した温度との差分値も考慮し
た制御を行うことがより有効である。
Further, in order to evaluate the speed of change of the combustion state, it is more effective to perform control in consideration of a difference value from the temperature measured a predetermined time before.

【0056】そのため、ガス混合部のガス温度の計測値
と所定の温度目標値との偏差および/または前記ガス混
合部のガス温度の計測値と所定時間前に計測したガス混
合部のガス温度の計測値との差分値に基づき火格子下よ
り吹き込む燃焼空気量を制御する制御手段を備えること
で、操業状態に応じた制御も可能となる。
Therefore, the deviation between the measured value of the gas temperature of the gas mixing section and the predetermined temperature target value and / or the measured value of the gas temperature of the gas mixing section and the gas temperature of the gas mixing section measured a predetermined time ago. By providing a control means for controlling the amount of combustion air blown from below the grate based on the difference value from the measured value, control according to the operating state is also possible.

【0057】また、前記所定の温度目標値は、別途設定
されるボイラ蒸発量及びごみの発熱量により算出するこ
とが好ましい。
Further, it is preferable that the predetermined temperature target value is calculated from a boiler evaporation amount and a waste heat value which are set separately.

【0058】図9は、同一のごみ焼却炉において、設定
したボイラ蒸発量が異なる場合のガス混合部におけるガ
スの温度分布を示したものである。図中の□は負荷が大
きい目標蒸発量Aのときの温度分布を表したものであ
り、目標蒸発量周りの温度は1000℃前後である。図
中の◇は負荷が小さい目標蒸発量Bのときの温度分布を
表したものであり、目標蒸発量周りの温度は900℃前
半である。
FIG. 9 shows the gas temperature distribution in the gas mixing section when the set amount of boiler evaporation differs in the same refuse incinerator. The squares in the figure indicate the temperature distribution when the load is the target evaporation amount A, and the temperature around the target evaporation amount is around 1000 ° C. ◇ in the figure shows the temperature distribution when the load is the target evaporation amount B, and the temperature around the target evaporation amount is the first half of 900 ° C.

【0059】本発明者等は図9の結果を検討した結果、
蒸発量を一定に維持するにはガス混合部の温度を一定に
するだけではなく、ごみの発熱量によりガス混合部の温
度を調整することが有効であることを見い出した。つま
り、ガス混合部の温度目標値をボイラ蒸発量の設定値と
ごみの発熱量により逐次算出したほうが、ボイラ蒸発量
にも追従可能なきめ細かい制御が可能となる。
The present inventors have examined the results shown in FIG.
In order to maintain a constant evaporation amount, it has been found that it is effective not only to keep the temperature of the gas mixing section constant but also to adjust the temperature of the gas mixing section based on the amount of heat generated by the refuse. That is, if the temperature target value of the gas mixing section is sequentially calculated based on the set value of the boiler evaporation amount and the heat generation amount of the refuse, fine control that can follow the boiler evaporation amount can be performed.

【0060】ここで、ごみの発熱量は、炉内温度、ごみ
の切り出し量、燃焼空気量等のパラメータから算出され
る値である。なお、ここで算出されるごみの発熱量は、
燃焼ガス中の水蒸気の凝縮潜熱を加えない低位発熱量を
意味するため、以下ごみの発熱量を低位発熱量と記載す
る。
Here, the calorific value of the refuse is a value calculated from parameters such as the furnace temperature, the amount of refuse cut out, and the amount of combustion air. The calorific value of the garbage calculated here is
In order to mean a lower calorific value without adding the latent heat of condensation of water vapor in the combustion gas, the calorific value of the refuse is hereinafter referred to as a lower calorific value.

【0061】以下、火格子下より吹き込む燃焼空気量の
制御方法について説明する。
Hereinafter, a method of controlling the amount of combustion air blown from below the grate will be described.

【0062】ガス混合部107内に設置された温度計1
12の信号は、ボイラ蒸発量設定値115および低位発
熱量116と共に制御手段117に入力される。制御手
段117は、ボイラ蒸発量設定値115および低位発熱
量116よりガス混合部温度目標値を演算すると共に燃
焼空気量の制御演算を行い、その結果を信号として燃焼
空気ブロア106の直近に設けた燃焼空気ダンパ114
に出力し開度の調整を行う。なお、制御手段117には
例えばコンピュータを使用することができる。
Thermometer 1 installed in gas mixing section 107
The signal 12 is input to the control means 117 together with the boiler evaporation amount set value 115 and the lower heating value 116. The control means 117 calculates the gas mixing section temperature target value from the boiler evaporation amount set value 115 and the lower heating value 116 and performs control calculation of the combustion air amount, and the result is provided as a signal in the immediate vicinity of the combustion air blower 106. Combustion air damper 114
To adjust the opening. Note that a computer can be used as the control unit 117, for example.

【0063】次に、本発明の燃焼制御方法を燃焼空気量
の制御に適用した一例を説明する。
Next, an example in which the combustion control method of the present invention is applied to control of the amount of combustion air will be described.

