JPH109548A - Incineration of sludge by fluidized-bed incinerator - Google Patents

Incineration of sludge by fluidized-bed incinerator

Info

Publication number
JPH109548A
JPH109548A JP16609296A JP16609296A JPH109548A JP H109548 A JPH109548 A JP H109548A JP 16609296 A JP16609296 A JP 16609296A JP 16609296 A JP16609296 A JP 16609296A JP H109548 A JPH109548 A JP H109548A
Authority
JP
Japan
Prior art keywords
temperature
fluidized bed
combustion chamber
exhaust gas
fluidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16609296A
Other languages
Japanese (ja)
Inventor
Yoshiaki Kitao
善明 北尾
Masao Matsuda
正夫 松田
Hiroyuki Hosoda
博之 細田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP16609296A priority Critical patent/JPH109548A/en
Publication of JPH109548A publication Critical patent/JPH109548A/en
Pending legal-status Critical Current

Links

Landscapes

  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

PROBLEM TO BE SOLVED: To incinerate sludge in a stabilized state even where it differs in nature so as to suppress evolution of harmful gases in the exhaust gas and enable cutting down the use of supplementary fuel fed to the fluidized bed. SOLUTION: As regards oxygen concentration in the exhaust gas, of a maximum temperature, median temperature, and minimum temperature detected by a furnace-top thermometer 5, a median combustion chamber thermometer 6, and a lower part combustion chamber thermowameter 7 respectively the median temperatwuris selected as a representative combustion chamber temperature by use of a selector 11 and on the basis of this selected representative combustion chamber temperatirand in a manner of obtaining an oxygen concentration as set by an oxygen-concentration regulator 14 the amount of the supply of fluidized combustion air fed to a wind ox 1a is controlled in quantity. At the same time the amount of control obtainable on the basis of the combustion chamber temperature and the fluidized-bed temperature detected by a fluidized- bed thermometer 8 is added by an adder 17 and supplementary fuel so controlled in quantity as to make the representative combustion chamber temperature become a set furnace temperature and make the fluidized-bed temperature become a set fluidized-bed temperature is supplied to the fluidized bed 1b.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、流動床焼却炉によ
る汚泥焼却方法の改善に関し、より詳しくは汚泥焼却に
より発生する排ガス中の有害ガス、例えばN2 O、C
O、NOX 、HCN、NH3 等の量を少なくすると共
に、補助燃料の削減を可能ならしめるようにした流動床
焼却炉による汚泥焼却方法の技術分野に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a sludge incineration method using a fluidized bed incinerator, and more particularly, to a harmful gas in exhaust gas generated by sludge incineration, for example, N 2 O, C.
The present invention belongs to the technical field of a sludge incineration method using a fluidized bed incinerator in which the amounts of O, NO X , HCN, NH 3 and the like are reduced and auxiliary fuel can be reduced.

【0002】[0002]

【従来の技術】下水汚泥等の被焼却物を効率良く確実
に、しかも短時間で完全燃焼させる燃焼装置として、流
動層に風箱からノズルを介して流動・燃焼用空気を吹込
んで、この流動層を構成する硅砂等からなる砂を流動さ
せ、砂の流動と砂の優れた伝熱特性を利用して被焼却物
を解砕・ガス化させると共に、発生したガスを燃焼させ
る流動床焼却炉が多く採用されている。このような流動
床焼却炉から排出される排ガス中には種々の有害ガス、
例えばN2 Oガス、COガス、NOX 等が含まれている
ので、できる限りこれら有害ガスの排出量を減少させる
ための工夫がなされている。このような下水汚泥等の被
焼却物を焼却する流動床焼却炉としては、例えば特開昭
58−153016号公報(従来例1)、特開平7−1
60125号公報(従来例2)に開示されてなるものが
公知である。なお、高分子系の下水汚泥のように含水率
が78〜80wt%もある被焼却物は低カロリーで燃焼
室内の温度が上昇しにくく、場合によってはHCN等も
発生するため、流動層に補助燃料を供給して燃焼室内の
温度を上昇させるようにしている。
2. Description of the Related Art As a combustion apparatus for efficiently and surely and completely burning incinerated substances such as sewage sludge in a short time, air for flow / combustion is blown from a wind box through a nozzle into a fluidized bed. A fluidized bed incinerator that fluidizes sand consisting of silica sand, etc., which forms the bed, breaks and gasifies incinerated materials using the sand flow and the excellent heat transfer characteristics of the sand, and burns the generated gas. Are often adopted. Various harmful gases are contained in the exhaust gas discharged from such a fluidized bed incinerator,
For example, since it contains N 2 O gas, CO gas, NO X and the like, various measures have been taken to reduce the emission of these harmful gases as much as possible. Examples of a fluidized bed incinerator for incinerating such incineration materials such as sewage sludge include, for example, JP-A-58-153016 (conventional example 1) and JP-A-7-17-1.
Japanese Patent No. 60125 (Conventional Example 2) is known. In addition, incinerated materials having a water content of 78 to 80 wt%, such as polymer-based sewage sludge, have low calories and are unlikely to raise the temperature in the combustion chamber. In some cases, HCN and the like are also generated. The fuel is supplied to increase the temperature in the combustion chamber.

【0003】先ず、従来例1に係る流動層式焼却炉(流
動床焼却炉)の概要を、焼却炉回りのシステムの運転方
法の説明図の図7を参照しながら、同明細書に記載され
ている同一名称と同一符号とを以て説明すると、図に示
す符号1は流動層式焼却炉の流動層で、この流動層1の
上方に燃焼室2が形成されている。流動層1の下側に設
けられた風箱には、熱風を吹込む熱風炉5が、流動層1
には助燃バーナ3が、また燃焼室2には点火バーナ4が
設けられている。これら熱風炉5、助燃バーナ3および
点火バーナ4には補助燃料8が供給されると共に、助燃
バーナ3および点火バーナ4に燃焼用空気9が供給され
るようになっている。そして、補助燃料8は途中で分岐
した2系統の燃料供給管から助燃バーナ3に供給される
ようになっており、一方の燃料供給管から供給される補
助燃料8は、燃焼室2の温度に基づいて供給量が制御さ
れるようになっている。
First, an outline of a fluidized bed incinerator (fluidized bed incinerator) according to Conventional Example 1 is described in the same specification with reference to FIG. 7 which is an explanatory diagram of a method of operating a system around an incinerator. The reference numeral 1 shown in the figure is a fluidized bed of a fluidized bed incinerator, and a combustion chamber 2 is formed above the fluidized bed 1. A hot blast stove 5 for blowing hot air is provided in a wind box provided below the fluidized bed 1.
The combustion chamber 2 is provided with an auxiliary burner 3 and the combustion chamber 2 is provided with an ignition burner 4. An auxiliary fuel 8 is supplied to the hot blast stove 5, the auxiliary burner 3 and the ignition burner 4, and a combustion air 9 is supplied to the auxiliary burner 3 and the ignition burner 4. The auxiliary fuel 8 is supplied to the auxiliary burner 3 from two systems of fuel supply pipes branched on the way, and the auxiliary fuel 8 supplied from one of the fuel supply pipes reaches the temperature of the combustion chamber 2. The supply amount is controlled based on the supply amount.

【0004】従って、燃焼室2内の温度が低くなると助
燃焼バーナ3に多量の補助燃料が供給されて流動層1の
温度が上昇され、温度が高くなると助燃焼バーナ3に供
給される補助燃料が減量されて流動層1の温度上昇が抑
制されるように制御される。なお、助燃バーナ3および
点火バーナ4に付設されてなる符号14は炎監視装置
で、この炎監視装置14で炎が検出されたときは、寿命
の短命化と使用電力量を削減するために、助燃バーナ3
や点火バーナ4内に設けられている図示しない点火装置
を停止させるようにするものである。
Accordingly, when the temperature in the combustion chamber 2 decreases, a large amount of auxiliary fuel is supplied to the auxiliary combustion burner 3 to increase the temperature of the fluidized bed 1, and when the temperature increases, the auxiliary fuel supplied to the auxiliary combustion burner 3 Is controlled so that the temperature rise of the fluidized bed 1 is suppressed. Reference numeral 14 attached to the auxiliary burner 3 and the ignition burner 4 is a flame monitoring device. When a flame is detected by the flame monitoring device 14, in order to shorten the life and reduce the amount of power consumption, Burner burner 3
And an ignition device (not shown) provided in the ignition burner 4 is stopped.

【0005】次に、従来例2に係る抑制流動炉(流動床
焼却炉)の概要を、その構成を示す図の図8を参照しな
がら、同明細書に記載されている同一名称と同一符号と
を以て説明する。即ち、抑制流動炉1と、この抑制流動
炉1の燃焼室内温度を測定するための温度測定装置4
と、炉内雰囲気が還元領域にあるときには不足酸素濃度
信号とし、炉内雰囲気が酸化領域にあるときには酸素濃
度信号とし、同一測定レンジにおける1つの信号として
出力できる抑制流動炉1の炉内雰囲気を測定する酸素分
析装置6と、抑制流動炉1内に供給する燃焼空気の量を
調節する調節弁2と、この調節弁2の開度を制御する制
御装置10とからなっており、温度測定装置4で測定し
た燃焼室内温度と酸素分析装置6で測定した酸素濃度と
に基づいて所定の条件に従って、前記調節弁2の開度を
制御するように構成されている。
[0005] Next, an outline of a suppressed fluidized-bed furnace (fluidized-bed incinerator) according to Conventional Example 2 will be described with reference to FIG. This will be described. That is, the suppression fluidized-bed furnace 1 and the temperature measuring device 4 for measuring the temperature in the combustion chamber of the suppression fluidized-bed furnace 1
When the atmosphere in the furnace is in the reduction region, the oxygen concentration signal is used as the oxygen deficiency signal. When the atmosphere in the furnace is in the oxidation region, the oxygen concentration signal is used. It comprises an oxygen analyzer 6 for measurement, a control valve 2 for adjusting the amount of combustion air supplied into the suppression fluidized-bed furnace 1, and a control device 10 for controlling the opening degree of the control valve 2. The opening of the control valve 2 is controlled in accordance with predetermined conditions based on the temperature in the combustion chamber measured in 4 and the oxygen concentration measured in the oxygen analyzer 6.

【0006】つまり、抑制流動炉1の燃焼室内温度ある
いは排ガス温度と排ガス中の酸素濃度とを検知し、抑制
流動炉1の燃焼室内温度あるいは排ガス温度が下がれば
燃焼空気量が多過ぎると判断して空気供給量を少なく
し、逆に温度が上がれば燃焼空気量が少な過ぎると判断
して空気供給量を多くする。また、酸素濃度が低すぎる
と未燃ガスが発生するので燃焼空気量を多くし、酸素濃
度が高い場合には燃焼空気量が多いと判断し、燃焼空気
量を少なくするものである。
That is, the temperature of the combustion chamber or exhaust gas of the suppression fluidized-bed furnace 1 and the oxygen concentration in the exhaust gas are detected, and if the temperature of the combustion chamber of the suppression fluidized-bed furnace 1 or the temperature of the exhaust gas falls, it is determined that the amount of combustion air is too large. On the contrary, if the temperature rises, it is determined that the combustion air amount is too small, and the air supply amount is increased. If the oxygen concentration is too low, unburned gas is generated, so that the amount of combustion air is increased. If the oxygen concentration is high, it is determined that the amount of combustion air is large, and the amount of combustion air is reduced.

【0007】[0007]

【発明が解決しようとする課題】ところで、流動床焼却
炉では、燃焼用空気を風箱のみに供給して被焼却物を焼
却する場合、酸素濃度が4〜6%(乾ベース)のときに
は燃焼用空気の量を増加させると流動層内燃焼率(流動
層内で燃焼する汚泥の割合)が増加するため、流動層温
度が上昇する一方、酸素濃度が7〜9%(乾ベース)の
ときに燃焼用空気量を増加させると流動層内燃焼率がさ
らに増加し、排ガス量の増加による排ガス顕熱の増加に
より流動層温度と燃焼室内温度とが共に低下する。つま
り、燃焼用空気量を少なくすることにより排ガス顕熱の
減少を図ると共に、流動層内燃焼率を低下させて燃焼室
内における燃焼割合の増大させることにより燃焼室内温
度を上昇させることができる。しかしながら、酸素濃度
が6%(乾ベース)を下回ると、未燃ガスであるCOや
NH3 が増加するという問題が生じる。
By the way, in a fluidized bed incinerator, when burning air is supplied only to a wind box to incinerate an incinerated material, combustion is performed when the oxygen concentration is 4 to 6% (dry basis). Increasing the amount of air for use increases the rate of combustion in the fluidized bed (the ratio of sludge burning in the fluidized bed), so that the temperature of the fluidized bed rises while the oxygen concentration is 7 to 9% (dry basis). When the amount of combustion air is increased, the combustion rate in the fluidized bed further increases, and both the fluidized bed temperature and the combustion chamber temperature decrease due to an increase in the sensible heat of the exhaust gas due to an increase in the amount of exhaust gas. That is, the sensible heat of exhaust gas is reduced by reducing the amount of combustion air, and the temperature in the combustion chamber can be increased by decreasing the combustion rate in the fluidized bed and increasing the combustion ratio in the combustion chamber. However, when the oxygen concentration is lower than 6% (dry basis), there arises a problem that unburned gases such as CO and NH 3 increase.

【0008】従来例1に係る流動層式焼却炉によれば、
流動層への補助燃料の供給量が燃焼室内温度だけに基づ
いて制御されるのであるから、例えば流動層の温度と燃
焼室内温度とが800℃の状況(800℃以上という状
況は燃焼用空気量が多すぎる場合に生じる。)にある場
合であっても、流動層に必ず補助燃料が供給されるの
で、流動層が高温になり過ぎるという欠点がある。この
ことは、必要以上の補助燃料が消費されることを意味す
る。
According to the fluidized bed incinerator according to Conventional Example 1,
Since the amount of auxiliary fuel supplied to the fluidized bed is controlled based only on the temperature in the combustion chamber, for example, a situation where the temperature of the fluidized bed and the temperature in the combustion chamber are 800 ° C. However, since the auxiliary fuel is always supplied to the fluidized bed, there is a disadvantage that the temperature of the fluidized bed becomes too high. This means that more auxiliary fuel is consumed than necessary.

【0009】つまり、排ガス量の増大によって排ガス顕
熱が増加するため、その出熱の増加を補助燃料による入
熱を増加させることにより温度維持を図ることになるか
らである。また、汚泥の性状が変化したり、汚泥の供給
量が変化したりすると、結果的に燃焼用空気の量が多す
ぎる状況になることがあり燃焼室内温度も低下する。勿
論、燃焼室内温度の低下により補助燃料の供給量が増量
されて流動層温度、燃焼室内温度が上昇されることにな
るが、燃焼室内温度の低下時には燃焼室内温度を850
℃以上に保持することができず、HCN等の各種有害ガ
スが発生する恐れが生じる。
That is, since the sensible heat of the exhaust gas increases with an increase in the amount of the exhaust gas, the heat output is increased by increasing the heat input by the auxiliary fuel to maintain the temperature. Further, if the properties of the sludge change or the supply amount of the sludge changes, the situation may result in a situation in which the amount of combustion air is too large, and the temperature in the combustion chamber also decreases. Of course, the supply amount of the auxiliary fuel is increased due to the decrease in the temperature of the combustion chamber, so that the fluidized bed temperature and the temperature of the combustion chamber are increased.
C. or higher, and various harmful gases such as HCN may be generated.

【0010】次に、従来例2に係る抑制流動炉では、上
記のとおり、酸素濃度制御、燃焼室内温度制御が空気量
の調整のみで行われており、空気量の調整のみで酸素濃
度と燃焼室内温度とを満足させることは難しい。また、
幾つかの下水処理場から発生した汚泥を集めて焼却する
ような広域処分場の場合には、汚泥の性状が変化するた
め益々難しくなる。つまり、通常、排ガス中の酸素濃度
は乾ベースで6%程度(空気比:1.3〜1.5程度)
が適当であるが、汚泥の性状が変化すれば、例え酸素濃
度が一定に保たれていても燃焼室内温度が変化する。従
って、汚泥の性状の如何を問わず、燃焼室内温度を、N
2 O、CO、NOX 、HCN、NH3 等の有害ガスを分
解するために850℃以上(900℃に近い方が良
い。)にする必要があり、またCO等の未燃ガスの発生
を防止するために排ガス中の酸素濃度を乾ベースで6%
以上に保持し続ける必要があるからである。
Next, in the suppressed fluidized-bed furnace according to Conventional Example 2, as described above, the oxygen concentration control and the combustion chamber temperature control are performed only by adjusting the air amount. It is difficult to satisfy the room temperature. Also,
In the case of a wide-area disposal site where sludge generated from several sewage treatment plants is collected and incinerated, it becomes more and more difficult due to changes in the properties of the sludge. That is, usually, the oxygen concentration in the exhaust gas is about 6% on a dry basis (air ratio: about 1.3 to 1.5).
However, if the properties of the sludge change, the temperature in the combustion chamber changes even if the oxygen concentration is kept constant. Therefore, regardless of the properties of the sludge, the temperature in the combustion chamber is set to N
In order to decompose harmful gases such as 2 O, CO, NO X , HCN, and NH 3 , the temperature must be 850 ° C. or higher (preferably closer to 900 ° C.). Oxygen concentration in exhaust gas is 6% on a dry basis to prevent
This is because it is necessary to keep the above.

【0011】ところで、近年では、全世界的な規模で環
境問題が注目されるようになってきており、都市ごみの
焼却処理だけでなく、汚泥の焼却処理においても環境保
全を意識した流動床焼却炉の設計および運転が重要視さ
れるようになってきている。特に、汚泥の焼却において
は、上記のとおり、種々の工夫がなされているものの、
CO等の未燃ガスの他に、地球温暖化に影響を及ぼすN
2 Oが数百ppm排出されることが報告されており、こ
れに対する対策の必要性が強調されている。また、流動
床焼却炉による汚泥焼却処理では、上記のとおり、汚泥
は含水率が高く低カロリーであるために補助燃料が必要
不可欠であるから、燃費の削減も流動床焼却炉の性能の
向上に欠くことのできない事項である。
In recent years, attention has been paid to environmental issues on a worldwide scale. In addition to incineration of municipal solid waste, incineration of sludge as well as fluidized bed incineration with an awareness of environmental conservation. Emphasis is placed on furnace design and operation. In particular, in the incineration of sludge, as described above, although various measures have been taken,
In addition to unburned gas such as CO, N that affects global warming
It has been reported that hundreds of ppm of 2 O are emitted, and the necessity of countermeasures is emphasized. In addition, in the sludge incineration treatment using a fluidized bed incinerator, as described above, auxiliary fuel is indispensable because sludge has a high water content and low calorie, so reducing fuel consumption also improves the performance of the fluidized bed incinerator. It is an indispensable matter.

【0012】従って、本発明の目的とするところは、如
何なる性状の汚泥でも安定的に焼却して、汚泥焼却で発
生する排ガス中のN2 Oガス、COガス、NOX ガス等
の有害ガス量を少なくすると共に、補助燃料の削減を可
能ならしめる流動床焼却炉による汚泥焼却方法を提供す
るにある。
Accordingly, it is an object of the present invention is to stably incinerated in the sludge of any nature, N 2 O gas in the exhaust gas generated in the sludge incineration, CO gas, harmful gas amount of such NO X gas Another object of the present invention is to provide a method for incinerating sludge using a fluidized bed incinerator, which makes it possible to reduce fuel consumption and to reduce auxiliary fuel.

【0013】[0013]

【課題を解決するための手段】本発明は上記課題を解決
するためになされたものであって、従って本発明の請求
項1に係る流動床焼却炉による汚泥焼却方法の要旨は、
風箱を備え、この風箱の上側に流動層を備え、この流動
層の上方に燃焼室が形成されると共に、上部側に排ガス
を排出する排ガス出口を備えてなる流動床焼却炉の前記
流動層に汚泥を供給して焼却する流動床焼却炉による汚
泥焼却方法において、前記排ガス出口から排出される排
ガス中の酸素濃度が、燃焼室内温度と炉頂部温度とのう
ちから選択した代表燃焼室内温度に基づいて設定された
濃度になるように風箱に供給する流動・燃焼用空気の供
給量を制御すると共に、代表燃焼室内温度が炉内設定温
度以上、かつ流動層温度が流動層設定温度になるように
代表燃焼室内温度と流動層温度とに基づいて制御した量
の補助燃料を流動層に供給することを特徴とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and therefore, the gist of the method for incinerating sludge by a fluidized bed incinerator according to claim 1 of the present invention is as follows.
The fluidized bed incinerator comprises a wind box, a fluidized bed above the wind box, a combustion chamber formed above the fluidized bed, and a flue gas outlet for discharging flue gas on the upper side. In the sludge incineration method using a fluidized bed incinerator for supplying and incinerating sludge to a bed, the oxygen concentration in the exhaust gas discharged from the exhaust gas outlet is a representative combustion chamber temperature selected from a combustion chamber temperature and a furnace top temperature. Control the supply amount of air for flow / combustion to be supplied to the wind box so that the concentration is set based on the temperature in the furnace, and the representative combustion chamber temperature is equal to or higher than the set temperature in the furnace, and the fluidized bed temperature is The auxiliary fuel is supplied to the fluidized bed in a controlled amount based on the representative combustion chamber temperature and the fluidized bed temperature.

【0014】また、本発明の請求項2に係る流動床焼却
炉による汚泥焼却方法の要旨は、風箱を備え、この風箱
の上側に流動層を備え、この流動層の上方に燃焼室が形
成されると共に、上部側に排ガスを排出する排ガス出口
を備えてなる流動床焼却炉の前記流動層に汚泥を供給し
て焼却する流動床焼却炉による汚泥焼却方法において、
前記排ガス出口から排出される排ガス中の酸素濃度が、
燃焼室内温度と炉頂部温度とのうちから選択した代表燃
焼室内温度に基づいて設定された濃度になるように風箱
に供給する流動・燃焼用空気の供給量を制御すると共
に、代表燃焼室内温度が予め設定した炉内設定温度より
も低温のときには代表燃焼室内温度が炉内設定温度以上
になるようにそれらの温度差に応じた量に制御した補助
燃料を流動層に供給し、流動層温度が予め設定した流動
層設定温度よりも低温のときには流動層温度が流動層設
定温度になるようにそれらの温度差に応じた量に制御し
た補助燃料を流動層に供給し、代表燃焼室内温度が炉内
設定温度よりも低温であって、かつ流動層温度が流動層
設定温度よりも低温のときには代表燃焼室内温度が炉内
設定温度以上、かつ流動層温度が流動層設定温度以上に
なるようにそれらの温度差に応じた量に制御した補助燃
料を流動層に供給することを特徴とする。
The gist of the sludge incineration method using a fluidized bed incinerator according to claim 2 of the present invention is to provide a wind box, a fluidized bed above the wind box, and a combustion chamber above the fluidized bed. A sludge incineration method by a fluidized bed incinerator, which is formed and supplies sludge to the fluidized bed of the fluidized bed incinerator comprising an exhaust gas outlet for discharging exhaust gas on the upper side, and incinerates,
The oxygen concentration in the exhaust gas discharged from the exhaust gas outlet,
The supply amount of the flow / combustion air supplied to the wind box is controlled so that the concentration is set based on the representative combustion chamber temperature selected from the combustion chamber temperature and the furnace top temperature. When the temperature is lower than the preset furnace temperature, the auxiliary fuel is supplied to the fluidized bed in an amount corresponding to the temperature difference so that the representative combustion chamber temperature becomes equal to or higher than the furnace preset temperature. When the temperature is lower than the preset fluidized bed set temperature, the auxiliary fuel is supplied to the fluidized bed in an amount corresponding to the temperature difference so that the fluidized bed temperature becomes the fluidized bed set temperature. When the temperature in the furnace is lower than the set temperature and the fluidized bed temperature is lower than the set temperature in the fluidized bed, the representative combustion chamber temperature is higher than the set temperature in the furnace and the fluidized bed temperature is higher than the set temperature in the fluidized bed. Them An auxiliary fuel is controlled to an amount corresponding to degrees difference and supplying the fluidized bed.

【0015】また、本発明の請求項3に係る流動床焼却
炉による汚泥焼却方法の要旨は、風箱を備え、この風箱
の上側に流動層を備え、この流動層の上方に燃焼室が形
成されると共に、上部側に排ガスを排出する排ガス出口
を備えてなる流動床焼却炉の前記流動層に汚泥を供給し
て焼却する流動床焼却炉による汚泥焼却方法において、
前記排ガス出口から排出される排ガス中の酸素濃度が、
燃焼室内温度と炉頂部温度とのうちから選択した代表燃
焼室内温度に基づいて設定された濃度になるように風箱
に供給する流動・燃焼用空気の供給量を制御すると共
に、代表燃焼室内温度が予め設定した炉内設定温度より
も低温のときには代表燃焼室内温度が炉内設定温度以上
になるようにそれらの温度差に応じた量に制御した補助
燃料を流動層の上部側に供給し、また流動層温度が予め
設定した流動層設定温度よりも低温のときには流動層温
度が流動層設定温度以上になるようにそれらの温度差に
応じた量に制御した補助燃料を流動層の下部側に供給す
ることを特徴とする。
The gist of the sludge incineration method using a fluidized bed incinerator according to claim 3 of the present invention is to provide a wind box, a fluidized bed above the wind box, and a combustion chamber above the fluidized bed. A sludge incineration method by a fluidized bed incinerator, which is formed and supplies sludge to the fluidized bed of the fluidized bed incinerator comprising an exhaust gas outlet for discharging exhaust gas on the upper side, and incinerates,
The oxygen concentration in the exhaust gas discharged from the exhaust gas outlet,
The supply amount of the flow / combustion air supplied to the wind box is controlled so that the concentration is set based on the representative combustion chamber temperature selected from the combustion chamber temperature and the furnace top temperature. When the temperature is lower than the preset furnace set temperature, an auxiliary fuel controlled to an amount corresponding to the temperature difference is supplied to the upper side of the fluidized bed so that the representative combustion chamber temperature becomes equal to or higher than the furnace set temperature, When the fluidized bed temperature is lower than the preset fluidized bed set temperature, auxiliary fuel controlled to an amount corresponding to the temperature difference between the fluidized bed temperature and the fluidized bed set temperature is set to the lower side of the fluidized bed so that the fluidized bed temperature becomes higher than the fluidized bed set temperature. It is characterized by supplying.

【0016】[0016]

【発明の実施の形態】本発明は、流動床焼却炉により汚
泥の焼却試験を行って、排ガス中のN2 O,CO,NO
X の有害ガスを同時に低減させるための運転条件を求め
てなしたものである。以下、このようなN2 O,CO,
NOX の有害ガスを同時に低減させる運転条件を得るに
至った経緯を、排ガス中の酸素濃度と燃焼室内温度およ
び排ガス中の酸素濃度とN2 O,CO濃度との関係説明
グラフ図の図4と、燃焼室内温度とNOX 濃度との関係
説明グラフ図の図5と、燃焼室内温度とN2 O,CO,
NOX との関係説明グラフ図の図6とを順次参照しなが
ら説明する。
BEST MODE FOR CARRYING OUT THE INVENTION According to the present invention, a sludge incineration test is carried out by a fluidized bed incinerator, and N 2 O, CO, NO
This was done by seeking operating conditions for simultaneously reducing the harmful gases of X. Hereinafter, such N 2 O, CO,
The events that led to obtain simultaneously reduced to operating conditions harmful gases NO X, the relationship explanation graph of oxygen concentration and N 2 O, CO concentration of the oxygen concentration and temperature in the combustion chamber and in the exhaust gas in the exhaust gas 4 When, as in FIG. 5 of the relationships described graph of the combustion chamber temperature and the NO X concentration, combustion chamber temperature and N 2 O, CO,
Successively it will be described with reference to the Figure 6 Relationship Description graph of NO X.

【0017】なお、上記図4は、排ガス中の酸素濃度と
炉頂部温度との関係を白丸および実線で、排ガス中の酸
素濃度と燃焼室内温度との関係を黒丸および実線で、排
ガス中の酸素濃度と流動層温度との関係を黒三角および
実線で、排ガス中の酸素濃度とN2 O濃度との関係を黒
丸および実線で、排ガス中の酸素濃度とCO濃度との関
係を白丸および実線でそれぞれ示している。また、排ガ
ス中の酸素濃度(%)は何れも乾ベース、即ち水蒸気除
去後の排ガス中の酸素濃度で示している。
FIG. 4 shows the relationship between the oxygen concentration in the exhaust gas and the furnace top temperature by open circles and solid lines, the relationship between the oxygen concentration in the exhaust gas and the temperature in the combustion chamber by black circles and solid lines, and FIG. The relationship between the concentration and the fluidized bed temperature is indicated by a black triangle and a solid line, the relationship between the oxygen concentration in the exhaust gas and the N 2 O concentration is indicated by a black circle and a solid line, and the relationship between the oxygen concentration and the CO concentration in the exhaust gas is indicated by a white circle and a solid line. Each is shown. Further, the oxygen concentration (%) in the exhaust gas is shown on a dry basis, that is, the oxygen concentration in the exhaust gas after removing the water vapor.

【0018】N2 OとCOの排出特性を図4を参照しな
がら説明する。先ず、N2 Oの排出濃度は流動層温度よ
りも燃焼室内温度により大きな影響を受けている。即
ち、同図から良く理解されるように、燃焼室内温度の上
昇に伴って発生量が減少しており、N2 Oの低減には燃
焼室内温度の高温化が有効である。また、COの排出濃
度は、下記の2つのケースが考えられる。 ケース1:O2 不足による場合 ケース2:O2 は十分であるが、低温であるためC
Oの酸化が不十分 即ち、COの低減には燃焼室内温度の高温化と酸素濃度
の管理が必要である。
The emission characteristics of N 2 O and CO will be described with reference to FIG. First, the N 2 O emission concentration is more affected by the temperature in the combustion chamber than by the temperature of the fluidized bed. That is, as can be clearly understood from the figure, the generation amount decreases with an increase in the temperature of the combustion chamber, and raising the temperature of the combustion chamber is effective for reducing N 2 O. In addition, the following two cases can be considered as the CO emission concentration. Case 1: O 2 deficiency Case 2: O 2 is sufficient but C is low due to low temperature
Insufficient oxidation of O In other words, to reduce CO, it is necessary to raise the temperature of the combustion chamber and control the oxygen concentration.

【0019】次に、NOX の排出特性を、図5を参照し
ながら説明すると、NOX は燃焼室内温度の上昇に伴っ
て発生量が多くなっていくが、その絶対量はN2 OやC
Oに比較して遙に少量である。
Next, the discharge characteristics of the NO X, will be described with reference to FIG. 5, NO X is gradually increasing number generation amount with a rise in temperature in the combustion chamber, the absolute amount of N 2 O Ya C
It is much smaller than O.

【0020】排ガス中の酸素濃度に対するN2 O,C
O,NOX 濃度および燃焼室内温度を併合すると図6に
示すとおりである。従って、汚泥を焼却する場合には、
同図から良く理解されるように、流動床焼却炉を、排ガ
ス中の酸素濃度を斜線を施して示す領域で運転するよう
にすれば、これらN2 O,CO,NOX の排出量を少な
くすることが可能になる。
N 2 O, C with respect to oxygen concentration in exhaust gas
O, it is shown in FIG. 6 when merging NO X concentration and the combustion chamber temperature. Therefore, when incinerating sludge,
As can be clearly understood from the figure, when the fluidized bed incinerator is operated in a region where the oxygen concentration in the exhaust gas is indicated by oblique lines, the emission of these N 2 O, CO and NO X is reduced. It becomes possible to do.

【0021】以下、本発明の汚泥焼却方法を実現する実
施の形態1に係る流動床焼却炉(排ガス中のN2 O,C
O,NOX の有害ガスを同時に低減させるための運転条
件を求めるためにも用いた。)を、その模式的構成説明
図の図1を参照しながら説明すると、図に示す符号1は
流動床焼却炉で、この流動床焼却炉1は流動・燃焼用空
気を供給する後述する一次空気供給管2が連通する風箱
1aと、この風箱1aの上に設けられ、補助燃料を供給
する補助燃料供給管3が連通する流動層1bと、この流
動層1bの上方に形成され、図示しない二次空気供給管
(但し、高分子系汚泥を焼却する場合には、二次空気供
給管から未燃ガス燃焼用空気が供給されることがなく、
供給されるのは一次空気供給管2を介しての流動・燃焼
用空気だけである。)が連通する燃焼室1cと、この燃
焼室1cの上部位置において開口する排ガスを排出する
排ガス出口1dとからなっている。
Hereinafter, a fluidized bed incinerator (N 2 O, C in exhaust gas) according to Embodiment 1 for realizing the sludge incineration method of the present invention will be described.
O, and also used to determine the operating conditions for the same time reducing harmful gases NO X. ) Will be described with reference to FIG. 1 of a schematic structural explanatory view. Reference numeral 1 shown in the figure is a fluidized bed incinerator, and the fluidized bed incinerator 1 is a primary air to be described later for supplying air for fluidizing / combustion. A wind box 1a communicating with the supply pipe 2; a fluid bed 1b provided on the wind box 1a and communicating with an auxiliary fuel supply pipe 3 for supplying auxiliary fuel; formed above the fluid bed 1b; No secondary air supply pipe (However, when incinerating polymer sludge, unburned gas combustion air is not supplied from the secondary air supply pipe,
Only the air for flow and combustion through the primary air supply pipe 2 is supplied. ) Communicates with each other, and an exhaust gas outlet 1d for discharging exhaust gas that opens at an upper position of the combustion chamber 1c.

【0022】そして、排ガス出口1dには排ガスダクト
4が連通しており、この排ガスダクト4から排出される
排ガスは、例えば図示しない廃熱ボイラ、一次空気供給
管2を介して風箱1aに供給する流動・燃焼用空気を加
熱する空気加熱器、集塵装置等を経て煙突から大気中に
放出されるようになっている。また、風箱1aに連通す
る一次空気供給管2には、風箱1a側から順に一次空気
供給ブロワ2aと、一次空気流量調整弁2bとが介装さ
れている。これにより、流動層1bを構成する硅砂等か
らなる砂が流動させられると共に、汚泥の焼却が行われ
る。
An exhaust gas duct 4 communicates with the exhaust gas outlet 1d, and the exhaust gas discharged from the exhaust gas duct 4 is supplied to the wind box 1a via, for example, a waste heat boiler (not shown) or a primary air supply pipe 2. The air is discharged from the chimney to the atmosphere via an air heater, a dust collector, etc., for heating the flowing air for combustion. The primary air supply pipe 2 communicating with the wind box 1a is provided with a primary air supply blower 2a and a primary air flow control valve 2b in order from the wind box 1a side. Thereby, sand made of silica sand or the like constituting the fluidized bed 1b is fluidized, and incineration of sludge is performed.

【0023】このような構成になる流動床焼却炉の運転
は、後述する運転制御系によって行われるようになって
いる。即ち、流動床焼却炉1の炉頂部の排ガス出口1d
付近に炉頂部の温度を検出する炉頂部温度計5が、流動
床焼却炉1の中央部には燃焼室1cの中間部の温度を検
出する燃焼室中間部温度計6が、流動床焼却炉1の下部
には燃焼室1cの下部の温度を検出する燃焼室下部温度
計7がそれぞれ取付けられており、これら各温度計5,
6,7で検出された検出温度は、最高温度と最低温度と
の間の中間温度を代表燃焼室内温度として選択するセレ
クタ11に入力されるようになっている。
The operation of the fluidized bed incinerator having such a configuration is performed by an operation control system described later. That is, the exhaust gas outlet 1d at the furnace top of the fluidized bed incinerator 1
In the vicinity, there is a furnace top thermometer 5 for detecting the temperature of the furnace top, and in the center of the fluidized bed incinerator 1, there is a combustion chamber middle part thermometer 6 for detecting the temperature of the middle part of the combustion chamber 1c. 1, a lower combustion chamber thermometer 7 for detecting the temperature of the lower part of the combustion chamber 1c is attached to each of the thermometers 5.
The detected temperatures detected in 6 and 7 are input to a selector 11 for selecting an intermediate temperature between the highest temperature and the lowest temperature as a representative combustion chamber temperature.

【0024】このように、三つの温度計5,6,7によ
って代表燃焼室内温度を検出するようにしたのは、汚泥
の燃焼状況や未燃ガスの燃焼状況によって最高温度、中
間温度、最低温度となる位置が変化するが、例え変化し
たとしても中間温度を代表燃焼室内温度として選択し、
この選択した代表室内温度を850℃になるように制御
してやれば、燃焼室内の最高温度を必ず850℃以上に
保持することができると共に、燃焼室内温度の上がり過
ぎも防止することができるからである。
As described above, the temperature of the representative combustion chamber is detected by the three thermometers 5, 6, 7 because the maximum temperature, the intermediate temperature, and the minimum temperature depend on the combustion state of sludge and the combustion state of unburned gas. Is changed, but even if it changes, the intermediate temperature is selected as the representative combustion chamber temperature,
If the selected representative room temperature is controlled to be 850 ° C., the maximum temperature in the combustion chamber can always be maintained at 850 ° C. or higher, and the temperature in the combustion chamber can be prevented from rising excessively. .

【0025】さらに、セレクタ11から出力された代表
燃焼室内温度は、このセレクタ11から出力される代表
燃焼室内温度が炉内設定温度(通常、850℃以上に設
定される。)よりも低いときは排ガス中の酸素濃度を低
くし、代表燃焼室内温度が炉内設定温度よりも高いとき
は排ガス中の酸素濃度を高くする関数を信号として出力
する関数発生器13からの関数信号により酸素濃度設定
値が設定され、この酸素濃度設定値と排ガスダクト4に
設けられた酸素濃度計9からの酸素濃度検出値とを比較
する酸素濃度調節器14に入力されるようになってい
る。そして、酸素濃度調節器14は酸素濃度設定値と酸
素濃度検出値とを比較して、一次空気供給管2に介装さ
れてなる一次空気流量調整弁2bに、酸素濃度検出値が
酸素濃度設定値よりも低いときには流動・燃焼用空気量
を多くするように、逆に酸素濃度検出値が酸素濃度設定
値よりも高いときには流動・燃焼用空気量を少なくする
ように制御する開度制御信号を、一次空気流量検出器1
0から流動・燃焼用空気量検出値が入力される一次空気
流量調節器15を介して入力するものである。
The representative combustion chamber temperature output from the selector 11 is lower than the representative combustion chamber temperature output from the selector 11 (usually set to 850 ° C. or higher). When the oxygen concentration in the exhaust gas is lowered and the representative combustion chamber temperature is higher than the furnace set temperature, the oxygen concentration set value is obtained by a function signal from the function generator 13 which outputs a function to increase the oxygen concentration in the exhaust gas as a signal. Is input to an oxygen concentration controller 14 that compares this oxygen concentration set value with an oxygen concentration detection value from an oxygen concentration meter 9 provided in the exhaust gas duct 4. The oxygen concentration controller 14 compares the oxygen concentration set value with the oxygen concentration detection value, and sends the oxygen concentration detection value to the primary air flow control valve 2 b provided in the primary air supply pipe 2. When the oxygen concentration detection value is higher than the oxygen concentration set value, the opening degree control signal is controlled to decrease the flow / combustion air amount when the oxygen concentration detection value is higher than the oxygen concentration set value. , Primary air flow detector 1
This is input via the primary air flow controller 15 to which the detected value of the flow / combustion air amount is input from 0.

【0026】また、セレクタ11から出力された代表燃
焼室内温度は、関数発生器13と平行して炉内温度調節
器12に入力される。この炉内温度調節器12は予め設
定されている炉内設定温度とセレクタ11から入力され
た代表燃焼室内温度とを比較して、この代表燃焼室内温
度が炉内設定温度よりも低いときに、温度差の程度に応
じた量の補助燃料を供給するようにという制御信号を加
算器17に入力する。一方、この加算器17には、予め
設定された流動層設定温度(通常、700℃以上に設定
される。)と流動層の温度を検出する流動層温度計8か
らの流動層温度検出値とを比較して、流動層温度検出値
が流動層設定温度よりも低いときに、流動層温度調節器
16から温度差の程度に応じた量の補助燃料を供給する
ようにという制御信号が入力される。
The representative combustion chamber temperature output from the selector 11 is input to the furnace temperature controller 12 in parallel with the function generator 13. The in-furnace temperature controller 12 compares a preset in-furnace set temperature with a representative combustion chamber temperature input from the selector 11, and when the representative combustion chamber temperature is lower than the in-furnace set temperature, A control signal for supplying an amount of auxiliary fuel according to the degree of the temperature difference is input to the adder 17. On the other hand, the adder 17 includes a preset fluidized bed set temperature (normally set to 700 ° C. or higher) and a fluidized bed temperature detection value from the fluidized bed thermometer 8 for detecting the fluidized bed temperature. When the detected value of the fluidized bed temperature is lower than the set temperature of the fluidized bed, a control signal is supplied from the fluidized bed temperature controller 16 to supply an auxiliary fuel in an amount corresponding to the degree of the temperature difference. You.

【0027】つまり、加算器17は、代表燃焼室内温度
が炉内設定温度よりも高く、また流動層温度が流動層設
定温度よりも高いときには補助燃料を供給しないよう
に、何れか一方の検出温度が設定温度よりも低ければそ
の温度差に応じた量の補助燃料を供給するように、また
何れの検出温度も設定温度より低ければ加算した量の補
助燃料を供給するように、前記補助燃料供給管3に介装
されてなる補助燃料制御弁3aを制御するものである。
That is, when the representative combustion chamber temperature is higher than the furnace set temperature and the fluidized bed temperature is higher than the fluidized bed set temperature, the adder 17 detects one of the detected temperatures so as not to supply auxiliary fuel. Is lower than the set temperature, the auxiliary fuel is supplied in an amount corresponding to the temperature difference, and if any of the detected temperatures is lower than the set temperature, the added amount of auxiliary fuel is supplied. This is for controlling the auxiliary fuel control valve 3a interposed in the pipe 3.

【0028】従って、風箱1aへの流動・燃焼用空気供
給量の調整により代表燃焼室内温度が炉内設定温度に上
昇しなければ、流動層1bに代表燃焼室内温度と炉内設
定温度との温度差に応じた量の補助燃料が供給されるの
で代表燃焼室内温度が炉内設定温度になるまで上昇され
ることになる。逆に、風箱1aへの流動・燃焼用空気供
給量の調整により代表燃焼室内温度が炉内設定温度以上
になれば補助燃料は全く供給されることがない。また、
汚泥の性状が変化して流動層1bの温度が低下すると、
代表燃焼室内温度の如何を問わず、流動層1bに直ちに
補助燃料が供給され、流動層1bの温度上昇により燃焼
室内温度の低下が防止されるので、HCN等の各種有害
ガスの発生量を少なくすることができる。
Therefore, if the representative combustion chamber temperature does not rise to the furnace set temperature by adjusting the amount of flow / combustion air supplied to the wind box 1a, the fluidized bed 1b will be switched between the representative combustion chamber temperature and the furnace set temperature. Since the amount of auxiliary fuel is supplied according to the temperature difference, the temperature of the representative combustion chamber is increased until the temperature in the furnace reaches the set temperature in the furnace. Conversely, if the representative combustion chamber temperature becomes equal to or higher than the furnace set temperature by adjusting the flow / combustion air supply to the wind box 1a, no auxiliary fuel is supplied. Also,
When the properties of the sludge change and the temperature of the fluidized bed 1b decreases,
Regardless of the representative combustion chamber temperature, the auxiliary fuel is immediately supplied to the fluidized bed 1b, and the temperature rise of the fluidized bed 1b prevents the combustion chamber temperature from lowering, so that the generation amount of various harmful gases such as HCN is reduced. can do.

【0029】次に、従来例2に係る抑制流動炉では、酸
素濃度制御と温度制御とが空気量の調整のみで行われて
いて、酸素濃度条件と温度条件とお同時に満足すること
は難しかったが、本実施の形態1によれば、上記のとお
り、代表燃焼室内温度と流動層温度とに基づいて制御さ
れた量の補助燃料が流動層に供給され、温度低下に追随
して流動層1bの温度が直ちに上昇されるので、性状の
異なる汚泥の焼却に確実に対応することができる。そし
て、流動層1bの温度の上昇により燃焼室内温度の低下
を抑制することができるので、NH3 やHCN等の有害
ガスの分解に必要な850℃以上の温度を確保し続ける
ことができる。さらに、酸素濃度調節器14による制御
によって必要な量の流動・燃焼用空気が風箱1aに供給
されるので、CO等の未燃ガスの発生も抑制される。
Next, in the suppressed fluidized-bed furnace according to the conventional example 2, the oxygen concentration control and the temperature control are performed only by adjusting the air amount, and it is difficult to satisfy both the oxygen concentration condition and the temperature condition at the same time. According to the first embodiment, as described above, a controlled amount of auxiliary fuel is supplied to the fluidized bed based on the representative combustion chamber temperature and the fluidized bed temperature, and the fluidized bed 1b is controlled to follow the temperature decrease. Since the temperature is immediately increased, it is possible to reliably cope with incineration of sludge having different properties. Then, since the temperature in the combustion chamber can be prevented from lowering due to the increase in the temperature of the fluidized bed 1b, the temperature of 850 ° C. or higher required for decomposing harmful gases such as NH 3 and HCN can be maintained. Further, since a necessary amount of the air for flow / combustion is supplied to the wind box 1a under the control of the oxygen concentration controller 14, the generation of unburned gas such as CO is suppressed.

【0030】[0030]

【実施例】以下、流動床焼却炉の運転状況説明図の図2
(a),(b),(c)を参照しながら、本発明の実施
の形態1に係る流動床焼却炉を用いて排ガス中の酸素濃
度が湿ベースで3%(乾ベースでは6.7%である。)
になるように一定制御〔図2(c)参照。〕すると共
に、代表燃焼室内温度が850℃以上になるように制御
して汚泥(高分子系汚泥である。)を焼却した例を説明
すると、代表燃焼室内温度は、図2(b)に示すよう
に、流動層に補助燃料を供給しなくても850℃以上の
温度になっており、また排ガス中のN2 O,CO濃度
は、図2(a)に示すように、安定的に低レベルになっ
ている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG.
With reference to (a), (b), and (c), the oxygen concentration in the exhaust gas is 3% on a wet basis (6.7 on a dry basis) using the fluidized bed incinerator according to the first embodiment of the present invention. %.)
(See FIG. 2C). In addition, an example in which sludge (polymer sludge) is incinerated while controlling the representative combustion chamber temperature to be 850 ° C. or higher will be described. The representative combustion chamber temperature is shown in FIG. As described above, the temperature is 850 ° C. or higher without supplying the auxiliary fuel to the fluidized bed, and the N 2 O and CO concentrations in the exhaust gas are stably low as shown in FIG. Level.

【0031】流動床焼却炉の運転結果は、表1に示すと
おりである。
The operation results of the fluidized bed incinerator are as shown in Table 1.

【表1】 上記表1によれば、排ガス中のN2 O,CO,NOx
平均濃度は、それぞれ17ppm,29ppm,6pp
mで極めて低レベルであり、例えばN2 Oでは数百pp
mという報告値を大幅に下回っている。なお、図2
(b)に示すように、代表燃焼室温度が850℃以上で
維持され続けているので、HCNは分解され発生してい
ない。
[Table 1] According to Table 1, the average concentrations of N 2 O, CO, and NO x in the exhaust gas are 17 ppm, 29 ppm, and 6 pp, respectively.
m is extremely low, for example, several hundred pp in N 2 O.
It is significantly below the reported value of m. Note that FIG.
As shown in (b), since the representative combustion chamber temperature is maintained at 850 ° C. or higher, HCN is not decomposed and generated.

【0032】本制御を実施した場合(以下、実施後とい
う)と、流動・燃焼用空気および流動層温度の一定制御
を行う典型的な本制御を実施しない場合(以下、実施前
という。)とについて、補助燃料(重油)の消費量の相
違および一次空気供給ブロワ2aと誘因ファン(図示省
略)との消費電力の相違を調べた。その結果は表2に示
すとおりである。
The case where the present control is performed (hereinafter referred to as “after execution”) and the case where typical control for performing constant control of the flow / combustion air and the fluidized bed temperature are not performed (hereinafter referred to as “before execution”). The differences in the consumption of the auxiliary fuel (heavy oil) and the differences in the power consumption between the primary air supply blower 2a and the inducing fan (not shown) were examined. The results are as shown in Table 2.

【表2】 上記表2によれば、重油消費量は約70%削減されてい
る。これは、排ガス中の酸素濃度一定制御を行うことに
より無駄な燃焼空気を供給することがなくなって排ガス
量が少なくなる結果、排ガスの持出顕熱の割合が低下し
たためである。また、一次空気供給ブロワ2aと誘因フ
ァンとの消費電力は6.5%減少しており、排ガス量が
減少したということを示唆している。
[Table 2] According to Table 2 above, heavy oil consumption is reduced by about 70%. This is because, by performing the constant control of the oxygen concentration in the exhaust gas, no wasteful combustion air is supplied, and the amount of the exhaust gas is reduced. As a result, the ratio of the sensible heat carried out of the exhaust gas is reduced. Further, the power consumption of the primary air supply blower 2a and the inducing fan is reduced by 6.5%, suggesting that the amount of exhaust gas has been reduced.

【0033】次に、本制御実施前後の流動床焼却炉の熱
収支を表3に示す。なお、この表3では高分子系汚泥を
焼却した場合を示しており、またこの高分子系汚泥の熱
量を100として、他は全てその比で示している。
Next, Table 3 shows the heat balance of the fluidized bed incinerator before and after the control. Table 3 shows the case where the polymer sludge is incinerated, and the calorific value of the polymer sludge is set to 100, and all other values are indicated by the ratio.

【表3】 上記表3によれば、汚泥の熱量に対する流動・燃焼用空
気の保有熱、蒸発潜熱、放熱の割合はそれほど変わって
いないが、排ガス顕熱の割合は実施前が69.4%であ
るのに対して実施後は59.8%に減少しており、汚泥
の熱量が有効に利用されていることが良く判る。
[Table 3] According to Table 3 above, the ratio of the retained heat, latent heat of vaporization, and heat release of the air for flow / combustion to the amount of heat of the sludge has not changed much, but the ratio of the sensible heat of the exhaust gas is 69.4% before the implementation. On the other hand, it decreased to 59.8% after the implementation, which clearly indicates that the calorific value of the sludge was effectively used.

【0034】なお、以上では、排ガス中の酸素濃度が湿
ベースで3%になるように一定制御する場合を例として
説明した。ところで、含水率は汚泥の種類によってかな
り相違することが知られている。例えば、高分子系汚泥
の含水率は78〜80wt%であり、また石灰系汚泥の
含水率は60〜70%wtである。従って、排ガス中の
水蒸気の割合が相違するので、排ガス中の酸素濃度を湿
ベースで制御する場合には、焼却する汚泥の含水率によ
って乾ベースで6.7%を狙いとする排ガス中の湿ベー
スでの酸素濃度の値を変更することが好ましい。
In the above, the case where the oxygen concentration in the exhaust gas is controlled to be constant at 3% on a wet basis has been described as an example. By the way, it is known that the water content varies considerably depending on the type of sludge. For example, the water content of polymer sludge is 78 to 80 wt%, and the water content of lime sludge is 60 to 70% wt. Therefore, when the oxygen concentration in the exhaust gas is controlled on a wet basis, the moisture content in the exhaust gas is targeted at 6.7% on a dry basis depending on the moisture content of the sludge to be incinerated because the proportion of water vapor in the exhaust gas is different. It is preferable to change the value of the oxygen concentration at the base.

【0035】次に、本発明の汚泥焼却方法を実現する実
施の形態2に係る流動床焼却炉を、その模式的構成説明
図の図3を参照しながら、実施の形態1と相違する点に
ついてだけ以下に説明する。即ち、図3から良く理解さ
れるように、本実施の形態2に係る流動床焼却炉の運転
制御系は、流動層1bの上部側に上部補助燃料制御弁3
aが介装されてなる上部側補助燃料供給管3を連通さ
せ、また流動層1bの下部側に下部補助燃料制御弁3
a′が介装されてなる下部側補助燃料供給管3′を連通
させると共に、上部補助燃料制御弁3aを炉内温度調節
器12により直接制御し、下部補助燃料制御弁3a′を
流動層温度調節器16により直接制御するようにしたも
ので、これ以外は上記実施の形態1と全く同構成になる
ものである。
Next, a fluidized bed incinerator according to a second embodiment for realizing the sludge incineration method of the present invention will be described with reference to FIG. Only described below. That is, as is well understood from FIG. 3, the operation control system of the fluidized bed incinerator according to the second embodiment includes an upper auxiliary fuel control valve 3 on the upper side of the fluidized bed 1b.
a is connected to the upper auxiliary fuel supply pipe 3 in which the lower auxiliary fuel control valve 3 is connected to the lower side of the fluidized bed 1b.
a 'is connected to the lower auxiliary fuel supply pipe 3' in which the upper auxiliary fuel control valve 3a is directly controlled by the furnace temperature controller 12, and the lower auxiliary fuel control valve 3a 'is The configuration is directly controlled by the adjuster 16, and the other configuration is exactly the same as that of the first embodiment.

【0036】以下、実施の形態2に係る流動床焼却炉の
作用態様を説明すると、流動層温度が例えば700℃を
下回れば下部側補助燃料供給管3′から流動層1bの下
側に補助燃料が供給され、補助燃料の流動層内燃焼率が
高いので流動層温度が上昇する。一方、燃焼室内温度が
850℃を下回れば上部側補助燃料供給管3から流動層
1bの上側に補助燃料が供給されるが、この場合は補助
燃料の流動層内燃焼率が低いので流動層温度上昇にはそ
れほど寄与せず、補助燃料の燃焼熱の殆どが燃焼室内温
度の上昇に費やされる。従って、流動層温度と燃焼室内
温度とを適正に保持することができ、流動層温度の上が
り過ぎを確実に防止することができる。因みに、下部側
補助燃料供給管3′から流動層1bの下側に供給された
場合の補助燃料の流動層内燃焼率は80%であり、また
上部側補助燃料供給管3から流動層1bの上側に供給さ
れた場合の補助燃料の流動層内燃焼率は60%である。
The operation of the fluidized bed incinerator according to the second embodiment will be described below. If the temperature of the fluidized bed is lower than 700 ° C., for example, the auxiliary fuel is supplied from the lower auxiliary fuel supply pipe 3 ′ to the lower side of the fluidized bed 1b. Is supplied and the combustion rate of the auxiliary fuel in the fluidized bed is high, so that the temperature of the fluidized bed rises. On the other hand, if the temperature in the combustion chamber is lower than 850 ° C., auxiliary fuel is supplied from the upper auxiliary fuel supply pipe 3 to the upper side of the fluidized bed 1b. In this case, the combustion rate of the auxiliary fuel in the fluidized bed is low. It does not contribute much to the rise, and most of the heat of combustion of the auxiliary fuel is spent on raising the temperature in the combustion chamber. Therefore, the fluidized bed temperature and the combustion chamber temperature can be appropriately maintained, and the fluidized bed temperature can be reliably prevented from rising excessively. Incidentally, when the auxiliary fuel is supplied from the lower auxiliary fuel supply pipe 3 'to the lower side of the fluidized bed 1b, the combustion rate of the auxiliary fuel in the fluidized bed is 80%. The combustion rate of auxiliary fuel in the fluidized bed when supplied to the upper side is 60%.

【0037】[0037]

【発明の効果】以上述べたように、本発明の請求項1,
2または3に係る流動床焼却炉による汚泥焼却方法によ
れば、代表燃焼室内温度と流動層温度とに基づいて制御
された量の補助燃料が流動層に供給されるので、例えば
流動層温度と燃焼室内温度とが800℃の状況にあって
も流動層に補助燃料が供給される従来例1のように、流
動層温度が過度に高温になるというようなことがなく、
補助燃料の消費量および燃焼用空気の供給量が抑制され
る。また、汚泥の性状が変化して流動層が低温になれば
直ちに補助燃料が供給され、流動層温度が上昇して燃焼
室内温度の低下が防止されるので、HCN等の各種有害
ガスの発生量を少なくすることができる。さらに、従来
例2のように、空気量の調整のみによって酸素濃度制御
と温度制御とを行う方法でなく、上記のとおり、代表燃
焼室内温度と流動層温度とに基づく制御であるため、温
度低下に追随して流動層温度が上昇されて性状の異なる
汚泥の焼却に確実に対応することができるので、NH3
やHCN等の有害ガスの発生量の削減に寄与することが
できる。
As described above, according to the first and second aspects of the present invention,
According to the sludge incineration method using the fluidized bed incinerator according to 2 or 3, the auxiliary fuel is supplied to the fluidized bed in a controlled amount based on the representative combustion chamber temperature and the fluidized bed temperature. Even when the combustion chamber temperature is 800 ° C., the fluidized bed temperature does not become excessively high as in Conventional Example 1 in which auxiliary fuel is supplied to the fluidized bed.
The consumption of the auxiliary fuel and the supply of the combustion air are suppressed. Further, when the fluidized bed becomes cold due to a change in the properties of the sludge, auxiliary fuel is immediately supplied, and the temperature of the fluidized bed rises, preventing the temperature in the combustion chamber from dropping. Can be reduced. Furthermore, since the control is based on the representative combustion chamber temperature and the fluidized bed temperature as described above, instead of the method of performing the oxygen concentration control and the temperature control only by adjusting the air amount as in Conventional Example 2, the temperature decreases. The temperature of the fluidized bed is increased to follow the incineration of sludge with different properties, so that NH 3
It can contribute to the reduction of the generation amount of harmful gases such as HCN and HCN.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の汚泥焼却方法を実現する実施の形態1
に係る流動床焼却炉の模式的構成説明図である。
FIG. 1 is a first embodiment for realizing a sludge incineration method of the present invention.
It is a schematic structure explanatory view of the fluidized-bed incinerator which concerns on.

【図2】図2(a),(b),(c)は、本発明の汚泥
焼却方法を実現する実施の形態1に係る流動床焼却炉の
運転状況説明図である。
FIGS. 2 (a), 2 (b), and 2 (c) are explanatory diagrams of the operating state of a fluidized bed incinerator according to Embodiment 1 for realizing the sludge incineration method of the present invention.

【図3】本発明の汚泥焼却方法を実現する実施の形態2
に係る流動床焼却炉の模式的構成説明図である。
FIG. 3 is a second embodiment for realizing the sludge incineration method of the present invention.
It is a schematic structure explanatory view of the fluidized-bed incinerator which concerns on.

【図4】排ガス中の酸素濃度と代表燃焼室内温度および
排ガス中の酸素濃度とN2 O,CO濃度との関係説明グ
ラフ図である。
FIG. 4 is a graph illustrating the relationship between oxygen concentration in exhaust gas and representative combustion chamber temperature, and oxygen concentration in exhaust gas and N 2 O and CO concentrations.

【図5】代表燃焼室内温度とNOX 濃度との関係説明グ
ラフ図である。
5 is a relation explanatory graph of a representative temperature in the combustion chamber and the NO X concentration.

【図6】代表燃焼室内温度とN2 O,CO,NOX との
関係説明グラフ図である。
FIG. 6 is a graph illustrating the relationship between a representative combustion chamber temperature and N 2 O, CO, and NO X.

【図7】従来例1に係る流動層式焼却炉(流動床焼却
炉)の焼却炉回りのシステムの運転方法の説明図であ
る。
FIG. 7 is an explanatory diagram of an operation method of a system around an incinerator of a fluidized bed incinerator (fluidized bed incinerator) according to Conventional Example 1.

【図8】従来例2に係る抑制流動炉(流動床焼却炉)の
構成を示す図である。
FIG. 8 is a diagram showing a configuration of a suppression fluidized-bed furnace (fluidized-bed incinerator) according to Conventional Example 2.

【符号の説明】[Explanation of symbols]

1…流動床焼却炉,1a…風箱.1b…流動層,1c…
燃焼室,1d…排ガス出口,2…一次空気供給管,2a
…一次空気供給ブロワ,2b…一次空気流量制御弁 3
…補助燃料供給管または上部側補助燃料供給管,3a…
補助燃料制御弁または上部補助燃料制御弁,3′…下部
側補助燃料供給管,3a′…下部補助燃料制御弁,4…
排ガスダクト,5…炉頂部温度計,6…燃焼室中間部温
度計,7…燃焼室下部温度計,8…流動層温度計,9…
酸素濃度計,10…一次空気流量検出器,11…セレク
タ,12…炉内温度調節器,13…関数発生器,14…
酸素濃度調節器,15…一次空気流量調節器,16…流
動層温度調節器,17…加算器。
1: Fluid bed incinerator, 1a: Wind box. 1b ... fluidized bed, 1c ...
Combustion chamber, 1d: exhaust gas outlet, 2: primary air supply pipe, 2a
... Primary air supply blower, 2b ... Primary air flow control valve 3
... Auxiliary fuel supply pipe or upper auxiliary fuel supply pipe, 3a ...
Auxiliary fuel control valve or upper auxiliary fuel control valve, 3 '... lower auxiliary fuel supply pipe, 3a' ... lower auxiliary fuel control valve, 4 ...
Exhaust gas duct, 5: Furnace top thermometer, 6: Combustion chamber middle thermometer, 7: Combustion chamber lower thermometer, 8: Fluidized bed thermometer, 9 ...
Oxygen concentration meter, 10 primary air flow detector, 11 selector, 12 furnace temperature controller, 13 function generator, 14
Oxygen concentration controller, 15: Primary air flow controller, 16: Fluidized bed temperature controller, 17: Adder.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F23G 5/50 ZAB F23G 5/50 ZABH ZABJ F23N 5/00 F23N 5/00 J ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location F23G 5/50 ZAB F23G 5/50 ZABH ZABJ F23N 5/00 F23N 5/00 J

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 風箱を備え、この風箱の上側に流動層を
備え、この流動層の上方に燃焼室が形成されると共に、
上部側に排ガスを排出する排ガス出口を備えてなる流動
床焼却炉の前記流動層に汚泥を供給して焼却する流動床
焼却炉による汚泥焼却方法において、前記排ガス出口か
ら排出される排ガス中の酸素濃度が、燃焼室内温度と炉
頂部温度とのうちから選択した代表燃焼室内温度に基づ
いて設定された濃度になるように風箱に供給する流動・
燃焼用空気の供給量を制御すると共に、代表燃焼室内温
度が炉内設定温度以上、かつ流動層温度が流動層設定温
度になるように代表燃焼室内温度と流動層温度とに基づ
いて制御した量の補助燃料を流動層に供給することを特
徴とする流動床焼却炉による汚泥焼却方法。
An air box is provided, a fluidized bed is provided above the wind box, and a combustion chamber is formed above the fluidized bed.
In a sludge incineration method using a fluidized bed incinerator that supplies sludge to the fluidized bed and incinerates the fluidized bed of a fluidized bed incinerator having an exhaust gas outlet for discharging exhaust gas on the upper side, oxygen in exhaust gas discharged from the exhaust gas outlet is The flow / flow supplied to the wind box so that the concentration becomes a concentration set based on the representative combustion chamber temperature selected from the combustion chamber temperature and the furnace top temperature.
Amount controlled based on the representative combustion chamber temperature and the fluidized bed temperature such that the supply amount of combustion air is controlled and the representative combustion chamber temperature is equal to or higher than the furnace set temperature, and the fluidized bed temperature becomes the fluidized bed set temperature. A sludge incineration method using a fluidized bed incinerator, wherein the auxiliary fuel is supplied to a fluidized bed.
【請求項2】 風箱を備え、この風箱の上側に流動層を
備え、この流動層の上方に燃焼室が形成されると共に、
上部側に排ガスを排出する排ガス出口を備えてなる流動
床焼却炉の前記流動層に汚泥を供給して焼却する流動床
焼却炉による汚泥焼却方法において、前記排ガス出口か
ら排出される排ガス中の酸素濃度が、燃焼室内温度と炉
頂部温度とのうちから選択した代表燃焼室内温度に基づ
いて設定された濃度になるように風箱に供給する流動・
燃焼用空気の供給量を制御すると共に、代表燃焼室内温
度が予め設定した炉内設定温度よりも低温のときには代
表燃焼室内温度が炉内設定温度以上になるようにそれら
の温度差に応じた量に制御した補助燃料を流動層に供給
し、流動層温度が予め設定した流動層設定温度よりも低
温のときには流動層温度が流動層設定温度になるように
それらの温度差に応じた量に制御した補助燃料を流動層
に供給し、代表燃焼室内温度が炉内設定温度よりも低温
であって、かつ流動層温度が流動層設定温度よりも低温
のときには代表燃焼室内温度が炉内設定温度以上、かつ
流動層温度が流動層設定温度以上になるようにそれらの
温度差に応じた量に制御した補助燃料を流動層に供給す
ることを特徴とする流動床焼却炉による汚泥焼却方法。
2. A wind box is provided, a fluidized bed is provided above the wind box, and a combustion chamber is formed above the fluidized bed.
In a sludge incineration method using a fluidized bed incinerator that supplies sludge to the fluidized bed and incinerates the fluidized bed of a fluidized bed incinerator having an exhaust gas outlet for discharging exhaust gas on the upper side, oxygen in exhaust gas discharged from the exhaust gas outlet is The flow / flow supplied to the wind box so that the concentration becomes a concentration set based on the representative combustion chamber temperature selected from the combustion chamber temperature and the furnace top temperature.
In addition to controlling the supply amount of combustion air, when the representative combustion chamber temperature is lower than a preset furnace preset temperature, an amount corresponding to the temperature difference is set so that the representative combustion chamber temperature becomes equal to or higher than the furnace preset temperature. Is supplied to the fluidized bed, and when the fluidized bed temperature is lower than the preset fluidized bed set temperature, the fluidized bed temperature is controlled to an amount corresponding to the temperature difference so that the fluidized bed temperature becomes the fluidized bed set temperature. When the representative combustion chamber temperature is lower than the furnace set temperature and the fluidized bed temperature is lower than the fluid bed set temperature, the representative combustion chamber temperature is higher than the furnace set temperature. A method for incinerating sludge by a fluidized bed incinerator, characterized in that an auxiliary fuel controlled to an amount corresponding to the temperature difference between the fluidized bed and the fluidized bed is set to a temperature equal to or higher than a set temperature of the fluidized bed to the fluidized bed.
【請求項3】 風箱を備え、この風箱の上側に流動層を
備え、この流動層の上方に燃焼室が形成されると共に、
上部側に排ガスを排出する排ガス出口を備えてなる流動
床焼却炉の前記流動層に汚泥を供給して焼却する流動床
焼却炉による汚泥焼却方法において、前記排ガス出口か
ら排出される排ガス中の酸素濃度が、燃焼室内温度と炉
頂部温度とのうちから選択した代表燃焼室内温度に基づ
いて設定された濃度になるように風箱に供給する流動・
燃焼用空気の供給量を制御すると共に、代表燃焼室内温
度が予め設定した炉内設定温度よりも低温のときには代
表燃焼室内温度が炉内設定温度以上になるようにそれら
の温度差に応じた量に制御した補助燃料を流動層の上部
側に供給し、また流動層温度が予め設定した流動層設定
温度よりも低温のときには流動層温度が流動層設定温度
以上になるようにそれらの温度差に応じた量に制御した
補助燃料を流動層の下部側に供給することを特徴とする
流動床焼却炉による汚泥焼却方法。
3. A wind box, a fluidized bed is provided above the wind box, and a combustion chamber is formed above the fluidized bed.
In a sludge incineration method using a fluidized bed incinerator that supplies sludge to the fluidized bed and incinerates the fluidized bed of a fluidized bed incinerator having an exhaust gas outlet for discharging exhaust gas on the upper side, oxygen in exhaust gas discharged from the exhaust gas outlet is The flow / flow supplied to the wind box so that the concentration becomes a concentration set based on the representative combustion chamber temperature selected from the combustion chamber temperature and the furnace top temperature.
In addition to controlling the supply amount of combustion air, when the representative combustion chamber temperature is lower than a preset furnace preset temperature, an amount corresponding to the temperature difference is set so that the representative combustion chamber temperature becomes equal to or higher than the furnace preset temperature. Is supplied to the upper side of the fluidized bed, and when the fluidized bed temperature is lower than the preset fluidized bed set temperature, the temperature difference between them is adjusted so that the fluidized bed temperature becomes higher than the fluidized bed set temperature. A method for incinerating sludge by a fluidized bed incinerator, characterized in that an auxiliary fuel controlled to a corresponding amount is supplied to a lower side of a fluidized bed.
JP16609296A 1996-06-26 1996-06-26 Incineration of sludge by fluidized-bed incinerator Pending JPH109548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16609296A JPH109548A (en) 1996-06-26 1996-06-26 Incineration of sludge by fluidized-bed incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16609296A JPH109548A (en) 1996-06-26 1996-06-26 Incineration of sludge by fluidized-bed incinerator

Publications (1)

Publication Number Publication Date
JPH109548A true JPH109548A (en) 1998-01-16

Family

ID=15824857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16609296A Pending JPH109548A (en) 1996-06-26 1996-06-26 Incineration of sludge by fluidized-bed incinerator

Country Status (1)

Country Link
JP (1) JPH109548A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211727A (en) * 2011-03-31 2012-11-01 Kubota Corp Sludge incineration disposal system and sludge incineration disposal method
JP2013194951A (en) * 2012-03-16 2013-09-30 Kubota Corp Fluidized bed incinerator, combustion control device and operating method for fluidized bed incinerator
US8784526B2 (en) 2006-11-30 2014-07-22 Arkema France Use of multi-layered structure for the manufacture of gas conducts, namely for methane
KR101857407B1 (en) * 2018-01-30 2018-06-20 (주)에프티글로벌 A wireless power transfer system of identifying a position of the automated guided vehicle and method for identifying a position of the automated Guided Vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8784526B2 (en) 2006-11-30 2014-07-22 Arkema France Use of multi-layered structure for the manufacture of gas conducts, namely for methane
JP2012211727A (en) * 2011-03-31 2012-11-01 Kubota Corp Sludge incineration disposal system and sludge incineration disposal method
JP2013194951A (en) * 2012-03-16 2013-09-30 Kubota Corp Fluidized bed incinerator, combustion control device and operating method for fluidized bed incinerator
KR101857407B1 (en) * 2018-01-30 2018-06-20 (주)에프티글로벌 A wireless power transfer system of identifying a position of the automated guided vehicle and method for identifying a position of the automated Guided Vehicle

Similar Documents

Publication Publication Date Title
US5762008A (en) Burning fuels, particularly for incinerating garbage
JPS5837415A (en) Nox decreasing incinerator
RU2070688C1 (en) Method of combustion control in furnace for burning waste in fluidized bed
JPH1194227A (en) Method of presuming low heating value of combustible waste and presuming heating value of combustible part of garbage of garbage incinerator
JPH109548A (en) Incineration of sludge by fluidized-bed incinerator
JP3247066B2 (en) Freeboard temperature control method for fluidized bed incinerator.
JP4099195B2 (en) Combustion control system for waste incinerator without boiler equipment
JPH04324014A (en) Method of introducing air into rotary incinerator
JP3771791B2 (en) Waste incinerator with high water content and high volatility such as sewage sludge
JP3844333B2 (en) Combustion control system for waste incinerator without boiler equipment
JP7260579B2 (en) Exhaust gas treatment device
JP6965842B2 (en) Waste incinerator and waste incinerator method
JP3936884B2 (en) Control method of stoker type incinerator
JP7452405B2 (en) Sludge incinerator and sludge incineration method
JPS63302212A (en) Combustion equipment and combustion control method for restraint combustion and surface combustion
JPH09273733A (en) Control method of combustion in incinerating furnace
JP2623404B2 (en) Operating method and apparatus of fluidized bed incinerator
JP2002206722A (en) Stoker type waste incinerator
JP2002181319A (en) Gasification melting system and process therefor
JPH11270829A (en) Combustion control of refuse in refuse incinerator
JP2006125759A (en) Operation control device for incinerator
JPH08327038A (en) Fluidized bed incinerator
KR100434650B1 (en) Automatic Combustion Control System for Stoker Type Refuse Incinerator
JP3438860B2 (en) Incinerator combustion control device
JP2795957B2 (en) Combustion control method for waste incinerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031226

A131 Notification of reasons for refusal

Effective date: 20040127

Free format text: JAPANESE INTERMEDIATE CODE: A131

A711 Notification of change in applicant

Effective date: 20031212

Free format text: JAPANESE INTERMEDIATE CODE: A712

A02 Decision of refusal

Effective date: 20040601

Free format text: JAPANESE INTERMEDIATE CODE: A02