JP2002333120A - Method of presuming composition and lower calorific value of waste and waste disposal method - Google Patents

Method of presuming composition and lower calorific value of waste and waste disposal method

Info

Publication number
JP2002333120A
JP2002333120A JP2001142622A JP2001142622A JP2002333120A JP 2002333120 A JP2002333120 A JP 2002333120A JP 2001142622 A JP2001142622 A JP 2001142622A JP 2001142622 A JP2001142622 A JP 2001142622A JP 2002333120 A JP2002333120 A JP 2002333120A
Authority
JP
Japan
Prior art keywords
waste
amount
composition
gas
calorific value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001142622A
Other languages
Japanese (ja)
Inventor
Fumihiro Miyoshi
史洋 三好
Masuhito Shimizu
益人 清水
Taro Kusakabe
太郎 日下部
Hiroyuki Sugiura
啓之 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2001142622A priority Critical patent/JP2002333120A/en
Publication of JP2002333120A publication Critical patent/JP2002333120A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a waste disposal method solving a delay in the measurement of the composition of waste, estimating the composition and the lower calorific value of the charged waste from the gas composition obtained by the gasification of the waste and the composition of recovered matter and permitting the smoother treatment than conventionally by using the estimated value. SOLUTION: In a waste disposal method pyrolyzing, gasifying and melting waste to recover even a gas in addition to a metal and slag, the component element of the recovered gas is measured, and the composition of the charged waste is set by using the measured value, the quantity of recovered gas, the quantity of charged waste and the component and charge quantity of other charged matter to find the lower calorific value of the waste from the composition. In this case, respective 3 to 24-hour moving averages are desirably used for the measured value, the quantity of recovered gas and the quantity of charged waste.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、廃棄物の組成及び
低位発熱量の推定方法、並びに廃棄物処理方法に係わ
り、詳しくは、廃棄物をガス化し、水素、一酸化炭素等
を含む燃料ガス、あるいは化学原料ガスとして回収する
廃棄物処理装置において、処理する廃棄物の組成及び低
位発熱量を精度高く推定すると共に、その推定結果を有
効に利用して、円滑に廃棄物を処理する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for estimating the composition and low calorific value of waste, and a method for treating waste. More specifically, the present invention relates to gasification of waste and fuel gas containing hydrogen, carbon monoxide and the like. Or, in a waste treatment apparatus that recovers as a chemical raw material gas, relates to a technique for accurately estimating the composition and low calorific value of the waste to be treated and effectively utilizing the estimation result to smoothly treat the waste. .

【0002】[0002]

【従来の技術】現在、産業廃棄物及び一般廃棄物(以
下、単に廃棄物という)は、処分場が著しく不足してお
り、それらの多くは、発生したままの姿で、あるいは何
らかの事前処理した後、焼却によって減容化してから埋
立等の最終処分が行われることが多い。上記焼却は、様
々な方法で行われているが、近年、焼却場における発生
ガス中のダイオキシン等有害物質の管理問題や資源リサ
イクルの観点から、廃棄物をただ単に焼却するだけでな
く、燃料ガスあるいは化学原料ガスとして回収する技術
も出現している。
2. Description of the Related Art At present, industrial and general wastes (hereinafter simply referred to as wastes) have a remarkable shortage of disposal sites, and many of them have been generated as they are or have been subjected to some kind of pretreatment. Afterwards, final disposal such as landfill is often performed after volume reduction by incineration. Although the above incineration is performed by various methods, in recent years, from the viewpoint of management problems of harmful substances such as dioxin in generated gas at incineration plants and the viewpoint of resource recycling, not only incineration of waste but also fuel gas Alternatively, a technology for recovering as a chemical source gas has also emerged.

【0003】例えば、「化学装置」(1998年7月
号、工業調査会発行)は、図4に示すように、廃棄物1
をプレス2で圧縮、減容化してから、熱分解炉3、高温
反応炉4、溶融物の均質化炉5、ガスの冷却装置6、ガ
ス精製装置7、水処理装置8等を備えた廃棄物熱分解ガ
ス化溶融装置を開示している。また、特開平11−27
0823号公報は、廃棄物の圧縮装置と、圧縮成形物を
乾燥、熱分解、炭化する加熱炉と、炭化生成物から溶融
物と燃料ガスを生成する高温反応器とを備え、しかも該
高温反応器1基に対して前記加熱炉を複数基配設した廃
棄物処理設備を提案している。
For example, as shown in FIG. 4, “Chemical equipment” (issued by the Industrial Research Institute, July 1998)
Is compressed and reduced in volume by a press 2, and then disposed with a pyrolysis furnace 3, a high-temperature reaction furnace 4, a homogenization furnace 5 for a melt, a gas cooling device 6, a gas purification device 7, a water treatment device 8, and the like. A pyrolysis gasification melting apparatus is disclosed. Also, JP-A-11-27
No. 0823 discloses a waste compression apparatus, a heating furnace for drying, pyrolyzing, and carbonizing a compression molded product, and a high-temperature reactor for producing a melt and a fuel gas from a carbonized product. A waste treatment facility in which a plurality of the heating furnaces are arranged for one vessel is proposed.