【0064】燃焼空気量の制御は、ガス混合部107内
に設置した温度計112の計測値Tと所定の温度目標値
Tsの偏差S1(以下「ガス混合部温度偏差S1」とい
う。)および前記ガス混合部のガス温度の計測値Tと所
定時間前に計測したガス混合部のガス温度の計測値Tp
との差分値S2(以下「ガス混合部温度差分S2」とい
う。)を入力として、つまり、ガス混合部温度偏差S1
=T−Ts(℃)およびガス混合部温度差分S2=T−
Tp(℃)を入力として以下の制御ルールに従って制御
が行われる。
The combustion air amount is controlled by a deviation S1 between the measured value T of the thermometer 112 installed in the gas mixing section 107 and a predetermined temperature target value Ts (hereinafter referred to as "gas mixing section temperature deviation S1") and the aforementioned. The measured value T of the gas temperature of the gas mixing section and the measured value Tp of the gas temperature of the gas mixing section measured a predetermined time ago
(Hereinafter, referred to as “gas mixing unit temperature difference S2”), that is, the gas mixing unit temperature deviation S1.
= T−Ts (° C.) and temperature difference S2 = T−
Control is performed according to the following control rules with Tp (° C.) as input.

【0065】制御ルール: 1)ガス混合部温度偏差S1が負で、ガス混合部温度差
分S2が負のときは、燃焼空気量を大きく増加する。 2)ガス混合部温度偏差S1が負で、ガス混合部温度差
分S2が0(零)のときは、燃焼空気量を増加する。 3)ガス混合部温度偏差S1が負で、ガス混合部温度差
分S2が正のときは、燃焼空気量をやや増加する。 4)ガス混合部温度偏差S1が0(零)、ガス混合部温
度差分S2が負のときは、燃焼空気量をやや増加する。 5)ガス混合部温度偏差S1が0(零)、ガス混合部温
度差分S2が0(零)のときは、燃焼空気量を維持す
る。 6)ガス混合部温度偏差S1が0(零)、ガス混合部温
度差分S2が正のときは、燃焼空気量をやや減少する。 7)ガス混合部温度偏差S1が正で、ガス混合部温度差
分S2が負のときは、燃焼空気量をやや減少する。 8)ガス混合部温度偏差S1が正で、ガス混合部温度差
分S2が0(零)のときは、燃焼空気量を減少する。 9)ガス混合部温度偏差S1が正で、ガス混合部温度差
分S2が正のときは、燃焼空気量を大きく減少する。
Control rules: 1) When the gas mixing section temperature deviation S1 is negative and the gas mixing section temperature difference S2 is negative, the amount of combustion air is greatly increased. 2) When the gas mixing section temperature deviation S1 is negative and the gas mixing section temperature difference S2 is 0 (zero), the amount of combustion air is increased. 3) When the gas mixing unit temperature deviation S1 is negative and the gas mixing unit temperature difference S2 is positive, the amount of combustion air is slightly increased. 4) When the temperature difference S1 in the gas mixing section is 0 (zero) and the temperature difference S2 in the gas mixing section is negative, the combustion air amount is slightly increased. 5) When the temperature difference S1 in the gas mixing section is 0 (zero) and the temperature difference S2 in the gas mixing section is 0 (zero), the combustion air amount is maintained. 6) When the gas mixing section temperature deviation S1 is 0 (zero) and the gas mixing section temperature difference S2 is positive, the amount of combustion air is slightly reduced. 7) When the gas mixing unit temperature deviation S1 is positive and the gas mixing unit temperature difference S2 is negative, the amount of combustion air is slightly reduced. 8) When the temperature difference S1 in the gas mixing section is positive and the temperature difference S2 in the gas mixing section is 0 (zero), the amount of combustion air is reduced. 9) When the gas mixing section temperature difference S1 is positive and the gas mixing section temperature difference S2 is positive, the amount of combustion air is greatly reduced.

【0066】上記の制御ルールは基本的に、ガス混合部
温度偏差S1が負のときには燃焼空気量を増加して燃焼
を活発にし、ガス混合部温度偏差S1が正のときには燃
焼空気量を減少して燃焼を抑制するものである。ガス混
合部温度差分S2により、定性的な現状の温度傾向をつ
かみ、温度低下傾向ならばガス混合部温度偏差S1で決
められた燃焼空気量に比べ空気量をやや多めに設定し、
温度上昇傾向ならばガス混合部温度偏差S1で決められ
た燃焼空気量に比べ空気量をやや少なめに設定する。
The above control rules basically increase the combustion air amount to activate combustion when the gas mixing portion temperature deviation S1 is negative, and decrease the combustion air amount when the gas mixing portion temperature deviation S1 is positive. To suppress combustion. From the gas mixing section temperature difference S2, a qualitative current temperature tendency is grasped. If the temperature is decreasing, the air amount is set slightly larger than the combustion air amount determined by the gas mixing section temperature deviation S1,
If the temperature tends to increase, the air amount is set slightly smaller than the combustion air amount determined by the gas mixing unit temperature deviation S1.

【0067】実際の制御手法としては、通常PID演
算、ルールベースによる演算、ファジィ演算などが挙げ
られるが、以下一例としてファジィ制御を適用した場合
について説明する。
Examples of the actual control method include a normal PID operation, an operation based on a rule base, a fuzzy operation, and the like. Hereinafter, a case where fuzzy control is applied will be described as an example.

