JP3822328B2 - Method for estimating the lower heating value of combustion waste in refuse incinerators - Google Patents

Method for estimating the lower heating value of combustion waste in refuse incinerators Download PDF

Info

Publication number
JP3822328B2
JP3822328B2 JP26130897A JP26130897A JP3822328B2 JP 3822328 B2 JP3822328 B2 JP 3822328B2 JP 26130897 A JP26130897 A JP 26130897A JP 26130897 A JP26130897 A JP 26130897A JP 3822328 B2 JP3822328 B2 JP 3822328B2
Authority
JP
Japan
Prior art keywords
waste
amount
combustion
combustible
incinerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26130897A
Other languages
Japanese (ja)
Other versions
JPH1194227A (en
Inventor
譲 園田
一穂 小平
亙 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP26130897A priority Critical patent/JP3822328B2/en
Publication of JPH1194227A publication Critical patent/JPH1194227A/en
Application granted granted Critical
Publication of JP3822328B2 publication Critical patent/JP3822328B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/10Arrangement of sensing devices
    • F23G2207/103Arrangement of sensing devices for oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/20Waste supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Incineration Of Waste (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ごみ焼却炉の燃焼ごみ低位発熱量推定方法に関する。
【0002】
【従来の技術】
図2を参照して、自動燃焼制御機能を備えた従来のごみ焼却炉の一例についてその概略を説明する。図2において、ごみの搬送に関係する装置としては、クレーン(図示せず)によりホッパ12に投入されたごみ11を炉内に押出すフィーダ13、炉内でごみを搬送しながらその上で燃焼させるストーカ16がある。ストーカ16は、大きく4つのゾーンに分割されている。通常、ゾーン16−1は乾燥帯、ゾーン16−2、16−3は燃焼帯、ゾーン16−4は後燃焼帯と呼ばれている。なお、ゾーン16−2、16−3を1つにした3ゾーン構成の場合もある。いずれにしても、各ゾーンのストーカは、その動作速度を個別に設定できる構造になっている。
【0003】
燃焼空気の供給は、ストーカ16の下方から供給する一次燃焼空気(一次押込空気)と、炉内でガス化した成分を燃焼させるために供給される二次燃焼空気(二次押込空気)とで行われる。一次燃焼空気は、ゾーン毎の配分をゾーン毎のダンパ16−1、16−2、16−3、16−4の開度により調節できる。
【0004】
計装設備としては、供給する空気の流量を計測する流量計(一次燃焼空気、二次燃焼空気)、一次燃焼空気のゾーン毎の配分を計測するゾーン毎の流量計、ゾーン毎のストーカ下方の圧力計、炉内圧力計、ごみ焼却炉出口の燃焼排ガス中の酸素濃度計などのほか、炉内の各点の温度や余熱利用のために設置されたボイラ31の発生蒸気流量計32なども設置される。
【0005】
また、炉の灰の出口側に設置された炉内カメラ(後述する)からの画像を画像処理して燃焼位置や燃切り点が計測される。燃焼位置、燃切り点に関しては、ごみ焼却炉の燃焼制御方式及び装置(特願平5−197291)に開示されているので、詳しい説明は省略する。概説すれば、燃焼位置とはごみの燃焼が一番盛んになっている最前面(炉内カメラ側)の点であり、燃切り点とはごみが燃切って炎が無くなった最前面の位置を示している。
【0006】
この例における自動燃焼制御装置は、このような構造のごみ焼却炉におけるボイラドラム31からの発生蒸気量を一定化させるために設置される。このために、自動燃焼制御装置は、機能面から見ると、蒸気流量の計測値と設定値、ごみ質、炉内(出口)温度等の情報に応じて一次燃焼空気、二次燃焼空気の流量や温度を制御するための燃焼空気制御部MC1と、乾燥帯のごみ層厚指標にもとづいてフィーダ13の動作周期を制御するフィーダ制御部MC2と、蒸気流量の計測値と設定値、燃焼排ガス中の酸素濃度、燃焼位置、燃切り点等の情報に応じてストーカ16の動作比率を決定し、各ゾーンのダンパの開度調節を行う蒸気流量ファジー制御部MC3と、ごみ質、燃切り点等の情報に応じてストーカ16のゾーン毎の速度制御を行うストーカ速度制御部MC4とを有している。なお、ごみ質とは、ごみの単位重量当たりの発生熱量であり、単位はKcal/Kgで表される。また、本構成の説明においては、ストーカ全体の平均的な動きを決定するためにストーカ動作比率を操作し、それぞれのゾーン毎のバランスを決定するためにストーカ速度を操作するものとして説明している。
