JP6342367B2 - Method for estimating heat generation amount of waste and waste treatment apparatus using the same - Google Patents

Method for estimating heat generation amount of waste and waste treatment apparatus using the same Download PDF

Info

Publication number
JP6342367B2
JP6342367B2 JP2015142149A JP2015142149A JP6342367B2 JP 6342367 B2 JP6342367 B2 JP 6342367B2 JP 2015142149 A JP2015142149 A JP 2015142149A JP 2015142149 A JP2015142149 A JP 2015142149A JP 6342367 B2 JP6342367 B2 JP 6342367B2
Authority
JP
Japan
Prior art keywords
waste
calorific value
amount
calculated
estimated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015142149A
Other languages
Japanese (ja)
Other versions
JP2017026172A (en
Inventor
福間 義人
義人 福間
藤川 博之
博之 藤川
吉司 松田
吉司 松田
雅也 渡瀬
雅也 渡瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Original Assignee
Takuma KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma KK filed Critical Takuma KK
Priority to JP2015142149A priority Critical patent/JP6342367B2/en
Publication of JP2017026172A publication Critical patent/JP2017026172A/en
Application granted granted Critical
Publication of JP6342367B2 publication Critical patent/JP6342367B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Incineration Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)

Description

本発明は、廃棄物の発熱量推算方法およびこれを用いた廃棄物処理装置に関し、特に、多種多様な廃棄物に対して適用可能な発熱量推算方法に関する。
The present invention relates to a waste heat generation estimation method and a waste treatment apparatus using the same, and more particularly to a heat generation estimation method applicable to a wide variety of wastes.

従来都市ゴミや下水汚泥などの廃棄物のうち可燃性の廃棄物は、事業所や家庭等から回収され、各地域に設けられた廃棄物処理場や廃棄物処理施設等に搬送され、燃焼処理されて清浄化された排ガスや焼却灰として処分される。このとき、油やガス等の廃棄物は、性状が既知であるため、安定した燃焼制御を行うことが可能であり、実動施設においては、燃料としての燃焼空気量を、予め廃棄物の燃焼量に合わせて設定された値に調整することで実現している。一方、多種多様な廃棄物に対しては、その性状が一様でなく、安定して燃焼させることが容易でない。このため、廃棄物の燃焼制御は、排ガス温度や排ガス中のガス組成などを測定して、燃焼させる廃棄物の量、燃焼空気量、燃焼空気温度を加減することで対応しているが、時間遅れのない適切な燃焼制御が難しかった。特に、廃棄物の発熱量は燃焼制御において重要な役割を果すことから、従来から燃焼させる廃棄物の発熱量を時間遅れのない連続する測定方法が検討されてきた。具体的には、
(i)廃棄物をサンプリングして分析する方法
(ii)ボイラ蒸発量等の燃焼状態の測定値から推算する方法
(iii)廃棄物の比重から推算する方法
(iv)廃棄物の色の濃淡情報から推算する方法
などの推定方法が挙げられる
Conventionally, combustible waste, such as municipal waste and sewage sludge, has been collected from business establishments and households, transported to waste treatment facilities and waste treatment facilities in each region, and burned And then disposed of as purified exhaust gas or incinerated ash. At this time, since the properties of waste such as oil and gas are known, it is possible to perform stable combustion control. In actual facilities, the amount of combustion air as fuel is preliminarily burned. This is achieved by adjusting to a value set according to the amount. On the other hand, the properties of various wastes are not uniform, and it is not easy to stably burn them. For this reason, waste combustion control is supported by measuring the exhaust gas temperature, gas composition in the exhaust gas, etc., and adjusting the amount of waste to be burned, the amount of combustion air, and the temperature of combustion air. Appropriate combustion control without delay was difficult. In particular, since the calorific value of waste plays an important role in combustion control, a method for continuously measuring the calorific value of waste to be combusted without time delay has been studied. In particular,
(I) Method of sampling and analyzing waste (ii) Method of estimating from the measured value of combustion state such as boiler evaporation (iii) Method of estimating from specific gravity of waste (iv) Color density information of waste Estimation methods such as the method of estimating from

例えば、図5に例示するような構成を有する火格子式焼却炉および燃焼制御装置が提案されている(例えば特許文献1参照)。具体的には、燃焼制御装置は、ウェット酸素濃度計116及びドライ酸素濃度計117と演算器118等を含む発熱量推定装置と、演算器118が制御する1次空気制御計109、2次空気制御計111、廃棄物投入装置のフィーダ105、火格子速度調節計120からなる。演算器118は、第1乃至第4演算器を含む。ここで、水蒸気を含んだ燃焼ガス中の酸素濃度と水蒸気を含まない燃焼ガス中の酸素濃度を検出し、廃棄物中の乾分組成を一定と仮定することにより、水蒸気を含んだ燃焼ガス中の酸素濃度と水蒸気を含まない燃焼ガス中の酸素濃度とから水分量を計算することによって廃棄物の含水率を求め、含水率を用いて乾分発熱量から水分の蒸発潜熱を差し引くことによって単位重量あたりの廃棄物発熱量を計算し、水蒸気を含まない燃焼ガス中の酸素濃度から単位時間当たりの廃棄物投入量を計算し、単位重量あたりの廃棄物発熱量と単位時間当たりの廃棄物投入量を用いて単位時間当たりの廃棄物発熱量が推定される。なお、図中、104はホッパ、107は焼却炉、110は2次燃焼室、113はボイラ、114は排ガス処理設備、115は煙突を示す。   For example, a grate-type incinerator and a combustion control device having a configuration illustrated in FIG. 5 have been proposed (see, for example, Patent Document 1). Specifically, the combustion control device includes a calorific value estimation device including a wet oxygen concentration meter 116, a dry oxygen concentration meter 117, a calculator 118, and the like, a primary air controller 109 controlled by the calculator 118, and secondary air. It consists of a control meter 111, a waste feeding device feeder 105, and a grate speed controller 120. The computing unit 118 includes first to fourth computing units. Here, the oxygen concentration in the combustion gas containing water vapor and the oxygen concentration in the combustion gas not containing water vapor are detected, and the dry matter composition in the waste is assumed to be constant. By calculating the moisture content from the oxygen concentration of the combustion gas and the oxygen concentration in the combustion gas not containing water vapor, the moisture content of the waste is calculated, and the moisture content is used to subtract the latent heat of vaporization from the dry heat value. Calculate the amount of waste heat per weight, calculate the amount of waste input per unit time from the oxygen concentration in the combustion gas not containing water vapor, and calculate the amount of waste heat generated per unit weight and waste input per unit time The amount of waste heat generated per unit time is estimated using the amount. In the figure, 104 is a hopper, 107 is an incinerator, 110 is a secondary combustion chamber, 113 is a boiler, 114 is an exhaust gas treatment facility, and 115 is a chimney.

特許4230925号公報Japanese Patent No. 4230925

しかしながら、従前のこうした燃焼ごみ発熱量推定方法では、いくつかの課題や要請があった。
(i)廃棄物をサンプリングして分析する方法について
サンプリングおよび分析に多くの時間を要するため、燃焼制御には適さない。例えば、サンプリングに数時間を要する場合があり、さらに分析には数日を要する場合があった。
(ii)ボイラ蒸発量等の燃焼状態の測定値から推算する方法について
焼却炉内の燃焼ガスを冷却するためのボイラ蒸発量や減温水量等の燃焼状態の測定値から廃棄物の発熱量を推測することができるが、廃棄物の種類や性状によって相関が変動し、推測された発熱量の誤差が大きいために、燃焼制御には適さない場合が多い。
(iii)廃棄物の比重から推算する方法について
廃棄物の発熱量は水分量と相関があり、廃棄物の比重を測定することで概ね発熱量を推測できるが、比重を測定している廃棄物は、その時に燃焼している廃棄物ではなく、また誤差が大きいために燃焼制御には適さない場合が多い。
(iv)廃棄物の色の濃淡情報から推算する方法について
廃棄物が白いと紙系のものが多く、黒いと剪定枝などが多いことから、廃棄物の発熱量を推測する方法として一般的であるが、定量性がなく燃焼制御には適さない場合が多い。
However, the conventional method for estimating the amount of heat generated from combustion waste has some problems and requirements.
(I) A method for sampling and analyzing wastes is not suitable for combustion control because sampling and analysis require a lot of time. For example, sampling may take several hours, and analysis may take several days.
(Ii) Method of estimating from the measured value of the combustion state such as the amount of boiler evaporation The calorific value of the waste is calculated from the measured value of the combustion state such as the amount of boiler evaporation and the amount of dewarmed water for cooling the combustion gas in the incinerator. Although it can be estimated, the correlation fluctuates depending on the type and properties of waste, and the error in the estimated calorific value is large, so it is often not suitable for combustion control.
(Iii) Method of estimating from the specific gravity of waste The amount of heat generated by waste has a correlation with the amount of water, and the amount of heat generated can be estimated by measuring the specific gravity of waste, but the waste whose specific gravity is being measured. In many cases, is not suitable for combustion control because it is not the waste that is burning at that time and the error is large.
(Iv) Methods for estimating waste color shade information Since white waste is mostly paper-based and black is often pruned, it is a general method for estimating the amount of heat generated by waste. However, it is often not suitable for combustion control due to lack of quantitativeness.

そこで、本発明は、上記状況に鑑みてなされたものであって、その目的は、こうした課題を解決し、処理される廃棄物に特別な処理を施すことなく、また特殊な装置を用いることなく、現在燃焼している廃棄物の発熱量を精度よく連続して測定する方法を提供することを目的とする。   Therefore, the present invention has been made in view of the above situation, and its purpose is to solve such problems, without subjecting the waste to be treated to a special treatment, and without using a special device. An object of the present invention is to provide a method for continuously and accurately measuring the calorific value of currently burning waste.

本発明に係る廃棄物の発熱量推算方法は、所定量の廃棄物を燃焼処理するプロセスにおいて、以下の手順に基づき、該廃棄物を燃焼させた推算発熱量Aを算出することを特徴とする。
(S1)排ガス中の酸素,二酸化炭素および水分の成分濃度を測定する。
(S2)測定された前記各成分濃度から、窒素成分濃度を算出する。
(S3)算出された窒素成分濃度を基に燃焼空気中の窒素成分濃度に対する換算係数を算出し、該換算係数を乗じた前記酸素,二酸化炭素および水分の換算成分濃度を算出する。
(S4)換算された前記酸素,二酸化炭素および水分の成分濃度から、燃焼処理に用いられた燃焼空気の単位供給量当りの酸素消費量を算出する。
(S5)算出された前記酸素消費量から、燃焼空気の単位供給量当りの、該燃焼処理において生成した二酸化炭素および水分に係る発熱量、該生成水分量と前記廃棄物中に含まれていた水分量の総量からの潜熱量を算出する。
(S6)燃焼処理された廃棄物の供給量から、燃焼空気の単位供給量当りの処理された廃棄物量を算出する。
(S7)算出された前記発熱量,前記潜熱量および廃棄物量から、処理された廃棄物量当りの推算発熱量Aを算出する。
The method for estimating the calorific value of waste according to the present invention is characterized in that, in a process of burning a predetermined amount of waste, an estimated calorific value A obtained by burning the waste is calculated based on the following procedure. .
(S1) The component concentrations of oxygen, carbon dioxide and moisture in the exhaust gas are measured.
(S2) A nitrogen component concentration is calculated from the measured component concentrations.
(S3) A conversion coefficient for the nitrogen component concentration in the combustion air is calculated based on the calculated nitrogen component concentration, and the converted component concentrations of the oxygen, carbon dioxide, and moisture are calculated by multiplying the conversion coefficient.
(S4) The oxygen consumption per unit supply amount of the combustion air used for the combustion process is calculated from the converted component concentrations of oxygen, carbon dioxide and moisture.
(S5) From the calculated oxygen consumption amount, the calorific value related to carbon dioxide and moisture generated in the combustion process per unit supply amount of combustion air, the generated moisture amount and the waste contained in the waste Calculate the amount of latent heat from the total amount of moisture.
(S6) The amount of waste treated per unit supply amount of combustion air is calculated from the amount of waste treated after combustion.
(S7) From the calculated calorific value, latent heat quantity and waste quantity, an estimated calorific value A per treated waste quantity is calculated.

上記構成によれば、燃焼直後の排ガス組成から、燃料となる廃棄物の発熱量に直接関与する廃棄物中の炭素,水素,酸素および水分を求め、これを基に、酸素消費量,潜熱量,廃棄物量(処理量)を算出することができる。本発明は、このときの算出基準として燃焼空気の単位供給量を用いることによって、当該燃焼空気の単位供給量当りの酸素消費量,潜熱量,廃棄物処理量を算出し、処理された廃棄物量当りの発熱量(推算発熱量A)を算出することを可能とした。性状等の変動要素の多い廃棄物であっても、当該燃焼空気の単位供給量当りの各算出値から算出されることによって、こうした変動要素が反映された発熱量を推定することができる。つまり、燃焼処理される廃棄物に特別な処理を施すことなく、また特殊な装置を用いることなく、現在燃焼している廃棄物の発熱量を、精度よく連続して測定することが可能となった。
According to the above configuration, the carbon, hydrogen, oxygen and moisture in the waste, which are directly related to the calorific value of the waste as fuel, are obtained from the exhaust gas composition immediately after combustion, and based on this, the oxygen consumption and latent heat are calculated. The amount of waste (processing amount) can be calculated. The present invention uses the unit supply amount of combustion air as a calculation reference at this time, thereby calculating the oxygen consumption amount, latent heat amount, waste treatment amount per unit supply amount of the combustion air, and the amount of waste processed. It was possible to calculate the calorific value ( estimated calorific value A) per hit. Even if the waste has many variable factors such as properties, the calorific value reflecting such variable factors can be estimated by calculating from the calculated values per unit supply amount of the combustion air. In other words, it is possible to measure the calorific value of the currently combusted waste accurately and continuously without performing any special treatment on the waste to be combusted and without using a special device. It was.

本発明は、上記廃棄物の発熱量推算方法であって、所定量の廃棄物を燃焼処理するプロセスにおいて、以下の手順に基づき、該廃棄物を燃焼させた推算発熱量Bを算出するとともに、前記推算発熱量Aと対比し、最適推算発熱量を設定することを特徴とする。
(T1)排ガス中の酸素および水分の成分濃度を測定する。
(T2)測定された前記酸素成分濃度から、実測空気過剰率を算出する。
(T3)予め設定された空気過剰率および燃焼ガス中の水分量を指標とする廃棄物の発熱量との相関に、実測された前記水分量および実測空気過剰率を適用し、推算発熱量Bを算出する。
上記のように、廃棄物の発熱量は、燃焼ガス中の水分量と相関を有する一方、燃焼空気の供給量つまり空気過剰率の影響を大きく受ける。本発明は、こうした廃棄物の発熱量推算の大きな変動要素である空気過剰率を、排ガス中の酸素成分濃度を測定して実測値として算出することによって、予め設定された空気過剰率を指標として、燃焼ガス中の水分量との相関から発熱量を推算することを可能とした(推算発熱量B)。ここでは、こうした推算発熱量Bを一次推算値として、さらに上記推算発熱量Aと対比し、最適推算発熱量を設定することによって、より精度の高い発熱量を推算することが可能となった。上記推算発熱量Aが、排ガス中の成分濃度等から遡り、燃料となる廃棄物の組成に基づき算出された上流側の情報からの推算値とすれば、推算発熱量Bは、燃焼後の排ガスに係る情報に基づき算出された下流側の情報からの推算値といえる。こうした異なる基点から算出された推算発熱量によって、より正確な発熱量を推算することができる。
The present invention is a method for estimating the heat generation amount of the waste, and in the process of burning a predetermined amount of waste, based on the following procedure, calculating the estimated heat generation amount B by burning the waste, In contrast to the estimated heat generation amount A, an optimal estimated heat generation amount is set.
(T1) The oxygen and moisture component concentrations in the exhaust gas are measured.
(T2) The actual excess air ratio is calculated from the measured oxygen component concentration.
(T3) By applying the actually measured moisture amount and the actually measured air excess rate to the correlation between the preset excess air rate and the calorific value of the waste using the moisture content in the combustion gas as an index, the estimated calorific value B Is calculated.
As described above, the amount of heat generated from waste has a correlation with the amount of moisture in the combustion gas, but is greatly affected by the supply amount of combustion air, that is, the excess air ratio. The present invention calculates the excess air ratio, which is a large variable factor in the estimation of the calorific value of such waste, by measuring the oxygen component concentration in the exhaust gas as an actual measurement value, and using a preset excess air ratio as an index. The calorific value can be estimated from the correlation with the moisture content in the combustion gas (estimated calorific value B). Here, it is possible to estimate the heat generation amount with higher accuracy by setting the optimum estimated heat generation amount by using the estimated heat generation amount B as a primary estimation value and further comparing with the estimated heat generation amount A. If the estimated calorific value A is an estimated value from upstream information calculated based on the composition of the waste that becomes the fuel, going back from the component concentration in the exhaust gas, the estimated calorific value B is the exhaust gas after combustion. It can be said that it is an estimated value from downstream information calculated based on information related to A more accurate calorific value can be estimated from the estimated calorific value calculated from these different base points.

本発明は、上記廃棄物の発熱量推算方法であって、投入された貯留ピットまたはホッパへの投入時または該貯留ピットまたはホッパ内での移送時に、燃焼処理される廃棄物の供給量を測定するとともに、該貯留ピットまたはホッパ内を画像モニタによって撮影し、画像情報から廃棄物の特性および嵩容積を推算し、燃焼処理された廃棄物の比重および特性から、該廃棄物の推算発熱量Cを算出し、前記推算発熱量Aまたは/および推算発熱量Bと対比し、最適推算発熱量を設定することを特徴とする。
上記のように、燃焼処理される廃棄物の比重のみ、あるいは廃棄物の色の濃淡情報のみでは精度の高い発熱量の推算は難しい一方、こうした測定値は、時々刻々変化する廃棄物の性状を得ることができる重要な指標である。また、発熱量推算の大きな要素である廃棄物の比重は、刻々変化する状態での正確な測定は困難であった。本発明は、こうした廃棄物の発熱量推算の大きな変動要素を、精度良く測定することができる廃棄物の供給量および画像情報から得られる精度の高い嵩容積から比重を推算するとともに、画像情報から得られた廃棄物の質(ごみ質)を推算し、これらを予め設定された指標を基に推算することによって、燃焼炉に供給される廃棄物の発熱量を推算することを可能とした(推算発熱量C)。ここでは、こうした推算発熱量Cを一次推算値として、さらに上記推算発熱量Aまたは/および推算発熱量Bと対比し、最適推算発熱量を設定することによって、より精度の高い発熱量を推算することが可能となった。上記推算発熱量Aとともに、上流側の情報からの推算値といえる。こうした異なる基点から算出された推算発熱量によって、より正確な発熱量を推算することができる。
The present invention is a method for estimating the amount of heat generated by the waste, and measures the supply amount of the waste to be burned when the storage pit or hopper is thrown in or when it is transferred into the storage pit or hopper. In addition, the inside of the storage pit or hopper is photographed by an image monitor, the characteristics and bulk volume of the waste are estimated from the image information, and the estimated calorific value C of the waste is calculated from the specific gravity and characteristics of the burned waste. Is calculated and compared with the estimated calorific value A and / or the estimated calorific value B, and the optimum estimated calorific value is set.
As described above, it is difficult to estimate the calorific value with high accuracy only by the specific gravity of the waste to be burned or only by the color density information of the waste, but these measured values show the property of the waste changing from time to time. It is an important indicator that can be obtained. In addition, it has been difficult to accurately measure the specific gravity of waste, which is a major factor in the estimation of the calorific value, in a state where it changes every moment. The present invention estimates the specific gravity from the amount of waste that can be measured with high accuracy and the high-accuracy bulk volume obtained from the image information, as well as from the image information. By estimating the quality of the obtained waste (waste quality) and estimating these based on a preset index, it was possible to estimate the calorific value of the waste supplied to the combustion furnace ( Estimated calorific value C). Here, the estimated calorific value C is used as a primary estimation value, and further compared with the estimated calorific value A and / or the estimated calorific value B, and an optimal estimated calorific value is set to estimate a more accurate calorific value. It became possible. Together with the estimated calorific value A, it can be said to be an estimated value from upstream information. A more accurate calorific value can be estimated from the estimated calorific value calculated from these different base points.

本発明は、上記廃棄物の発熱量推算方法を用いた廃棄物処理装置であって、少なくとも、廃棄物の供給量測定部,燃焼空気の供給量測定部および排ガス中の酸素,二酸化炭素および水分の成分濃度測定部を有し、前記いずれかの発熱量推算方法によって設定された最適推算発熱量を用いて、焼却炉に投入される廃棄物,燃焼空気および助燃材の供給量を制御することを特徴とする。
こうした構成によって、燃焼処理される廃棄物に特別な処理を施すことなく、また特殊な装置を用いることなく、現在燃焼している廃棄物の発熱量を、精度よく連続して測定することが可能となった。
The present invention is a waste treatment apparatus using the waste heat generation amount estimation method described above, and includes at least a waste supply amount measurement unit, a combustion air supply amount measurement unit, and oxygen, carbon dioxide, and moisture in exhaust gas. And controlling the supply amount of waste, combustion air, and auxiliary combustion material to be put into the incinerator using the optimum estimated calorific value set by any one of the calorific value estimation methods. It is characterized by.
With this configuration, it is possible to measure the calorific value of currently combusted waste accurately and continuously without any special treatment or special equipment. It became.

本発明に係る廃棄物処理装置の基本構成例を示す概略図Schematic showing a basic configuration example of a waste treatment apparatus according to the present invention 本発明に係る発熱量推算方法の基本的な実施手順を例示する概略図Schematic illustrating the basic implementation procedure of the calorific value estimation method according to the present invention 水分濃度−推算発熱量Bとの相関図を例示する概略図Schematic illustrating a correlation diagram between moisture concentration and estimated calorific value B 廃棄物の画像情報を例示する概略図Schematic illustrating waste image information 従前の火格子式焼却炉および燃焼制御装置を例示する概略図Schematic illustrating a conventional grate-type incinerator and combustion control device

本発明に係る廃棄物処理装置(以下「本処理装置」という)は、少なくとも、廃棄物の供給量測定部,燃焼空気の供給量測定部および排ガス中の酸素,二酸化炭素および水分の成分濃度測定部を有し、前記いずれかの推算方法によって設定された最適推算発熱量を用いて、焼却炉に投入される廃棄物,燃焼空気および助燃材の供給量を制御することを特徴とする。このとき、本処理装置に適用される本発明の廃棄物の発熱量推算方法(以下「本推算方法」という)は、所定量の廃棄物を燃焼処理するプロセスにおいて、以下の手順に基づき、該廃棄物を燃焼させた推算発熱量Aを算出することを特徴とする。
(S1)排ガス中の酸素,二酸化炭素および水分の成分濃度を測定する。
(S2)測定された前記各成分濃度から、窒素成分濃度を算出する。
(S3)算出された窒素成分濃度を基に燃焼空気中の窒素成分濃度に対する換算係数を算出し、該換算係数を乗じた前記酸素,二酸化炭素および水分の換算成分濃度を算出する。
(S4)換算された前記酸素,二酸化炭素および水分の成分濃度から、燃焼処理に用いられた燃焼空気の単位供給量当りの酸素消費量を算出する。
(S5)算出された前記酸素消費量から、燃焼空気の単位供給量当りの、該燃焼処理において生成した二酸化炭素および水分に係る発熱量、該生成水分量と前記廃棄物中に含まれていた水分量の総量からの潜熱量を算出する。
(S6)燃焼処理された廃棄物の供給量から、燃焼空気の単位供給量当りの処理された廃棄物量を算出する。
(S7)算出された前記発熱量,前記潜熱量および廃棄物量から、処理された廃棄物量当りの推算発熱量Aを算出する。
以下、本発明に係る廃棄物の発熱量推算方法および廃棄物処理装置の実施形態を、図面を参照して詳細に説明する。
A waste treatment apparatus according to the present invention (hereinafter referred to as “the present treatment apparatus”) includes at least a waste supply amount measurement unit, a combustion air supply amount measurement unit, and oxygen, carbon dioxide and moisture component concentration measurement in exhaust gas. And a supply amount of waste, combustion air, and auxiliary combustion material to be supplied to the incinerator is controlled by using the optimum estimated calorific value set by any one of the estimation methods. At this time, the waste heat generation amount estimation method of the present invention (hereinafter referred to as “the present estimation method”) applied to the present processing apparatus is based on the following procedure in the process of burning a predetermined amount of waste. An estimated calorific value A obtained by burning the waste is calculated.
(S1) The component concentrations of oxygen, carbon dioxide and moisture in the exhaust gas are measured.
(S2) A nitrogen component concentration is calculated from the measured component concentrations.
(S3) A conversion coefficient for the nitrogen component concentration in the combustion air is calculated based on the calculated nitrogen component concentration, and the converted component concentrations of the oxygen, carbon dioxide, and moisture are calculated by multiplying the conversion coefficient.
(S4) The oxygen consumption per unit supply amount of the combustion air used for the combustion process is calculated from the converted component concentrations of oxygen, carbon dioxide and moisture.
(S5) From the calculated oxygen consumption amount, the calorific value related to carbon dioxide and moisture generated in the combustion process per unit supply amount of combustion air, the generated moisture amount and the waste contained in the waste Calculate the amount of latent heat from the total amount of moisture.
(S6) The amount of waste treated per unit supply amount of combustion air is calculated from the amount of waste treated after combustion.
(S7) From the calculated calorific value, latent heat quantity and waste quantity, an estimated calorific value A per treated waste quantity is calculated.
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a waste heat generation amount estimation method and a waste treatment apparatus according to the present invention will be described in detail with reference to the drawings.

<本発明に係る廃棄物処理装置の基本構成例>
図1は、本処理装置の構成例を示す。本処理装置には、廃棄物Wが貯留される貯留ピット1,貯留ピット1内の廃棄物Wが移送手段1a(例えばクレーン等)によって投入されるホッパ2,およびホッパ2に投入された廃棄物Wが廃棄物供給装置4によって給送されるストーカ3が設けられる。ストーカ3は、往復移動駆動されて廃棄物Wを炉本体10に送給する。炉本体10には、ストーカ3の上部に設けられた一次燃焼ゾーン10A,さらにその上部の二次燃焼ゾーン10B,ストーカ3および一次燃焼ゾーン10Aに一次燃焼空気を供給する一次燃焼空気供給装置5,二次燃焼ゾーン10Bに二次燃焼空気を供給する二次燃焼空気供給装置6,塵灰Dを排出する灰排出部7,および炉内の排ガスEを排出する排ガス排出部8が設けられる。
<Example of basic configuration of waste treatment apparatus according to the present invention>
FIG. 1 shows a configuration example of the processing apparatus. In this processing apparatus, the storage pit 1 in which the waste W is stored, the hopper 2 in which the waste W in the storage pit 1 is input by the transfer means 1a (for example, a crane), and the waste input in the hopper 2 A stalker 3 to which W is fed by the waste supply device 4 is provided. The stalker 3 is driven to reciprocate to feed the waste W to the furnace body 10. The furnace body 10 includes a primary combustion zone 10A provided at the top of the stoker 3, and a primary combustion air supply device 5 for supplying primary combustion air to the secondary combustion zone 10B, the stoker 3 and the primary combustion zone 10A. A secondary combustion air supply device 6 for supplying secondary combustion air to the secondary combustion zone 10B, an ash discharge part 7 for discharging dust ash D, and an exhaust gas discharge part 8 for discharging exhaust gas E in the furnace are provided.

ストーカ3に送られた廃棄物Wは、一次燃焼ゾーン10Aにおいて、燃焼により生じる高温燃焼ガスによって乾燥され、一次燃焼空気によって、部分燃焼され、さらに完全燃焼される。燃焼によって発生するガスは、水分(HO,廃棄物W中に含まれていた水分の蒸発による水蒸気を含む)、乾留によって生じる炭化水素ガス(HC)、不完全燃焼によって生じる一酸化炭素(CO)や完全燃焼による二酸化炭素(CO)等である。一次燃焼ゾーン10Aでの未燃物または不完全燃焼物は、二次燃焼ゾーン10Bにおいて、その下部,中部,上部に供給される二次燃焼空気によって、完全燃焼される。燃焼によって発生した塵灰Dは、灰排出部7から排出され、炉内の排ガスEは、排ガス排出部8から排出される。なお、高温条件での燃焼において発生する窒素酸化物(NOx)や廃棄物W中に含まれる塩素や硫黄等を起源とする塩素化合物や硫黄酸化物(SOx)等は微量であり、発熱量に与える影響が少ないことから、ここでは直接的には触れない。 The waste W sent to the stalker 3 is dried by the high-temperature combustion gas generated by the combustion in the primary combustion zone 10A, partially combusted by the primary combustion air, and further completely combusted. The gas generated by the combustion includes water (H 2 O, including water vapor generated by evaporation of water contained in the waste W), hydrocarbon gas (HC) generated by dry distillation, carbon monoxide generated by incomplete combustion ( CO) and carbon dioxide (CO 2 ) by complete combustion. In the secondary combustion zone 10B, the unburned material or incomplete combustion product in the primary combustion zone 10A is completely burned by the secondary combustion air supplied to the lower, middle and upper parts thereof. The dust ash D generated by the combustion is discharged from the ash discharge unit 7, and the exhaust gas E in the furnace is discharged from the exhaust gas discharge unit 8. In addition, nitrogen oxides (NOx) generated in combustion under high temperature conditions, chlorine compounds and sulfur oxides (SOx) originating from chlorine, sulfur, etc. contained in the waste W are in trace amounts, and the calorific value I will not touch here directly because it has little impact.

本処理装置には、少なくとも、(a)廃棄物の供給量測定部,(b)燃焼空気の供給量測定部および(c)排ガス中のO,COおよびHOの成分濃度測定部が設けられる。以下、各測定部の本処理装置における意義を説明する。 This processing apparatus includes at least (a) a waste supply amount measurement unit, (b) a combustion air supply amount measurement unit, and (c) a component concentration measurement unit of O 2 , CO 2, and H 2 O in exhaust gas. Is provided. Hereinafter, the significance of each measuring unit in the processing apparatus will be described.

(a)廃棄物の供給量測定部
ホッパ2に投入される廃棄物Wの量と質を測定するセンサ部として、廃棄物投入重量検出センサ12とレーザ距離計13とが設けられている。レーザ距離計13により、廃棄物Wの表面までの距離を測定して、投入される廃棄物Wの体積を測定する。廃棄物投入重量検出センサ12は、廃棄物Wの重量を測定する。廃棄物Wの体積と重量を検出することによって、廃棄物Wの比重の変化を所定時間間隔で検出することができる。既述のように、廃棄物Wの比重が分かれば、廃棄物Wの質(水分量等)を予測することができる。
(A) Waste Supply Amount Measurement Unit A waste input weight detection sensor 12 and a laser distance meter 13 are provided as sensor units for measuring the amount and quality of the waste W input into the hopper 2. The distance to the surface of the waste W is measured by the laser distance meter 13, and the volume of the waste W to be input is measured. The waste input weight detection sensor 12 measures the weight of the waste W. By detecting the volume and weight of the waste W, a change in the specific gravity of the waste W can be detected at predetermined time intervals. As described above, if the specific gravity of the waste W is known, the quality (water content, etc.) of the waste W can be predicted.

(b)燃焼空気の供給量測定部
燃焼空気は、一次燃焼ゾーン10Aにおいては、ストーカ3に載置され移送される廃棄物Wの最適な燃焼状態を形成されるように、一次燃焼空気供給装置5から複数段に分けて供給される。例えば、乾燥ステップ,燃焼ステップおよび後燃焼ステップの順に、各ステップにおける廃棄物Wの量(容積)や表面温度および燃焼ガスの流量等をモニタしながら、それぞれの燃焼空気の供給量が制御される。さらに、二次燃焼ゾーン10Bにおいては、一次燃焼ゾーン10Aにおいて未燃または不完全燃焼した成分の完全燃焼とともに、排ガスEの冷却処理あるいは希釈処理を行うために、二次燃焼空気供給装置6から複数段に分けて供給される。例えば、二次燃焼ゾーン10Bの上部および下部(さらに中部)から、排ガス中の成分濃度(詳細は後述)や温度および排ガスEの流量等をモニタしながら、それぞれの燃焼空気の供給量が制御される。ここで、燃焼空気の供給量とは、一次燃焼空気供給装置5および二次燃焼空気供給装置6の各段に設けられた流量計(図示せず)によって測定された、これらの総流量をいう。該流量計として、例えば流量制御機能付流量計を用いることができる。また、本処理装置の構成例においては、一次燃焼ゾーン10Aに、ガス流れ方向に関するセンサ部として、ガス流速計17が設けられ、温度分布に関するプロセスデータを検出するセンサ部として、赤外線放射温度計18が設けられ、炉本体10の終端には、燃焼に伴うエネルギーに相当する蒸発量を測定するセンサとして、蒸気流量を測定する蒸気流量計19が設けられる。
(B) Combustion air supply amount measuring unit Primary combustion air supply device for combusting air is formed in the primary combustion zone 10A so as to form an optimal combustion state of the waste W placed and transferred on the stalker 3 5 to be supplied in multiple stages. For example, the supply amount of each combustion air is controlled while monitoring the amount (volume) of the waste W, the surface temperature, the flow rate of the combustion gas, and the like in the order of the drying step, the combustion step, and the post-combustion step. . Further, in the secondary combustion zone 10B, a plurality of secondary combustion air supply devices 6 are used to cool or dilute the exhaust gas E together with complete combustion of the unburned or incompletely burned components in the primary combustion zone 10A. It is supplied in stages. For example, the supply amount of each combustion air is controlled from the upper part and lower part (further the middle part) of the secondary combustion zone 10B while monitoring the component concentration (details will be described later), the temperature, the flow rate of the exhaust gas E, etc. The Here, the supply amount of combustion air means the total flow rate measured by a flow meter (not shown) provided in each stage of the primary combustion air supply device 5 and the secondary combustion air supply device 6. . For example, a flow meter with a flow control function can be used as the flow meter. Further, in the configuration example of the present processing apparatus, the gas flow velocity meter 17 is provided as a sensor unit related to the gas flow direction in the primary combustion zone 10A, and the infrared radiation thermometer 18 is used as a sensor unit that detects process data related to the temperature distribution. And a steam flow meter 19 for measuring the steam flow rate is provided at the end of the furnace body 10 as a sensor for measuring the amount of evaporation corresponding to the energy accompanying combustion.

(c)排ガス中の成分濃度測定部
炉本体10内には、廃棄物Wの燃焼状態および燃焼結果を検出するセンサ部が設けられている。具体的には、O濃度計14、CO濃度計15、HO濃度計16が二次燃焼ゾーン10B、一次燃焼ゾーン10Aの少なくとも一方に設けられている(図1では二次燃焼ゾーン10Bのみに設けた例を示す)。ここで、O濃度計14、CO濃度計15、HO濃度計16としては、レーザ発信器(図示せず)が波長をスキャンしながら強さ一定のレーザ光を炉本体10内のガスに照射し、レーザ受信器によって残存のレーザ光を測定することにより、当該ガスの成分濃度や温度を検出する方式を採用することが好ましい。測定対象となる排ガスを、非接触で検出できるとともに同一部位における検出情報を同時に得ることができる点において好適である。また、各ガスの成分濃度を検出する公知のセンサを使用しても良い。排ガス中の各成分濃度から、燃焼された廃棄物Wの組成を推算することができるとともに、燃焼空気の供給量との関係から廃棄物Wの発熱量を推算することができる。なお、以下各成分濃度について、個別には酸素成分濃度を酸素濃度、窒素成分濃度を窒素濃度、等ということがある。
(C) Component concentration measuring unit in exhaust gas In the furnace body 10, a sensor unit for detecting the combustion state of the waste W and the combustion result is provided. Specifically, an O 2 concentration meter 14, a CO 2 concentration meter 15, and an H 2 O concentration meter 16 are provided in at least one of the secondary combustion zone 10B and the primary combustion zone 10A (in FIG. 1, the secondary combustion zone). The example provided only in 10B is shown). Here, as the O 2 concentration meter 14, the CO 2 concentration meter 15, and the H 2 O concentration meter 16, a laser transmitter (not shown) scans the wavelength and emits laser light having a constant intensity in the furnace body 10. It is preferable to employ a method of detecting the component concentration and temperature of the gas by irradiating the gas and measuring the remaining laser light with a laser receiver. This is preferable in that exhaust gas to be measured can be detected in a non-contact manner and detection information at the same site can be obtained at the same time. Moreover, you may use the well-known sensor which detects the component density | concentration of each gas. The composition of the burned waste W can be estimated from the concentration of each component in the exhaust gas, and the calorific value of the waste W can be estimated from the relationship with the supply amount of combustion air. Hereinafter, for each component concentration, the oxygen component concentration may be referred to as oxygen concentration, the nitrogen component concentration may be referred to as nitrogen concentration, and the like.

<本発明に係る発熱量推算方法>
推算方法は、上記本処理装置に適用され、以下の手順(S1)〜(S7)に基づき算出される推算発熱量Aを基本とする。また、推算発熱量Aを、後述する手順(T1)〜(T3)に基づき算出される推算発熱量Bおよび/または後述する手順(U1)〜(U3)に基づき算出される推算発熱量Cとの対比により、最適推算発熱量を設定することを特徴とする。異なる基点から算出された推算発熱量を対比することによって、より正確な発熱量を推算することができる。
<The calorific value estimation method according to the present invention>
The present estimation method is applied to the present processing apparatus, and is based on the estimated calorific value A calculated based on the following procedures (S1) to (S7). Further, the estimated calorific value A is calculated based on the estimated calorific value B calculated based on procedures (T1) to (T3) described later and / or the estimated calorific value C calculated based on procedures (U1) to (U3) described later. The optimum heat generation amount is set by comparing the above. By comparing estimated calorific values calculated from different base points, a more accurate calorific value can be estimated.

〔推算発熱量Aの算出〕
廃棄物Wの推算発熱量Aは、具体的には、図2に例示するように、以下の手順(S1)〜(S7)に基づき算出される。燃焼直後の排ガス組成から、燃料となる廃棄物Wの発熱量に直接関与する廃棄物中の炭素,水素,酸素および水分を求め、これを基に、酸素消費量,潜熱量,廃棄物量(処理量)を算出する。このときの算出基準として燃焼空気の単位供給量を用い、当該燃焼空気の単位供給量当りの酸素消費量,潜熱量,廃棄物処理量を算出することによって、性状等の変動要素の多い廃棄物Wであっても、こうした変動要素が反映された推算発熱量Aを精度良く推定することができる。
[Calculation of estimated calorific value A]
The estimated calorific value A of the waste W is specifically calculated based on the following procedures (S1) to (S7) as illustrated in FIG. From the exhaust gas composition immediately after combustion, the carbon, hydrogen, oxygen and moisture in the waste that are directly related to the calorific value of the waste W used as fuel are obtained, and based on this, the oxygen consumption, latent heat, waste amount (treatment) Amount). By using the unit supply amount of combustion air as the calculation standard at this time, and calculating the oxygen consumption, latent heat amount, and waste treatment amount per unit supply amount of the combustion air, waste with many variables such as properties Even in the case of W, it is possible to accurately estimate the estimated heat generation amount A reflecting such a variation factor.

(S1)排ガス中の酸素,二酸化炭素,水分の成分濃度の測定
本処理装置における上記O濃度計14、CO濃度計15、HO濃度計16の検出情報から、排ガス中の酸素濃度Co,二酸化炭素濃度Cd,水分濃度Cwが測定される。各測定値は、レーザ式検出法のように連続値として得られることが好ましい。
(S1) Measurement of component concentrations of oxygen, carbon dioxide, and moisture in exhaust gas From the detection information of the O 2 concentration meter 14, CO 2 concentration meter 15, and H 2 O concentration meter 16 in the present processing apparatus, the oxygen concentration in the exhaust gas. Co, carbon dioxide concentration Cd, and water concentration Cw are measured. Each measured value is preferably obtained as a continuous value as in the laser detection method.

(S2)測定された各成分濃度からの窒素濃度の算出
下式1に基づき、上記酸素濃度Co,二酸化炭素濃度Cd,水分濃度Cwから、排ガス中の窒素(N)濃度Cnを算出する。
Cn=100−(Co+Cd+Cw)[%] …式1
このとき、廃棄物W中に炭素や水素以外の成分で、燃焼によって排ガス中の成分ガスの一部として存在する成分(例えば窒素や塩素等)があり、無視できないレベルの場合(例えば気化等によって排ガス中に約1%以上となる場合)には、その成分濃度を予め概算し(例えばCxとし)、Cnから減じることが好ましい(Cn’=Cn−Cx)。
(S2) Calculation of Nitrogen Concentration from Measured Component Concentration Based on the following equation 1, the nitrogen (N 2 ) concentration Cn in exhaust gas is calculated from the oxygen concentration Co, carbon dioxide concentration Cd, and water concentration Cw.
Cn = 100− (Co + Cd + Cw) [%] Formula 1
At this time, there is a component other than carbon or hydrogen in the waste W and a component (for example, nitrogen or chlorine) that exists as a part of the component gas in the exhaust gas by combustion, and the level is not negligible (for example, by vaporization or the like) When it is about 1% or more in the exhaust gas), it is preferable to estimate the component concentration in advance (for example, Cx) and subtract from Cn (Cn ′ = Cn−Cx).

(S3)算出された窒素濃度を基に燃焼空気中の窒素濃度に対する換算係数を算出し、該換算係数を乗じた酸素,二酸化炭素および水分の換算成分濃度を算出する。
(S3-1)燃焼空気中の窒素濃度に対する換算係数の算出
燃焼反応前後において不変の要素である窒素を基準に、これを燃焼空気供給時の分圧(基準窒素濃度Tn:燃焼空気を100としたとき79)に換算する係数(換算係数)tを、下式2に基づき算出する。
t=Tn(=79)/Cn …式2
ただし、上記同様、廃棄物W中の窒素成分が無視できないレベルの場合には、Cn’基準として(Tn=79/Cn’)によって換算値を求める。
(S3-2)酸素,二酸化炭素,水分の換算成分濃度の算出
酸素,二酸化炭素,水分の各成分濃度に換算係数tを乗じた酸素,二酸化炭素および水分の換算成分濃度を算出する。下式3に基づき、それぞれ、換算酸素濃度Tx,換算二酸化炭素濃度Td,換算水分濃度Twを算出する。このとき、各数値は、燃焼空気の単位供給量当りの酸素量,二酸化炭素量および水分量となる。
Tx=Co×t,Td=Cd×t,Tw=Cw×t …式3
(S3) A conversion coefficient for the nitrogen concentration in the combustion air is calculated based on the calculated nitrogen concentration, and converted component concentrations of oxygen, carbon dioxide, and moisture are calculated by multiplying the conversion coefficient.
(S3-1) Calculation of Conversion Factor for Nitrogen Concentration in Combustion Air Based on nitrogen, which is an invariable element before and after the combustion reaction, this is divided into partial pressures when supplying combustion air (reference nitrogen concentration Tn: combustion air as 100 Then, a coefficient (conversion coefficient) t to be converted into 79) is calculated based on the following equation 2.
t = Tn (= 79) / Cn Equation 2
However, as described above, when the nitrogen component in the waste W is at a level that cannot be ignored, the converted value is obtained by (Tn = 79 / Cn ′) as the Cn ′ standard.
(S3-2) Calculation of converted component concentrations of oxygen, carbon dioxide, and moisture Calculate converted component concentrations of oxygen, carbon dioxide, and moisture by multiplying each component concentration of oxygen, carbon dioxide, and moisture by a conversion factor t. Based on the following formula 3, a converted oxygen concentration Tx, a converted carbon dioxide concentration Td, and a converted water concentration Tw are calculated. At this time, each numerical value is the amount of oxygen, the amount of carbon dioxide and the amount of water per unit supply amount of combustion air.
Tx = Co × t, Td = Cd × t, Tw = Cw × t Equation 3

(S4)燃焼空気の単位供給量当りの酸素消費量の算出
燃焼空気中の酸素濃度(基準酸素濃度)Toを基に、下式4に基づき、換算された換算酸素濃度Txから、燃焼処理に用いられた燃焼空気の単位供給量当りの酸素消費量Doを算出する。
Do=To−Tx …式4
ここで、To=(100−Tn)であり、21[%]に置き換えることができる。
(S4) Calculation of oxygen consumption per unit supply amount of combustion air Based on the oxygen concentration (reference oxygen concentration) To in the combustion air, the converted oxygen concentration Tx converted based on the following formula 4 is used for combustion processing. An oxygen consumption amount Do per unit supply amount of the used combustion air is calculated.
Do = To−Tx Equation 4
Here, To = (100−Tn), and can be replaced with 21 [%].

(S5)算出された酸素消費量から、燃焼空気の単位供給量当りの、燃焼処理において生成した二酸化炭素および水分に係る発熱量、生成水分量と廃棄物中に含まれていた水分量の総量からの潜熱量を算出する。
(S5−1)燃焼空気の単位供給量当りの二酸化炭素および水分に係る発熱量の算出
算出された酸素消費量Doから、燃焼空気の単位供給量当りの、該燃焼処理において生成した二酸化炭素に係る発熱量Hdおよび水分に係る発熱量Hwを算出する。つまり、廃棄物W中の炭素成分および水素成分の完全燃焼に要する酸素総量が酸素消費量Doとなり、そのうち炭素成分によって消費される酸素量は、下反応式1から換算二酸化炭素濃度Tdと同量であり、残量が水素成分によって消費される酸素量となる(下反応式2)。つまり
また、反応式1および2におけるHcおよびHhは、各反応による反応熱(発熱量)を示す。
C+O → CO +Hc …反応式1
4H+O → 2HO+Hh …反応式2
従って、発熱量HdおよびHwは、発熱量HcおよびHhを基に、下式5,6により算出することができる。
Hd=Hc×Td …式5
Hw=Hh×(Do−Td) …式6
(S5−2)水分量の総量からの潜熱量の算出
水の潜熱Loを基に、下式7に基づき、燃焼生成水分量と廃棄物中に含まれていた水分量の総量Twの潜熱量Lwを算出する。
Lw=Lo×Tw …式7
(S5) From the calculated oxygen consumption, the calorific value related to the carbon dioxide and moisture generated in the combustion process per unit supply amount of combustion air, the total amount of moisture generated and the amount of moisture contained in the waste The amount of latent heat from is calculated.
(S5-1) Carbon dioxide per unit supply amount of combustion air and calorific value related to moisture calculated from the calculated oxygen consumption amount Do to carbon dioxide generated in the combustion process per unit supply amount of combustion air The calorific value Hd and the calorific value Hw related to moisture are calculated. That is, the total amount of oxygen required for complete combustion of the carbon component and hydrogen component in the waste W becomes the oxygen consumption amount Do, and the amount of oxygen consumed by the carbon component is the same as the converted carbon dioxide concentration Td from the following reaction formula 1. And the remaining amount is the amount of oxygen consumed by the hydrogen component (lower reaction formula 2). That is, Hc and Hh in the reaction formulas 1 and 2 indicate reaction heat (calorific value) by each reaction.
C + O 2 → CO 2 + Hc: Reaction formula 1
4H + O 2 → 2H 2 O + Hh (Scheme 2)
Therefore, the calorific values Hd and Hw can be calculated by the following equations 5 and 6 based on the calorific values Hc and Hh.
Hd = Hc × Td Equation 5
Hw = Hh × (Do−Td) Equation 6
(S5-2) Calculation of the latent heat amount from the total amount of moisture Based on the latent heat Lo of the water, the latent heat amount of the total amount Tw of the combustion generated moisture amount and the moisture amount contained in the waste based on the following equation 7 Lw is calculated.
Lw = Lo × Tw Equation 7

(S6)燃焼空気の単位供給量当りの廃棄物量の算出
燃焼処理された廃棄物Wの供給量Wiおよびそのときの燃焼空気の供給量Aiから、下式8に基づき、燃焼空気の単位供給量当りの処理された廃棄物量(換算廃棄物量)Woを算出する。
Wo=Wi/Ai …式8
(S6) Calculation of Waste Amount per Unit Supply of Combustion Air Unit Supply Amount of Combustion Air Based on Equation 8 below from the supply amount Wi of the burned waste W and the supply amount Ai of the combustion air at that time The amount of waste processed per unit (equivalent waste amount) Wo is calculated.
Wo = Wi / Ai Equation 8

(S7)推算発熱量Aの算出
算出された発熱量(Hd+Hw),潜熱量Lwおよび廃棄物量Woから、下式9に基づき、処理された廃棄物量当りの推算発熱量Aを算出する。
A=(Hd+Hw−Lw)/Wo …式9
このとき、算出された推算発熱量Aは、燃焼空気の単位供給量当りの数値であり、実測の燃焼空気の供給量を用いることによって、廃棄物Wの単位供給量当りの単位時間の推算発熱量Aに変換することができる。廃棄物Wの質(特性)に対する客観性の高い評価値とすることができる。
(S7) heating amount calculated calculation of estimated calorific value A (Hd + Hw), the quantity of latent heat Lw and waste Wo, based on the following equation 9, calculates the estimated calorific value A per treated waste.
A = (Hd + Hw−Lw) / Wo Equation 9
At this time, the calculated estimated calorific value A is a numerical value per unit supply amount of the combustion air, and by using the measured supply amount of combustion air, the estimated heat generation per unit time per unit supply amount of the waste W is calculated. It can be converted to quantity A. It can be set as a highly objective evaluation value for the quality (characteristics) of the waste W.

以上の手順を、具体的に以下のような条件を設定した場合について追跡した例を、下表1に示す。ここでは、炭素成分の発熱量=393.5kJ/mol,水素成分の発熱量=571.7kJ/mol,燃焼空気の組成として窒素濃度Tn=79,酸素濃度To=21を前提とし、廃棄物Wの供給量Wi=6,000kg/h,燃焼空気の供給量Ai=25,000Nm/h,排ガス中の酸素濃度Co=6.0%,二酸化炭素濃度Cd=10.0%,水分濃度Cw=20.0%と仮定した。推算発熱量Aとして、約8,300kJ/kgの算出結果を得た。 Table 1 below shows an example in which the above procedure is specifically tracked when the following conditions are set. Here, assuming that the calorific value of the carbon component = 393.5 kJ / mol, the calorific value of the hydrogen component = 571.7 kJ / mol, the nitrogen concentration Tn = 79 and the oxygen concentration To = 21 as the composition of the combustion air, the waste W Supply amount Wi = 6,000 kg / h, combustion air supply amount Ai = 25,000 Nm 3 / h, oxygen concentration in exhaust gas Co = 6.0%, carbon dioxide concentration Cd = 10.0%, moisture concentration Cw = 20.0%. As the estimated calorific value A, a calculation result of about 8,300 kJ / kg was obtained.

Figure 0006342367
Figure 0006342367

〔推算発熱量Bの算出〕
廃棄物Wの推算発熱量Bは、具体的には、以下の手順(T1)〜(T3)に基づき算出される。排ガス中の酸素成分濃度から廃棄物Wの発熱量推算において大きな変動要素である空気過剰率を実測値として算出し、予め設定された空気過剰率を指標とすることによって、燃焼ガス中の水分量との相関から推算発熱量Bを算出する。推算発熱量Aが、排ガス中の成分濃度等から遡り、燃料となる廃棄物の組成に基づき算出された上流側の情報からの推算値とすれば、推算発熱量Bは、燃焼後の排ガスに係る情報に基づき算出された下流側の情報からの推算値といえる。
[Calculation of estimated calorific value B]
The estimated calorific value B of the waste W is specifically calculated based on the following procedures (T1) to (T3). The amount of moisture in the combustion gas is calculated by calculating the excess air ratio, which is a large variable in the estimation of the calorific value of the waste W, from the oxygen component concentration in the exhaust gas as an actual measured value and using the preset excess air ratio as an index. The estimated calorific value B is calculated from the correlation. Assuming that the estimated calorific value A is an estimated value from upstream information calculated based on the composition of the waste as fuel, going back from the component concentration in the exhaust gas, etc., the estimated calorific value B is the exhaust gas after combustion. It can be said that it is an estimated value from downstream information calculated based on such information.

(T1)排ガス中の酸素および水分の成分濃度の測定
本処理装置における上記O濃度計14およびHO濃度計16の検出情報から、排ガス中の酸素濃度Coおよび水分濃度Cwが測定される。各測定値は、レーザ式検出法のように連続値として得られることが好ましい。
(T1) Measurement of component concentrations of oxygen and moisture in the exhaust gas From the detection information of the O 2 concentration meter 14 and the H 2 O concentration meter 16 in the present processing apparatus, the oxygen concentration Co and the moisture concentration Cw in the exhaust gas are measured. . Each measured value is preferably obtained as a continuous value as in the laser detection method.

(T2)実測空気過剰率の算出
測定された酸素濃度Coから、上記下式10に基づき、実測空気過剰率λoを算出する。
λo=To(=21)/(To−Co) …式10
(T2) Calculation of Actual Air Excess Ratio The actual air excess ratio λo is calculated from the measured oxygen concentration Co on the basis of the above equation 10.
λo = To (= 21) / (To-Co) Equation 10

(T3)推算発熱量Bの算出
予め設定された空気過剰率λと燃焼ガス(排ガス)中の水分量(濃度)を指標とする廃棄物の発熱量との相関に、実測された水分濃度Cwおよび実測空気過剰率λoを適用し、推算発熱量Bを算出する。具体的には、予め基準となる廃棄物Wを設定し、例えば図3に例示するような、実測空気過剰率を指標とした水分濃度−推算発熱量Bとの相関図を準備し、実測された水分濃度Cwおよび実測空気過剰率λoを適用することによって、推算発熱量Bを得ることができる。基準となる廃棄物Wの性状(質)により複数の相関図を準備することによって、より精度の高い推算発熱量Bを算出することができる。また、相関図に代えて、実測空気過剰率を指標とした水分濃度−推算発熱量Bとの相関関数を準備し、実測された水分濃度Cwおよび実測空気過剰率λoを適用することによって、推算発熱量Bを算出することができる。
(T3) Calculation of estimated calorific value B The measured water concentration Cw is correlated with the correlation between the preset excess air ratio λ and the calorific value of waste with the moisture content (concentration) in the combustion gas (exhaust gas) as an index. And the estimated calorific value B is calculated by applying the measured excess air ratio λo. Specifically, a reference waste W is set in advance, and a correlation diagram between moisture concentration-estimated calorific value B using the measured excess air ratio as an index as illustrated in FIG. 3, for example, is prepared and measured. The estimated calorific value B can be obtained by applying the measured water concentration Cw and the measured excess air ratio λo. By preparing a plurality of correlation diagrams according to the property (quality) of the waste W as a reference, the estimated calorific value B can be calculated with higher accuracy. Further, instead of the correlation diagram, a correlation function of moisture concentration-estimated calorific value B using the measured excess air ratio as an index is prepared, and the estimated water concentration Cw and the measured excess air ratio λo are applied to estimate. The calorific value B can be calculated.

以上の手順を、具体的に上表1の条件において適用する。酸素濃度Co=6.0であることから、下式11に基づき、実測空気過剰率λo=1.40となる。
λo=21.0/(21.0−6.0)=1.40 …式11
図3に例示された相関図において、相関曲線(f1とf2)に、実測空気過剰率λo=1.40および水分濃度Cw=20.0%と適用すると、推算発熱量Bとして、約8,500kJ/kgの算出結果を得た。
The above procedure is specifically applied under the conditions shown in Table 1 above. Since the oxygen concentration Co = 6.0, the measured excess air ratio λo = 1.40 based on Equation 11 below.
λo = 21.0 / (21.0−6.0) = 1.40 Formula 11
In the correlation diagram illustrated in FIG. 3, when the measured excess air ratio λo = 1.40 and the moisture concentration Cw = 20.0% are applied to the correlation curves (f1 and f2), the estimated calorific value B is about 8, A calculation result of 500 kJ / kg was obtained.

〔推算発熱量Cの算出〕
廃棄物Wの推算発熱量Cは、燃焼処理される廃棄物Wの比重の算出および質(ごみ質)の推算を行い、予め設定された比重および質と発熱量との相関から推算される。投入された貯留ピット1またはホッパ2への投入時または該貯留ピット1またはホッパ2内での移送時に、燃焼処理される廃棄物Wの供給量Wiを測定するとともに、貯留ピット1またはホッパ2内を画像モニタ13によって撮影し、画像情報から廃棄物Wの特性と嵩容積Viを推算し、予め設定された指標を基に、廃棄物Wの比重Giおよび特性から、廃棄物Wの推算発熱量Cを算出する。精度良く測定することができる廃棄物Wの供給量Wiおよび画像情報から得られる精度の高い嵩容積Viと廃棄物Wの質を基に、発熱量推算の大きな変動要素に影響されずに、廃棄物Wの発熱量を推算することができる(推算発熱量C)。推算発熱量A同様、上流側の情報からの推算値といえる。以下では、画像情報として色合い[R(赤)G(緑)B(青)]情報が得られるとともに、廃棄物Wの質について予め設定された指標として、RGBに対する単位表面積当たりの発熱量が設定されている場合について説明するが、これに限定されるものでないことはいうまでもない。画像情報として濃淡のみの情報を得て、これを予め設定された濃淡と発熱量の相関から発熱量を推算する場合等を挙げることができる。
[Calculation of estimated calorific value C]
The estimated calorific value C of the waste W is calculated from the specific gravity and quality (garbage quality) of the waste W to be burned and estimated from the correlation between the preset specific gravity and quality and the calorific value. At the time of charging into the storage pit 1 or the hopper 2 that has been input or when transporting in the storage pit 1 or the hopper 2, the supply amount Wi of the waste W to be burned is measured, and the storage pit 1 or the hopper 2 Is captured by the image monitor 13, the characteristics and the bulk volume Vi of the waste W are estimated from the image information, and the estimated calorific value of the waste W is calculated from the specific gravity Gi and the characteristics of the waste W based on the preset index. C is calculated. Based on the supply volume Wi of the waste W that can be measured with high accuracy and the high-accuracy bulk volume Vi obtained from the image information and the quality of the waste W, the waste can be discarded without being affected by large fluctuation factors in the calorific value estimation. The calorific value of the object W can be estimated (estimated calorific value C). Similar to the estimated calorific value A, it can be said to be an estimated value from upstream information. In the following, hue [R (red) G (green) B (blue)] information is obtained as image information, and the calorific value per unit surface area for RGB is set as a preset index for the quality of the waste W. However, it is needless to say that the present invention is not limited to this. For example, a case where information on only shading is obtained as image information, and the calorific value is estimated from a correlation between a preset shading and the calorific value, for example.

以上の手順を、上表1の条件の廃棄物Wに適用する。ホッパ2に投入された廃棄物Wについて、画像情報から、嵩容積Viが、10,000Lであり、色合いRGBが、図4に例示するように分布されていると読み取れたと仮定する。図4では、縦4列横3行の領域に分割した場合について、各領域[1,1]〜[3,4]における色合いを5段階表示(R,G,B)で示した。
このとき、
(i)廃棄物Wの比重G=Wi/Vi=0.6となる。
(ii)画像情報を単位表面積に分割し、予め設定された発熱量/RGBとの相関を基に、各単位でのRGBから各単位表面積当たりの発熱量Hnを求める。
(iii)得られた各発熱量Hnを表面積全体で積算した後(Σ(n=1〜m)Hn)、これを表面積で除算して単位表面積当りの平均発熱量Hmを求める(実質的には単位容積当りの発熱量となる)。上表1の条件における実測によれば、約0.52kJ/mであった。
(iv)測定した廃棄物Wの単位重量当りの推算発熱量Cを、下式12より算出する。
C=Hm×Vi/G=0.52×10,000/0.6=8,670 …式12
推算発熱量Cとして、約8,670kJ/kgの算出結果を得た。
The above procedure is applied to the waste W having the conditions shown in Table 1 above. It is assumed that the waste W thrown into the hopper 2 can be read from the image information that the bulk volume Vi is 10,000 L and the hue RGB is distributed as illustrated in FIG. In FIG. 4, the shades in the respective areas [1, 1] to [3, 4] are shown by five-level display (R, G, B) in the case where the area is divided into 4 columns × 3 rows.
At this time,
(I) Specific gravity G of the waste W = Wi / Vi = 0.6.
(Ii) The image information is divided into unit surface areas, and a calorific value Hn per unit surface area is obtained from RGB in each unit based on a correlation with a preset calorific value / RGB.
(Iii) After the obtained calorific values Hn are integrated over the entire surface area (Σ (n = 1 to m) Hn), this is divided by the surface area to obtain the average calorific value Hm per unit surface area (substantially) Is the calorific value per unit volume). According to the actual measurement under the conditions in Table 1 above, it was about 0.52 kJ / m 3 .
(Iv) The estimated calorific value C per unit weight of the measured waste W is calculated from the following equation 12.
C = Hm × Vi / G = 0.52 × 10,000 / 0.6 = 8,670 Equation 12
As the estimated calorific value C, a calculation result of about 8,670 kJ / kg was obtained.

〔最適推算発熱量の設定〕
推算方法は、上記推算発熱量Aを基本とし、または、推算発熱量Aおよび/または推算発熱量Bおよび/または推算発熱量Cとの対比により、最適推算発熱量を設定する。設定値は、予め特定された廃棄物の特性あるいは本処理装置の燃焼特性等を考慮して設定される。各推算発熱量の内のいずれかが最適推算発熱量として設定される場合、または各推算発熱量の単純平均値や荷重平均値等を算出することによって、より正確な廃棄物Wの発熱量を推算することができる。
[Setting of optimum heat generation value]
This estimation method is based on the estimated calorific value A, or sets the optimal estimated calorific value by comparison with the estimated calorific value A and / or the estimated calorific value B and / or the estimated calorific value C. The set value is set in consideration of the characteristics of the waste specified in advance or the combustion characteristics of the present processing apparatus. When any of the estimated calorific values is set as the optimal estimated calorific value, or by calculating the simple average value or load average value of each estimated calorific value, the more accurate calorific value of the waste W can be obtained. Can be estimated.

以上のように、本発明に係る廃棄物の発熱量推算方法およびこれを用いた廃棄物処理装置によって、以下のような優れた技術的効果を得ることが可能となった。
(i)燃焼処理される廃棄物に特別な処理を施すことなく、また特殊な装置を用いることなく、現在燃焼している廃棄物の発熱量を、精度よく連続して推算することが可能となった。
(ii)現在燃焼している廃棄物の発熱量を連続的に推算することができることによって、異常燃焼などの過渡応答にも自動運転のまま対応することが可能となった。
(iii)発電設備を有する廃棄物処理施設では、こうした廃棄物の発熱量を遅滞なく連続して推算することにより、最適な燃焼制御が実現できるため、蒸発量の安定と排ガス量の最小化により発電効率の向上を図ることが可能となった。
(iv)こうした発熱量推算方法は、既設の施設にも安価で容易に適用することができるため、広い範囲に適用することができる。
(v)廃棄物処理施設の運転が容易になるため、運転員の資質に依存する必要がなく、また人員の削減による省力化を図ることが可能となった。
As described above, according to the waste heat generation amount estimation method and the waste treatment apparatus using the waste according to the present invention, the following excellent technical effects can be obtained.
(I) It is possible to estimate the calorific value of currently combusted waste accurately and continuously without performing special treatment on the waste to be combusted and without using a special device. became.
(Ii) Since the calorific value of the currently burning waste can be continuously estimated , it has become possible to cope with transient responses such as abnormal combustion with automatic operation.
(Iii) In waste treatment facilities with power generation facilities, optimal combustion control can be realized by continuously estimating the amount of heat generated by these wastes without delay. Therefore, by stabilizing the amount of evaporation and minimizing the amount of exhaust gas It has become possible to improve power generation efficiency.
(Iv) Such a calorific value estimation method can be applied to existing facilities at a low cost and can be applied to a wide range.
(V) Since it becomes easier to operate the waste treatment facility, it is not necessary to depend on the qualities of the operators, and it is possible to save labor by reducing the number of personnel.

1 貯留ピット
1a 移送手段
2 ホッパ
3 ストーカ
4 廃棄物供給装置
5 一次燃焼空気供給装置
6 二次燃焼空気供給装置
7 灰排出部
8 排ガス排出部
10 燃焼炉本体
10A 一次燃焼ゾーン
10B 二次燃焼ゾーン
12 廃棄物投入重量検出センサ
13 レーザ距離計
14 O濃度計
15 CO濃度計
16 HO濃度計
17 ガス流速計
18 赤外線放射温度計
19 蒸気流量計
D 塵灰
E 排ガス
W 廃棄物
DESCRIPTION OF SYMBOLS 1 Storage pit 1a Transfer means 2 Hopper 3 Stoker 4 Waste supply device 5 Primary combustion air supply device 6 Secondary combustion air supply device 7 Ash discharge part 8 Exhaust gas discharge part 10 Combustion furnace main body 10A Primary combustion zone 10B Secondary combustion zone 12 Waste input weight detection sensor 13 Laser distance meter 14 O 2 concentration meter 15 CO 2 concentration meter 16 H 2 O concentration meter 17 Gas flow meter 18 Infrared radiation thermometer 19 Steam flow meter D Dust ash E Exhaust gas W Waste

Claims (4)

所定量の廃棄物を燃焼処理するプロセスにおいて、以下の手順に基づき、該廃棄物を燃焼させた推算発熱量Aを算出することを特徴とする廃棄物の発熱量推算方法。
(S1)排ガス中の酸素,二酸化炭素および水分の成分濃度を測定する。
(S2)測定された前記各成分濃度から、窒素成分濃度を算出する。
(S3)算出された窒素成分濃度を基に燃焼空気中の窒素成分濃度に対する換算係数を算出し、該換算係数を乗じた前記酸素,二酸化炭素および水分の換算成分濃度を算出する。
(S4)換算された前記酸素,二酸化炭素および水分の成分濃度から、燃焼処理に用いられた燃焼空気の単位供給量当りの酸素消費量を算出する。
(S5)算出された前記酸素消費量から、燃焼空気の単位供給量当りの、該燃焼処理において生成した二酸化炭素および水分に係る発熱量、該生成水分量と前記廃棄物中に含まれていた水分量の総量からの潜熱量を算出する。
(S6)燃焼処理された廃棄物の供給量から、燃焼空気の単位供給量当りの処理された廃棄物量を算出する。
(S7)算出された前記発熱量,前記潜熱量および廃棄物量から、処理された廃棄物量当りの推算発熱量Aを算出する。
In the process of combustion processes a predetermined amount of waste, according to the following procedure, the heating value estimation method of waste and calculates the estimated calorific value A is burned the waste.
(S1) The component concentrations of oxygen, carbon dioxide and moisture in the exhaust gas are measured.
(S2) A nitrogen component concentration is calculated from the measured component concentrations.
(S3) A conversion coefficient for the nitrogen component concentration in the combustion air is calculated based on the calculated nitrogen component concentration, and the converted component concentrations of the oxygen, carbon dioxide, and moisture are calculated by multiplying the conversion coefficient.
(S4) The oxygen consumption per unit supply amount of the combustion air used for the combustion process is calculated from the converted component concentrations of oxygen, carbon dioxide and moisture.
(S5) From the calculated oxygen consumption amount, the calorific value related to carbon dioxide and moisture generated in the combustion process per unit supply amount of combustion air, the generated moisture amount and the waste contained in the waste Calculate the amount of latent heat from the total amount of moisture.
(S6) The amount of waste treated per unit supply amount of combustion air is calculated from the amount of waste treated after combustion.
(S7) From the calculated calorific value, latent heat quantity and waste quantity, an estimated calorific value A per treated waste quantity is calculated.
所定量の廃棄物を燃焼処理するプロセスにおいて、以下の手順に基づき、該廃棄物を燃焼させた推算発熱量Bを算出するとともに、前記推算発熱量Aと対比し、最適推算発熱量を設定することを特徴とする請求項1記載の廃棄物の発熱量推算方法。
(T1)排ガス中の酸素および水分の成分濃度を測定する。
(T2)測定された前記酸素成分濃度から、実測空気過剰率を算出する。
(T3)予め設定された空気過剰率および燃焼ガス中の水分量を指標とする廃棄物の発熱量との相関に、実測された前記水分量および実測空気過剰率を適用し、推算発熱量Bを算出する。
In the process of combusting a predetermined amount of waste, an estimated calorific value B obtained by burning the waste is calculated based on the following procedure, and an optimal estimated calorific value is set in comparison with the estimated calorific value A. The method for estimating a calorific value of waste according to claim 1.
(T1) The oxygen and moisture component concentrations in the exhaust gas are measured.
(T2) The actual excess air ratio is calculated from the measured oxygen component concentration.
(T3) By applying the actually measured moisture amount and the actually measured air excess rate to the correlation between the preset excess air rate and the calorific value of the waste using the moisture content in the combustion gas as an index, the estimated calorific value B Is calculated.
投入された貯留ピットまたはホッパへの投入時または該貯留ピットまたはホッパ内での移送時に、燃焼処理される廃棄物の供給量を測定するとともに、該貯留ピットまたはホッパ内を画像モニタによって撮影し、画像情報から廃棄物の特性および嵩容積を推算し、燃焼処理された廃棄物の比重および特性から、該廃棄物の推算発熱量Cを算出し、前記推算発熱量Aまたは/および推算発熱量Bと対比し、最適推算発熱量を設定することを特徴とする請求項1または2記載の廃棄物の発熱量推算方法。 Measuring the supply amount of the waste to be burned at the time of input to the storage pit or hopper that has been input or when transferring into the storage pit or hopper, and photographing the storage pit or hopper with an image monitor, The characteristics and bulk volume of the waste are estimated from the image information, the estimated calorific value C of the waste is calculated from the specific gravity and characteristics of the waste that has been burned, and the estimated calorific value A or / and the estimated calorific value B The method for estimating the amount of heat generated from waste according to claim 1 or 2, wherein an optimum estimated heat value is set in comparison with the method. 請求項1〜3のいずれかに記載の廃棄物の発熱量推算方法を用いた廃棄物処理装置であって、少なくとも、廃棄物の供給量測定部,燃焼空気の供給量測定部および排ガス中の酸素,二酸化炭素および水分の成分濃度測定部を有し、前記いずれかの発熱量推算方法によって設定された最適推算発熱量を用いて、焼却炉に投入される廃棄物,燃焼空気および助燃材の供給量を制御することを特徴とする廃棄物処理装置。
A waste treatment apparatus using the waste heat generation amount estimation method according to any one of claims 1 to 3, wherein at least a waste supply amount measurement unit, a combustion air supply amount measurement unit, and an exhaust gas A component concentration measuring unit for oxygen, carbon dioxide and moisture is used, and the optimum estimated calorific value set by any one of the calorific value estimation methods is used to determine the waste, combustion air and auxiliary combustible materials to be put into the incinerator. A waste disposal apparatus for controlling a supply amount.
JP2015142149A 2015-07-16 2015-07-16 Method for estimating heat generation amount of waste and waste treatment apparatus using the same Active JP6342367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015142149A JP6342367B2 (en) 2015-07-16 2015-07-16 Method for estimating heat generation amount of waste and waste treatment apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015142149A JP6342367B2 (en) 2015-07-16 2015-07-16 Method for estimating heat generation amount of waste and waste treatment apparatus using the same

Publications (2)

Publication Number Publication Date
JP2017026172A JP2017026172A (en) 2017-02-02
JP6342367B2 true JP6342367B2 (en) 2018-06-13

Family

ID=57949613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015142149A Active JP6342367B2 (en) 2015-07-16 2015-07-16 Method for estimating heat generation amount of waste and waste treatment apparatus using the same

Country Status (1)

Country Link
JP (1) JP6342367B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6628667B2 (en) * 2016-03-31 2020-01-15 日立造船株式会社 Automatic combustion control method for incineration facilities
JP6429911B2 (en) * 2017-01-31 2018-11-28 株式会社タクマ Method for measuring calorific value of combustion object, combustion control method and combustion control apparatus for combustion furnace using measured calorific value
JP6782203B2 (en) * 2017-08-09 2020-11-11 川崎重工業株式会社 Calorific value estimation method, calorific value estimation device, and waste storage facility
KR101852348B1 (en) * 2018-01-12 2018-06-04 유길문 Analysis system for selection of combustible waste by calorific value and solid fuel production method using it
JP7237654B2 (en) * 2019-03-01 2023-03-13 三機工業株式会社 Automatic combustion control method for garbage incinerator
JP7428080B2 (en) * 2020-06-04 2024-02-06 Jfeエンジニアリング株式会社 Information processing device, information processing method, combustion control device, and combustion control method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5556514A (en) * 1978-10-20 1980-04-25 Takuma Co Ltd Method of automatic combustion control for refuse incinerating furnace
JPH0240410A (en) * 1988-07-29 1990-02-09 Kubota Ltd Automatic combustion control of municipal waste incinerating furnace
JP3822328B2 (en) * 1997-09-26 2006-09-20 住友重機械工業株式会社 Method for estimating the lower heating value of combustion waste in refuse incinerators
NL1014516C2 (en) * 1999-06-04 2000-12-06 Tno System for determining process parameters related to thermal processes, such as waste incineration.
JP4230925B2 (en) * 2004-01-06 2009-02-25 株式会社神戸製鋼所 Calorific value estimation device, calorific value estimation method, and combustion control device

Also Published As

Publication number Publication date
JP2017026172A (en) 2017-02-02

Similar Documents

Publication Publication Date Title
JP6342367B2 (en) Method for estimating heat generation amount of waste and waste treatment apparatus using the same
JP5996762B1 (en) Waste combustion control method and combustion control apparatus to which the method is applied
Sepman et al. Real-time in situ multi-parameter TDLAS sensing in the reactor core of an entrained-flow biomass gasifier
KR102236283B1 (en) Garbage incineration facility and control method of waste incineration facility
Van Eyk et al. Quantitative measurement of atomic sodium in the plume of a single burning coal particle
JPH10267245A (en) Combustion control method of refuse incinerator and apparatus therefor
JP7308016B2 (en) Waste quality estimation system and method, and waste storage facility
JP2014234981A (en) Combustion management system in combustion furnace and combustion control system of combustion furnace
Peña et al. Analysis of thermal resistance evolution of ash deposits during co-firing of coal with biomass and coal mine waste residues
JP2010216990A (en) Device and method for measurement of moisture percentage in waste
JP3822328B2 (en) Method for estimating the lower heating value of combustion waste in refuse incinerators
WO2019235377A1 (en) Method for estimating state quantity of combustion facility, combustion control method, and combustion control device
JP6429911B2 (en) Method for measuring calorific value of combustion object, combustion control method and combustion control apparatus for combustion furnace using measured calorific value
Bujak Experimental study of the energy efficiency of an incinerator for medical waste
JP6624451B2 (en) Waste treatment furnace equipment
JP2019178848A (en) Waste incinerator and waste incineration method
Razmjoo et al. Study of the transient release of water vapor from a fuel bed of wet biomass in a reciprocating-grate furnace
Peña et al. Experimental study on the effects of co-firing coal mine waste residues with coal in PF swirl burners
US6551094B2 (en) Method and device for determining a soot charge in a combustion chamber
JP2014219113A (en) System for measuring internal temperature of combustion furnace and system for controlling combustion in combustion furnace
Van Kessel et al. On-line determination of the calorific value of solid fuels
Di Maria et al. On line measurement of the lower heating value of waste and energetic efficiency of an existing waste to energy plant: Identification of uncertainty associated to probes and their influence on the results
Kiener et al. Influence of Uneven Fuel Distribution on a Grate on Gas Flow and Combustion Quality
JP4230925B2 (en) Calorific value estimation device, calorific value estimation method, and combustion control device
JP2009150626A (en) Combustion control system for combustion furnace and its combustion control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180328

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180328

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180516

R150 Certificate of patent or registration of utility model

Ref document number: 6342367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250