【0068】ごみ焼却炉に用いられる制御手法は、一般
に多変数干渉系の制御である。このように、複数の情報
から判断して制御量(ここでは燃焼空気量)を調整する
ときの制御手法においては、事象をルール化して推論す
ることが有効である。その点、このような場合の制御手
法として、事象をルール化しやすいファジィ制御が適し
ている。
The control method used for a refuse incinerator is generally control of a multivariable interference system. As described above, in the control method for adjusting the control amount (the combustion air amount in this case) by judging from a plurality of pieces of information, it is effective to make an event into a rule and infer. In that regard, fuzzy control, in which events can be easily ruled, is suitable as a control method in such a case.

【0069】燃焼空気量を演算するための制御ルールを
整理し、制御パラメータを定めたものを表1に示す。表
1中Rule1〜9については、前記制御ルールの1)
〜9)が該当する。
Table 1 summarizes the control rules for calculating the combustion air amount and defines the control parameters. For Rules 1 to 9 in Table 1, 1) of the above control rules
To 9).

【0070】[0070]

【表1】 [Table 1]

【0071】表1中、各規則の後件部推論結果(燃焼空
気量)の出力には、ファジィ制御の一般的な方法、例え
ば、min−max重心法やシングルトン法等が用いら
れる。ここでは、演算時間が短く実用的なシングルトン
法を適用した場合について説明する。
In Table 1, a general method of fuzzy control, for example, a min-max centroid method or a singleton method is used to output the consequent part inference result (combustion air amount) of each rule. Here, a case where a practical singleton method is applied with a short calculation time will be described.

【0072】最初に、各入力項目における適合度を、図
10及び図11に示すメンバーシップ関数に基づいて求
める。ここで、図10は入力項目がガス混合部温度偏差
S1の場合のメンバーシップ関数、図11は入力項目が
ガス混合部温度差分S2の場合のメンバーシップ関数を
示す図である。
First, the fitness of each input item is determined based on the membership functions shown in FIGS. Here, FIG. 10 is a diagram showing a membership function when the input item is the gas mixing unit temperature deviation S1, and FIG. 11 is a diagram showing a membership function when the input item is the gas mixing unit temperature difference S2.

【0073】図10及び図11のように、予め各入力項
目毎に適合度のメンバーシップを設定しておく(図中台
形部分)。
As shown in FIGS. 10 and 11, membership of the degree of conformity is set in advance for each input item (trapezoidal portion in the figure).

【0074】演算方法としては、入力項目がガス混合部
温度偏差S1及びガス混合部温度差分S2のそれぞれの
場合についてメンバーシップに当てはめ、図10及び図
11中縦軸の方向に延長したときに、各規則のメンバー
シップと交叉する点の高さが適合度となる。例えば、図
10に示す入力項目がガス混合部温度偏差S1の場合、
横軸にとったS1に対し縦軸の方向に延長した線が負、
0(零)、正のそれぞれのメンバーシップと交叉する高
さX11,X12,X13が、それぞれの適合度となる。同様
に図11に示す入力項目がガス混合部温度差分S2の場
合、横軸にとったS2に対し縦軸の方向に延長した線が
負、0(零)、正のそれぞれのメンバーシップと交叉す
る高さX21,X22,X23が、それぞれの適合度となる。
As a calculation method, when the input items are the gas mixing section temperature deviation S1 and the gas mixing section temperature difference S2, respectively, the membership is applied, and when the input items are extended in the direction of the vertical axis in FIG. 10 and FIG. The height of the point at which the membership of each rule intersects is the relevance. For example, when the input item shown in FIG. 10 is the gas mixing unit temperature deviation S1,
The line extending in the direction of the vertical axis is negative with respect to S1 taken on the horizontal axis,
The heights X 11 , X 12 , and X 13 that intersect the 0 (zero) and positive memberships are the respective fitness levels. Similarly, when the input item shown in FIG. 11 is the gas mixing unit temperature difference S2, a line extending in the direction of the vertical axis with respect to S2 on the horizontal axis crosses the negative, 0 (zero), and positive membership respectively. The heights X 21 , X 22 , and X 23 are the degrees of fitness.

【0075】各ルールの適合度は、表中の前件部項目の
適合度の積により求まる。例えばRule1の適合度Z
1は、表中の「ガス混合部温度偏差:負」の適合度X11
と「ガス混合部温度差分:負」の適合度X21より以下の
式で求まる。
The conformity of each rule is obtained by multiplying the conformity of the antecedent items in the table. For example, the fitness Z of Rule1
1 is the conformity X 11 of “Temperature deviation of gas mixing section: negative” in the table.
A: determined by the following equation from the fitness X 21 in "gas mixing unit temperature difference negative".

【0076】Z1 =X11・X21 (1) 同様にして、Rule2〜9の適合度Z2 〜Z9も、各
入力項目の該当する適合度の積によって求まる。
Z 1 = X 11 · X 21 (1) Similarly, the fitness levels Z 2 to Z 9 of the Rules 2 to 9 are obtained by the product of the corresponding fitness levels of the respective input items.