【0007】
上記のように、ごみ焼却炉の自動燃焼制御装置は、ごみ焼却炉の余熱利用のために設置されたボイラドラム31の発生蒸気量を安定化させるために、炉内温度、燃焼排ガス酸素濃度等の情報や、炉内の画像情報を利用して得られる燃焼位置、燃切り点等の情報から一次燃焼空気、二次燃焼空気の流量、温度やフィーダ13の動作周期、ストーカ16の速度を制御する制御系を構成している。
【0008】
【発明が解決しようとする課題】
通常、ごみ焼却炉では多種多様なごみを処理するので、燃料としてごみ焼却炉内に投入されるごみ低位発熱量は時間的に変化する。自動燃焼制御装置においては、ごみ低位発熱量を推定し、その変化に応じてごみの供給量、ごみの移送量、一次燃焼空気流量・温度とそのストーカゾーンへの配分比、二次燃焼空気量・温度などを操作することにより燃焼を安定させる必要がある。
【0009】
ところで、従来のごみ低位発熱量推定方法では、数時間のクレーンによるごみの投入実績、燃焼結果をもとに物質収支及び熱収支によりごみ低位発熱量を求めていた。この方法では、得られたごみ低位発熱量が数時間の平均値として得られるので、数分〜60分程度で変動する燃焼状態に対して、その主要な原因と考えられるごみ低位発熱量の変動を捉え燃焼制御に活用することができない。
【0010】
また、ごみの見かけ比重から数分〜60分程度で変動するごみ低位発熱量を推定する方法も提案されているが、同一条件でのごみ体積の測定が困難であることとも関係して、ごみの見かけ比重と実際の発熱量の相関が弱く、推定値はあまり当てにできない。
【0011】
そこで、本発明の課題は、より安定した自動燃焼制御の実現を可能とするための燃焼ごみ低位発熱量推定方法を提供することにある。
【0013】
具体的には、本発明は、ごみを水分、可燃分、灰分から構成されるものとしてそのうちの灰分比率及びごみの可燃分成分組成比を一定と仮定し、可燃分の低位発熱量のみを長時間の物質収支に基づいて求め、その他必要なプロセス値については数分〜60分程度の平均値を用いて物質・熱収支の計算を行い、ごみ低位発熱量を推定することで、その変動を素早く正確に捉えることを可能とし、より安定した自動燃焼制御の実現を可能とすることを課題とする。
【0014】
【課題を解決するための手段】
本発明によれば、燃焼室底部に設けられたストーカの下側から燃焼空気を供給して燃焼を行う自動燃焼制御機能を有するごみ焼却炉において、ごみにおける可燃分の組成を一定と仮定して理論空気量を計算する第1のステップと、前記計算された理論空気量、ごみ焼却炉出口の排ガス中のO2 濃度測定値、あらかじめ知られている空気中のO2 濃度、燃焼空気量の測定値を基に、燃焼したごみの可燃分量を計算する第2のステップと、燃焼したごみ中の水分量を0と仮定してごみ焼却炉出口の排ガスに含まれる複数のガス成分の量を計算する第3のステップと、あらかじめ概算された可燃分発熱量と前記燃焼したごみの可燃分量から燃焼したごみの総発熱量を求め、前記第3のステップで計算された複数のガス成分の量からごみ焼却炉出口の排ガスのエンタルピを計算し、更にごみ焼却炉入口と出口の熱量のバランス計算を行ったうえで燃焼したごみ中の水分量を計算する第4のステップと、前記第3、第4のステップを前記ごみ中の水分量があらかじめ定められた値に収束するまで繰り返してごみ中の水分量を求める第5のステップと、灰分比を一定と仮定して前記第2のステップで計算された燃焼したごみの可燃分量と前記第5のステップで求められたごみ中の水分量とに基づいてごみ処理速度を計算して、燃焼したごみ量を求める第6のステップと、前記可燃分発熱量と前記第5のステップで求められたごみ中の水分量と前記第6のステップで計算された燃焼したごみ量とから燃焼したごみの低位発熱量を計算する第7のステップとを含むことを特徴とするごみ焼却炉の燃焼ごみ低位発熱量推定方法が提供される。
【0015】
なお、前記第3のステップにおける複数のガス成分は、CO2 、水蒸気、N2 、O2 である。
【0016】
また、前記ごみ焼却炉は炉内上部にボイラを備えており、前記第4のステップにおけるごみ焼却炉入口と出口の熱量のバランス計算においては、供給される燃焼空気のエンタルピと前記ボイラで発生される蒸気のエンタルピとを用いる。
【0018】
【発明の実施の形態】
以下に、図1を参照して本発明の燃焼ごみ低位発熱量推定方法の好ましい実施の形態について説明する。
【0019】
はじめに、下記のような前提条件のもとに行われる燃焼ごみ低位発熱量推定方法について説明する。
【0020】
(1)図2で説明したように、ごみ焼却炉の各部に設けられる測定器の測定値は数分〜60分程度の平均値を利用する。但し、可燃分発熱量については概略値を初期値としてあらかじめ別途計算する。
【0021】
(2)ごみ焼却炉出口の燃焼排ガスのO2 濃度は、乾きベースの値である。
【0022】
(3)一次押込空気、二次押込空気中の水分は無視する。
【0023】
(4)尿素水、水、ろ液汚水などを炉内に噴霧する場合は、それらを考慮した計算が行われる。
【0024】
(5)補助燃料を使用する場合も、その成分、発熱量、使用量など考慮した計算が行われる。
【0025】
本形態における燃焼ごみ低位発熱量推定方法においては、図1に示すフローチャートに示す手順に基づいて、理論空気量Lc、可燃分燃焼速度M・Rc、ごみ処理速度M、ごみ組成比−水分Rw、ごみ組成比−可燃分Rc、一次燃焼空気比(L1 /Lc・M・Rc)(但し、L1 は一次押込空気流量)、2次燃焼空気比(L2 /Lc・M・Rc)(但し、L2 は二次押込空気流量)、総空気比(L1 +L2 )/(Lc・M・Rc)、ごみ低位発熱量Huなどを計算する。なお、以降で用いられる計算式で使用される記号は、下記の表1、表2に示す通りである。表1、表2において備考欄に数字が示されているものは仮定値または理論値である。また、ごみ焼却炉出口の排ガス、燃焼空気、ボイラドラムから発生される主蒸気のエンタルピは成分に基づいて実測値のルックアップテーブルなどを利用して求める。
【0026】
【表1】