【0004】ところで、一般に、このような廃棄物の処
理においては、廃棄物は組成が千差万別であり、たとえ
炉への投入量が一定であっても供給される熱量は絶えず
変動する。そのため、炉内での燃焼状態も常に変動し、
発生(回収)するガス量が不安定であるばかりでなく、
炉へ供給する燃料ガスの使用量も必要以上に多くなった
り、あるいは炉体耐火物の損耗も激しくなる傾向があ
る。従って、炉へ投入する廃棄物の有する熱量について
は、事前にサンプリングして成分分析し、その分析結果
より廃棄物の低位発熱量(真発熱量)を求めたり、炉直
前で水分を測定し、その値から低位発熱量を求めて、操
業での燃料供給に反映させることが望ましい。ちなみ
に、低位発熱量は、次式で表される。
[0004] Generally, in such waste treatment, the composition of the waste varies widely, and even if the amount charged into the furnace is constant, the amount of heat supplied constantly varies. Therefore, the combustion state in the furnace always fluctuates,
Not only is the amount of gas generated (recovered) unstable, but also
The amount of fuel gas supplied to the furnace tends to be unnecessarily large, or the refractory of the furnace body tends to be greatly worn. Therefore, the amount of heat of the waste to be put into the furnace is sampled in advance and analyzed for its components, and the lower calorific value (true calorific value) of the waste is determined from the analysis result, or the moisture is measured immediately before the furnace, It is desirable to obtain a lower calorific value from the value and reflect it in the fuel supply in the operation. Incidentally, the lower heating value is represented by the following equation.

【0005】HL=Hh−25(9h+w) ここで、HL:廃棄物の低位発熱量(kJ/kg−湿り
廃棄物) Hh:廃棄物の高位(総)発熱量(kJ/kg−湿り廃
棄物) h:湿り廃棄物中 水素含有率(%) w:湿り廃棄物中 水分(%) また、廃棄物処理装置の全体で熱収支を算出し、出熱と
入熱の差を廃棄物の発熱量とする低位発熱量を求める方
法もある。
HL = Hh-25 (9h + w) where HL: low calorific value of waste (kJ / kg-wet waste) Hh: high calorific value (total) calorific value of waste (kJ / kg-wet waste) ) H: Hydrogen content in wet waste (%) w: Moisture in moisture waste (%) In addition, the heat balance is calculated for the entire waste treatment equipment, and the difference between heat output and heat input is calculated as heat generation of waste. There is also a method of obtaining a lower heating value as an amount.

【0006】しかしながら、上記サンプリングする方法
では、結果が出るまでに多大の時間がかかるとか、サン
プリングで廃棄物の代表値が得られているかに疑問が残
る。また、水分を測定する方法では、その測定精度に問
題があり、熱収支を用いる方法は、最も有力な方法では
あるが、ある程度の長い時間で平均化したデータを用い
るので、現に炉内にある廃棄物というよりもすでに燃え
てしまった過去の低位発熱量を示しているという問題が
ある。そこで、特開昭55−160219号公報は、ご
みの焼却炉において、ごみの排ガスの流量、組成、投入
空気量からごみ質、該ごみの低位発熱量を求める方法に
ついての提案をしている。
However, in the above-mentioned sampling method, it is questionable whether it takes a long time to obtain a result or whether a representative value of waste is obtained by sampling. Also, in the method of measuring moisture, there is a problem in the measurement accuracy, the method using the heat balance is the most influential method, but uses data averaged over a certain long time, so it is actually in the furnace There is a problem that it shows the past low calorific value that has already burned rather than waste. Therefore, Japanese Patent Application Laid-Open No. 55-160219 proposes a method for obtaining the quality of waste and the lower calorific value of the waste from the flow rate, the composition, and the amount of input air of the waste gas in the waste incinerator.

【0007】ところが、この提案は、ごみ焼却炉におけ
る方法であり、また該焼却炉がストーカー炉の場合、排
ガス中の水分測定が容易でないことや、漏れ空気が多く
て空気量を正確に把握することは困難である(特開平1
0−185157号公報参照)。また、廃棄物の量に対
して排ガス量が多くて精度が悪いため、実際には適用さ
れていないのが現状である。
However, this proposal is a method for a refuse incinerator, and when the incinerator is a stalker furnace, it is difficult to measure the moisture in the exhaust gas, and the amount of leaked air is large, so that the amount of air can be accurately grasped. It is difficult to do
0-185157). In addition, since the amount of exhaust gas is large relative to the amount of waste and the accuracy is low, it is currently not actually used.

【0008】[0008]

【発明が解決しようとする課題】本発明は、かかる事情
に鑑み、廃棄物の組成測定の遅れを解消し、廃棄物のガ
ス化で得られたガス組成から、装入した廃棄物の組成及
び低位発熱量を推定すると共に、その推定値を用いて従
来より円滑な処理を可能にする廃棄物処理方法を提供す
ることを目的としている。
SUMMARY OF THE INVENTION In view of the above circumstances, the present invention eliminates the delay in the measurement of the composition of waste and, based on the gas composition obtained by gasification of waste, calculates the composition and An object of the present invention is to provide a waste disposal method that estimates a lower heating value and uses the estimated value to enable smoother treatment than before.

【0009】[0009]

【課題を解決するための手段】発明者は、上記目的を達
成するために鋭意検討を行い、その成果を本発明に具現
化した。
Means for Solving the Problems The inventor has conducted intensive studies in order to achieve the above object, and has embodied the results in the present invention.

【0010】すなわち、本発明は、廃棄物を熱分解、ガ
ス化及び溶融して、メタル、スラグに加えてガスをも回
収する廃棄物処理において、回収されるガスの成分元素
の濃度を測定し、それら測定値、該ガスの回収量、廃棄
物の装入量、並びにその他装入物質の成分及び装入量を
用いて、装入した廃棄物の組成を定め、該組成から廃棄
物の低位発熱量を求めることを特徴とする廃棄物の組成
及び低位発熱量の推定方法である。この場合、前記測定
値、該ガスの回収量、廃棄物の装入量に、それぞれの3
〜24時間移動平均値を用いるのが良い。
That is, according to the present invention, in waste treatment in which waste is pyrolyzed, gasified, and melted to collect gas in addition to metal and slag, the concentration of the constituent elements of the collected gas is measured. The composition of the charged waste is determined by using the measured values, the amount of the recovered gas, the charged amount of the waste, and the components and the charged amount of the other charged substances. This is a method for estimating the composition of waste and the lower calorific value, which is characterized by calculating the calorific value. In this case, the measured value, the recovered amount of the gas, and the charged amount of waste are respectively 3
It is preferable to use a moving average value of up to 24 hours.

【0011】その他装入物質は燃料ガス、高濃度酸素、
窒素であることが好ましい。
Other materials to be charged are fuel gas, high concentration oxygen,
Preferably it is nitrogen.

【0012】また、本発明は、上記推定で得た廃棄物の
低位発熱量を用いてガス化炉からの熱損失量を算出し、
該熱損失量の経時変化に基づき該ガス化炉の補修時期を
調整しながら廃棄物の処理を行ったり、あるいは前記測
定値及び回収ガス量で定まる回収ガスの組成より、該回
収ガスが燃焼する際の発熱量を求め、その発熱量が常に
一定の範囲にあるように、前記ガス化炉に供給する燃料
ガスの量を調整することを特徴とする廃棄物処理方法で
ある。
Further, the present invention calculates the amount of heat loss from the gasifier using the lower heating value of the waste obtained by the above estimation,
The waste gas is treated while adjusting the repair time of the gasifier based on the change over time of the heat loss amount, or the recovered gas is burned based on the composition of the recovered gas determined by the measured value and the recovered gas amount. The waste heat treatment method is characterized in that the calorific value at the time is obtained, and the amount of fuel gas supplied to the gasifier is adjusted so that the calorific value is always within a certain range.

【0013】本発明によれば、装入した廃棄物の組成を
推定でき、この組成から廃棄物の低位発熱量を計算で推
定できると共に、ガス化炉の熱収支が算出できるように
なる。その結果、ガス化炉への供給する燃料ガス量の適
正化が図れると共に、ガス化炉の炉体管理が従来より円
滑に行えるようになる。
According to the present invention, the composition of the charged waste can be estimated, the lower heating value of the waste can be estimated by calculation from this composition, and the heat balance of the gasification furnace can be calculated. As a result, the amount of fuel gas supplied to the gasification furnace can be optimized, and the furnace body management of the gasification furnace can be performed more smoothly than before.

【0014】[0014]

【発明の実施の形態】以下に、図面を参照して、本発明
の実施の形態を説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】本発明は、廃棄物を圧縮して減容化してか
ら、熱分解炉、高温反応炉、溶融物の均質化炉、ガスの
冷却装置、ガス精製装置、水処理装置等を順次経由さ
せ、スラグ、メタルとするばかりでなく、ガスも回収す
る例えば前記図4に示したようなプロセスに対して、有
効に適用されるものである。従って、以下でいうガス化
炉とは、熱分解炉、高温反応炉、溶融物の均質化炉をす
べて包含(一体と仮定)したものである。
According to the present invention, waste is compressed and reduced in volume, and then sequentially passed through a pyrolysis furnace, a high-temperature reactor, a melt homogenization furnace, a gas cooling device, a gas purification device, a water treatment device, and the like. The present invention is effectively applied to, for example, the process shown in FIG. 4 for recovering gas as well as slag and metal. Therefore, the gasification furnace referred to below includes a pyrolysis furnace, a high-temperature reaction furnace, and a homogenization furnace for a molten material (assumed to be integrated).

【0016】まず、装入した廃棄物の組成を、ガス化
炉、ガス精製装置(冷却装置)及び水処理装置での物質
バランスから推定する。その全貌は、図1のように一括
整理できる。図1では、対象装置への出入り方向を→で
示し、それによって該装置への装入及び排出物質を明ら
かにすると共に、物質の下側に下線を施して、それらが
操業中に測定されたり、既知のものであることを示して
いる。 (1)廃棄物の灰分は、 廃棄物の灰分率P=(回収スラグ量+回収メタル量
)/廃棄物装入量 I で求められる。さらに、廃棄物が含有する各組成の量
は、下記(2)〜(7)で求められる。 (2)廃棄物に含まれる水素量は、 廃棄物水素量H=回収ガス中水素量 G−燃料ガス中水
素量 F+回収凝縮水中水素量 W〕 (3)廃棄物に含まれる酸素量は、 廃棄物酸素量O=回収ガス中酸素量 G−燃料ガス中酸
素量 F−高濃度酸素中酸素量 H+回収凝縮水中酸素量
W (4)廃棄物中に含まれる窒素量は、 廃棄物窒素量N=回収ガス中窒素量 G−高濃度酸素中
窒素量 H−窒素装入量 I (5)廃棄物中に含まれる炭素量は、 廃棄物炭素量C=回収ガス中炭素量 G−燃料ガス中炭
素量 F (6)廃棄物中に含まれる硫黄量は、 廃棄物硫黄量S=回収硫黄量 O (7)廃棄物中に含まれる塩素量は 廃棄物塩素量Cl=回収混合塩中塩素量Cl O−塩酸中
塩素量Cl I (8)回収凝縮水量は、 凝縮水量WW=廃棄物量 I+燃料ガス量+高濃度酸素
中酸素量 H+高濃度酸素中窒素量 H+装入窒素量 I
−回収ガス量−回収スラグ量−回収メタル量 従って、これら(1)〜(7)で述べた各元素量を計算
すれば、廃棄物の組成が、測定時期に対応して定まる。
また、回収凝縮水量WWは、(8)式で定まる。なお、
ガス化炉へ出入りする各物質の量及び回収ガス組成は、
いずれも1分毎に測定され、コンピュータへデータとし
て記憶させておく。廃棄物装入量WIは、装入時間と量
が記憶される。そして、本発明では、それらデータの前
処理を適宜行ってから計算するようにした。すなわち、
前記測定がなされた毎に、組成の推定を行っても良い
が、各データは、1時間平均値を求め、さらに3〜24
時間の所謂「移動平均値」として利用するのが好まし
い。その方が平均化されるため、実際操業に合致するか
らである。また、移動平均時間が3時間未満では、炉内
の滞留時間の関係上廃棄物装入のタイミングが平均化さ
れていないため、24時間超えでは、操業へのフィード
バックができないため、不都合が生じる。そのため、本
発明では、3〜24時間を採用することにした。さら
に、回収凝縮水量は、凝縮した水量を測定することによ
って、算出することもできる。
First, the composition of the charged waste is converted to gas
Materials in furnaces, gas purification equipment (cooling equipment) and water treatment equipment
Estimate from balance. The whole picture is as shown in Fig. 1.
Can be organized. In FIG. 1, the entry and exit directions to and from the target device are indicated by →.
Indicate the charge and discharge to and from the device.
As well as underlining the material underneath,
Measured during operation or shown to be known
I have. (1) The ash content of waste is the ash content of waste P = (recovered slag amount)S+ Amount of recovered metal
M) / Waste chargeW I Is required. In addition, the amount of each composition contained in the waste
Is determined by the following (2) to (7). (2) The amount of hydrogen contained in waste is as follows: Waste hydrogen amount H = Hydrogen amount in recovered gasH G−Water in fuel gas
Elementary quantityH F+ Recovered condensate hydrogen amountH W(3) The amount of oxygen contained in the waste is as follows: waste oxygen amount O = oxygen amount in recovered gasO G-Acid in fuel gas
Elementary quantityO F-Oxygen content in high concentration oxygenO H+ Oxygen content in recovered condensed water
O W (4) The amount of nitrogen contained in the waste is as follows: Waste nitrogen amount N = Nitrogen amount in recovered gasN G-In high oxygen concentration
Nitrogen contentN H-Nitrogen chargeN I (5) The amount of carbon contained in waste is the amount of carbon in waste C = the amount of carbon in recovered gasC G-Coal in fuel gas
Elementary quantityC F (6) The amount of sulfur contained in waste is as follows: waste sulfur amount S = recovered sulfur amountS O (7) The amount of chlorine contained in the waste is the amount of chlorine in the waste Cl = the amount of chlorine in the recovered mixed saltCl O-In hydrochloric acid
Chlorine amountCl I (8) The amount of condensed water collected is the amount of condensed water WW= Waste amountW I+ Fuel gas volumeF+ High concentration oxygen
Medium oxygen contentO H+ Nitrogen content in high concentration oxygenN H+ Nitrogen chargeN I
−Recovered gas volumeG-Amount of recovered slagS−Amount of recovered metalM Therefore, the amount of each element described in (1) to (7) is calculated.
Then, the composition of the waste is determined according to the measurement time.
Also, the recovered condensed water amount WWIs determined by equation (8). In addition,
The amount of each substance entering and leaving the gasifier and the composition of the recovered gas are as follows:
Both are measured every minute and are sent to a computer as data.
And memorize it. Waste charge WIIs the charging time and quantity
Is stored. And, in the present invention, before these data
The calculation was performed after performing the processing appropriately. That is,
Every time the measurement is performed, the composition may be estimated.
However, for each data, an average value was calculated for one hour, and 3 to 24
It is preferable to use it as a so-called "moving average" of time
No. Does it match the actual operation because it is averaged?
It is. If the moving average time is less than 3 hours,
The timing of waste loading is averaged due to the residence time of
Over 24 hours, feed to operation
Since backing is not possible, inconvenience occurs. Therefore, the book
In the invention, 3 to 24 hours are adopted. Further
The amount of condensed water recovered is determined by measuring the amount of condensed water.
Thus, it can be calculated.

【0017】回収ガスは,水素、一酸化炭素、二酸化炭
素、窒素、水分、微量のメタンで構成されている。これ
ら成分の量は、高速ガスクロマトグラフィー、あるいは
赤外線ガス分析計で容易に測定することができる。
The recovered gas is composed of hydrogen, carbon monoxide, carbon dioxide, nitrogen, moisture, and a small amount of methane. The amounts of these components can be easily measured by high performance gas chromatography or infrared gas analyzer.

【0018】次に、上記のようにして定めた廃棄物の組
成を用いて、該廃棄物の低位発熱量を求める方法につい
て説明する。
Next, a method for determining the lower heating value of the waste by using the composition of the waste determined as described above will be described.

【0019】そのため、まず、廃棄物が灰分、水分及び
可燃分の3成分からなるものとする。そして、上記のよ
うにして得た廃棄物の組成から、可燃分中の炭素率を仮
定し(一般廃棄物の場合、約50%を仮定する)、廃棄
物中の水分を下記式で算出する。
Therefore, first, it is assumed that the waste consists of three components of ash, moisture and combustible. Then, from the composition of the waste obtained as described above, the carbon ratio in the combustibles is assumed (in the case of general waste, about 50% is assumed), and the moisture in the waste is calculated by the following equation. .

【0020】水分=((1/炭素率)−(1/炭素分基
準))/(1/炭素率)×(1−灰分) この水分と前記(1)で求まる灰分とで、廃棄物中の可
燃分量(1−水分−灰分)が計算される。引き続き、前
記(2)〜(7)の計算によって求めらる廃棄物中の各
元素量から水分を差し引くことで、可燃分中の真の元素
量(炭素、酸素、水素、硫黄、塩素等)を求めることが
できる。
Water content = ((1 / carbon content) − (1 / carbon content basis)) / (1 / carbon content) × (1−ash content) Is calculated (1-moisture-ash content). Subsequently, by subtracting the moisture from each element amount in the waste obtained by the calculations in the above (2) to (7), the true element amount (carbon, oxygen, hydrogen, sulfur, chlorine, etc.) in the combustibles is obtained. Can be requested.

【0021】このようにして得た廃棄物の真の元素量
を、例えば、都市ゴミの場合に比較的真値に合致すると
言われているSteuerの式に代入すれば、廃棄物の
高位発熱量(総合熱量)が求まる。 (9)Steuerの式(「ごみ処理施設整備の計画・
設計要領」(社)全国清掃会議’(1999)p145
より) Hh=339.4{c−3×(o/8)}+238.8
×3×(o/8)+1445.6{h−(o/16)}
+104.8s [kJ/kg] ここで、c,h,o,sは、炭素、水素、酸素及び硫黄
の質量%、つまり、上記した真の元素量である。
By substituting the true elemental amount of the waste thus obtained into, for example, the Steuer's equation which is said to relatively match the true value in the case of municipal garbage, the higher heating value of the waste can be obtained. (Total calorific value) is obtained. (9) Steuer's formula
Design Guideline "(National Cleaning Council) (1999) p145
Hh = 339.4 {c-3 × (o / 8)} + 238.8
× 3 × (o / 8) +1445.6 {h− (o / 16)}
+104.8 s [kJ / kg] Here, c, h, o, and s are mass% of carbon, hydrogen, oxygen, and sulfur, that is, the true element amounts described above.

【0022】そこで、この高位発熱量を、下記の低位発
熱量を求める式に代入することで、容易に廃棄物の低位
発熱量を定めることができる。
Therefore, by substituting the higher calorific value into the following equation for calculating the lower calorific value, the lower calorific value of the waste can be easily determined.

【0023】HL=Hh−25(9h+w) ここで、HL:廃棄物の低位発熱量(kJ/kg−湿り
廃棄物) Hh:廃棄物の高位(総)発熱量(kJ/kg−湿り廃
棄物) h:湿り廃棄物中 水素含有率(%) w:湿り廃棄物中 水分(%)次に、本発明では、上記
推定で得た廃棄物の低位発熱量を、炉の操業に有効に利
用することも考えた。つまり、ガス化炉における熱損失
は、下式で求められるので、このガス化炉の熱損失の経
時的な推移をみることによって、炉体に内張りした耐火
物の損傷程度が推測できるからである。具体的には、高
い熱損失を示す時期が生じる頻度が多い時には、炉修を
行う時期を速め、逆の場合には炉修を行う時期を遅らせ
るのである。このようにすれば、炉体の管理が従来より
円滑に行えるようになる。 ガス化炉の熱損失=廃棄物の低位発熱量+燃料ガスの低
位発熱量−回収ガスの低位発熱量−ガス化炉の出口ガス
顕熱 なお、上記の式における回収ガスの低位発熱量及びガス
化炉の出口顕熱は、ガス化炉で通常の熱バランスを求め
ることで、容易に定めることができる。
HL = Hh-25 (9h + w) where HL: low calorific value of waste (kJ / kg-moist waste) Hh: high calorific value (total) calorific value of waste (kJ / kg-moist waste) H: hydrogen content in wet waste (%) w: moisture in wet waste (%) Next, in the present invention, the lower calorific value of the waste obtained by the above estimation is effectively used for furnace operation. I thought about doing it. That is, since the heat loss in the gasifier is obtained by the following equation, the degree of damage to the refractory lining the furnace body can be estimated by observing the change over time in the heat loss of the gasifier. . Specifically, when the frequency of high heat loss frequently occurs, the time to perform the furnace repair is increased, and in the opposite case, the time to perform the furnace repair is delayed. This makes it possible to manage the furnace body more smoothly than before. Heat loss of gasifier = lower calorific value of waste + lower calorific value of fuel gas-lower calorific value of recovered gas-sensible heat of gas at outlet of gasifier The lower calorific value of recovered gas and gas in the above equation The sensible heat at the outlet of the gasifier can be easily determined by obtaining a normal heat balance in the gasifier.

【0024】また、本発明では、ガス化炉へ供給する燃
料ガスの削減も考えた。それは、前記測定値及び回収ガ
ス量で回収ガスの組成が容易に定まるからである。つま
り、その組成より回収ガスが燃焼する際の発熱量を求
め、その発熱量が常に一定の範囲にあるように、前記ガ
ス化炉に供給する燃料ガスの量を調整するようにしたの
である。これによって、過剰な燃料ガスの供給が防止で
き、経済的な操業が可能となる。
Further, in the present invention, reduction of fuel gas to be supplied to the gasification furnace was considered. This is because the composition of the recovered gas is easily determined by the measured value and the recovered gas amount. That is, the calorific value when the recovered gas is burned is determined from the composition, and the amount of the fuel gas supplied to the gasifier is adjusted so that the calorific value is always within a certain range. As a result, an excessive supply of fuel gas can be prevented, and economic operation can be achieved.

【0025】なお、上記発熱量の範囲としては、本発明
では、ガスエンジンで発電する場合4.186×103
kJ/m3(1000kcal/m3)以上であることが
好ましい。4.186×103kJ/m3(1000kc
al/m3)未満では、発熱量が低過ぎて、該回収ガス
のガスエンジンでの発電に問題が生じるからである。
In the present invention, the range of the calorific value is 4.186 × 10 3 when power is generated by a gas engine.
It is preferably at least kJ / m 3 (1000 kcal / m 3 ). 4.186 × 10 3 kJ / m 3 (1000 kc
If the amount is less than (al / m 3 ), the calorific value is too low, which causes a problem in the power generation of the recovered gas by the gas engine.

【0026】[0026]

【実施例】図4に示した廃棄物処理装置の操業に、本発
明を適用した。廃棄物の処理量は、約6トン/時間で、
その他の主な操業条件は、表1に示す通りである。この
操業中に、1分毎にガス組成、ガス量、各物質回収量の
測定を行うと同時に、それらのデータをコンピュータで
処理して回収ガスの組成及び低位発熱量を推定し、その
結果を表2に示す。なお、表2は、8時間の移動平均値
を用いての結果である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is applied to the operation of the waste disposal apparatus shown in FIG. The amount of waste is about 6 tons / hour.
Other main operating conditions are as shown in Table 1. During this operation, the gas composition, gas volume, and the amount of each substance recovered were measured every minute, and at the same time, the data was processed by a computer to estimate the composition of the recovered gas and the lower heating value, and the results were obtained. It is shown in Table 2. Table 2 shows the results obtained by using an 8-hour moving average value.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】同時に、前記熱損失及び回収ガスの発熱量
も計算し、それらの経時変化を図2及び図3に示す。そ
して、操業は、図2の熱損失を監視しながら、操業者
が、操業アクションを取りながら行った。また、回収ガ
スの発熱量が常に4.186×103kJ/m3(100
0kcal/m3)以上の範囲に収まるように(図3参
照)、供給する燃料ガス(LNG)量も調整した。
At the same time, the heat loss and the calorific value of the recovered gas were also calculated, and their changes with time are shown in FIGS. The operation was performed while the operator took an operation action while monitoring the heat loss in FIG. Also, the calorific value of the recovered gas is always 4.186 × 10 3 kJ / m 3 (100
0 kcal / m 3 ) or more (see FIG. 3), the amount of supplied fuel gas (LNG) was also adjusted.

【0030】その結果、燃料ガス量は、従来の1/3に
まで低減できると共に、炉体の寿命も延長でき、熱損失
の増加速度が30%減少した。
As a result, the fuel gas amount could be reduced to one third of the conventional one, the life of the furnace body could be extended, and the rate of increase in heat loss was reduced by 30%.

【0031】[0031]

【発明の効果】以上述べたように、本発明により、廃棄
物からスラグ、メタルを回収するばかりでなく、ガスも
燃料ガスとして回収する廃棄物処理において、回収され
たガス及び回収物組成から、装入した廃棄物の組成を推
定でき、この組成から廃棄物の低位発熱量を計算で推定
できると共に、ガス化炉の熱収支が算出できるようにな
る。その結果、ガス化炉への供給する燃料ガス量の適正
化が図れると共に、ガス化炉の炉体管理が従来より円滑
に行えるようになる。
As described above, according to the present invention, not only slag and metal are recovered from waste but also gas is recovered as fuel gas. The composition of the charged waste can be estimated, the lower heating value of the waste can be estimated by calculation from this composition, and the heat balance of the gasifier can be calculated. As a result, the amount of fuel gas supplied to the gasification furnace can be optimized, and the furnace body management of the gasification furnace can be performed more smoothly than before.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の基礎となるガス化炉の物質収支を説明
する図である。
FIG. 1 is a diagram illustrating a material balance of a gasification furnace on which the present invention is based.

【図2】本発明を適用して得たガス化炉の熱損失及び燃
料ガス使用量の経時変化を示す図であり、(a)は熱損
失、(b)は燃料ガス使用量である。
FIGS. 2A and 2B are graphs showing changes over time in heat loss and fuel gas consumption of a gasifier obtained by applying the present invention, wherein FIG. 2A shows heat loss and FIG. 2B shows fuel gas consumption.

【図3】回収ガスの発熱量の経時変化を示す図である。FIG. 3 is a diagram showing a change over time in a calorific value of a recovered gas.

【図4】本発明を適用する廃棄物熱分解ガス化溶融装置
を示すフローチャートである。
FIG. 4 is a flowchart showing a waste pyrolysis gasification / melting apparatus to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1 廃棄物 2 プレス 3 熱分解炉 4 高温反応炉 5 均質化炉 6 ガスの冷却装置 7 ガス精製装置 8 水処理装置 DESCRIPTION OF SYMBOLS 1 Waste 2 Press 3 Pyrolysis furnace 4 High temperature reactor 5 Homogenization furnace 6 Gas cooling device 7 Gas purification device 8 Water treatment device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 日下部 太郎 東京都千代田区内幸町2丁目2番3号 川 崎製鉄株式会社内 (72)発明者 杉浦 啓之 東京都千代田区内幸町2丁目2番3号 川 崎製鉄株式会社内 Fターム(参考) 3K061 AA16 AB02 AB03 AC01 AC19 BA01 BA06 BA10 CA01 DA19 DB04 DB16 DB20 3K062 AA24 AB02 AB03 AC01 BA01 BB04 CB10 DA21 DA22 DA23 DA24 DA27 DA32 DA36 DA40 DB13 4D004 AA46 BA03 CA27 CA29 CA32 CB04 CB34 CB36 CC02 DA02 DA10 DA11 DA20  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Taro Kusakabe 2-3-2 Uchisaiwai-cho, Chiyoda-ku, Tokyo Kawasaki Steel Corporation (72) Inventor Hiroyuki Sugiura 2-3-2 Uchisaiwai-cho, Chiyoda-ku, Tokyo F term in Saki Steel Co., Ltd. (reference) CC02 DA02 DA10 DA11 DA20

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 廃棄物を熱分解、ガス化及び溶融して、
メタル、スラグに加えてガスをも回収する廃棄物処理に
おいて、 回収されるガスの成分元素の濃度を測定し、それら測定
値、該ガスの回収量、廃棄物の装入量、並びにその他装
入物質の成分及び装入量を用いて、装入した廃棄物の組
成を定め、該組成から廃棄物の低位発熱量を求めること
を特徴とする廃棄物の組成及び低位発熱量の推定方法。
1. Pyrolysis, gasification and melting of waste,
In waste treatment, which collects gas in addition to metal and slag, the concentration of the constituent elements of the recovered gas is measured, and the measured values, the amount of recovered gas, the amount of waste charged, and other charges A method for estimating the composition and low calorific value of a waste, comprising determining the composition of the charged waste using the components and the amount of the substance charged, and calculating the low calorific value of the waste from the composition.
【請求項2】 前記測定値、該ガスの回収量、廃棄物の
装入量に、それぞれの3〜24時間移動平均値を用いる
ことを特徴とする請求項1記載の廃棄物の組成及び低位
発熱量の推定方法。
2. The waste composition and low-grade material according to claim 1, wherein a moving average value of 3 to 24 hours is used for each of the measured value, the gas recovery amount, and the waste charge amount. Estimation method of calorific value.
【請求項3】 請求項1又は2で得た廃棄物の低位発熱
量を用いてガス化炉からの熱損失量を算出し、該熱損失
量の経時変化に基づき該ガス化炉の補修時期を調整しな
がら廃棄物の処理を行うことを特徴とする廃棄物処理方
法。
3. The amount of heat loss from the gasifier is calculated using the lower heating value of the waste obtained in claim 1 or 2, and the time of repair of the gasifier based on the change over time in the amount of heat loss. A waste treatment method, wherein the waste treatment is performed while adjusting the temperature.
【請求項4】 前記測定値及び回収ガス量で定まる回収
ガスの組成より、該回収ガスが燃焼する際の発熱量を求
め、その発熱量が常に一定範囲にあるように、前記ガス
化炉に供給する燃料ガスの量を調整することを特徴とす
る廃棄物処理方法。
4. A calorific value when the recovered gas is burned is determined from the composition of the recovered gas determined by the measured value and the amount of the recovered gas, and the gasification furnace is controlled so that the calorific value is always within a certain range. A waste disposal method comprising adjusting an amount of fuel gas to be supplied.
JP2001142622A 2001-05-14 2001-05-14 Method of presuming composition and lower calorific value of waste and waste disposal method Pending JP2002333120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001142622A JP2002333120A (en) 2001-05-14 2001-05-14 Method of presuming composition and lower calorific value of waste and waste disposal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001142622A JP2002333120A (en) 2001-05-14 2001-05-14 Method of presuming composition and lower calorific value of waste and waste disposal method

Publications (1)

Publication Number Publication Date
JP2002333120A true JP2002333120A (en) 2002-11-22

Family

ID=18988897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001142622A Pending JP2002333120A (en) 2001-05-14 2001-05-14 Method of presuming composition and lower calorific value of waste and waste disposal method

Country Status (1)

Country Link
JP (1) JP2002333120A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224123A (en) * 2007-03-12 2008-09-25 Kyokuto Kaihatsu Kogyo Co Ltd Waste disposal method
JP2017180971A (en) * 2016-03-31 2017-10-05 日立造船株式会社 Automatic combustion control method for incineration facility
JP2018108540A (en) * 2016-12-28 2018-07-12 株式会社神鋼環境ソリューション Waste treatment system and waste treatment method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54120964A (en) * 1978-03-13 1979-09-19 Kubota Ltd Automatic control method of incinerator
JPS55160219A (en) * 1979-05-31 1980-12-13 Yokohamashi Dust quality estimating method in incinerator
JPH1194227A (en) * 1997-09-26 1999-04-09 Sumitomo Heavy Ind Ltd Method of presuming low heating value of combustible waste and presuming heating value of combustible part of garbage of garbage incinerator
JPH11101421A (en) * 1997-09-29 1999-04-13 Kubota Corp Method of controlling waste feed speed of waste incinerator and waste incinerator
JPH11270823A (en) * 1998-03-24 1999-10-05 Kawasaki Steel Corp Equipment and method for waste disposal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54120964A (en) * 1978-03-13 1979-09-19 Kubota Ltd Automatic control method of incinerator
JPS55160219A (en) * 1979-05-31 1980-12-13 Yokohamashi Dust quality estimating method in incinerator
JPH1194227A (en) * 1997-09-26 1999-04-09 Sumitomo Heavy Ind Ltd Method of presuming low heating value of combustible waste and presuming heating value of combustible part of garbage of garbage incinerator
JPH11101421A (en) * 1997-09-29 1999-04-13 Kubota Corp Method of controlling waste feed speed of waste incinerator and waste incinerator
JPH11270823A (en) * 1998-03-24 1999-10-05 Kawasaki Steel Corp Equipment and method for waste disposal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224123A (en) * 2007-03-12 2008-09-25 Kyokuto Kaihatsu Kogyo Co Ltd Waste disposal method
JP2017180971A (en) * 2016-03-31 2017-10-05 日立造船株式会社 Automatic combustion control method for incineration facility
JP2018108540A (en) * 2016-12-28 2018-07-12 株式会社神鋼環境ソリューション Waste treatment system and waste treatment method

Similar Documents

Publication Publication Date Title
US20060228294A1 (en) Process and apparatus using a molten metal bath
Yoshiie et al. Emissions of particles and trace elements from coal gasification
KR20120030502A (en) Power generation system and method for biomass
Chen et al. Effect of raw materials on the production process of the silicon furnace
US5592888A (en) Process and apparatus for disposing of waste
JP2007112879A (en) System and method for thermal decomposition treatment of waste product
EP1114123B1 (en) Method for processing chlorine-containing organic compounds
JP5000339B2 (en) Waste disposal method
JP2002333120A (en) Method of presuming composition and lower calorific value of waste and waste disposal method
Cheng et al. Study on the recycling of waste wind turbine blades
HUP9602730A1 (en) Method and apparatus for termical treatment of loose wastes
Mannheim et al. Determining a priority order between thermic utilization processes for organic industrial waste with LCA
Nemmour et al. Response surface methodology approach for optimizing the gasification of spent pot lining (SPL) waste materials
CN117057137A (en) Carbon emission reduction prediction method and storage medium for desiccated sludge pyrolysis gasification process
Knight et al. Oil production by entrained flow pyrolysis of biomass
FI73465B (en) FOERFARANDE OCH ANORDNING FOER UPPHETNING AV ETT STAOLBAD BESKICKAT MED SKROT.
Wang et al. Application of semi-coke in industrial silicon production
CN108796209B (en) Method for treating and utilizing sludge of grinding roller
Ge et al. Greenhouse Gas Emissions by the Chinese Coking Industry.
JP2003268387A (en) Method and apparatus for treating waste material
JP3501925B2 (en) Method for producing carbide from waste solid fuel
Almaula Polycyclic aromatic hydrocarbons from steelmaking
JP4050989B2 (en) Coke oven gas generation amount and heat amount prediction method, information processing method, and information processing apparatus
CN116557873B (en) Online ash vitrification rotary melting method and system for solid waste incineration treatment
JP2004283754A (en) System for calculation of decrease amount of environmental load

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070717