【0077】次に、各ルールの適合度Z1〜Z9と該当領
域における後件部パラメータY1〜Y9から補正量を演算
する。
Next, calculates the correction amount from the consequent parameter Y 1 to Y 9 in the relevant region and the matching degree Z 1 to Z 9 each rule.

【0078】燃焼空気補正量Dは、次式(2)で演算さ
れる。
The combustion air correction amount D is calculated by the following equation (2).

【0079】[0079]

【式1】 (Equation 1)

【0080】ここで、Σはiについての総和(i=1,
2,...,9)を表す。
Where Σ is the sum of i (i = 1,
2, ..., 9).

【0081】最後に、求められた各領域の燃焼空気補正
量を、(3)式により通常の燃焼空気量に加えて出力値
とする。
Finally, the calculated combustion air correction amount in each region is added to the normal combustion air amount according to equation (3) to obtain an output value.

【0082】 F=F0+D (3) ただし、Fは燃焼空気量、F0は通常の燃焼空気量であ
る。
F = F 0 + D (3) where F is the combustion air amount and F 0 is the normal combustion air amount.

【0083】なお、制御量の補正間隔については10〜
30秒程度の間隔で行うことが好ましい。
The control amount correction interval is 10 to
It is preferable to carry out at intervals of about 30 seconds.

【0084】以上、各実施形態について説明したが、本
願発明は上記各実施形態に限定されるものでなく、実施
段階ではその要旨を逸脱しない範囲で種々に変形するこ
とが可能である。また、各実施形態は可能な限り適宜組
み合わせて実施してもよく、その場合組み合わされた効
果が得られる。
Although the embodiments have been described above, the present invention is not limited to the above embodiments, and various modifications can be made in the implementation stage without departing from the scope of the invention. In addition, the embodiments may be implemented in appropriate combinations as much as possible, and in that case, the combined effects can be obtained.

【0085】なお、各実施形態において、炉本体内での
燃焼状態を総合的に判断するには、ごみが直接燃焼して
いる領域より、ごみの燃焼に伴う炎等の影響を直接受け
ないガス混合部以降の状態により判断することが望まし
い。
In each of the embodiments, in order to comprehensively judge the combustion state in the furnace main body, a gas which is not directly affected by a flame or the like accompanying the combustion of the refuse is used from a region where the refuse is directly burning. It is desirable to make a judgment based on the state after the mixing section.

【0086】従って、ガス混合部とは、広くは炉本体内
のごみが直接燃焼している領域よりも下流、かつ、可燃
性ガス及び燃焼排ガスが混合する領域以降で、ボイラ部
出口201までをいう。しかし、燃焼状態の変化をより
敏感に検出できる領域であるという観点(制御性を良好
にする上で望ましい)からすると、発明の適用上、より
望ましいガス混合部としては、炉本体内のごみが直接燃
焼している領域よりも下流、かつ、可燃性ガス及び燃焼
排ガスが混合する領域以降でボイラ27,9b付近まで
である。
Accordingly, the gas mixing section is generally defined as a section downstream of the region where the waste in the furnace body is directly combusted and from the region where the combustible gas and the combustion exhaust gas are mixed to the outlet 201 of the boiler section. Say. However, from the viewpoint that the change in combustion state can be more sensitively detected (preferably for better controllability), a more preferable gas mixing unit for application of the present invention is dust in the furnace body. It is downstream of the region where direct combustion is performed, and from the region where the combustible gas and the combustion exhaust gas are mixed to the vicinity of the boilers 27 and 9b.

【0087】なお、実施形態1〜4でいう、「可燃性ガ
スと燃焼排ガスの合流域内の下流側」、「二次燃焼用空
気の吹き込み領域内の下流側」、「焼却炉の燃焼排ガス
出口に接続された煙道内」及び「二次燃焼領域61」と
実施形態5でいう「ガス混合部7」は、ここでいうガス
混合部に相当する。
In the first to fourth embodiments, “downstream in the area where the combustible gas and the combustion exhaust gas are joined”, “downstream in the area where the secondary combustion air is blown”, and “combustion exhaust gas outlet of the incinerator” The "gas mixture section 7" referred to in the fifth embodiment as "inside the flue connected to the fuel cell" and "secondary combustion area 61" corresponds to the gas mixture section referred to herein.

【0088】[0088]

【発明の効果】以上説明したように本発明によれば、炉
内の急激な燃焼状態の変化に対して迅速な制御を行うこ
とができ、炉内燃焼の安定化、燃焼過程におけるダイオ
キシン類の発生の抑制、ごみ未燃の発生防止を図ること
ができるごみ焼却炉の燃焼制御方法が提供される。
As described above, according to the present invention, rapid control can be performed for a sudden change in the combustion state in the furnace, stabilization of combustion in the furnace, and reduction of dioxins in the combustion process. Provided is a combustion control method for a refuse incinerator capable of suppressing generation and preventing generation of unburned refuse.