Figure 0003822328
【0027】
【表2】
Figure 0003822328
【0028】
1.ステップS1においては、可燃分の組成を一定と仮定して下記の式(1)により理論空気量Lcを求める。
【0029】
【数1】
Figure 0003822328
【0030】
式(1)において、Ccはごみ可燃分組成比−炭素、CH はごみ可燃分組成比−水素、Coはごみ可燃分組成比−酸素、Csはごみ可燃分組成比−硫黄をそれぞれ表す。
【0031】
2.ステップS1では更に、計算された理論空気量Lc、ごみ焼却炉出口の排ガス中のO2 濃度測定値OutO2 、あらかじめ知られている空気中のO2 濃度Air_O2 、燃焼空気量の測定値(L1 +L2 )に加えて、C_CO2 体積係数V_C、ごみ可燃分組成比−炭素Cc、N2 _NO2 体積係数V_N2 、ごみ可燃分組成比−窒素CN を基に、下記の式(2)により可燃分燃焼速度M・Rcを計算し、燃焼したごみの可燃分量を求める。
【0032】
【数2】
Figure 0003822328
【0033】
この式(2)では、燃焼空気量(L1 +L2 )、O2 濃度測定値OutO2 などから酸素の消費量が分かるので燃焼したごみの可燃分量が計算されていることを意味する。言い換えれば、可燃分燃焼速度M・Rcは、単位時間当たりに燃焼したごみの可燃分量を意味する。
【0034】
3.ステップS2では燃焼したごみ中の水分量を0、すなわちごみ組成比−水分Rwを0と仮定して次のステップに移行する。
【0035】
4.ステップS3では、下記の式(3)〜(6)により排ガス中の各成分の量を計算する。
【0036】
【数3】
Figure 0003822328
【0037】
【数4】
Figure 0003822328
【0038】
【数5】
Figure 0003822328
【0039】
【数6】
Figure 0003822328
【0040】
式(3)では、C_CO2 体積係数V_C、可燃分燃焼速度M・Rc、ごみ可燃分組成比−炭素Ccに基づいてCO2 のガス量を計算する。式(4)では、H_H2 O体積係数V_H、可燃分燃焼速度M・Rc、ごみ可燃分組成比−水素CH 、H2 O_H2 O体積係数V_H2 O、炉内噴霧水流量W、汚水ろ液噴霧量Wr、尿素噴霧量NH3 、尿素キャリー水量WNH3 、ごみ処理速度M・Rwに基づいて水蒸気量GH2 Oが計算される。式(5)では、N2 _NO2 体積係数V_N2 、可燃分燃焼速度M・Rc、ごみ可燃分組成比−窒素CN 、あらかじめ知られている空気中のN2 濃度Air_N2 及び燃焼空気量(L1 +L2 )に基づいて、窒素ガス量GN2 が計算される。更に、式(6)では、あらかじめ知られている空気中のO2 濃度Air_O2 、燃焼空気量(L1 +L2 )、理論空気量Lc、可燃分燃焼速度M・Rcに基づいて酸素量GO2 が計算される。
【0041】
5.ステップS4では、別途計算される初期値の可燃分発熱量Hcと燃焼したごみ中の可燃分量から燃焼したごみの総発熱量が分かり、排ガスに含まれる複数のガス成分などから排ガスのエンタルピを求め、下記の式(7)でごみ焼却炉に入る熱量と出る熱量のバランス計算から燃焼したごみ中の水分量を計算する。
【0042】
【数7】
Figure 0003822328
【0043】
すなわち、あらかじめ概算された可燃分発熱量と燃焼したごみ中の可燃分量から燃焼したごみの総発熱量を求め、ステップS3で計算された複数のガス成分の量からごみ焼却炉出口の排ガスのエンタルピを計算し、更にごみ焼却炉入口と出口の熱量のバランス計算を行ったうえで燃焼したごみ中の水分量を計算する。なお、本形態ではボイラドラムを備えているので、ごみ焼却炉入口と出口の熱量のバランス計算においては、供給される燃焼空気のエンタルピの他にボイラドラムで発生される蒸気のエンタルピも用いられる。
【0044】
なお、式(7)において、M・Rc・(SH_Rc・T+Hc)は、ごみ可燃分の顕熱及び燃焼熱を表し、Ea(T1)・L1+Ea(T2)・L2は1次、2次燃焼空気顕熱を表し、(1+α)・Eg(Tb,GCO2 ,GH2 O,GN2 ,GO2 )・{GCO2 +GN2 +GO2 +V_H・M・Rc・CH }は水分を除いた燃焼排ガスの顕熱及びそれによる炉体熱損失を表す。また、Gs・{Es(Ts)−Iw}+1000・BB・(Ib−Iw)はボイラによる吸熱(主蒸気+ブロー)を表し、M・Rw・V_H2 O・(1+α)・Eg(Tb,GCO2 ,GH2 O,GN2 ,GO2 )は、燃焼排ガス中水分の顕熱及びそれによる炉体熱損失を表す。更に、M・Rw・(λ_SH_W・T)はごみ中水分の蒸発潜熱及び顕熱を表す。
【0045】
6.ステップS5では、ごみ中の水分量があらかじめ定められた値εに収束するまでステップS3、S4を繰り返し、ごみ中の水分量を求める。
【0046】
7.ステップS6では、灰分比を一定と仮定して、ステップS1で計算された燃焼したごみの可燃分量とステップS4で求められたごみ中の水分量とに基づいてごみ処理速度Mを計算し、下記の式(8)で燃焼したごみ量を求める。
【0047】
【数8】
Figure 0003822328
【0048】
8.ステップS6では更に、可燃分発熱量Hc、水の蒸発潜熱λを用いて、下記の式(9)で燃焼したごみの低位発熱量Huを求める。
【0049】
【数9】
Figure 0003822328
【0050】
9.ステップS7では表1、表2にある式に従って他の計算値を計算する。
【0054】
一般に、収集された都市ごみはごみピットに蓄積され、クレーンによる攪拌を受けた後ホッパヘ投入され焼却処理される。収集されるごみは多種多様で、収集日、地域による特性などもある。また、ごみピットは通常数日分の収集ごみを蓄積できる大容量であるため、クレーンによる攪拌では一つかみ分とそのつかみ位置の周囲のごみを均一化することは比較的容易だが、ピット内のごみすべてを均一化することは不可能である。このため焼却処理されるごみにクレーンつかみ毎のごみ低位発熱量の変動が生じる。これに対し、本発明によればこのごみ低位発熱量の変動を素早く確実に捉えることが可能となり、この変動によって生じるであろう二次燃焼温度やボイラでの発生蒸気流量の変動が予測できるので、フィードフォワード制御を自動燃焼制御に活用することでかかる変動を安定化することが可能となる。
【0055】
【発明の効果】
以上説明したごみ焼却炉の燃焼ごみ低位発熱量推定方法により、ごみ焼却炉の二次燃焼室での燃焼温度管理や余熱利用設備として設けられるボイラの発生蒸気流量の安定化が従来以上に実現され、COやNOxなどの公害物質発生の抑制、安定した自動運転の継続及び操業目標の達成を実現することができる。
【図面の簡単な説明】
【図1】本発明によるごみ焼却炉の燃焼ごみ低位発熱量推定方法の手順を説明するためのフローチャート図である。
【図2】本発明が適用される従来のごみ焼却炉の一例を示した図である。
【符号の説明】
11 ごみ
12 ホッパ
13 フィーダ
16 ストーカ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a combustion waste net calorific estimate how the incinerator.
[0002]
[Prior art]
With reference to FIG. 2, the outline is demonstrated about an example of the conventional refuse incinerator provided with the automatic combustion control function. In FIG. 2, as the apparatus related to the conveyance of the garbage, the crane 13 (not shown) pushes the garbage 11 put into the hopper 12 into the furnace, the feeder 13 which conveys the garbage in the furnace and burns on it There is a stalker 16 to be used. The stalker 16 is roughly divided into four zones. Usually, the zone 16-1 is called a dry zone, the zones 16-2 and 16-3 are called a combustion zone, and the zone 16-4 is called a post-combustion zone. There may be a three-zone configuration in which the zones 16-2 and 16-3 are combined into one. In any case, the stalker of each zone has a structure in which the operation speed can be individually set.
[0003]
Combustion air is supplied by primary combustion air (primary pushing air) supplied from below the stoker 16 and secondary combustion air (secondary pushing air) supplied to burn the components gasified in the furnace. Done. The distribution of each primary combustion air can be adjusted by the opening degree of the dampers 16-1, 16-2, 16-3, 16-4 for each zone.
[0004]
Instrumentation equipment includes flowmeters (primary combustion air and secondary combustion air) that measure the flow rate of the supplied air, flowmeters for each zone that measure the distribution of primary combustion air for each zone, In addition to a pressure gauge, an in-furnace pressure gauge, an oxygen concentration meter in the combustion exhaust gas at the outlet of a waste incinerator, a temperature of each point in the furnace and a steam flow meter 32 generated in a boiler 31 installed for use of residual heat, etc. Installed.
[0005]
Further, an image from an in-furnace camera (described later) installed on the furnace ash outlet side is subjected to image processing, and a combustion position and a burnout point are measured. Since the combustion position and burn-off point are disclosed in the combustion control system and apparatus (Japanese Patent Application No. 5-197291) of the waste incinerator, detailed description thereof will be omitted. In summary, the combustion position is the point on the foreground (on the side of the in-furnace camera) where the combustion of dust is most prominent, and the burn-off point is the position of the foreground where the dust is burned out and there is no flame. Is shown.
[0006]
The automatic combustion control apparatus in this example is installed in order to make constant the amount of steam generated from the boiler drum 31 in the garbage incinerator having such a structure. For this reason, when viewed from a functional aspect, the automatic combustion control device has a flow rate of primary combustion air and secondary combustion air according to information such as measured and set values of steam flow, waste quality, and furnace (outlet) temperature. Combustion air control unit MC1 for controlling the temperature and temperature, feeder control unit MC2 for controlling the operation cycle of the feeder 13 based on the dust layer thickness index of the dry zone, measured values and set values of the steam flow rate, in the combustion exhaust gas The steam flow fuzzy control unit MC3 that determines the operating ratio of the stoker 16 according to the oxygen concentration, combustion position, burnout point, etc., and adjusts the opening degree of the damper in each zone, and the waste quality, burnout point, etc. And a stalker speed control unit MC4 that controls the speed of each zone of the stalker 16 according to the information. The waste quality is the amount of heat generated per unit weight of waste, and the unit is represented by Kcal / Kg. Further, in the description of this configuration, it is assumed that the stalker operation ratio is operated to determine the average movement of the entire stalker, and the stalker speed is operated to determine the balance for each zone. .
[0007]
As described above, the automatic combustion control device of the waste incinerator is used to stabilize the amount of steam generated in the boiler drum 31 installed for using the residual heat of the waste incinerator, so that the furnace temperature, the combustion exhaust gas oxygen concentration, etc. Control of primary combustion air, flow rate of secondary combustion air, temperature, operation cycle of feeder 13 and speed of stalker 16 from information such as combustion position and burn-off point obtained using image information in furnace A control system is configured.
[0008]
[Problems to be solved by the invention]
Usually, since a wide variety of waste is processed in a waste incinerator, the lower heating value of the waste that is put into the waste incinerator as fuel varies with time. In the automatic combustion control system, the lower heating value of the waste is estimated, and the amount of waste supplied, the amount of waste transferred, the primary combustion air flow rate / temperature and its distribution ratio to the stalker zone, the amount of secondary combustion air according to the changes.・ It is necessary to stabilize combustion by manipulating temperature.
[0009]
By the way, in the conventional method for estimating the lower heating value of the waste, the lower heating value of the waste is obtained from the material balance and the heat balance based on the results of the introduction of the waste by the crane for several hours and the combustion result. In this method, since the low waste heat generation amount obtained is obtained as an average value for several hours, the fluctuation of the low waste heat generation amount considered to be the main cause for the combustion state that fluctuates in about several minutes to 60 minutes. Cannot be used for combustion control.
[0010]
In addition, a method for estimating the lower heating value of the waste that fluctuates within a few minutes to 60 minutes from the apparent specific gravity of the waste has been proposed, but it is also difficult to measure the waste volume under the same conditions. The correlation between the apparent specific gravity and the actual calorific value is weak, and the estimated value is not very reliable.
[0011]
Therefore, an object of the present invention is to provide a method for estimating the lower heating value of combustion waste to enable more stable automatic combustion control.
[0013]
Specifically, the present invention assumes that the waste is composed of moisture, combustible matter, and ash, and that the ash content ratio and the combustible component composition ratio of the waste are assumed to be constant, and only the lower heating value of the combustible content is long. Calculate based on the material balance over time, and calculate the material and heat balance using the average value of several minutes to 60 minutes for other necessary process values, and estimate the low calorific value of the waste to It is an object to enable quick and accurate capturing and to realize more stable automatic combustion control.
[0014]
[Means for Solving the Problems]
According to the present invention, it assumed in incinerator having an automatic combustion control function, a constant composition of the combustible component in the waste causing combustion by supplying combustion air from below the stoker provided in the combustion chamber bottom a first step of calculating a theoretical air amount to the calculated theoretical amount of air, O 2 concentration measured in the exhaust gas of the refuse incinerator outlet, O 2 concentration in the air are known in advance, the combustion air The second step of calculating the combustible amount of the burned waste based on the measured value of the amount of waste, and assuming that the amount of water in the burned waste is 0, the plurality of gas components contained in the exhaust gas at the exit of the waste incinerator A third step of calculating the amount, a calorific value of the combustible amount roughly estimated in advance and a total calorific value of the burned waste from the combustible amount of the burned waste, and a plurality of gas components calculated in the third step Of waste at the incinerator outlet The fourth step of calculating the enthalpy of the gas, and further calculating the balance of the heat amount at the inlet and outlet of the waste incinerator, and then calculating the amount of water in the burned waste, and the third and fourth steps described above The fifth step of repeatedly calculating the amount of water in the waste until the amount of water in the waste converges to a predetermined value, and the burned waste calculated in the second step assuming that the ash content ratio is constant A waste treatment rate is calculated based on the amount of combustible matter and the amount of moisture in the waste obtained in the fifth step, and a sixth step for obtaining the amount of combusted waste, And a seventh step of calculating a lower heating value of the burned waste from the amount of water in the waste obtained in step 5 and the amount of burned waste calculated in the sixth step. Garbage incinerator Lower heating value estimation method is provided.
[0015]
The plurality of gas components in the third step are CO 2 , water vapor, N 2 , and O 2 .
[0016]
The waste incinerator has a boiler in the upper part of the furnace, and in the calculation of the balance between the amount of heat at the entrance and exit of the waste incinerator in the fourth step, the enthalpy of the supplied combustion air and the boiler are generated. Steam enthalpy.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, with reference to FIG. 1, a preferred embodiment of the combustion waste LHV estimate how the present invention will be described.
[0019]
First, the combustion waste low calorific value estimation method performed under the following preconditions will be described.
[0020]
(1) As explained with reference to FIG. 2, the average value of several minutes to 60 minutes is used as the measurement value of the measuring device provided in each part of the waste incinerator. However, the calorific value calorific value is calculated separately in advance using the approximate value as the initial value.
[0021]
(2) The O 2 concentration of the combustion exhaust gas at the waste incinerator outlet is a dry base value.
[0022]
(3) Moisture in the primary and secondary air is ignored.
[0023]
(4) When spraying urea water, water, filtrate sewage or the like into the furnace, a calculation considering them is performed.
[0024]
(5) Even when auxiliary fuel is used, calculation is performed in consideration of its components, calorific value, usage amount, and the like.
[0025]
In the combustion waste low calorific value estimation method in the present embodiment, based on the procedure shown in the flowchart shown in FIG. 1, the theoretical air amount Lc, the combustible combustion speed M · Rc, the waste treatment speed M, the waste composition ratio-water content Rw, Waste composition ratio-combustible component Rc, primary combustion air ratio (L1 / Lc · M · Rc) (where L1 is the primary pushing air flow rate), secondary combustion air ratio (L2 / Lc · M · Rc) (however, L2 (Secondary pushing air flow rate), total air ratio (L1 + L2) / (Lc · M · Rc), dust lower heating value Hu, etc. are calculated. The symbols used in the calculation formulas used hereinafter are as shown in Tables 1 and 2 below. In Tables 1 and 2, numbers in the remarks column are assumed values or theoretical values. Further, the enthalpy of the main steam generated from the exhaust gas at the outlet of the waste incinerator, combustion air, and the boiler drum is obtained using a look-up table of measured values based on the components.
[0026]
[Table 1]
Figure 0003822328
[0027]
[Table 2]
Figure 0003822328
[0028]
1. In step S1, the theoretical air amount Lc is obtained by the following equation (1) assuming that the combustible composition is constant.
[0029]
[Expression 1]
Figure 0003822328
[0030]
In the formula (1), Cc represents garbage combustible composition ratio-carbon, CH represents garbage combustible composition ratio-hydrogen, Co represents waste combustible composition ratio-oxygen, and Cs represents garbage combustible composition ratio-sulfur.
[0031]
2. In step S1 Further, the calculated theoretical amount of air Lc, O 2 concentration measurements outo 2 in the exhaust gas incinerator outlet, O 2 concentration Air_O 2 in the air are known in advance, the quantity of combustion air measurements ( L1 + L2), C_CO 2 volume coefficient V_C, waste combustible composition ratio-carbon Cc, N 2 _NO 2 volume coefficient V_N 2 , waste combustible composition ratio-nitrogen CN Calculate the combustible burning rate M · Rc and determine the amount of combustible combustible waste.
[0032]
[Expression 2]
Figure 0003822328
[0033]
In this equation (2), the amount of oxygen consumed is known from the combustion air amount (L 1 + L 2 ), the O 2 concentration measurement value OutO 2, and so on, which means that the combustible amount of the burned garbage is calculated. In other words, the combustible burnup rate M · Rc means the amount of combustible combustible matter burned per unit time.
[0034]
3. In step S2, assuming that the amount of water in the burned waste is 0, that is, the waste composition ratio-water content Rw is 0, the process proceeds to the next step.
[0035]
4). In step S3, the amount of each component in the exhaust gas is calculated by the following equations (3) to (6).
[0036]
[Equation 3]
Figure 0003822328
[0037]
[Expression 4]
Figure 0003822328
[0038]
[Equation 5]
Figure 0003822328
[0039]
[Formula 6]
Figure 0003822328
[0040]
In the equation (3), the gas amount of CO 2 is calculated based on the C_CO 2 volume coefficient V_C, the combustible component combustion rate M · Rc, and the garbage combustible component composition ratio-carbon Cc. In the formula (4), H_H 2 O volume coefficient V_H, combustible burning rate M · Rc, waste combustible composition ratio-hydrogen CH, H 2 O_H 2 O volume coefficient V_H 2 O, furnace spray water flow rate W, sewage filter The water vapor amount GH 2 O is calculated based on the liquid spray amount Wr, the urea spray amount NH 3 , the urea carry water amount WNH 3 , and the waste treatment speed M · Rw. In the formula (5), N 2 _NO 2 volume coefficient V_N 2 , combustible component combustion speed M · Rc, waste combustible component composition ratio−nitrogen CN, N 2 concentration in the air, Air_N 2, and combustion air amount ( L1 + L2) on the basis of the nitrogen gas amount GN 2 is calculated. Further, in the equation (6), the oxygen amount GO 2 is calculated based on the O 2 concentration in the air, Air_O 2 , the combustion air amount (L 1 + L 2), the theoretical air amount Lc, and the combustible combustion speed M · Rc. Calculated.
[0041]
5). In step S4, the total calorific value of the combusted waste is obtained from the initial value of the combustible calorific value Hc calculated separately and the combustible content of the combusted waste, and the enthalpy of the exhaust gas is obtained from a plurality of gas components contained in the exhaust gas. The amount of water in the burned waste is calculated from the balance calculation of the amount of heat entering the waste incinerator and the amount of heat exiting by the following equation (7).
[0042]
[Expression 7]
Figure 0003822328
[0043]
That is, the total calorific value of the combusted waste is obtained from the combustible calorific value estimated in advance and the combustible content in the burned garbage, and the enthalpy of the exhaust gas at the incinerator outlet is calculated from the amounts of the plurality of gas components calculated in step S3. After calculating the balance of the amount of heat at the entrance and exit of the waste incinerator, the amount of water in the burned waste is calculated. In addition, since the boiler drum is provided in this form, the enthalpy of the steam generated in the boiler drum is used in addition to the enthalpy of the supplied combustion air in the balance calculation of the heat quantity at the waste incinerator inlet and outlet.
[0044]
In equation (7), M · Rc · (SH_Rc · T + Hc) represents sensible heat and combustion heat of combustible waste, and Ea (T1) · L1 + Ea (T2) · L2 is primary and secondary combustion air. Represents sensible heat, (1 + α) · Eg (Tb, GCO 2 , GH 2 O, GN 2 , GO 2 ) · {GCO 2 + GN 2 + GO 2 + V_H · M · Rc · C H } is the combustion exhaust gas excluding moisture Represents the sensible heat and the furnace body heat loss. Gs · {Es (Ts) −Iw} + 1000 · BB · (Ib−Iw) represents heat absorption (main steam + blow) by the boiler, and M · Rw · V_H 2 O · (1 + α) · Eg (Tb, GCO 2 , GH 2 O, GN 2 , GO 2 ) represents the sensible heat of moisture in the combustion exhaust gas and the resulting furnace heat loss. Further, M · Rw · (λ_SH_W · T) represents latent heat of vaporization and sensible heat of water in the waste.
[0045]
6). In step S5, steps S3 and S4 are repeated until the amount of water in the garbage converges to a predetermined value ε to obtain the amount of water in the garbage.
[0046]
7). In step S6, assuming that the ash content ratio is constant, a waste treatment speed M is calculated based on the combustible amount of burned waste calculated in step S1 and the moisture content in the waste determined in step S4. The amount of burned garbage is calculated by the equation (8).
[0047]
[Equation 8]
Figure 0003822328
[0048]
8). In step S6, further, the lower heating value Hu of the combusted waste is calculated by the following equation (9) using the combustible heat value Hc and the latent heat of vaporization λ of water.
[0049]
[Equation 9]
Figure 0003822328
[0050]
9. In step S7, other calculated values are calculated according to the equations in Tables 1 and 2.
[0054]
In general, collected municipal waste is accumulated in a garbage pit, and after being stirred by a crane, it is put into a hopper and incinerated. There is a wide variety of garbage collected, and there are characteristics depending on the collection date and region. In addition, since the garbage pit has a large capacity that can normally collect collected garbage for several days, it is relatively easy to uniformize one garbage and the garbage around the gripping position by stirring with a crane. It is impossible to make all the garbage uniform. For this reason, fluctuation of the lower heating value of the garbage for each crane grip occurs in the garbage to be incinerated. On the other hand, according to the present invention, it is possible to quickly and surely grasp the fluctuation of the lower heating value of the garbage, and the fluctuation of the secondary combustion temperature and the generated steam flow rate in the boiler that may be caused by this fluctuation can be predicted. Such fluctuations can be stabilized by utilizing the feedforward control for the automatic combustion control.
[0055]
【The invention's effect】
More combustion waste net calorific estimate how the incinerator described above, stabilization of the occurrence steam flow of the boiler which is provided as a combustion temperature control and waste heat utilization facility in the secondary combustion chamber of the incinerator is more than ever Realized, it is possible to suppress the generation of pollutants such as CO and NOx, continue stable automatic operation, and achieve operational targets.
[Brief description of the drawings]
FIG. 1 is a flowchart for explaining a procedure of a method for estimating a combustion waste lower heating value in a waste incinerator according to the present invention.
FIG. 2 is a view showing an example of a conventional waste incinerator to which the present invention is applied.
[Explanation of symbols]
11 Garbage 12 Hopper 13 Feeder 16 Stoker

Claims (3)

燃焼室底部に設けられたストーカの下側から燃焼空気を供給して燃焼を行う自動燃焼制御機能を有するごみ焼却炉において、
ごみにおける可燃分の組成を一定と仮定して理論空気量を計算する第1のステップと、
前記計算された理論空気量、ごみ焼却炉出口の排ガス中のO濃度測定値、あらかじめ知られている空気中のO濃度、燃焼空気量の測定値を基に、燃焼したごみの可燃分量を計算する第2のステップと、
燃焼したごみ中の水分量を0と仮定してごみ焼却炉出口の排ガスに含まれる複数のガス成分の量を計算する第3のステップと、
あらかじめ概算された可燃分発熱量と前記燃焼したごみの可燃分量から燃焼したごみの総発熱量を求め、前記第3のステップで計算された複数のガス成分の量からごみ焼却炉出口の排ガスのエンタルピを計算し、更にごみ焼却炉入口と出口の熱量のバランス計算を行ったうえで燃焼したごみ中の水分量を計算する第4のステップと、
前記第3、第4のステップを前記ごみ中の水分量があらかじめ定められた値に収束するまで繰り返してごみ中の水分量を求める第5のステップと、
灰分比を一定と仮定して前記第2のステップで計算された燃焼したごみの可燃分量と前記第5のステップで求められたごみ中の水分量とに基づいてごみ処理速度を計算して、燃焼したごみ量を求める第6のステップと、
前記可燃分発熱量と前記第5のステップで求められたごみ中の水分量と前記第6のステップで計算された燃焼したごみ量とから燃焼したごみの低位発熱量を計算する第7のステップとを含むことを特徴とするごみ焼却炉の燃焼ごみ低位発熱量推定方法。
In a waste incinerator having an automatic combustion control function for performing combustion by supplying combustion air from the lower side of the stoker provided at the bottom of the combustion chamber,
A first step of calculating the theoretical air volume assuming a constant combustible composition in the waste;
Based on the calculated theoretical air amount, the measured value of O 2 concentration in the exhaust gas from the waste incinerator outlet, the known value of O 2 concentration in the air, and the measured value of the combustion air amount, the combustible amount of the burned waste A second step of calculating
A third step of calculating the amount of a plurality of gas components contained in the exhaust gas at the outlet of the waste incinerator assuming that the amount of water in the burned waste is zero;
The total calorific value of the combusted waste is calculated from the combustible calorific value estimated in advance and the combustible combustible amount of the burned waste, and the exhaust gas at the outlet of the incinerator is calculated from the amounts of the plurality of gas components calculated in the third step. A fourth step of calculating the enthalpy, and further calculating the balance of the amount of heat at the waste incinerator inlet and outlet, and then calculating the amount of water in the burned waste,
A fifth step in which the third and fourth steps are repeated until the amount of water in the waste converges to a predetermined value, and the amount of water in the waste is determined;
Based on the combustible amount of burned waste calculated in the second step and the moisture content in the waste determined in the fifth step, assuming a constant ash content, A sixth step for determining the amount of burned waste;
A seventh step of calculating a lower heating value of the burned garbage from the burnable part calorific value, the moisture content in the garbage obtained in the fifth step, and the burned garbage amount calculated in the sixth step. And a method for estimating the lower heating value of combustion waste in a waste incinerator.
請求項1記載の燃焼ごみ低位発熱量推定方法において、前記第3のステップにおける複数のガス成分は、CO、水蒸気、N、Oであることを特徴とするごみ焼却炉の燃焼ごみ低位発熱量推定方法。The combustion waste low heat amount estimation method according to claim 1, wherein the plurality of gas components in the third step are CO 2 , water vapor, N 2 , O 2. Calorific value estimation method. 請求項1記載の燃焼ごみ低位発熱量推定方法において、前記ごみ焼却炉は炉内上部にボイラを備えており、前記第4のステップにおけるごみ焼却炉入口と出口の熱量のバランス計算においては、供給される燃焼空気のエンタルピと前記ボイラで発生される蒸気のエンタルピとを用いることを特徴とするごみ焼却炉の燃焼ごみ低位発熱量推定方法。  2. The method for estimating the lower heating value of combustion waste according to claim 1, wherein the waste incinerator has a boiler in the upper part of the furnace, and in the calculation of the balance between the amount of heat at the entrance and exit of the waste incinerator in the fourth step, A method for estimating the lower heating value of combustion waste in a refuse incinerator, wherein the enthalpy of combustion air generated and the enthalpy of steam generated in the boiler are used.
JP26130897A 1997-09-26 1997-09-26 Method for estimating the lower heating value of combustion waste in refuse incinerators Expired - Fee Related JP3822328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26130897A JP3822328B2 (en) 1997-09-26 1997-09-26 Method for estimating the lower heating value of combustion waste in refuse incinerators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26130897A JP3822328B2 (en) 1997-09-26 1997-09-26 Method for estimating the lower heating value of combustion waste in refuse incinerators

Publications (2)

Publication Number Publication Date
JPH1194227A JPH1194227A (en) 1999-04-09
JP3822328B2 true JP3822328B2 (en) 2006-09-20

Family

ID=17359995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26130897A Expired - Fee Related JP3822328B2 (en) 1997-09-26 1997-09-26 Method for estimating the lower heating value of combustion waste in refuse incinerators

Country Status (1)

Country Link
JP (1) JP3822328B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19917572A1 (en) * 1999-04-19 2000-10-26 Abb Alstom Power Ch Ag Method for automatically setting the combustion of a waste incineration plant
RU2147393C1 (en) 1999-04-29 2000-04-10 Закрытое акционерное общество "Вирис" Current-conducting cloth and process of its manufacture
NL1014516C2 (en) * 1999-06-04 2000-12-06 Tno System for determining process parameters related to thermal processes, such as waste incineration.
JP2002333120A (en) * 2001-05-14 2002-11-22 Kawasaki Steel Corp Method of presuming composition and lower calorific value of waste and waste disposal method
JP5000339B2 (en) * 2007-03-12 2012-08-15 極東開発工業株式会社 Waste disposal method
JP6342367B2 (en) * 2015-07-16 2018-06-13 株式会社タクマ Method for estimating heat generation amount of waste and waste treatment apparatus using the same
JP5996762B1 (en) * 2015-11-19 2016-09-21 株式会社タクマ Waste combustion control method and combustion control apparatus to which the method is applied
JP7015103B2 (en) * 2016-06-28 2022-02-02 川崎重工業株式会社 Waste incinerator and control method of waste incinerator
JP6429911B2 (en) * 2017-01-31 2018-11-28 株式会社タクマ Method for measuring calorific value of combustion object, combustion control method and combustion control apparatus for combustion furnace using measured calorific value
JP6779255B2 (en) * 2018-05-28 2020-11-04 株式会社タクマ Waste incinerator
JP7237654B2 (en) * 2019-03-01 2023-03-13 三機工業株式会社 Automatic combustion control method for garbage incinerator
JP6951789B2 (en) * 2020-03-27 2021-10-20 株式会社プランテック Waste treatment amount adjustment method for vertical waste incinerators and vertical waste incinerators
CN113701160B (en) * 2021-09-06 2023-07-07 中国天楹股份有限公司 ACC automatic combustion control method for garbage incineration plant
JP7467561B1 (en) * 2022-10-04 2024-04-15 三菱重工環境・化学エンジニアリング株式会社 Control device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561522B2 (en) * 1974-03-22 1981-01-14
JPS5134789A (en) * 1974-09-18 1976-03-24 Hitachi Shipbuilding Eng Co Jinkaishokyakuro no jokyookeisokusuru hoho
JPH0240410A (en) * 1988-07-29 1990-02-09 Kubota Ltd Automatic combustion control of municipal waste incinerating furnace
JPH02106612A (en) * 1988-10-17 1990-04-18 Kubota Ltd Refuse incinerator lower heating value calculation method

Also Published As

Publication number Publication date
JPH1194227A (en) 1999-04-09

Similar Documents

Publication Publication Date Title
JP3822328B2 (en) Method for estimating the lower heating value of combustion waste in refuse incinerators
KR100304244B1 (en) Combustion control method and apparatus for waste incinerators
JP5996762B1 (en) Waste combustion control method and combustion control apparatus to which the method is applied
US20080163803A1 (en) Method and systems to control municipal solid waste density and higher heating value for improved waste-to-energy boiler operation
JPH04309714A (en) Device for estimating unburnt substance in ash of coal combustion furnace
JP6779255B2 (en) Waste incinerator
JPH1068514A (en) Combustion controlling method for refuse incinerating furnace
JP4099195B2 (en) Combustion control system for waste incinerator without boiler equipment
KR100494862B1 (en) Method for automatically setting the firing of a garbage incineration plant
JP3844333B2 (en) Combustion control system for waste incinerator without boiler equipment
JP3466555B2 (en) Combustion control method and device for refuse incineration plant
JPH0470528B2 (en)
JPH0468533B2 (en)
JPH0468534B2 (en)
EP0943864A4 (en) Combustion control method for refuse incinerator
JPH09273732A (en) Control method of combustion in incinerating furnace
JP2973154B2 (en) Combustion control method for incinerator
JP3556078B2 (en) Dust supply speed control method for refuse incinerator and refuse incinerator
JP3936884B2 (en) Control method of stoker type incinerator
JP2004037049A (en) Combustion control method for gasification melting furnace, and device thereof
JP2001033019A (en) Method for controlling combustion in refuse incinerator and refuse incinerator
JP3305175B2 (en) Sand bed combustion rate adjustment method for fluidized bed furnace
JPH09273733A (en) Control method of combustion in incinerating furnace
KR100434650B1 (en) Automatic Combustion Control System for Stoker Type Refuse Incinerator
JPH109548A (en) Incineration of sludge by fluidized-bed incinerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060622

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees