JP2955431B2 - Incinerator combustion control device - Google Patents

Incinerator combustion control device

Info

Publication number
JP2955431B2
JP2955431B2 JP4190516A JP19051692A JP2955431B2 JP 2955431 B2 JP2955431 B2 JP 2955431B2 JP 4190516 A JP4190516 A JP 4190516A JP 19051692 A JP19051692 A JP 19051692A JP 2955431 B2 JP2955431 B2 JP 2955431B2
Authority
JP
Japan
Prior art keywords
detecting means
combustion
burn
grate
combustion zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4190516A
Other languages
Japanese (ja)
Other versions
JPH0634118A (en
Inventor
義明 高畠
文典 今村
浩一 鬼生田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP4190516A priority Critical patent/JP2955431B2/en
Publication of JPH0634118A publication Critical patent/JPH0634118A/en
Application granted granted Critical
Publication of JP2955431B2 publication Critical patent/JP2955431B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、燃焼中の被焼却物を前
後配置された火格子の相対移動により搬送する搬送手段
を設けた燃焼帯と、前記燃焼帯における被焼却物の気体
燃焼の終了位置を検出する燃え切り位置検出手段と、前
記燃え切り位置検出手段により検出された燃え切り位置
が設定範囲に入るように前記搬送手段の搬送速度を増減
調節する燃焼制御手段とを備えて構成してある焼却炉の
燃焼制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion zone provided with a conveying means for conveying a burning incineration object by a relative movement of a fire grate arranged in front and rear, and a gas combustion of the incineration object in the combustion zone. A burn-off position detecting means for detecting an end position; and a combustion control means for increasing and decreasing the conveying speed of the conveying means so that the burn-off position detected by the burn-off position detecting means falls within a set range. The present invention relates to a combustion control device for an incinerator.

【0002】[0002]

【従来の技術】従来、前記燃え切り位置検出手段を、被
焼却物の搬送方向に沿って複数配置され炎の有無を検出
する光量検出手段や、前記燃焼帯近傍に複数配置され炉
内の温度を検出する炉内温度検出手段や、被焼却物の搬
送方向に沿って前記火格子に複数配置され前記火格子の
温度を検出する火格子温度検出手段等で構成したものが
あった。そして、これらは気体燃焼の程度を示す炎の大
きさを、光量の大小や温度の高低で判断してそれらがあ
る閾値より大から小となる位置を燃え切り位置と判断す
るものであった。
2. Description of the Related Art Conventionally, a plurality of burn-off position detecting means are arranged along a conveying direction of an incineration object, and a light quantity detecting means for detecting the presence or absence of a flame, And a grate temperature detection means arranged on the grate along the transport direction of the incineration material and configured to detect the temperature of the grate. In these methods, the size of the flame, which indicates the degree of gas combustion, is determined based on the magnitude of the light amount and the temperature, and the position where the magnitude is smaller than a certain threshold is determined as the burn-out position.

【0003】[0003]