【0089】また、本発明のごみ焼却炉によれば、炉内
で、ごみの乾燥過程で発生した可燃性ガスと後燃焼過程
で発生した燃焼排ガスを合流させて再燃焼まで開始させ
るごみ焼却炉システムにおいて、可燃性ガスと燃焼排ガ
スの合流域内の下流側に、燃焼排ガス温度を測定する放
射温度計を配置するとともに、この放射温度計の検出結
果に基づいて火格子装置への燃焼用空気の吹き込み量を
制御する制御装置を設けたので、単ブロワ方式のシステ
ムにおいて燃焼温度管理制御に必要な燃焼排ガス温度を
よりはやく測定することができた。このため、未燃ガス
を燃焼させるための温度管理を高レスポンスで適正に行
うことができて、CO、ダイオキシン類等の未燃成分の
発生量を大幅に抑えることができた。
Further, according to the refuse incinerator of the present invention, the refuse incinerator in which the combustible gas generated in the drying process of the refuse and the flue gas generated in the post-combustion process are combined in the furnace to start reburning. In the system, a radiation thermometer that measures the temperature of the combustion exhaust gas is arranged downstream of the convergence area of the combustible gas and the combustion exhaust gas, and the combustion air is supplied to the grate device based on the detection result of the radiation thermometer. The provision of a control device for controlling the amount of air blow allowed the temperature of the flue gas required for combustion temperature management control in a single blower system to be measured more quickly. For this reason, temperature control for burning the unburned gas can be appropriately performed with high response, and the amount of unburned components such as CO and dioxins can be significantly suppressed.

【0090】また、本発明のごみ焼却炉によれば、焼却
炉内で燃焼した一次燃焼排ガスに含まれる未燃成分を、
二次燃焼用空気と攪拌して二次燃焼させるごみ焼却炉シ
ステムにおいて、二次燃焼用空気の吹き込み領域内の下
流側に、二次燃焼排ガス温度を測定する放射温度計を配
置するとともに、この放射温度計の検出結果に基づいて
一次および二次燃焼用空気の吹き込み量を制御する制御
装置を設けたので、2ブロワ方式のシステムにおいて燃
焼温度管理制御に必要な燃焼排ガス温度をよりはやく測
定することができた。このため、未燃ガスを燃焼させる
ための温度管理を高レスポンスで適正に行うことができ
て、CO、ダイオキシン類等の未燃成分の発生量を大幅
に抑えることができた。
According to the refuse incinerator of the present invention, the unburned components contained in the primary combustion exhaust gas burned in the incinerator are
In a refuse incinerator system in which secondary combustion is performed by stirring with secondary combustion air, a radiation thermometer that measures the temperature of secondary combustion exhaust gas is arranged on the downstream side in the injection region of the secondary combustion air, Since a control device is provided to control the amount of primary and secondary combustion air blown based on the detection result of the radiation thermometer, the flue gas temperature required for combustion temperature management control in a two-blower system can be measured more quickly. I was able to. For this reason, temperature control for burning the unburned gas can be appropriately performed with high response, and the amount of unburned components such as CO and dioxins can be significantly suppressed.

【0091】また、本発明のごみ焼却炉によれば、焼却
炉の燃焼排ガス出口に接続された煙道内の、この煙道を
流れる燃焼排ガスの温度が所定値以下となる境界領域
に、複数の放射温度計を燃焼排ガス流れ方向に配置して
設けたので、ごみ性状による変動に伴って変動する燃焼
排ガスの温度が所定値以下となる境界を検出することが
でき、ごみ焼却炉内におけるCO、ダイオキシン類等の
未燃成分の発生量を把握することができた。
Further, according to the refuse incinerator of the present invention, a plurality of flue gas flowing through the flue in a flue connected to the flue gas outlet of the incinerator have a temperature lower than a predetermined value. Since the radiation thermometer is provided in the flow direction of the flue gas, it is possible to detect a boundary where the temperature of the flue gas fluctuating with the fluctuation due to the property of the dust becomes equal to or less than a predetermined value, and detect CO, The generation amount of unburned components such as dioxins could be grasped.

【0092】また、本発明のごみ焼却炉によれば、燃焼
排ガスの温度が所定値以下となる境界領域に設けた複数
の放射温度計の検出結果に基づいて燃焼用空気の吹き込
み量を補正制御する制御装置を設けたので、より適正に
温度管理された酸素が多い燃焼排ガスによって未燃ガス
を燃焼させることができ、CO、ダイオキシン類を含む
未燃ガスを大幅に除去することができた。
Further, according to the refuse incinerator of the present invention, the amount of combustion air blow-in is corrected and controlled based on the detection results of a plurality of radiation thermometers provided in the boundary region where the temperature of the combustion exhaust gas is below a predetermined value. As a result, the unburned gas can be burned by the combustion exhaust gas containing a large amount of oxygen whose temperature is more appropriately controlled, and the unburned gas containing CO and dioxins can be largely removed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態に係るごみ焼却炉のシス
テム構成図である。
FIG. 1 is a system configuration diagram of a refuse incinerator according to a first embodiment of the present invention.

【図2】第1実施形態に係るごみ焼却炉の燃焼排ガス温
度を放射温度計と熱電対で測定したときの時系列データ
を示すグラフである。
FIG. 2 is a graph showing time-series data when measuring a combustion exhaust gas temperature of the refuse incinerator according to the first embodiment with a radiation thermometer and a thermocouple.

【図3】第1実施形態に係るごみ焼却炉の燃焼領域温度
とCO濃度の関係を示す図である。
FIG. 3 is a diagram showing a relationship between a combustion zone temperature and a CO concentration of the refuse incinerator according to the first embodiment.

【図4】第1実施形態に係るごみ焼却炉の放射温度計で
測定した温度とCO濃度の時系列データを示す図であ
る。
FIG. 4 is a diagram showing time-series data of temperature and CO concentration measured by a radiation thermometer of the waste incinerator according to the first embodiment.

【図5】本発明の第2実施形態に係るごみ焼却炉のシス
テム構成図である。
FIG. 5 is a system configuration diagram of a refuse incinerator according to a second embodiment of the present invention.

【図6】本発明の第3実施形態に係るごみ焼却炉のシス
テム構成図である。
FIG. 6 is a system configuration diagram of a refuse incinerator according to a third embodiment of the present invention.

【図7】本発明の第4実施形態に係るごみ焼却炉のシス
テム構成図である。
FIG. 7 is a system configuration diagram of a refuse incinerator according to a fourth embodiment of the present invention.

【図8】本発明の燃焼制御方法を実施するためのごみ焼
却炉の一実施形態を示す概念図である。
FIG. 8 is a conceptual diagram showing one embodiment of a refuse incinerator for implementing the combustion control method of the present invention.

【図9】ごみ焼却炉において、設定したボイラ蒸発量が
異なる場合のガス混合部におけるガスの温度分布を示し
た図である。
FIG. 9 is a diagram showing a temperature distribution of gas in a gas mixing section when a set boiler evaporation amount is different in a refuse incinerator.

【図10】入力項目がガス混合部温度偏差の場合のメン
バーシップ関数を示す図である。
FIG. 10 is a diagram illustrating a membership function when an input item is a gas mixing unit temperature deviation.

【図11】入力項目がガス混合部温度差分の場合のメン
バーシップ関数を示す図である。
FIG. 11 is a diagram showing a membership function when an input item is a gas mixing unit temperature difference.

【符号の説明】[Explanation of symbols]

12 二次燃焼空気装置 20 焼却炉 24 火格子装置 25 燃焼空気装置 26 煙道 41 ごみ乾燥領域 42 後燃焼領域 43 可燃性ガスと燃焼排ガスの合流域内の下流側 44,62,71,72,73,74 放射温度計 50,60,70,80 自動燃焼制御装置(制御装
置) 61 二次燃焼領域 101 焼却炉 102 ごみ投入口 103 給じん装置 104 火格子 105 灰落下口 106 燃焼空気ブロア 107 ガス混合部 108 煙突 109a 熱交換器 109b ボイラ 1010 冷却空気吹き込み口 111 冷却空気ブロア 112 温度計 113 ボイラ流量計 114a〜d 火格子下燃焼空気ダンパ 115 ボイラ蒸発量設定値 116 低位発熱量 117 制御手段 118 中間天井 201 ボイラ部出口
Reference Signs List 12 secondary combustion air device 20 incinerator 24 grate device 25 combustion air device 26 flue 41 refuse drying area 42 post-combustion area 43 downstream side in the confluence area of combustible gas and combustion exhaust gas 44, 62, 71, 72, 73 , 74 Radiation thermometer 50, 60, 70, 80 Automatic combustion control device (control device) 61 Secondary combustion area 101 Incinerator 102 Waste inlet 103 Dust supply device 104 Grate 105 Ash fall port 106 Combustion air blower 107 Gas mixing Unit 108 Chimney 109a Heat exchanger 109b Boiler 1010 Cooling air inlet 111 Cooling air blower 112 Thermometer 113 Boiler flow meter 114a-d Burning air damper under grate 115 Boiler evaporation amount setting value 116 Lower heating value 117 Control means 118 Middle ceiling 201 Boiler section exit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 島本 拓幸 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 土井 茂行 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 永関 三千男 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 中川 知紀 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 3K062 AA02 AB01 AC01 BA02 CA03 CB06 CB08 DA01 DB06 DB08 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takuyuki Shimamoto 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Inside Nihon Kokan Co., Ltd. (72) Inventor Shigeyuki Doi 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Inside Nippon Kokan Co., Ltd. (72) Inventor Michio Nagaseki 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Japan Inside Nippon Kokan Co., Ltd. (72) Tomonori Nakagawa 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Sun F-term in Honko Co., Ltd. (reference) 3K062 AA02 AB01 AC01 BA02 CA03 CB06 CB08 DA01 DB06 DB08

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】ごみの乾燥過程で発生した可燃性ガスと後
燃焼過程で発生した燃焼排ガスが合流するガス混合部の
ガス温度に基づき火格子下より吹き込む燃焼空気量を制
御する制御手段を備えたことを特徴とするごみ焼却炉。
1. A control means for controlling an amount of combustion air blown from below a grate based on a gas temperature of a gas mixing section where a combustible gas generated in a refuse drying process and a flue gas generated in a post-combustion process merge. Waste incinerator characterized by the following.
【請求項2】前記制御手段は、ガス混合部のガス温度の
計測値と所定の温度目標値との偏差および/またはガス
混合部のガス温度の計測値と所定時間前に計測したガス
混合部のガス温度の計測値との差分値に基づき火格子下
より吹き込む燃焼空気量を制御することを特徴とする請
求項1に記載のごみ焼却炉。
2. The gas mixing unit according to claim 1, wherein the control unit includes a deviation between a measured value of the gas temperature of the gas mixing unit and a predetermined temperature target value and / or a measured value of the gas temperature of the gas mixing unit measured a predetermined time ago. The refuse incinerator according to claim 1, wherein the amount of combustion air blown from below the grate is controlled based on a difference value from the measured value of the gas temperature.
【請求項3】前記制御手段は、所定の温度目標値を、別
途設定されるボイラ蒸発量及びごみの発熱量により算出
することを特徴とする請求項2に記載のごみ焼却炉。
3. The refuse incinerator according to claim 2, wherein the control means calculates a predetermined temperature target value based on a separately set boiler evaporation amount and refuse heat value.
【請求項4】ガス混合部の特定成分の吸収波長帯におけ
る熱放射エネルギーを検出することによりガス混合部の
ガス温度を計測する計測手段を備えたことを特徴とする
請求項1乃至請求項3のいずれかに記載のごみ焼却炉。
4. The apparatus according to claim 1, further comprising measuring means for measuring a gas temperature of the gas mixing section by detecting thermal radiation energy in an absorption wavelength band of a specific component of the gas mixing section. Waste incinerator according to any of the above.
【請求項5】前記計測手段は、特定成分としてCO2
用いることを特徴とする請求項4に記載のごみ焼却炉。
5. The incinerator according to claim 4, wherein said measuring means uses CO 2 as a specific component.
【請求項6】前記制御手段は、ファジィ制御を用いて火
格子下より吹き込む燃焼空気量を制御することを特徴と
する請求項1乃至請求項5のいずれかに記載のごみ焼却
炉。
6. The refuse incinerator according to claim 1, wherein said control means controls the amount of combustion air blown from below the grate using fuzzy control.
【請求項7】ガス混合部のガス温度が所定値以下となる
境界領域に、複数の温度計を燃焼排ガス流れ方向に配置
して設けたことを特徴とする請求項1乃至請求項6のい
ずれかに記載のごみ焼却炉。
7. A fuel cell system according to claim 1, wherein a plurality of thermometers are provided in a boundary region where a gas temperature of the gas mixing section is equal to or lower than a predetermined value in a flow direction of the flue gas. The garbage incinerator described in the crab.
【請求項8】ガス混合部のガス温度が所定値以下となる
境界領域に設けた複数の温度計の検出結果に基づいて火
格子下より吹き込む燃焼空気量を補正制御する制御手段
を設けたことを特徴とする請求項1乃至請求項7のいず
れかに記載のごみ焼却炉。
8. A control means for correcting and controlling an amount of combustion air blown from below a grate based on detection results of a plurality of thermometers provided in a boundary region where a gas temperature of a gas mixing section is equal to or lower than a predetermined value. The refuse incinerator according to any one of claims 1 to 7, characterized in that:
【請求項9】炉内で、ごみの乾燥過程で発生した可燃性
ガスと後燃焼過程で発生した燃焼排ガスを合流させて再
燃焼まで開始させるごみ焼却炉システムにおいて、前記
可燃性ガスと燃焼排ガスの合流域内の下流側に、燃焼排
ガス温度を測定する放射温度計を配置するとともに、該
放射温度計の検出結果に基づいて火格子装置への燃焼用
空気の吹き込み量を制御する制御装置を設けたことを特
徴とするごみ焼却炉。
9. A refuse incinerator system in which a combustible gas generated in a drying process of refuse and a flue gas generated in a post-combustion process are merged in a furnace to start reburning. A radiation thermometer for measuring the temperature of the combustion exhaust gas is arranged on the downstream side in the confluence area, and a control device for controlling the amount of combustion air blown into the grate device based on the detection result of the radiation thermometer is provided. Waste incinerator characterized by the following.
【請求項10】焼却炉内で燃焼した一次燃焼排ガスに含
まれる未燃成分を、二次燃焼用空気と攪拌して二次燃焼
させるごみ焼却炉システムにおいて、前記二次燃焼用空
気の吹き込み領域内の下流側に、二次燃焼排ガス温度を
測定する放射温度計を配置するとともに、該放射温度計
の検出結果に基づいて一次および二次燃焼用空気の吹き
込み量を制御する制御装置を設けたことを特徴とするご
み焼却炉。
10. A refuse incinerator system in which unburned components contained in primary combustion exhaust gas burned in an incinerator are agitated with secondary combustion air for secondary combustion, wherein the secondary combustion air blowing region is provided. On the downstream side, a radiation thermometer for measuring the temperature of the secondary combustion exhaust gas was arranged, and a control device for controlling the blowing amounts of the primary and secondary combustion air based on the detection result of the radiation thermometer was provided. A refuse incinerator characterized in that:
【請求項11】焼却炉の燃焼排ガス出口に接続された煙
道内の、該煙道を流れる燃焼排ガスの温度が所定値以下
となる境界領域に、複数の放射温度計を燃焼排ガス流れ
方向に配置して設けたことを特徴とする請求項9又は請
求項10記載のごみ焼却炉。
11. A plurality of radiation thermometers are arranged in a flue gas flow direction in a flue connected to a flue gas outlet of an incinerator, in a boundary region where the temperature of flue gas flowing through the flue is equal to or lower than a predetermined value. The refuse incinerator according to claim 9 or 10, wherein the refuse incinerator is provided.
【請求項12】燃焼排ガスの温度が所定値以下となる境
界領域に設けた複数の放射温度計の検出結果に基づいて
燃焼用空気の吹き込み量を補正制御する制御装置を設け
たことを特徴とする請求項11記載のごみ焼却炉。
12. A control device for correcting and controlling the blowing amount of combustion air based on detection results of a plurality of radiation thermometers provided in a boundary region where the temperature of the combustion exhaust gas is equal to or lower than a predetermined value. The refuse incinerator according to claim 11, wherein the waste is incinerated.
JP2000331728A 1999-11-01 2000-10-31 Refuse incinerator Pending JP2002147729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000331728A JP2002147729A (en) 1999-11-01 2000-10-31 Refuse incinerator

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP31106799 1999-11-01
JP11-311067 2000-09-01
JP2000264794 2000-09-01
JP2000-264794 2000-09-01
JP2000331728A JP2002147729A (en) 1999-11-01 2000-10-31 Refuse incinerator

Publications (1)

Publication Number Publication Date
JP2002147729A true JP2002147729A (en) 2002-05-22

Family

ID=27339144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000331728A Pending JP2002147729A (en) 1999-11-01 2000-10-31 Refuse incinerator

Country Status (1)

Country Link
JP (1) JP2002147729A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019007699A (en) * 2017-06-27 2019-01-17 川崎重工業株式会社 Primary combustion gas supply control method, evaporation amount stabilization method, power generation amount stabilization method and fire grate type waste incinerator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59180212A (en) * 1983-03-30 1984-10-13 Kawasaki Heavy Ind Ltd Combustion controller in refuse incinerator
JPH03230007A (en) * 1990-02-06 1991-10-14 Ishikawajima Harima Heavy Ind Co Ltd Interruption detecting method of supply of items to be incinerated in fluidized-bed incinerator
JPH05272733A (en) * 1992-03-27 1993-10-19 Kubota Corp Incinerator
JPH08178246A (en) * 1994-12-21 1996-07-12 Kubota Corp Method of measuring combustion flame in incinerator
JPH09273732A (en) * 1996-02-06 1997-10-21 Nkk Corp Control method of combustion in incinerating furnace

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59180212A (en) * 1983-03-30 1984-10-13 Kawasaki Heavy Ind Ltd Combustion controller in refuse incinerator
JPH03230007A (en) * 1990-02-06 1991-10-14 Ishikawajima Harima Heavy Ind Co Ltd Interruption detecting method of supply of items to be incinerated in fluidized-bed incinerator
JPH05272733A (en) * 1992-03-27 1993-10-19 Kubota Corp Incinerator
JPH08178246A (en) * 1994-12-21 1996-07-12 Kubota Corp Method of measuring combustion flame in incinerator
JPH09273732A (en) * 1996-02-06 1997-10-21 Nkk Corp Control method of combustion in incinerating furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019007699A (en) * 2017-06-27 2019-01-17 川崎重工業株式会社 Primary combustion gas supply control method, evaporation amount stabilization method, power generation amount stabilization method and fire grate type waste incinerator

Similar Documents

Publication Publication Date Title
JP3062582B2 (en) Method and apparatus for predicting furnace state of pulverized coal combustion equipment
KR100304244B1 (en) Combustion control method and apparatus for waste incinerators
EP1726876B1 (en) Improved method of combusting solid waste
CN105783025A (en) Method for monitoring distribution of pulverized coal in low-NOx tangential coal-fired boiler
JPH04371712A (en) Combustion control method for garbage incinerator
JPH04309714A (en) Device for estimating unburnt substance in ash of coal combustion furnace
EP1304525A1 (en) Waste incinerator and method of operating the incinerator
WO2013133290A1 (en) Grate-type waste incinerator and method for incinerating waste
JP2000097422A (en) Waste incinerating plant, apparatus and method for controlling the same, and method for predicting gas composition distribution thereof
JP2002147729A (en) Refuse incinerator
WO2007055125A1 (en) Secondary combustion method and unit in incineration system
JP7126215B2 (en) System controller and control method
JP3466555B2 (en) Combustion control method and device for refuse incineration plant
CN216244308U (en) Fire grate control system
JP5179163B2 (en) Combustion control system for combustion furnace and combustion control method thereof
JPS62255717A (en) Combustion control of fractionated waste incinerator
JP2002147732A (en) Refuse incinerator
JPH09273733A (en) Control method of combustion in incinerating furnace
JP2005308362A (en) Combustion control method of refuse incinerator, and refuse incinerator
JPH0468533B2 (en)
JP2021071238A (en) Incineration plant and combustion controlling method thereof
JPH09273732A (en) Control method of combustion in incinerating furnace
JPH0468534B2 (en)
JP2000028123A (en) Secondary combustion controller for refuse incinerator
JPH07217843A (en) Incinerator and method of controlling flame in same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060425