【発明が解決しようとする課題】しかし、上述した光量
検出素子を用いるものでは、搬送方向に沿った一定範囲
の視野内の全体光量を検出することになるので、搬送方
向に沿って高価な多くの光量検出素子を配置しない限り
は、その範囲内における詳細な位置情報が得られない
し、炉内温度を検出するものでは、温度センサが燃焼用
空気量の変化による影響を受けて大きく変動する場合が
あり正確な検出が行えるとは限らない。さらに、火格子
温度を検出するものでは、燃焼用空気がゴミの隙間から
吹き抜けて、その部位が異常高温となったり、燃焼用空
気の温度や量の変化による影響を受けるので、やはり正
確に検出できない。その結果、上述のいずれの燃え切り
位置検出手段であっても、燃焼帯における被焼却物の燃
焼状態が適正に維持されなくなり、燃え切り位置が下流
側にずれて被焼却物が未燃のまま後燃焼帯に搬送された
り、燃え切り位置が上流側にずれて焼却効率が低下する
といった欠点があった。本発明の目的は上述した従来欠
点に鑑み、炉内の対流、燃焼用空気量の変動、局部的異
常燃焼等の種々の外乱要素にかかわらず、燃え切り位置
の検出を常に正確で精度良く行いうる燃え切り位置検出
手段を実現し、適正な燃焼状態に維持する点にある。
However, in the case of using the above-described light amount detecting element, the entire light amount within a certain range of the visual field along the transport direction is detected, so that the cost is high along the transport direction. Unless the light amount detecting element is arranged, detailed position information within the range cannot be obtained, and in the case of detecting the furnace temperature, when the temperature sensor fluctuates significantly due to the change in the combustion air amount. And accurate detection is not always possible. In addition, when the grate temperature is detected, the combustion air blows through the gaps in the garbage, and the part becomes abnormally high temperature or is affected by changes in the temperature or volume of the combustion air. Can not. As a result, any of the above burnouts
Even with the position detecting means, the combustion state of the incinerated material in the combustion zone is not properly maintained, and the burn-out position is shifted to the downstream side, and the incinerated material is transported unburned to the post-combustion zone or burned. There was a disadvantage that the cutting position was shifted to the upstream side and the incineration efficiency was reduced. In view of the above-mentioned conventional disadvantages, the object of the present invention is to consider convection in a furnace, fluctuations in the amount of combustion air, and
The point is to realize a burn-off position detecting means capable of always and accurately detecting the burn-off position irrespective of various disturbance factors such as normal combustion, and maintain an appropriate combustion state.

【0004】[0004]

【課題を解決するための手段】この目的を達成するため
本発明による焼却炉の燃焼制御装置の特徴構成は、前記
燃え切り位置検出手段を、被焼却物の搬送方向に沿って
複数配置され炎の有無を検出する光量検出手段と、前記
燃焼帯近傍に複数配置され炉内の温度を検出する炉内温
度検出手段と、被焼却物の搬送方向に沿って前記火格子
に複数配置され前記火格子の温度を検出する火格子温度
検出手段と、それらからの検出値に基づき各別に燃え切
り地点を推定する複数の下位ニューラルネットワーク
と、各下位ニューラルネットワークの出力を統合する上
位ニューラルネットワークとで構成してあり、前記上位
ニューラルネットワークを、前記下位ニューラルネット
ワークの出力に重みを付けて作成された教師信号により
学習してある点にある。
In order to achieve this object, a characteristic configuration of a combustion control apparatus for an incinerator according to the present invention is characterized in that a plurality of the burn-out position detecting means are arranged along a conveying direction of an incinerated object and a flame is provided. A plurality of light quantity detecting means for detecting the presence or absence of the incinerator; a plurality of in-furnace temperature detecting means arranged in the vicinity of the combustion zone for detecting a temperature in the furnace; It consists of a grate temperature detecting means for detecting the temperature of the grate, a plurality of lower neural networks for estimating burn-out points individually based on the detected values from them, and an upper neural network for integrating the outputs of the respective lower neural networks. In that the upper neural network has been trained by a teacher signal created by weighting the output of the lower neural network. .

【0005】[0005]

【作用】光量検出手段や、炉内温度検出手段や、火格子
温度検出手段により検出される燃え切り位置は、被焼却
物の燃焼状態や供給される燃焼用空気量等により左右さ
れ、それらの状態により線形的に分離識別できるもので
はない。そこで、このような問題を解決するのに好適な
ニューラルネットワークを前記光量検出手段、炉内温度
検出手段、火格子温度検出手段という検出原理の異なる
複数の検出手段にに用いることにより、各別に燃え切り
地点を推定し、それらからの検出値を入力とする上位の
ニューラルネットワークにより、最終的な燃え切り地点
を推定して、その結果から燃え切り位置が適正位置とな
るように、ゴミ搬送速度や、燃焼空気量等の増減を行う
のである。ここで、上位のニューラルネットワークは、
複数の下位ニューラルネットワークの信頼性を考慮し
て、下位ニューラルネットワークの出力に重みを付けて
作成された教師信号により学習してあるので、推定精度
を相互に補うことができ、より精度の高い推定が可能と
なるのである。
The burn-off position detected by the light quantity detection means, the furnace temperature detection means, and the grate temperature detection means depends on the combustion state of the incineration material, the amount of supplied combustion air, and the like. It cannot be separated and identified linearly depending on the state. Therefore, neural networks suitable for solving such a problem are different from each other in the detection principle of the light amount detection means, the furnace temperature detection means, and the grate temperature detection means.
By using for multiple detection means
Estimate points and use the detected values from them as input
The final burnout point by neural network
Is estimated , and the dust transfer speed, the amount of combustion air, and the like are increased or decreased so that the burn-out position becomes an appropriate position based on the result . Here, the top neural network is
Considering the reliability of multiple lower neural networks
Weight the output of the lower neural network
Since learning has been performed using the created teacher signal, estimation accuracy
Can be mutually complemented, and more accurate estimation is possible.
It becomes.

【0006】[0006]

【発明の効果】本発明によれば、光量検出手段、炉内温
度検出手段、火格子温度検出手段それぞれを個別に用い
る場合に問題となる判断基準、つまり、線形分離の困難
さや、炉内の対流、燃焼用空気量の変動、局部的異常燃
焼等の種々の外乱要素があっても、より少ない検出素子
数で燃え切り位置を正確で精度良く検出できる燃え切り
位置検出手段を提供できるようになったために、焼却炉
の燃焼状態を常に適正な状態に維持することができるよ
うになった。
According to the present invention, the light amount detecting means, the furnace temperature detecting means, and the grate temperature detecting means are individually used.
Criterion that is problematic in the case of
Pods, convection in the furnace, fluctuations in the amount of combustion air, localized abnormal combustion
Even if there are various disturbance elements such as burning, fewer detecting elements
Since it is possible to provide a burn-out position detecting means capable of accurately and accurately detecting the burn-out position by the number, the combustion state of the incinerator can always be maintained at an appropriate state.
Unina was Tsu.

【0007】[0007]

【実施例】以下に実施例を説明する。都市ゴミ用の焼却
炉は、図3に示すように、ホッパ3に収容された被焼却
物をその下端部に設けたプッシャ5により燃焼室2に投
入し、前記燃焼室2での焼却済みの灰を押し出し装置1
0により灰ピット4に集めるように構成してある。前記
燃焼室2は、前記プッシャ5により投入されたゴミを乾
燥させ着火点近傍まで加熱する乾燥帯6と、乾燥ゴミを
燃焼させる燃焼帯7と、その燃焼帯7で燃焼したゴミを
灰化する後燃焼帯8とを上方から下方に段階的に配置し
て構成してあり、それぞれの底部に高温の燃焼用空気を
供給する送風機16a及び流路16bと流路16bに設
けたダンパ16cとからなる燃焼用空気供給手段16を
設けて構成してある。
Embodiments will be described below. As shown in FIG. 3, the incinerator for municipal garbage injects the incineration material stored in the hopper 3 into the combustion chamber 2 by the pusher 5 provided at the lower end thereof, and the incinerator in the combustion chamber 2 Ash extruder 1
It is configured to collect in the ash pit 4 by 0. The combustion chamber 2 is provided with a drying zone 6 for drying and heating the dust introduced by the pusher 5 to a temperature near the ignition point, a combustion zone 7 for burning the dried dust, and an ashes for the dust burned in the combustion zone 7. The combustion zone 8 is arranged in a stepwise manner from the upper side to the lower side, and includes a blower 16a for supplying high-temperature combustion air to a bottom portion thereof, a flow path 16b, and a damper 16c provided in the flow path 16b. Combustion air supply means 16 is provided.

【0008】前記乾燥帯6、燃焼帯7、後燃焼帯8の床
には、それらの上に積載された被焼却物を下流の灰ピッ
ト4に向けて攪拌及び搬送する搬送手段Sを設けてあ
る。詳述すると、前記搬送手段Sは、固定枠及びその固
定枠に対して相対移動自在な可動枠でなる枠体それぞれ
に、火格子Gを前後方向に交互に重ね合わせ配置して構
成してあり、油圧シリンダにより可動枠を摺動させるこ
とで前後の火格子Gを斜め上下方向へ相対移動させて、
その上の被焼却物を攪拌搬送する。前記燃焼帯7は、前
部燃焼帯7Aと後部燃焼帯7Bの二領域で構成してあ
り、被焼却物たるゴミは、後述の燃焼制御手段18によ
り前部燃焼帯7Aで主に気体燃焼させて、後部燃焼帯7
B中間部で完全に固体燃焼するように、前記燃焼用空気
供給手段16による燃焼用空気供給量や前記搬送手段S
による搬送速度が制御される。
On the floors of the drying zone 6, the combustion zone 7, and the post-combustion zone 8, there is provided a transport means S for stirring and transporting the incineration material loaded thereon toward the ash pit 4 downstream. is there. More specifically, the transporting means S is configured such that the grate G is alternately arranged in the front-rear direction on each of a fixed frame and a frame body which is movable relative to the fixed frame. By sliding the movable frame with a hydraulic cylinder, the front and rear grate G is relatively moved in an oblique vertical direction,
The material to be incinerated thereon is stirred and transported. The combustion zone 7 is composed of two regions, a front combustion zone 7A and a rear combustion zone 7B, and refuse as incineration is mainly gas-combusted in the front combustion zone 7A by a combustion control means 18 described later. And the rear combustion zone 7
In order to completely perform solid combustion in the intermediate portion B, the amount of combustion air supplied by the combustion air supply means 16 and the conveyance means S
Is controlled.

【0009】上述の焼却炉の燃焼制御装置は、前記燃焼
帯7における被焼却物の気体燃焼の終了位置を検出する
燃え切り位置検出手段Dや、前記燃え切り位置検出手段
Dにより検出された燃え切り位置が設定範囲に入るよう
に前記搬送手段Sの搬送速度を増減調節し、前記燃焼用
空気供給手段16による燃焼用空気供給量を増減調節す
る燃焼制御手段18等を備えるとともに、各種のセンサ
検出値に基づき、燃焼室2の燃焼状態を適正に調整維持
するべく、プッシャ5によるゴミの投入速度制御や上述
の制御を行い適正な燃焼状態に調節維持するマイクロコ
ンピュータを搭載してなる燃焼制御手段18等で構成し
てある。
The above-described combustion control apparatus for an incinerator includes a burn-out position detecting means D for detecting the end position of the gas combustion of the incinerated material in the combustion zone 7 and a burn-out detected by the burn-off position detecting means D. Combustion control means 18 and the like for increasing and decreasing the conveying speed of the conveying means S so that the cutting position falls within a set range, and increasing and decreasing the supply amount of combustion air by the combustion air supply means 16 are provided. In order to properly adjust and maintain the combustion state of the combustion chamber 2 based on the detected value, a combustion control including a microcomputer for controlling the injection speed of dust by the pusher 5 and performing the above-described control to adjust and maintain the appropriate combustion state. It comprises means 18 and the like.

【0010】前記燃焼制御手段18は、例えば、燃え切
り位置が後部燃焼帯7Bの上流側にあれば、炉出口温度
を所定温度に維持する状態で搬送速度を増加させるとと
もに、新たなゴミ投入量を増やして焼却効率を上昇させ
たり、燃え切り位置が後部燃焼帯7Bの下流側にあれ
ば、炉出口温度を所定温度に維持する状態で搬送速度を
減少させるとともに、充分固体燃焼できるように燃焼空
気供給量を増加させるといったように、その時の含水率
等ゴミの質、量に応じて燃え切り位置が設定範囲に入る
ように制御する。
[0010] For example, if the burn-out position is upstream of the rear combustion zone 7B, the combustion control means 18 increases the transfer speed while maintaining the furnace outlet temperature at a predetermined temperature, and increases the new garbage input amount. If the burn-out position is on the downstream side of the rear combustion zone 7B, the conveying speed is reduced while maintaining the furnace outlet temperature at a predetermined temperature, and the combustion is performed so that solid combustion can be sufficiently performed. For example, the burn-out position is controlled to be within a set range according to the quality and amount of dust such as the water content at that time, such as increasing the air supply amount.

【0011】前記燃焼室2で発生した燃焼ガスは、排熱
ボイラ12によって発電機13のエネルギーとして利用
すべく熱エネルギーが蒸気の形で取り出され場外に供給
され、電気集塵機等からなる排ガス処理設備14により
ばいじんや有害ガスを除去して排気される。
From the combustion gas generated in the combustion chamber 2, heat energy is taken out in the form of steam to be used as energy of a generator 13 by an exhaust heat boiler 12 and supplied to the outside of the plant. 14 removes soot and harmful gases and exhausts.

【0012】図2に示すように、前記燃え切り位置検出
手段Dは、被焼却物の搬送方向に沿って複数配置され炎
の有無を受光強度に基づき検出するフォトセンサでなる
光量検出手段D1と、前記燃焼帯7近傍の上方内壁面に
複数配置され炉内の温度を検出する炉内温度検出手段D
2と、被焼却物の搬送方向に沿って前記火格子Gに複数
配置され前記火格子Gの温度を検出する火格子温度検出
手段D3と、それらからの検出値に基づき各別に燃え切
り地点を推定する複数の下位ニューラルネットワークN
1,N2,N3と、各下位ニューラルネットワークN
1,N2,N3の出力を統合する上位ニューラルネット
ワークN4とで構成してある。
As shown in FIG. 2, the burn-off position detecting means D includes a plurality of light quantity detecting means D1 comprising photo sensors which are arranged in a plurality in the conveying direction of the incineration object and detect the presence or absence of a flame based on the intensity of received light. A plurality of in-furnace temperature detecting means D arranged on the upper inner wall near the combustion zone 7 for detecting the temperature in the furnace;
2, a plurality of grate temperature detecting means D3 arranged on the grate G along the transport direction of the incineration material and detecting the temperature of the grate G, and the burn-off points are individually determined based on the detected values from these. A plurality of lower neural networks N to be estimated
1, N2, N3 and each lower neural network N
, N2, and N3.

【0013】図1に示すように、前記光量検出手段D1
は、燃焼帯7の前半部、中間部、後半部の三箇所に設け
てあり、前記炉内温度検出手段D2は、乾燥帯部、前部
燃焼帯部に対応する炉出口部、後部燃焼帯部、後燃焼帯
部の四箇所に設けてあり、前記火格子温度検出手段D3
は、前記燃焼帯7の床を構成する火格子Gに、その幅方
向に三箇所及び搬送方向に四箇所の合計12箇所に、温
度検出素子としての熱電対Tを埋め込んで構成してあ
り、それぞれの出力信号を前記下位ニューラルネットワ
ークN1,N2,N3に入力してある。但し、前記火格
子温度検出手段D3は、その幅方向の三箇所の平均値を
入力してある。
As shown in FIG. 1, the light amount detecting means D1
Are provided at three places: a first half, a middle part, and a second half of the combustion zone 7. The in-furnace temperature detecting means D2 includes a drying zone, a furnace outlet corresponding to the front combustion zone, and a rear combustion zone. And the grate temperature detecting means D3.
Is constructed by embedding thermocouples T as temperature detecting elements at a total of 12 places, three places in the width direction and four places in the transport direction, in the grate G constituting the floor of the combustion zone 7, Each output signal is input to the lower neural networks N1, N2, N3. However, the grate temperature detecting means D3 inputs the average value of three points in the width direction.

【0014】前記下位ニューラルネットワークN1,N
2,N3は、予め、光量検出手段D1、炉内温度検出手
段D2、火格子温度検出手段D3のそれぞれで検出され
る燃え切り位置の典型的なパターンを教師信号とするバ
ックプロパゲーションによる学習がなされており、実際
の入力データに対して燃え切り位置が”上方”、”良
好”、”下方”のいずれであるかを0.0から1.0の
間の数値で出力するように構成されている。例えば、”
上方”が1.0、”良好”が0.0、”下方”が0.0
であれば、入力データに基づく判断は”上方”であるこ
とを示し、”上方”が0.8、”良好”が0.1、”下
方”が0.0であれば、入力データに基づく判断はほ
ぼ”上方”であることを示す。つまり、”上方”、”良
好”、”下方”の各数値はそれぞれの程度を示すことに
なる。
The lower neural networks N1, N
2, N3 learns in advance by back propagation using a typical pattern of the burn-off position detected by each of the light amount detecting means D1, the furnace temperature detecting means D2, and the grate temperature detecting means D3 as a teacher signal. It is configured to output a numerical value between 0.0 and 1.0 as to whether the burn-out position is “upper”, “good”, or “lower” with respect to actual input data. ing. For example, "
"Upper" is 1.0, "good" is 0.0, and "lower" is 0.0
If it is, the judgment based on the input data indicates “upper”, and if “upper” is 0.8, “good” is 0.1, and “lower” is 0.0, it is based on the input data. The judgment indicates that it is almost “up”. That is, the numerical values of “upper”, “good”, and “lower” indicate the respective degrees.

【0015】前記上位ニューラルネットワークN4は、
下位ニューラルネットワークN1,N2,N3の個別の
燃え切り位置出力である”上方”、”良好”、”下方”
の3出力をそれぞれ入力とする総合判断用のニューラル
ネットワークであり、光量検出手段D1、炉内温度検出
手段D2、火格子温度検出手段D3に対応する下位ニュ
ーラルネットワークN1,N2,N3のそれぞれに、信
頼性を示す重み付けを行い学習させている。即ち、光量
検出手段D1、炉内温度検出手段D2、火格子温度検出
手段D3に対応して、下位ニューラルネットワークN1
に”1.0”,下位ニューラルネットワークN2に”
0.9”,下位ニューラルネットワークN3に”0.
8”の重み付けを行い、表2に示す入力教師信号に対し
て、数1に示す変換式により求まる値を出力教師信号と
して、バックプロパゲーションによる学習を行ってい
る。
The upper neural network N4 is:
"Upper", "good", "lower" which are the individual burn-out position outputs of the lower neural networks N1, N2, N3.
Is a neural network for comprehensive judgment which takes the three outputs as inputs, respectively. The lower neural networks N1, N2, and N3 corresponding to the light amount detecting means D1, the furnace temperature detecting means D2, and the grate temperature detecting means D3 respectively include: Learning is performed by weighting indicating reliability. That is, the lower neural network N1 corresponds to the light amount detecting means D1, the furnace temperature detecting means D2, and the grate temperature detecting means D3.
"1.0" and lower neural network N2 "
0.9 ”, and“ 0.
8 "is weighted, and learning by back propagation is performed on the input teacher signal shown in Table 2 using the value obtained by the conversion formula shown in Expression 1 as the output teacher signal.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【数1】 (Equation 1)

【0018】以下に別実施例を説明する。光量検出手段
D1、炉内温度検出手段D2、火格子温度検出手段D3
の配置位置や数は特に限定するものではなく任意であ
る。それに伴いニューラルネットワークの入力層のニュ
ーロン数も任意であり、中間層の構成も制限するもので
はない。下位ニューラルネットワークN1,N2,N3
のそれぞれに付す信頼性を示す重み付けは、常にこの数
値に限定するものではなく、実際の焼却炉の構造や光量
検出手段D1、炉内温度検出手段D2、火格子温度検出
手段D3の配置位置や数により適宜設定することにな
る。
Another embodiment will be described below. Light amount detecting means D1, furnace temperature detecting means D2, grate temperature detecting means D3
The arrangement position and number of are not particularly limited and are arbitrary. Accordingly, the number of neurons in the input layer of the neural network is arbitrary, and the configuration of the hidden layer is not limited. Lower neural networks N1, N2, N3
Is not always limited to this numerical value, and the actual incinerator structure, the position of the light amount detecting means D1, the in-furnace temperature detecting means D2, and the grate temperature detecting means D3, It will be set appropriately depending on the number.

【0019】尚、特許請求の範囲の項に図面との対照を
便利にする為に符号を記すが、該記入により本発明は添
付図面の構成に限定されるものではない。
In the claims, reference numerals are provided for convenience of comparison with the drawings, but the present invention is not limited to the configuration shown in the attached drawings.

【図面の簡単な説明】[Brief description of the drawings]

【図1】要部のブロック構成図FIG. 1 is a block diagram of a main part.

【図2】ニューラルネットワークの構成図FIG. 2 is a configuration diagram of a neural network.

【図3】焼却炉の全体構成図FIG. 3 is an overall configuration diagram of an incinerator.

【符号の説明】[Explanation of symbols]

7 燃焼帯 18 燃焼制御手段 D 燃え切り位置検出手段 D1 光量検出手段 D2 炉内温度検出手段 D3 火格子温度検出手段 G 火格子 S 搬送手段 N1,N2,N3 下位ニューラルネットワーク N4 上位ニューラルネットワーク 7 combustion zone 18 combustion control means D burn-off position detecting means D1 light quantity detecting means D2 furnace temperature detecting means D3 grate temperature detecting means G grate S transport means N1, N2, N3 Lower neural network N4 Upper neural network

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−196512(JP,A) 特開 昭60−194219(JP,A) 特開 平4−161710(JP,A) (58)調査した分野(Int.Cl.6,DB名) F23G 5/50 G05B 13/02 G06F 15/18 520 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-60-196512 (JP, A) JP-A-60-194219 (JP, A) JP-A-4-161710 (JP, A) (58) Investigation Field (Int.Cl. 6 , DB name) F23G 5/50 G05B 13/02 G06F 15/18 520

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 燃焼中の被焼却物を前後配置された火格
子(G)の相対移動により搬送する搬送手段(S)を設
けた燃焼帯(7)と、前記燃焼帯(7)における被焼却
物の気体燃焼の終了位置を検出する燃え切り位置検出手
段(D)と、前記燃え切り位置検出手段(D)により検
出された燃え切り位置が設定範囲に入るように前記搬送
手段(S)の搬送速度を増減調節する燃焼制御手段(1
8)とを備えて構成してある焼却炉の燃焼制御装置であ
って、 前記燃え切り位置検出手段(D)を、被焼却物の搬送方
向に沿って複数配置され炎の有無を検出する光量検出手
段(D1)と、前記燃焼帯(7)近傍に複数配置され炉
内の温度を検出する炉内温度検出手段(D2)と、被焼
却物の搬送方向に沿って前記火格子(G)に複数配置さ
れ前記火格子(G)の温度を検出する火格子温度検出手
段(D3)と、それらからの検出値に基づき各別に燃え
切り地点を推定する複数の下位ニューラルネットワーク
(N1),(N2),(N3)と、各下位ニューラルネット
ワーク(N1),(N2),(N3)の出力を統合する上位
ニューラルネットワーク(N4)とで構成してあり、 前記上位ニューラルネットワーク(N4)を、前記下位
ニューラルネットワーク(N1),(N2),(N3)の出
力に重みを付けて作成された教師信号により学習してあ
る焼却炉の燃焼制御装置。
1. A combustion zone (7) provided with a conveying means (S) for conveying a burning incineration object by a relative movement of a fire grate (G) arranged in front and rear, and a combustion zone in the combustion zone (7). A burn-out position detecting means (D) for detecting an end position of gas combustion of the incinerated material, and the conveying means (S) such that the burn-off position detected by the burn-off position detecting means (D) falls within a set range. Control means for increasing and decreasing the transport speed of the fuel
8) a combustion control device for an incinerator, comprising: a plurality of burn-out position detecting means (D) arranged along the transport direction of the incineration material to detect the presence or absence of a flame; Detecting means (D1), a plurality of in-furnace temperature detecting means (D2) arranged in the vicinity of the combustion zone (7) for detecting the temperature in the furnace, and the grate (G) along the conveying direction of the incineration material. And a plurality of lower neural networks (N1), (N1), (G3) for estimating a burn-out point individually based on detection values from the grate temperature detection means (D3) which are disposed in N2), (N3) and an upper neural network (N4) integrating the outputs of the lower neural networks (N1), (N2), (N3). The upper neural network (N4) The lower neural network A combustion control device for an incinerator that has been learned by a teacher signal created by weighting the outputs of the workpieces (N1), (N2), and (N3).
JP4190516A 1992-07-17 1992-07-17 Incinerator combustion control device Expired - Fee Related JP2955431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4190516A JP2955431B2 (en) 1992-07-17 1992-07-17 Incinerator combustion control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4190516A JP2955431B2 (en) 1992-07-17 1992-07-17 Incinerator combustion control device

Publications (2)

Publication Number Publication Date
JPH0634118A JPH0634118A (en) 1994-02-08
JP2955431B2 true JP2955431B2 (en) 1999-10-04

Family

ID=16259395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4190516A Expired - Fee Related JP2955431B2 (en) 1992-07-17 1992-07-17 Incinerator combustion control device

Country Status (1)

Country Link
JP (1) JP2955431B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2769995B2 (en) * 1995-06-30 1998-06-25 川崎重工業株式会社 Estimation of co-firing rate and combustion control method of fluidized bed incinerator
KR20030019364A (en) * 2000-07-05 2003-03-06 닛폰 고칸 가부시키가이샤 Waste incinerator and method of operating the incinerator
JP4611547B2 (en) * 2001-02-28 2011-01-12 レンツ・エンバイアメンタル・リソーシーズ株式会社 Particulate filter
KR100448533B1 (en) * 2002-03-19 2004-09-14 현대중공업 주식회사 Control of Combustion and Steam Generation Using Friction Coefficient of the Combustion Air in a Stoker Type Incinerator
JP6146671B2 (en) * 2014-03-26 2017-06-14 Jfeエンジニアリング株式会社 Waste incinerator and waste incineration method
JP6146673B2 (en) * 2014-03-26 2017-06-14 Jfeエンジニアリング株式会社 Waste incinerator and waste incineration method
JP6146672B2 (en) * 2014-03-26 2017-06-14 Jfeエンジニアリング株式会社 Waste incinerator and waste incineration method
JP6584464B2 (en) * 2017-09-12 2019-10-02 株式会社タクマ Stoker-type incinerator and control method thereof
CN113405106B (en) * 2020-12-09 2024-01-30 北京大学深圳研究生院 Artificial intelligence control method for garbage incineration process

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194219A (en) * 1984-03-15 1985-10-02 Kubota Ltd Method for controlling full burned point in refuse furnace
JPS60196512A (en) * 1984-03-19 1985-10-05 Ebara Infilco Co Ltd Method of incinerating waste
JP2516278B2 (en) * 1990-10-24 1996-07-24 株式会社クボタ Combustion situation diagnosis device for incinerator

Also Published As

Publication number Publication date
JPH0634118A (en) 1994-02-08

Similar Documents

Publication Publication Date Title
JP6671326B2 (en) Combustion control method and waste incinerator
JP2955431B2 (en) Incinerator combustion control device
JP3099229B2 (en) Waste transfer control system for horizontal stoker type waste incinerator
JP3030614B2 (en) Estimation method of waste layer thickness index and combustion control method of waste incinerator using the method
JPH074629A (en) Refuse incinerator
JP4099195B2 (en) Combustion control system for waste incinerator without boiler equipment
JP4088204B2 (en) Combustion control device for stoker-type garbage incinerator
JP7384078B2 (en) Waste incineration equipment and waste incineration method
JP7213117B2 (en) Incineration system with stoker type incinerator
JP6744843B2 (en) Flame end position detection method, automatic combustion control method, and waste incinerator
JP2800871B2 (en) Incinerator combustion control device
JP3356946B2 (en) Garbage quality determination method and apparatus, and combustion control device for garbage incinerator
JP2021103063A (en) Refuse layer thickness evaluation method of refuse incinerator and combustion control method of refuse incinerator
JP2761187B2 (en) Garbage incinerator
JPS5986814A (en) Control method for automatic combustion of refuse incinerator
JPH05141640A (en) Combustion control device for incinerator
JP2002022124A (en) Stoker furnace
JPH08233241A (en) Trash character-detecting method for trash incineration furnace
JP3844333B2 (en) Combustion control system for waste incinerator without boiler equipment
JPH09273732A (en) Control method of combustion in incinerating furnace
JP6880142B2 (en) Combustion status evaluation method and combustion control method
JP6797083B2 (en) Primary combustion gas supply control method, evaporation amount stabilization method, power generation amount stabilization method, and grate-type waste incinerator
JP2968953B2 (en) Furnace burnout line detection method and apparatus
JP2002206722A (en) Stoker type waste incinerator
JPH08261431A (en) Method and device for estimating thickness of waste on incinerating zone in incinerator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees