JP5996762B1 - Waste combustion control method and combustion control apparatus to which the method is applied - Google Patents

Waste combustion control method and combustion control apparatus to which the method is applied Download PDF

Info

Publication number
JP5996762B1
JP5996762B1 JP2015226211A JP2015226211A JP5996762B1 JP 5996762 B1 JP5996762 B1 JP 5996762B1 JP 2015226211 A JP2015226211 A JP 2015226211A JP 2015226211 A JP2015226211 A JP 2015226211A JP 5996762 B1 JP5996762 B1 JP 5996762B1
Authority
JP
Japan
Prior art keywords
waste
amount
combustion
calculated
moisture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015226211A
Other languages
Japanese (ja)
Other versions
JP2017096517A (en
Inventor
福間 義人
義人 福間
藤川 博之
博之 藤川
吉司 松田
吉司 松田
雅也 渡瀬
雅也 渡瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Original Assignee
Takuma KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma KK filed Critical Takuma KK
Priority to JP2015226211A priority Critical patent/JP5996762B1/en
Priority to PCT/JP2016/060199 priority patent/WO2017085941A1/en
Priority to EP16865945.6A priority patent/EP3379147B1/en
Application granted granted Critical
Publication of JP5996762B1 publication Critical patent/JP5996762B1/en
Publication of JP2017096517A publication Critical patent/JP2017096517A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/002Regulating fuel supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N3/00Regulating air supply or draught
    • F23N3/002Regulating air supply or draught using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • F23N5/006Systems for controlling combustion using detectors sensitive to combustion gas properties the detector being sensitive to oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2200/00Waste incineration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/10Correlation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/26Measuring humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2239/00Fuels
    • F23N2239/02Solid fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2241/00Applications
    • F23N2241/18Incinerating apparatus

Abstract

【課題】 燃焼している廃棄物の発熱量に係る情報をリアルタイムに精度よく連続して取得し、これを用いて現在の燃焼状態に対して時間遅れのない廃棄物の燃焼制御を行う。【解決手段】 以下の手順に基づく焼却炉の燃焼制御。(1)燃焼排ガス中の実測の成分濃度から、廃棄物の発熱量を推算する。(2)算出された廃棄物発熱量を基に、ボイラ蒸発量を推算する。(3)推定されたボイラ蒸発量を基に、焼却炉に投入される廃棄物,燃焼空気および助燃材の供給量を制御する。【選択図】 図1PROBLEM TO BE SOLVED: To continuously acquire information related to the calorific value of burning waste in real time with high accuracy, and to control combustion of waste without time delay with respect to the current combustion state. Combustion control of an incinerator based on the following procedure. (1) The calorific value of the waste is estimated from the actually measured component concentration in the combustion exhaust gas. (2) Estimate the amount of boiler evaporation based on the calculated waste heat value. (3) Based on the estimated amount of boiler evaporation, the supply amount of waste, combustion air, and auxiliary combustion material to be charged into the incinerator is controlled. [Selection] Figure 1

Description

本発明は、廃棄物の燃焼制御方法およびこれを適用した燃焼制御装置に関し、特に、多種多様な廃棄物に対して適用可能な燃焼制御方法および燃焼制御装置に関する。   The present invention relates to a waste combustion control method and a combustion control apparatus to which the waste combustion control method is applied, and more particularly to a combustion control method and a combustion control apparatus applicable to a wide variety of wastes.

従来都市ゴミや下水汚泥などの廃棄物のうち可燃性の廃棄物は、事業所や家庭等から回収され、各地域に設けられた廃棄物処理場や廃棄物処理施設等に搬送され、燃焼処理されて清浄化された排ガスや焼却灰として処分される。このとき、油やガス等の廃棄物は、性状が既知であるため、安定した燃焼制御を行うことが可能であり、実動施設においては、燃焼空気量を、予め廃棄物の燃焼量に合わせて設定された値に調整することで実現している。一方、多種多様な廃棄物に対しては、その性状が一様でなく、安定して燃焼させることが容易でない。このため、未燃分の発生を防止し、炉内燃焼状態の安定を図ることが可能なごみ焼却炉の燃焼制御方法が求められ、多様な発熱量を持つごみを完全に燃焼させて、ボイラの蒸気発生量が一定になるような運転を維持すべく、燃焼空気量、冷却空気量、給じん速度、火格子速度などを指標として自動燃焼制御が行われる。従来の具体的な制御手法としては、蒸発量又は炉出口温度を参照して、設定蒸発量や設定温度に追従させるよう火格子速度を増減させる方法に加え、種々の新たな制御方法が提案されている。   Conventionally, combustible waste, such as municipal waste and sewage sludge, has been collected from business establishments and households, transported to waste treatment facilities and waste treatment facilities in each region, and burned And then disposed of as purified exhaust gas or incinerated ash. At this time, since the properties of waste such as oil and gas are known, it is possible to perform stable combustion control. In actual facilities, the amount of combustion air is adjusted in advance to the amount of combustion of waste. This is achieved by adjusting to the set value. On the other hand, the properties of various wastes are not uniform, and it is not easy to stably burn them. For this reason, there is a need for a combustion incinerator combustion control method that can prevent the generation of unburned matter and stabilize the combustion state in the furnace. In order to maintain the operation in which the steam generation amount is constant, automatic combustion control is performed using the combustion air amount, the cooling air amount, the feed rate, the grate speed, and the like as indexes. As a conventional specific control method, various new control methods have been proposed in addition to the method of increasing or decreasing the grate speed so as to follow the set evaporation amount or the set temperature with reference to the evaporation amount or the furnace outlet temperature. ing.

例えば、図4に例示するような構成を有するゴミ焼却炉における燃焼制御方法が提案されている。具体的には、乾燥ストーカ110a・燃焼ストーカ110b、後燃焼ストーカ110cから成るストーカ110の下方から一次燃焼空気Aを供給すると共に、後燃焼ストーカ110c上で発生した後燃焼段ガスG’を炉外へ引き抜き、また、一次燃焼室112の下流側流域内へ排ガスG”の一部を再循環ガスとして吹き込み、当該再循環ガスG”により乾燥ストーカ110a及び燃焼ストーカ110b上で発生する燃焼ガスGを攪拌・混合して一次燃焼室112と二次燃焼室113との間に還元ゾーン125を形成し、更に、前記炉外へ引き抜いた後燃焼段ガスG’を還流ガスとして二次燃焼室113内へ吹き込むと共に、二次燃焼室113内へ二次燃焼空気Aを供給することにより、二次燃焼室内の未燃ガスや未燃物を完全燃焼させるように構成されている(例えば特許文献1参照)。なお、図中、101はごみ焼却炉、102は廃熱ボイラ、103は過熱器、104はエコノマイザ、105は脱気ヒータ、106はバグフィルタ、107は誘引通風機、108は炉本体、109はごみ供給ホッパ、111はストーカ下ホッパ、114は灰出口、115は排ガス出口、116は一次燃焼空気供給装置、117は再循環ガス通路、118は再循環ガス送風機、119は還流ガス通路、120は還流ガス送風機、121は熱交換器、122は二次燃焼空気供給管路、123はダンパ、124は酸素濃度検出器、125は還元ゾーン、126は一次燃焼空気供給管路、127は一次燃焼空気送風機を示す。 For example, a combustion control method in a refuse incinerator having a configuration illustrated in FIG. 4 has been proposed. Specifically, drying stoker 110a · combustion stoker 110b, supplies the primary combustion air A 1 from below the stoker 110 consisting of post-combustion stoker 110c, furnace combustion stage gas G 'after that occurred on post-combustion stoker 110c A part of the exhaust gas G ″ is blown out as a recirculation gas into the downstream basin of the primary combustion chamber 112, and the combustion gas G generated on the dry stoker 110a and the combustion stoker 110b by the recirculation gas G ″. Are mixed to form a reduction zone 125 between the primary combustion chamber 112 and the secondary combustion chamber 113, and after being drawn out of the furnace, the combustion stage gas G ′ is used as a recirculation gas to form the secondary combustion chamber 113. with blown to the inner, by supplying the secondary combustion air a 2 into the secondary combustion chamber 113 to completely burn the unburnt gas and unburnt secondary combustion chamber (For example, refer patent document 1). In the figure, 101 is a waste incinerator, 102 is a waste heat boiler, 103 is a superheater, 104 is an economizer, 105 is a degassing heater, 106 is a bag filter, 107 is an induction fan, 108 is a furnace body, 109 is Garbage supply hopper, 111 is a hopper under the stoker, 114 is an ash outlet, 115 is an exhaust gas outlet, 116 is a primary combustion air supply device, 117 is a recirculation gas passage, 118 is a recirculation gas blower, 119 is a recirculation gas passage, 120 is Reflux gas blower, 121 is a heat exchanger, 122 is a secondary combustion air supply line, 123 is a damper, 124 is an oxygen concentration detector, 125 is a reduction zone, 126 is a primary combustion air supply line, and 127 is a primary combustion air A blower is shown.

特開2005−214513号公報JP 2005-214513 A

しかしながら、従前のこうした燃焼制御方法では、いくつかの課題や要請があった。
(i)排ガス温度や排ガス中のガス組成などを測定して、燃焼させる廃棄物の量、燃焼空気量、燃焼空気温度を加減する廃棄物の燃焼制御では、時間遅れのない適切な燃焼制御が難しかった。
(ii)特に、廃棄物の発熱量は燃焼制御において重要な役割を果すことから、廃棄物をサンプリングして分析する方法が提案されているが、サンプリングおよび分析に多くの時間を要するため、燃焼制御には適さない。例えば、サンプリングに数時間を要する場合があり、さらに分析には数日を要する場合があった。
(iii)焼却炉内の燃焼ガスを冷却するためのボイラ蒸発量や減温水量等によって燃焼状態を推測し燃焼制御に用いる従前の方法では、廃棄物の種類や性状によって相関が変動し、推測された発熱量の誤差が大きいために、燃焼制御には適さない場合が多い。
(iv)廃棄物の発熱量は水分量と相関があり、廃棄物の比重を測定することで概ね発熱量を推測できるが、比重を測定している廃棄物は、その時に燃焼している廃棄物ではなく、また誤差が大きいために燃焼制御には適さない場合が多い。
(v)廃棄物の色の濃淡情報から算出する方法が廃棄物の発熱量を推測する方法として一般的であるが、廃棄物が白いと紙系のものが多く、黒いと剪定枝などが多いことから、定量性がなく燃焼制御には適さない場合が多い。
However, there are some problems and requests in the conventional combustion control method.
(I) By measuring the exhaust gas temperature, the gas composition in the exhaust gas, and the like, the combustion control of the waste that controls the amount of combustion waste, the amount of combustion air, and the temperature of combustion air, the appropriate combustion control without time delay was difficult.
(Ii) Since the calorific value of waste plays an important role in combustion control, a method of sampling and analyzing waste has been proposed, but it takes a lot of time for sampling and analysis. Not suitable for control. For example, sampling may take several hours, and analysis may take several days.
(Iii) In the conventional method used for combustion control by estimating the combustion state based on the amount of boiler evaporation or cooling water used to cool the combustion gas in the incinerator, the correlation varies depending on the type and properties of the waste. In many cases, the generated heat generation error is not suitable for combustion control.
(Iv) The calorific value of waste has a correlation with the amount of water, and the calorific value can be roughly estimated by measuring the specific gravity of the waste, but the waste whose specific gravity is being measured is discarded at that time. In many cases, it is not suitable for combustion control due to large errors.
(V) A method of calculating waste color shading information is generally used as a method of estimating the amount of heat generated by waste. However, white waste is often paper-based, and black is often pruned. For this reason, it is often not suitable for combustion control due to lack of quantitativeness.

そこで、本発明は、上記状況に鑑みてなされたものであって、その目的は、こうした課題を解決し、燃焼している廃棄物の発熱量に係る情報をリアルタイムに精度よく連続して取得し、これを用いて現在の燃焼状態に対して時間遅れのない廃棄物の燃焼制御を行う方法およびこれを適用した燃焼制御装置を提供することを目的とする。   Therefore, the present invention has been made in view of the above situation, and its purpose is to solve such problems and to obtain information related to the calorific value of the burning waste continuously in real time with high accuracy. An object of the present invention is to provide a method for controlling combustion of waste without time delay with respect to the current combustion state using this, and a combustion control apparatus to which the method is applied.

本発明に係る廃棄物の燃焼制御方法は、所定量の廃棄物を燃焼処理するプロセスにおいて、以下の手順に基づき焼却炉の燃焼制御を行うことを特徴とする。
(1)燃焼排ガス中の実測の成分濃度から、廃棄物の発熱量を算出する。
(2)算出された廃棄物発熱量を基に、ボイラ蒸発量を算出する。
(3)算出されたボイラ蒸発量を基に、焼却炉に投入される廃棄物,燃焼空気および助燃材の供給量を制御する。
The waste combustion control method according to the present invention is characterized in that in a process of burning a predetermined amount of waste, combustion control of an incinerator is performed based on the following procedure.
(1) Calculate the calorific value of the waste from the measured component concentration in the combustion exhaust gas.
(2) The boiler evaporation amount is calculated based on the calculated waste heat generation amount.
(3) Based on the calculated amount of boiler evaporation, the amount of waste, combustion air, and auxiliary combustion material supplied to the incinerator is controlled.

廃熱ボイラを有する焼却炉では、廃棄物燃焼により発生する燃焼熱量と、燃焼排ガス熱量を吸収する廃熱ボイラより発生するボイラ蒸発量は比例関係にあり、このボイラ蒸発量を指針に自動燃焼制御が構築されてきた。本発明者は、さらに検証過程において、実測のボイラ蒸発量ではなく、現在の燃焼状態を示す情報を基にボイラ蒸発量を算出し、かかる算出値をごみ送り速度制御,燃焼空気量の制御に適用すれば、より安定した燃焼制御が実現できるとの知見を得た。本発明は、燃焼している廃棄物の発熱量に係る情報をリアルタイムに精度よく連続して取得し、これを用いて現在の燃焼状態に対して時間遅れのない廃棄物の燃焼制御を行うことを可能にした。
In an incinerator with a waste heat boiler, the amount of combustion heat generated by waste combustion is proportional to the amount of boiler evaporation generated from the waste heat boiler that absorbs the amount of combustion exhaust gas heat, and automatic combustion control is performed using this boiler evaporation amount as a guideline. Has been built. In the verification process, the inventor further calculates the boiler evaporation amount based on the information indicating the current combustion state, not the actual boiler evaporation amount, and uses the calculated value for waste feed speed control and combustion air amount control. We obtained knowledge that more stable combustion control can be realized if applied. The present invention continuously obtains information related to the calorific value of burning waste in real time with high accuracy, and uses this to control the combustion of waste without time delay with respect to the current combustion state. Made possible.

本発明に係る廃棄物の燃焼制御方法は、前記廃棄物発熱量を、以下の手順に基づき算出することを特徴とする。
(R1)排ガス中の酸素および水分の成分濃度を測定する。
(R2)測定された前記酸素および水分の成分濃度から、下式1を基に排ガス中の二酸化炭素濃度を算出する。
[CO]=Ro×(100−[HO])/100−[O] …式1
ここで、[ ]内は百分率表示濃度を示し、Roは大気中の酸素濃度から灰分に取り込まれる酸素成分量を減じて設定された係数を示す。
(R3)前記酸素濃度,水分濃度および二酸化炭素濃度を用い、排ガス中の窒素濃度を算出する。
(R4)算出された窒素濃度を基に燃焼空気中の窒素濃度に対する換算係数を算出し、該換算係数を乗じた前記酸素,二酸化炭素および水分の換算成分濃度を算出する。
(R5)換算された前記酸素,二酸化炭素および水分の成分濃度から、燃焼処理に用いられた燃焼空気の単位供給量当りの酸素消費量を算出する。
(R6)算出された前記酸素消費量から、燃焼空気の単位供給量当りの、該燃焼処理において生成した二酸化炭素および水分に係る発熱量、該生成水分量と前記廃棄物中に含まれていた水分量の総量からの潜熱量を算出する。
(R7)燃焼処理された廃棄物の供給量から、燃焼空気の単位供給量当りの処理された廃棄物量を算出する。
(R8)算出された前記発熱量,前記潜熱量および廃棄物量から、処理された廃棄物量当りの推算発熱量Aを算出する。
上記のように、現在の燃焼状態を示す情報をリアルタイムに取得し、これを基に燃焼熱量およびボイラ蒸発量を算出することによって、時間遅れのない廃棄物の燃焼制御を行うことを可能となった。このとき、リアルタイムに取得する燃焼直後の排ガス組成から、燃料となる廃棄物の発熱量に直接関与する廃棄物中の炭素,水素および水分を求め、これを基に、酸素消費量,燃焼熱量,潜熱量,廃棄物量(処理量)を算出することができる。本発明者は、検証過程において、排ガス中の二酸化炭素(CO)濃度を、排ガス中の酸素(O)濃度および水分(HO)濃度を基に算出することができることを見出し、さらに、酸素消費量等の算出基準として燃焼空気の単位供給量を用いることによって、当該燃焼空気の単位供給量当りの酸素消費量,燃焼熱量,潜熱量,廃棄物処理量を精度よく算出し、精度の高い処理された廃棄物量当りの発熱量(推算発熱量A)を算出することができるとの知見を得た。つまり、性状等の変動要素の多い廃棄物であっても、実測の排ガス中の成分濃度測定値を用いて当該燃焼空気の単位供給量当りの各算出値から算出されることによって、こうした変動要素が反映された発熱量を算出することができる。従って、燃焼している廃棄物の発熱量に係る情報をリアルタイムに精度よく連続して取得し、これを用いて現在の燃焼状態に対して時間遅れのない廃棄物の燃焼制御を行うことを可能にした。
The waste combustion control method according to the present invention is characterized in that the waste heat generation amount is calculated based on the following procedure.
(R1) The component concentrations of oxygen and moisture in the exhaust gas are measured.
(R2) From the measured oxygen and moisture component concentrations, the carbon dioxide concentration in the exhaust gas is calculated based on the following formula 1.
[CO 2 ] = Ro × (100− [H 2 O]) / 100− [O 2 ] Formula 1
Here, the value in [] indicates the percentage display concentration, and Ro indicates a coefficient set by subtracting the amount of oxygen component taken into the ash from the oxygen concentration in the atmosphere.
(R3) The nitrogen concentration in the exhaust gas is calculated using the oxygen concentration, water concentration, and carbon dioxide concentration.
(R4) A conversion factor for the nitrogen concentration in the combustion air is calculated based on the calculated nitrogen concentration, and the converted component concentrations of oxygen, carbon dioxide, and moisture are calculated by multiplying the conversion factor.
(R5) The oxygen consumption per unit supply amount of the combustion air used for the combustion process is calculated from the converted component concentrations of oxygen, carbon dioxide and moisture.
(R6) From the calculated oxygen consumption amount, the calorific value related to carbon dioxide and moisture generated in the combustion process per unit supply amount of combustion air, the generated moisture amount and the waste contained in the waste Calculate the amount of latent heat from the total amount of moisture.
(R7) The amount of waste processed per unit supply amount of combustion air is calculated from the supply amount of waste treated by combustion.
(R8) An estimated calorific value A per treated waste amount is calculated from the calculated calorific value, latent heat amount and waste amount.
As described above, it is possible to control the combustion of waste without time delay by acquiring information indicating the current combustion state in real time and calculating the amount of combustion heat and the amount of boiler evaporation based on this information. It was. At this time, from the exhaust gas composition immediately after combustion acquired in real time, the carbon, hydrogen and moisture in the waste directly related to the calorific value of the waste as the fuel are obtained, and based on this, the oxygen consumption, combustion heat, The amount of latent heat and the amount of waste (processing amount) can be calculated. The inventor has found that in the verification process, the carbon dioxide (CO 2 ) concentration in the exhaust gas can be calculated based on the oxygen (O 2 ) concentration and the moisture (H 2 O) concentration in the exhaust gas, By using the unit supply amount of combustion air as a calculation standard for oxygen consumption, etc., the oxygen consumption per unit supply amount of combustion air, the amount of combustion heat, the amount of latent heat, and the amount of waste treatment are accurately calculated. It was found that the calorific value ( estimated calorific value A) per amount of processed waste with a high amount of can be calculated . In other words, even if the waste has many variables such as properties, such variable elements are calculated by calculating from the calculated values per unit supply amount of the combustion air using the measured component concentration measurement values in the exhaust gas. Can be calculated . Therefore, it is possible to acquire information related to the calorific value of the burning waste continuously in real time and use it to control the combustion of waste without time delay with respect to the current combustion state. I made it.

本発明に係る廃棄物の燃焼制御方法は、前記廃棄物発熱量を、以下の手順に基づき算出することを特徴とする。
(S1)排ガス中の酸素,二酸化炭素および水分の成分濃度を測定する。
(S2)測定された前記各成分濃度から、排ガス中の窒素濃度を算出する。
(S3)算出された窒素濃度を基に燃焼空気中の窒素濃度に対する換算係数を算出し、該換算係数を乗じた前記酸素,二酸化炭素および水分の換算成分濃度を算出する。
(S4)換算された前記酸素,二酸化炭素および水分の成分濃度から、燃焼処理に用いられた燃焼空気の単位供給量当りの酸素消費量を算出する。
(S5)算出された前記酸素消費量から、燃焼空気の単位供給量当りの、該燃焼処理において生成した二酸化炭素および水分に係る発熱量、該生成水分量と前記廃棄物中に含まれていた水分量の総量からの潜熱量を算出する。
(S6)燃焼処理された廃棄物の供給量から、燃焼空気の単位供給量当りの処理された廃棄物量を算出する。
(S7)算出された前記発熱量,前記潜熱量および廃棄物量から、処理された廃棄物量当りの推算発熱量Bを算出する。
上記構成によれば、燃焼直後の排ガス組成として、実測のCO濃度,O濃度およびHO濃度の測定値から、燃料となる廃棄物の発熱量に直接関与する廃棄物中の炭素,水素および水分を求め、これを基に、酸素消費量,燃焼熱量,潜熱量,廃棄物量(処理量)を算出することができる。また、このときの算出基準として燃焼空気の単位供給量を用いることによって、当該燃焼空気の単位供給量当りの酸素消費量,燃焼熱量,潜熱量,廃棄物処理量を算出し、処理された廃棄物量当りの発熱量(推算発熱量B)を算出することを可能とした。つまり、性状等の変動要素の多い廃棄物であっても、実測の排ガス中の成分濃度測定値を用いて当該燃焼空気の単位供給量当りの各算出値から算出されることによって、こうした変動要素が反映された発熱量を算出することができる。従って、燃焼している廃棄物の発熱量に係る情報をリアルタイムに精度よく連続して取得し、これを用いて現在の燃焼状態に対して時間遅れのない廃棄物の燃焼制御を行うことを可能にした。
The waste combustion control method according to the present invention is characterized in that the waste heat generation amount is calculated based on the following procedure.
(S1) The component concentrations of oxygen, carbon dioxide and moisture in the exhaust gas are measured.
(S2) The nitrogen concentration in the exhaust gas is calculated from the measured component concentrations.
(S3) A conversion factor for the nitrogen concentration in the combustion air is calculated based on the calculated nitrogen concentration, and the converted component concentrations of the oxygen, carbon dioxide, and moisture are calculated by multiplying the conversion factor.
(S4) The oxygen consumption per unit supply amount of the combustion air used for the combustion process is calculated from the converted component concentrations of oxygen, carbon dioxide and moisture.
(S5) From the calculated oxygen consumption amount, the calorific value related to carbon dioxide and moisture generated in the combustion process per unit supply amount of combustion air, the generated moisture amount and the waste contained in the waste Calculate the amount of latent heat from the total amount of moisture.
(S6) The amount of waste treated per unit supply amount of combustion air is calculated from the amount of waste treated after combustion.
(S7) From the calculated calorific value, latent heat quantity and waste quantity, an estimated calorific value B per treated waste quantity is calculated.
According to the above configuration, as the exhaust gas composition immediately after combustion, from the measured values of measured CO 2 concentration, O 2 concentration, and H 2 O concentration, carbon in the waste directly related to the calorific value of the waste that becomes the fuel, Hydrogen and moisture are obtained, and based on this, oxygen consumption, combustion heat, latent heat, and waste (treatment amount) can be calculated. In addition, by using the unit supply amount of combustion air as the calculation standard at this time, the oxygen consumption per unit supply amount of combustion air, the amount of combustion heat, the amount of latent heat, the amount of waste treatment are calculated, and the treated waste The calorific value per quantity ( estimated calorific value B) can be calculated. In other words, even if the waste has many variables such as properties, such variable elements are calculated by calculating from the calculated values per unit supply amount of the combustion air using the measured component concentration measurement values in the exhaust gas. Can be calculated . Therefore, it is possible to acquire information related to the calorific value of the burning waste continuously in real time and use it to control the combustion of waste without time delay with respect to the current combustion state. I made it.

本発明に係る廃棄物の燃焼制御方法は、前記廃棄物発熱量を、以下の手順に基づき算出することを特徴とする。
(T1)排ガス中の酸素および水分の成分濃度を測定する。
(T2)測定された前記酸素成分濃度から、実測空気過剰率を算出する。
(T3)予め設定された空気過剰率および燃焼ガス中の水分量を指標とする廃棄物の発熱量との相関に、実測された前記水分量および実測空気過剰率を適用し、推算発熱量Bを算出する。
上記のように、廃棄物の発熱量は、燃焼ガス中の水分量と相関を有する一方、燃焼空気の供給量つまり空気過剰率の影響を大きく受ける。本発明は、こうした廃棄物の発熱量測定の大きな変動要素である空気過剰率を、排ガス中の酸素成分濃度を測定して実測値として算出することによって、予め設定された空気過剰率を指標として、燃焼ガス中の水分量との相関から発熱量を算出することを可能とした(推算発熱量C)。つまり、性状等の変動要素の多い廃棄物であっても、実測の排ガス中の成分濃度測定値を用いて当該燃焼空気の空気過剰率を算出することによって、こうした変動要素が反映された発熱量を算出することができる。従って、燃焼している廃棄物の発熱量に係る情報をリアルタイムに精度よく連続して取得し、これを用いて現在の燃焼状態に対して時間遅れのない廃棄物の燃焼制御を行うことを可能にした。
The waste combustion control method according to the present invention is characterized in that the waste heat generation amount is calculated based on the following procedure.
(T1) The oxygen and moisture component concentrations in the exhaust gas are measured.
(T2) The actual excess air ratio is calculated from the measured oxygen component concentration.
(T3) By applying the actually measured moisture amount and the actually measured air excess rate to the correlation between the preset excess air rate and the calorific value of the waste using the moisture content in the combustion gas as an index, the estimated calorific value B Is calculated.
As described above, the amount of heat generated from waste has a correlation with the amount of moisture in the combustion gas, but is greatly affected by the supply amount of combustion air, that is, the excess air ratio. The present invention calculates the excess air ratio, which is a large variation factor in the calorific value measurement of such waste, by measuring the oxygen component concentration in the exhaust gas as an actual measurement value, and using a preset excess air ratio as an index. The calorific value can be calculated from the correlation with the moisture content in the combustion gas (estimated calorific value C). In other words, even if the waste has many variables such as properties, the calorific value that reflects these variables is calculated by calculating the excess air ratio of the combustion air using measured component concentration measurements in the exhaust gas. Can be calculated . Therefore, it is possible to acquire information related to the calorific value of the burning waste continuously in real time and use it to control the combustion of waste without time delay with respect to the current combustion state. I made it.

本発明は、上記廃棄物の燃焼制御方法を適用した燃焼制御装置であって、少なくとも、廃棄物の供給量測定部,燃焼空気の供給量測定部および排ガス中の酸素,二酸化炭素および水分の成分濃度測定部を有し、前記算出された廃棄物発熱量または推算発熱量A〜Cのいずれかを用いて、焼却炉に投入される廃棄物,燃焼空気および助燃材の供給量を制御することを特徴とする。
こうした構成によって、燃焼している廃棄物の発熱量に係る情報をリアルタイムに精度よく連続して取得し、これを用いて現在の燃焼状態に対して時間遅れのない廃棄物の燃焼制御を行うことが可能となった。
また、本発明は、所定量の廃棄物を燃焼処理するプロセスにおいて、上記算出方法によって算出された廃棄物の発熱量を用い、以下の手順に基づき焼却炉の燃焼制御を行うことを特徴とする。
(1)前記推算発熱量Aまたは推算発熱量Bを算出する。
(2)算出された前記推算発熱量Aまたは推算発熱量Bを基に、ボイラ蒸発量を算出する。
(3)算出されたボイラ蒸発量を基に、焼却炉に投入される廃棄物,燃焼空気および助燃材の供給量を制御する。
また、本発明は、所定量の廃棄物を燃焼処理するプロセスにおいて、上記算出方法によって算出された廃棄物の発熱量を用いた燃焼制御装置であって、少なくとも、廃棄物の供給量測定部,燃焼空気の供給量測定部および排ガス中の酸素および水分、または酸素,水分および二酸化炭素濃度の成分濃度測定部を有し、前記算出された推算発熱量Aまたは推算発熱量Bを用いて、焼却炉に投入される廃棄物,燃焼空気および助燃材の供給量を制御することを特徴とする。
The present invention is a combustion control apparatus to which the above-described waste combustion control method is applied, and includes at least components of waste supply amount measurement unit, combustion air supply amount measurement unit, and oxygen, carbon dioxide and moisture in exhaust gas A concentration measuring unit is provided, and the amount of waste, combustion air, and auxiliary material supplied to the incinerator is controlled using any one of the calculated waste calorific value or estimated calorific values A to C. It is characterized by.
With this configuration, information related to the calorific value of the burning waste can be acquired continuously in real time with high accuracy, and this can be used to control the combustion of waste without a time delay relative to the current combustion state. Became possible.
Further, the present invention is characterized in that, in a process of burning a predetermined amount of waste, the combustion control of the incinerator is performed based on the following procedure using the heat generation amount of the waste calculated by the above calculation method. .
(1) The estimated calorific value A or the estimated calorific value B is calculated.
(2) A boiler evaporation amount is calculated based on the calculated calorific value A or B.
(3) Based on the calculated amount of boiler evaporation, the amount of waste, combustion air, and auxiliary combustion material supplied to the incinerator is controlled.
The present invention also relates to a combustion control apparatus that uses a calorific value of waste calculated by the above-described calculation method in a process for burning a predetermined amount of waste, and includes at least a waste supply amount measuring unit, Combustion air supply amount measurement unit and oxygen and moisture in exhaust gas, or component concentration measurement unit of oxygen, moisture and carbon dioxide concentration, incineration using the calculated calorific value A or calorific value B It is characterized by controlling the amount of waste, combustion air, and auxiliary material supplied to the furnace.

本発明に係る燃焼制御方法の基本的な実施手順を例示する概略図Schematic illustrating the basic implementation procedure of the combustion control method according to the present invention 本発明に係る燃焼制御装置の基本構成例を示す概略図Schematic showing a basic configuration example of a combustion control device according to the present invention ボイラ蒸発量の実測値と算出値との対比を例示する概略図Schematic illustrating the comparison between the actual measured value and the calculated value of boiler evaporation 従前の燃焼制御方法に係るストーカ式ごみ焼却炉を例示する概略図Schematic illustrating a stoker-type waste incinerator according to a conventional combustion control method

<本発明に係る廃棄物の燃焼制御方法>
本発明に係る廃棄物の燃焼制御方法(以下「本方法」ということがある)は、所定量の廃棄物を燃焼処理するプロセスにおいて、以下の手順に基づき焼却炉の燃焼制御を行うことを特徴とする。燃焼している廃棄物の発熱量に係る情報をリアルタイムに精度よく連続して取得し、これを用いて現在の燃焼状態に対して時間遅れのない廃棄物の燃焼制御を行うことができる。
(1)燃焼排ガス中の実測の成分濃度から、廃棄物の発熱量を算出する。
(2)算出された廃棄物発熱量を基に、ボイラ蒸発量を算出する。
(3)算出されたボイラ蒸発量を基に、焼却炉に投入される廃棄物,燃焼空気および助燃材の供給量を制御する。
以下、本発明に係る廃棄物の燃焼制御方法および燃焼制御装置の実施形態を、図面を参照して詳細に説明する。
<Waste Combustion Control Method According to the Present Invention>
A waste combustion control method according to the present invention (hereinafter sometimes referred to as “the present method”) is characterized in that, in a process of burning a predetermined amount of waste, combustion control of an incinerator is performed based on the following procedure. And Information relating to the calorific value of the burning waste can be obtained continuously and accurately in real time, and the combustion control of the waste without time delay can be performed using this information.
(1) Calculate the calorific value of the waste from the measured component concentration in the combustion exhaust gas.
(2) The boiler evaporation amount is calculated based on the calculated waste heat generation amount.
(3) Based on the calculated amount of boiler evaporation, the amount of waste, combustion air, and auxiliary combustion material supplied to the incinerator is controlled.
Embodiments of a waste combustion control method and a combustion control apparatus according to the present invention will be described below in detail with reference to the drawings.

(1)廃棄物発熱量の算出
燃焼排ガス中の実測の成分濃度から廃棄物の発熱量を算出する。具体的には、例えば以下の3つの方法のいずれかを用いて算出する(推算発熱量A〜C)。あるいは、推算発熱量A〜Cの2または3を対比し、最適推算発熱量を設定することができる。設定値は、予め特定された廃棄物の特性あるいは焼却炉の燃焼特性等を考慮して設定することができる。各推算発熱量の内のいずれかを最適推算発熱量として設定すること、または各推算発熱量の単純平均値や荷重平均値等を算出することによって、より正確な廃棄物Wの発熱量を算出することができる。
(R)推算発熱量A:後述する(R1)〜(R8)のように、実測された酸素および水分の成分濃度を基に、二酸化炭素濃度を算出し、これらを用いて基準となる窒素濃度を算出し、該窒素濃度を基準に換算された酸素,二酸化炭素および水分の成分濃度から、各成分の発熱量,潜熱量および廃棄物量が算出され、算出された各値から算出される。
(S)推算発熱量B:後述する(S1)〜(S7)のように、実測された酸素,水分および二酸化炭素の成分濃度を基に窒素濃度を算出し、該窒素濃度を基準に換算された酸素,二酸化炭素および水分の成分濃度から、各成分の発熱量,潜熱量および廃棄物量が算出され、算出された各値から算出される。
(T)推算発熱量C:後述する(T1)〜(T3)のように、実測された酸素濃度から実測空気過剰率を算出し、該実測空気過剰率と実測された水分濃度を基に算出される。
(1) to calculate the heating value of the waste from the component concentration measured calculation combustion exhaust gas waste heat value. Specifically, for example, it is calculated by using any one of the following three methods (estimated calorific values A to C). Or 2 or 3 of estimated calorific value A-C can be contrasted, and the optimal estimated calorific value can be set up. The set value can be set in consideration of the characteristics of the waste specified in advance or the combustion characteristics of the incinerator. By setting one of the respective estimated calorific value as the optimum estimated calorific value, or by calculating the simple average value or weighted average value of each estimated calorific value, calculated more calorific accurate waste W can do.
(R) Estimated calorific value A: As will be described later (R1) to (R8), the carbon dioxide concentration is calculated based on the measured oxygen and moisture component concentrations, and these are used as the reference nitrogen concentration. And the calorific value, latent heat amount and waste amount of each component are calculated from the oxygen, carbon dioxide and moisture component concentrations converted based on the nitrogen concentration, and are calculated from the calculated values.
(S) Estimated calorific value B: As described later (S1) to (S7), the nitrogen concentration is calculated based on the measured component concentrations of oxygen, moisture, and carbon dioxide, and converted based on the nitrogen concentration. The calorific value, latent heat amount and waste amount of each component are calculated from the component concentrations of oxygen, carbon dioxide and water, and are calculated from the calculated values.
(T) estimated calorific value C: calculated based manner, calculates the actual air excess ratio from the measured oxygen concentration, the actually measured moisture concentration and said actual measured excess air ratio which will be described later (T1) ~ (T3) Is done.

(2)ボイラ蒸発量の算出
上記(1)において算出された廃棄物発熱量を基に、ボイラ蒸発量を算出する。具体的には、下式2,3に示すような廃棄物発熱量とボイラ蒸発量の関係を基に、算出された廃棄物発熱量からボイラ蒸発量を得ることができる。
(廃棄物燃焼熱量)=(廃棄物発熱量)×(廃棄物投入量)
=(ボイラ蒸発量×蒸気エンタルピ+持出熱量−持込熱量) …式2
(ボイラ蒸発量) =(廃棄物燃焼熱量−持出熱量+持込熱量)/(蒸気エンタルピ) …式3
ここで、廃棄物投入量,蒸気エンタルピ,持出熱量および持込熱量は、本プロセスにおける各計測値によって、リアルタイムに算出することができる。
(2) Calculation of boiler evaporation amount Based on the waste heat generation amount calculated in (1) above, the boiler evaporation amount is calculated . Specifically, the boiler evaporation amount can be obtained from the calculated waste heat generation amount based on the relationship between the waste heat generation amount and the boiler evaporation amount as shown in the following equations 2 and 3.
(Waste combustion heat amount) = (Waste heat value) x (Waste input amount)
= (Boiler evaporation x Steam enthalpy + Heat output-Heat input) Equation 2
(Boiler evaporation) = (Waste combustion heat-Bring heat + Bring heat) / (Steam enthalpy)
Here, the waste input amount, steam enthalpy, carry-out heat amount, and carry-in heat amount can be calculated in real time according to each measured value in this process.

(3)廃棄物,燃焼空気および助燃材の供給量の制御
算出されたボイラ蒸発量を基に、焼却炉に投入される廃棄物,燃焼空気および助燃材の供給量を制御する。具体的には、図1に例示するように、例えば、廃棄物,燃料空気および助燃材の供給量について、算出されたボイラ蒸発量を基準としてフィードバック制御されるとともに、その他の要素(例えば燃焼炉内温度等)によって補正されることによって、リアルタイムに燃焼状態に対して時間遅れのない廃棄物の燃焼制御を行うことができる。
(3) Control of the amount of waste, combustion air and auxiliary materials supplied
Based on the calculated amount of boiler evaporation, the amount of waste, combustion air, and auxiliary combustion material supplied to the incinerator is controlled. Specifically, as illustrated in FIG. 1, for example, the supply amount of waste, fuel air, and auxiliary combustion material is feedback-controlled based on the calculated boiler evaporation amount, and other elements (for example, a combustion furnace) By being corrected by the internal temperature or the like, it is possible to control the combustion of waste without time delay with respect to the combustion state in real time.

〔廃棄物発熱量の算出方法について〕
廃棄物発熱量は、上記のように推算発熱量A〜Cおよびこれらの組合せに基づき算出される。以下、各推算発熱量の算出方法手順について詳述する。
[Calculation method of waste heat value]
The waste heat generation amount is calculated based on the estimated heat generation amounts A to C and combinations thereof as described above. Hereinafter, a calculation method procedure for each estimated heat generation amount will be described in detail.

(R)推算発熱量Aの算出
(R1)排ガス中の酸素および水分の成分濃度を測定する。
焼却炉の炉内、または炉出口に設けられたO濃度計およびHO濃度計により、燃焼排ガス中の酸素および水分の成分濃度を測定することによって、燃焼状態の情報をリアルタイムに得ることができる。
(R) Calculation of estimated calorific value A (R1) The component concentrations of oxygen and moisture in the exhaust gas are measured.
Obtaining combustion state information in real time by measuring oxygen and moisture component concentrations in combustion exhaust gas with an O 2 concentration meter and H 2 O concentration meter installed in the incinerator or at the furnace outlet Can do.

(R2)測定された酸素および水分の成分濃度から、下式1を基に排ガス中の二酸化炭素濃度を算出する。
[CO]=Ro×(100−[HO])/100−[O] …式1
ここで、[]内は百分率表示濃度を示し、Roは大気中の酸素濃度から灰分に取り込まれる酸素成分量を減じて設定された係数を示す。
つまり、廃棄物が完全燃焼し、廃棄物中の酸素および窒素が排ガス中の酸素および窒素の成分濃度に影響を与えない条件の場合、燃焼空気中の二酸化炭素濃度[CO]と酸素濃度[O]は、下式4〜7の関係が成り立つ(d:乾燥状態,w:湿潤状態を示す)。
[CO(d)]+[O(d)]=21 …式4
[CO(d)]=[CO(w)]×100/(100−[HO]) …式5
[O(d)] =[O(w)]×100/(100−[HO]) …式6
[CO(w)]=21×(100−[HO])/100−[O(w)] …式7
しかしながら、実動状態においては、式7における「21」は成立せず、例えば「19:Ro」となることが実証されている。燃焼反応によって発生する灰分に取り込まれる酸素成分量がその差であると解される。[CO(d)]および[O(d)]は、予め実操業中に、手分析等分析・測定を行うことにより設定可能である。
(R2) The concentration of carbon dioxide in the exhaust gas is calculated from the measured oxygen and moisture component concentrations based on the following formula 1.
[CO 2 ] = Ro × (100− [H 2 O]) / 100− [O 2 ] Formula 1
Here, [] indicates the percentage display concentration, and Ro indicates a coefficient set by subtracting the oxygen component amount taken into the ash from the oxygen concentration in the atmosphere.
That is, in the case where the waste is completely burned and the oxygen and nitrogen in the waste do not affect the oxygen and nitrogen component concentrations in the exhaust gas, the carbon dioxide concentration [CO 2 ] and the oxygen concentration [ O 2 ] has the following relationships 4 to 7 (d: dry state, w: wet state).
[CO 2 (d)] + [O 2 (d)] = 21 Formula 4
[CO 2 (d)] = [CO 2 (w)] × 100 / (100− [H 2 O]) Equation 5
[O 2 (d)] = [O 2 (w)] × 100 / (100− [H 2 O]) Equation 6
[CO 2 (w)] = 21 × (100− [H 2 O]) / 100− [O 2 (w)] Equation 7
However, in the actual operation state, “21” in Expression 7 does not hold, and it has been proved to be, for example, “19: Ro”. It is understood that the amount of oxygen component taken into the ash generated by the combustion reaction is the difference. [CO 2 (d)] and [O 2 (d)] can be set in advance by performing analysis / measurement such as manual analysis during actual operation.

(R3)酸素濃度,水分濃度および二酸化炭素濃度を用い、排ガス中の窒素濃度を算出する。
具体的には、下式8に基づき、実測の酸素濃度,水分濃度および算出された二酸化炭素濃度から、排ガス中の窒素(N)濃度を算出する。
[N(w)]=100−([O(w)]+[CO(w)]+[HO]) …式8
(R3) The nitrogen concentration in the exhaust gas is calculated using the oxygen concentration, moisture concentration, and carbon dioxide concentration.
Specifically, based on the following equation 8, the nitrogen (N 2 ) concentration in the exhaust gas is calculated from the actually measured oxygen concentration, water concentration, and calculated carbon dioxide concentration.
[N 2 (w)] = 100 − ([O 2 (w)] + [CO 2 (w)] + [H 2 O])

(R4)算出された窒素濃度を基に燃焼空気中の窒素濃度に対する換算係数を算出し、該換算係数を乗じた酸素,二酸化炭素および水分の換算成分濃度を算出する。
(R4-1)燃焼空気中の窒素濃度に対する換算係数の算出
燃焼反応前後において不変の要素である窒素を基準に、これを燃焼空気供給時の分圧(基準窒素濃度Tn:燃焼空気を100としたとき79)に換算する係数(換算係数)tを、下式9に基づき算出する。
t=Tn(=79)/[N(w)] …式9
(R4-2)酸素,二酸化炭素,水分の換算成分濃度の算出
酸素,二酸化炭素,水分の各成分濃度に換算係数tを乗じた酸素,二酸化炭素および水分の換算成分濃度を算出する。下式10に基づき、それぞれ、換算酸素濃度Tx,換算二酸化炭素濃度Td,換算水分濃度Twを算出する。このとき、各数値は、燃焼空気の単位供給量当りの酸素量,二酸化炭素量および水分量となる。
Tx=[O(w)]×t,Td=[CO(w)]×t,Tw=[HO]×t
…式10
(R4) A conversion coefficient for the nitrogen concentration in the combustion air is calculated based on the calculated nitrogen concentration, and converted component concentrations of oxygen, carbon dioxide, and moisture are calculated by multiplying the conversion coefficient.
(R4-1) Calculation of Conversion Factor for Nitrogen Concentration in Combustion Air Based on nitrogen, which is an invariable factor before and after the combustion reaction, this is divided into the partial pressure (reference nitrogen concentration Tn: combustion air as 100 when supplying combustion air) Then, a coefficient (conversion coefficient) t to be converted into 79) is calculated based on the following formula 9.
t = Tn (= 79) / [N 2 (w)] Equation 9
(R4-2) Calculation of converted component concentrations of oxygen, carbon dioxide, and moisture Calculate converted component concentrations of oxygen, carbon dioxide, and moisture by multiplying each component concentration of oxygen, carbon dioxide, and moisture by a conversion factor t. Based on the following formula 10, the converted oxygen concentration Tx, the converted carbon dioxide concentration Td, and the converted water concentration Tw are calculated. At this time, each numerical value is the amount of oxygen, the amount of carbon dioxide and the amount of water per unit supply amount of combustion air.
Tx = [O 2 (w)] × t, Td = [CO 2 (w)] × t, Tw = [H 2 O] × t
... Formula 10

(R5)換算された前記酸素,二酸化炭素および水分の成分濃度から、燃焼処理に用いられた燃焼空気の単位供給量当りの酸素消費量を算出する。
燃焼空気中の酸素濃度(基準酸素濃度)Toを基に、下式11に基づき、換算された換算酸素濃度Txから、燃焼処理に用いられた燃焼空気の単位供給量当りの酸素消費量Doを算出する。
Do=To−Tx …式11
ここで、To=(100−Tn)であり、21[%]に置き換えることができる。
(R5) The oxygen consumption per unit supply amount of the combustion air used for the combustion process is calculated from the converted component concentrations of oxygen, carbon dioxide and moisture.
Based on the oxygen concentration (reference oxygen concentration) To in the combustion air, the oxygen consumption amount Do per unit supply amount of the combustion air used for the combustion process is calculated from the converted oxygen concentration Tx converted based on the following formula 11. calculate.
Do = To−Tx Equation 11
Here, To = (100−Tn), and can be replaced with 21 [%].

(R6)算出された前記酸素消費量から、燃焼空気の単位供給量当りの、該燃焼処理において生成した二酸化炭素および水分に係る発熱量、該生成水分量と前記廃棄物中に含まれていた水分量の総量からの潜熱量を算出する。
(R6−1)燃焼空気の単位供給量当りの二酸化炭素および水分に係る発熱量の算出
算出された酸素消費量Doから、燃焼空気の単位供給量当りの、該燃焼処理において生成した二酸化炭素に係る発熱量Hdおよび水分に係る発熱量Hwを算出する。つまり、廃棄物W中の炭素成分および水素成分の完全燃焼に要する酸素総量が酸素消費量Doとなり、そのうち炭素成分によって消費される酸素量は、下反応式1から換算二酸化炭素濃度Tdと同量であり、残量が水素成分によって消費される酸素量となる(下反応式2)。つまり
また、反応式1および2におけるHcおよびHhは、各反応による反応熱(発熱量)を示す。
C+O → CO +Hc …反応式1
4H+O → 2HO+Hh …反応式2
従って、発熱量HdおよびHwは、発熱量HcおよびHhを基に、下式12,13により算出することができる。
Hd=Hc×Td …式12
Hw=Hh×(Do−Td) …式13
(R6−2)水分量の総量からの潜熱量の算出
水の潜熱Loを基に、下式14に基づき、燃焼生成水分量と廃棄物中に含まれていた水分量の総量Twの潜熱量Lwを算出する。
Lw=Lo×Tw …式14
(R6) From the calculated oxygen consumption amount, the calorific value related to carbon dioxide and moisture generated in the combustion process per unit supply amount of combustion air, the generated moisture amount and the waste contained in the waste Calculate the amount of latent heat from the total amount of moisture.
(R6-1) Carbon dioxide per unit supply amount of combustion air and calorific value related to moisture calculated from the calculated oxygen consumption amount Do to carbon dioxide generated in the combustion process per unit supply amount of combustion air The calorific value Hd and the calorific value Hw related to moisture are calculated. That is, the total amount of oxygen required for complete combustion of the carbon component and hydrogen component in the waste W becomes the oxygen consumption amount Do, and the amount of oxygen consumed by the carbon component is the same as the converted carbon dioxide concentration Td from the following reaction formula 1. And the remaining amount is the amount of oxygen consumed by the hydrogen component (lower reaction formula 2). That is, Hc and Hh in the reaction formulas 1 and 2 indicate reaction heat (calorific value) by each reaction.
C + O 2 → CO 2 + Hc: Reaction formula 1
4H + O 2 → 2H 2 O + Hh (Scheme 2)
Therefore, the heat generation amounts Hd and Hw can be calculated by the following equations 12 and 13 based on the heat generation amounts Hc and Hh.
Hd = Hc × Td Equation 12
Hw = Hh × (Do−Td) Equation 13
(R6-2) Calculation of latent heat amount from total amount of moisture Based on latent heat Lo of water, latent heat amount of total amount Tw of combustion generated moisture amount and moisture amount contained in waste based on the following formula 14. Lw is calculated.
Lw = Lo × Tw Equation 14

(R7)燃焼処理された廃棄物の供給量から、燃焼空気の単位供給量当りの処理された廃棄物量を算出する。
燃焼処理された廃棄物Wの供給量Wiおよびそのときの燃焼空気の供給量Aiから、下式15に基づき、燃焼空気の単位供給量当りの処理された廃棄物量(換算廃棄物量)Woを算出する。
Wo=Wi/Ai …式15
(R7) The amount of waste processed per unit supply amount of combustion air is calculated from the supply amount of waste treated by combustion.
From the supply amount Wi of the burned waste W and the supply amount Ai of the combustion air at that time, the processed waste amount (converted waste amount) Wo per unit supply amount of the combustion air is calculated based on the following equation 15. To do.
Wo = Wi / Ai Equation 15

(R8)算出された前記発熱量,前記潜熱量および廃棄物量から、処理された廃棄物量当りの推算発熱量Aを算出する。
算出された発熱量(Hd+Hw),潜熱量Lwおよび廃棄物量Woから、下式16に基づき、処理された廃棄物量当りの推算発熱量Aを算出する。
A=(Hd+Hw−Lw)/Wo …式16
このとき、算出された推算発熱量Aは、燃焼空気の単位供給量当りの数値であり、実測の燃焼空気の供給量を用いることによって、廃棄物Wの単位供給量当りの推算発熱量Aに変換することができる。廃棄物Wの質(特性)に対する客観性の高い評価値とすることができる。
(R8) An estimated calorific value A per treated waste amount is calculated from the calculated calorific value, latent heat amount and waste amount.
Based on the calculated calorific value (Hd + Hw), latent heat amount Lw, and waste amount Wo, an estimated calorific value A per treated waste amount is calculated based on the following equation 16.
A = (Hd + Hw−Lw) / Wo Equation 16
At this time, the calculated estimated calorific value A is a numerical value per unit supply amount of the combustion air, and the estimated calorific value A per unit supply amount of the waste W is obtained by using the actually measured supply amount of combustion air. Can be converted. It can be set as a highly objective evaluation value for the quality (characteristics) of the waste W.

(S)推算発熱量Bの算出
(S1)排ガス中の酸素,二酸化炭素および水分の成分濃度を測定する。
焼却炉の炉内、または炉出口に設けられたO濃度計,HO濃度計およびCO濃度計により、燃焼排ガス中の酸素,水分および二酸化炭素の成分濃度を測定することによって、燃焼状態の情報をリアルタイムに得ることができる。
(S) Calculation of estimated calorific value B (S1) The component concentrations of oxygen, carbon dioxide and moisture in the exhaust gas are measured.
Combustion by measuring the component concentrations of oxygen, moisture and carbon dioxide in the flue gas with an O 2 concentration meter, H 2 O concentration meter and CO 2 concentration meter provided in the furnace or at the furnace outlet Status information can be obtained in real time.

以下の手順(S2)〜(S7)は、上記手順(R3)〜(R8)と同様に行うことができる。ここでは略す。
(S2)測定された各成分濃度から、排ガス中の窒素濃度を算出する。
(S3)算出された窒素濃度を基に燃焼空気中の窒素濃度に対する換算係数を算出し、該換算係数を乗じた酸素,二酸化炭素および水分の換算成分濃度を算出する。
(S4)換算された酸素,二酸化炭素および水分の成分濃度から、燃焼処理に用いられた燃焼空気の単位供給量当りの酸素消費量を算出する。
(S5)算出された酸素消費量から、燃焼空気の単位供給量当りの、該燃焼処理において生成した二酸化炭素および水分に係る発熱量、該生成水分量と廃棄物中に含まれていた水分量の総量からの潜熱量を算出する。
(S6)燃焼処理された廃棄物の供給量から、燃焼空気の単位供給量当りの処理された廃棄物量を算出する。
(S7)算出された発熱量,潜熱量および廃棄物量から、処理された廃棄物量当りの推算発熱量Bを算出する。
The following procedures (S2) to (S7) can be performed in the same manner as the above procedures (R3) to (R8). Abbreviated here.
(S2) The nitrogen concentration in the exhaust gas is calculated from the measured component concentrations.
(S3) A conversion coefficient for the nitrogen concentration in the combustion air is calculated based on the calculated nitrogen concentration, and converted component concentrations of oxygen, carbon dioxide, and moisture are calculated by multiplying the conversion coefficient.
(S4) The oxygen consumption per unit supply amount of the combustion air used for the combustion process is calculated from the converted oxygen, carbon dioxide and moisture component concentrations.
(S5) From the calculated oxygen consumption, the calorific value related to carbon dioxide and moisture generated in the combustion process per unit supply amount of combustion air, the amount of generated moisture and the amount of moisture contained in the waste The amount of latent heat is calculated from the total amount.
(S6) The amount of waste treated per unit supply amount of combustion air is calculated from the amount of waste treated after combustion.
(S7) From the calculated calorific value, latent heat quantity and waste quantity, an estimated calorific value B per treated waste quantity is calculated.

(T)推算発熱量Cの算出
(T1)排ガス中の酸素および水分の成分濃度の測定
上記手順(R1)と同様に行うことができる。ここでは略す。
(T) Calculation of estimated calorific value C (T1) Measurement of oxygen and moisture component concentrations in exhaust gas The same procedure as in the above procedure (R1) can be performed. Abbreviated here.

(T2)実測空気過剰率の算出
測定された酸素濃度から、下式17に基づき、実測空気過剰率λoを算出する。
λo=To(=21)/(To−[O]) …式17
(T2) Calculation of Actual Air Excess Ratio The actual air excess ratio λo is calculated from the measured oxygen concentration based on the following equation 17.
λo = To (= 21) / (To− [O 2 ]) Equation 17

(T3)推算発熱量Cの算出
予め設定された空気過剰率λと燃焼ガス(排ガス)中の水分量(濃度)を指標とする廃棄物の発熱量との相関に、実測された水分濃度[HO]および実測空気過剰率λoを適用し、推算発熱量Cを算出する。具体的には、予め基準となる廃棄物を設定し、実測空気過剰率を指標とした水分濃度−推算発熱量Cとの相関図を準備し、実測された水分濃度[HO]および実測空気過剰率λoを適用することによって、推算発熱量Cを得ることができる。基準となる廃棄物の性状(質)により複数の相関図を準備することによって、より精度の高い推算発熱量Cを算出することができる。また、相関図に代えて、実測空気過剰率を指標とした水分濃度−推算発熱量Cとの相関関数を準備し、実測された水分濃度[HO]および実測空気過剰率λoを適用することによって、推算発熱量Cを算出することができる。
(T3) Calculation of Estimated Calorific Value C Measured moisture concentration [Correlation between the preset excess air ratio λ and the calorific value of waste with the moisture content (concentration) in the combustion gas (exhaust gas) as an index [ H 2 O] and the measured excess air ratio λo are applied to calculate the estimated calorific value C. Specifically, a reference waste is set in advance, and a correlation diagram between the moisture concentration and the estimated calorific value C using the measured excess air ratio as an index is prepared. The measured moisture concentration [H 2 O] and measured By applying the excess air ratio λo, the estimated calorific value C can be obtained. By preparing a plurality of correlation diagrams according to the properties (quality) of the waste as a reference, it is possible to calculate the estimated calorific value C with higher accuracy. Also, instead of the correlation diagram, a correlation function of moisture concentration-estimated calorific value C using the measured excess air ratio as an index is prepared, and the measured moisture concentration [H 2 O] and the measured excess air ratio λo are applied. Thus, the estimated calorific value C can be calculated.

<本発明に係る燃焼制御装置>
本発明に係る燃焼制御装置(以下「本装置」ということがある)は、少なくとも、廃棄物の供給量測定部,燃焼空気の供給量測定部および排ガス中の酸素,二酸化炭素および水分の成分濃度測定部を有し、上記算出された廃棄物発熱量または推算発熱量A〜Cのいずれかを用いて、焼却炉に投入される廃棄物,燃焼空気および助燃材の供給量を制御することを特徴とする。具体的には、例えば図2に例示する焼却炉を含む廃棄物処理装置(以下「本処理装置」ということがある)に備えられた廃棄物の供給量測定部,燃焼空気の供給量測定部および成分濃度測定部例から構成される。
<Combustion control device according to the present invention>
The combustion control device according to the present invention (hereinafter sometimes referred to as “the present device”) includes at least a waste supply amount measurement unit, a combustion air supply amount measurement unit, and oxygen, carbon dioxide, and moisture component concentrations in exhaust gas. Having a measuring section and controlling the supply amount of waste, combustion air, and auxiliary combustion material to be put into the incinerator by using any one of the calculated calorific value or estimated calorific value A to C Features. Specifically, for example, a waste supply amount measurement unit and a combustion air supply amount measurement unit provided in a waste treatment apparatus including an incinerator illustrated in FIG. 2 (hereinafter also referred to as “the present treatment apparatus”). And a component concentration measuring unit.

本処理装置には、廃棄物Wが貯留される貯留ピット1,貯留ピット1内の廃棄物Wが移送手段1a(例えばクレーン等)によって投入されるホッパ2,およびホッパ2に投入された廃棄物Wが廃棄物供給装置4によって給送されるストーカ3が設けられる。ストーカ3は、往復移動駆動されて廃棄物Wを炉本体10に送給する。炉本体10には、ストーカ3の上部に設けられた一次燃焼ゾーン10A,さらにその上部の二次燃焼ゾーン10B,ストーカ3および一次燃焼ゾーン10Aに一次燃焼空気を供給する一次燃焼空気供給装置5,二次燃焼ゾーン10Bに二次燃焼空気を供給する二次燃焼空気供給装置6,塵灰Dを排出する灰排出部7,および炉内の排ガスEを排出する排ガス排出部8が設けられる。
ストーカ3に送られた廃棄物Wは、一次燃焼ゾーン10Aにおいて、燃焼により生じる高温燃焼ガスによって乾燥され、一次燃焼空気によって、部分燃焼され、さらに完全燃焼される。燃焼によって発生するガスは、水分(HO,廃棄物W中に含まれていた水分の蒸発による水蒸気を含む)、乾留によって生じる炭化水素ガス(HC)、不完全燃焼によって生じる一酸化炭素(CO)や完全燃焼による二酸化炭素(CO)等である。一次燃焼ゾーン10Aでの未燃物または不完全燃焼物は、二次燃焼ゾーン10Bにおいて、その下部,中部,上部に供給される二次燃焼空気によって、完全燃焼される。燃焼によって発生した塵灰Dは、灰排出部7から排出され、炉内の排ガスEは、排ガス排出部8から排出される。なお、高温条件での燃焼において発生する窒素酸化物(NOx)や廃棄物W中に含まれる塩素や硫黄等を起源とする塩素化合物や硫黄酸化物(SOx)等は微量であり、発熱量に与える影響が少ないことから、ここでは直接的には触れない。
In this processing apparatus, the storage pit 1 in which the waste W is stored, the hopper 2 in which the waste W in the storage pit 1 is input by the transfer means 1a (for example, a crane), and the waste input in the hopper 2 A stalker 3 to which W is fed by the waste supply device 4 is provided. The stalker 3 is driven to reciprocate to feed the waste W to the furnace body 10. The furnace body 10 includes a primary combustion zone 10A provided at the top of the stoker 3, and a primary combustion air supply device 5 for supplying primary combustion air to the secondary combustion zone 10B, the stoker 3 and the primary combustion zone 10A. A secondary combustion air supply device 6 for supplying secondary combustion air to the secondary combustion zone 10B, an ash discharge part 7 for discharging dust ash D, and an exhaust gas discharge part 8 for discharging exhaust gas E in the furnace are provided.
The waste W sent to the stalker 3 is dried by the high-temperature combustion gas generated by the combustion in the primary combustion zone 10A, partially combusted by the primary combustion air, and further completely combusted. The gas generated by the combustion includes water (H 2 O, including water vapor generated by evaporation of water contained in the waste W), hydrocarbon gas (HC) generated by dry distillation, carbon monoxide generated by incomplete combustion ( CO) and carbon dioxide (CO 2 ) by complete combustion. In the secondary combustion zone 10B, the unburned material or incomplete combustion product in the primary combustion zone 10A is completely burned by the secondary combustion air supplied to the lower, middle and upper parts thereof. The dust ash D generated by the combustion is discharged from the ash discharge unit 7, and the exhaust gas E in the furnace is discharged from the exhaust gas discharge unit 8. In addition, nitrogen oxides (NOx) generated in combustion under high temperature conditions, chlorine compounds and sulfur oxides (SOx) originating from chlorine, sulfur, etc. contained in the waste W are in trace amounts, and the calorific value I will not touch here directly because it has little impact.

(a)廃棄物の供給量測定部
ホッパ2に投入される廃棄物Wの量と質を測定するセンサ部として、廃棄物投入重量検出センサ12とレーザ距離計13とが設けられている。レーザ距離計13により、廃棄物Wの表面までの距離を測定して、投入される廃棄物Wの体積を測定する。廃棄物投入重量検出センサ12は、廃棄物Wの重量を測定する。廃棄物Wの体積と重量を検出することによって、廃棄物Wの比重の変化を所定時間間隔で検出することができる。既述のように、廃棄物Wの比重が分かれば、廃棄物Wの質(水分量等)を予測することができる。
(A) Waste Supply Amount Measurement Unit A waste input weight detection sensor 12 and a laser distance meter 13 are provided as sensor units for measuring the amount and quality of the waste W input into the hopper 2. The distance to the surface of the waste W is measured by the laser distance meter 13, and the volume of the waste W to be input is measured. The waste input weight detection sensor 12 measures the weight of the waste W. By detecting the volume and weight of the waste W, a change in the specific gravity of the waste W can be detected at predetermined time intervals. As described above, if the specific gravity of the waste W is known, the quality (water content, etc.) of the waste W can be predicted.

(b)燃焼空気の供給量測定部
燃焼空気は、一次燃焼ゾーン10Aにおいては、ストーカ3に載置され移送される廃棄物Wの最適な燃焼状態を形成されるように、一次燃焼空気供給装置5から複数段に分けて供給される。例えば、乾燥ステップ,燃焼ステップおよび後燃焼ステップの順に、各ステップにおける廃棄物Wの量(容積)や表面温度および燃焼ガスの流量等をモニタしながら、それぞれの燃焼空気の供給量が制御される。さらに、二次燃焼ゾーン10Bにおいては、一次燃焼ゾーン10Aにおいて未燃または不完全燃焼した成分の完全燃焼とともに、排ガスEの冷却処理あるいは希釈処理を行うために、二次燃焼空気供給装置6から複数段に分けて供給される。例えば、二次燃焼ゾーン10Bの上部および下部(さらに中部)から、排ガス中の成分濃度(詳細は後述)や温度および排ガスEの流量等をモニタしながら、それぞれの燃焼空気の供給量が制御される。ここで、燃焼空気の供給量とは、一次燃焼空気供給装置5および二次燃焼空気供給装置6の各段に設けられた流量計(図示せず)によって測定された、これらの総流量をいう。該流量計として、例えば流量制御機能付流量計を用いることができる。また、本処理装置の構成例においては、一次燃焼ゾーン10Aに、ガス流れ方向に関するセンサ部として、ガス流速計17が設けられ、温度分布に関するプロセスデータを検出するセンサ部として、赤外線放射温度計18が設けられ、炉本体10の終端には、燃焼に伴うエネルギーに相当する蒸発量を測定するセンサとして、蒸気流量を測定する蒸気流量計19が設けられる。
(B) Combustion air supply amount measuring unit Primary combustion air supply device for combusting air is formed in the primary combustion zone 10A so as to form an optimal combustion state of the waste W placed and transferred on the stalker 3 5 to be supplied in multiple stages. For example, the supply amount of each combustion air is controlled while monitoring the amount (volume) of the waste W, the surface temperature, the flow rate of the combustion gas, and the like in the order of the drying step, the combustion step, and the post-combustion step. . Further, in the secondary combustion zone 10B, a plurality of secondary combustion air supply devices 6 are used to cool or dilute the exhaust gas E together with complete combustion of the unburned or incompletely burned components in the primary combustion zone 10A. It is supplied in stages. For example, the supply amount of each combustion air is controlled from the upper part and lower part (further the middle part) of the secondary combustion zone 10B while monitoring the component concentration (details will be described later), the temperature, the flow rate of the exhaust gas E, etc. The Here, the supply amount of combustion air means the total flow rate measured by a flow meter (not shown) provided in each stage of the primary combustion air supply device 5 and the secondary combustion air supply device 6. . For example, a flow meter with a flow control function can be used as the flow meter. Further, in the configuration example of the present processing apparatus, the gas flow velocity meter 17 is provided as a sensor unit related to the gas flow direction in the primary combustion zone 10A, and the infrared radiation thermometer 18 is used as a sensor unit that detects process data related to the temperature distribution. And a steam flow meter 19 for measuring the steam flow rate is provided at the end of the furnace body 10 as a sensor for measuring the amount of evaporation corresponding to the energy accompanying combustion.

(c)排ガス中の成分濃度測定部
炉本体10内には、廃棄物Wの燃焼状態および燃焼結果を検出するセンサ部が設けられている。具体的には、O濃度計14、CO濃度計15、HO濃度計16が二次燃焼ゾーン10B、一次燃焼ゾーン10Aの少なくとも一方に設けられている(図2では、二次燃焼ゾーン10Bのみに設けられ、CO濃度計15が配設された例を示すが、これに限定されないことは上記の通りである)。ここで、O濃度計14、CO濃度計15、HO濃度計16としては、レーザ発信器(図示せず)が波長をスキャンしながら強さ一定のレーザ光を炉本体10内のガスに照射し、レーザ受信器によって残存のレーザ光を測定することにより、当該ガスの成分濃度や温度を検出する方式を採用することが好ましい。測定対象となる排ガスを、非接触で検出できるとともに同一部位における検出情報を同時に得ることができる点において好適である。また、各ガスの成分濃度を検出する公知のセンサを使用しても良い。排ガス中の各成分濃度から、燃焼された廃棄物Wの組成を算出することができるとともに、燃焼空気の供給量との関係から廃棄物Wの発熱量を算出することができる。なお、以下各成分濃度について、個別には酸素成分濃度を酸素濃度、窒素成分濃度を窒素濃度、等ということがある。
(C) Component concentration measuring unit in exhaust gas In the furnace body 10, a sensor unit for detecting the combustion state of the waste W and the combustion result is provided. Specifically, an O 2 concentration meter 14, a CO 2 concentration meter 15, and an H 2 O concentration meter 16 are provided in at least one of the secondary combustion zone 10B and the primary combustion zone 10A (in FIG. 2, secondary combustion). An example in which the CO 2 concentration meter 15 is provided only in the zone 10B is shown, but it is not limited to this as described above). Here, as the O 2 concentration meter 14, the CO 2 concentration meter 15, and the H 2 O concentration meter 16, a laser light source (not shown) scans the wavelength and emits a laser beam having a constant intensity in the furnace body 10. It is preferable to employ a method of detecting the component concentration and temperature of the gas by irradiating the gas and measuring the remaining laser light with a laser receiver. This is preferable in that exhaust gas to be measured can be detected in a non-contact manner and detection information at the same site can be obtained at the same time. Moreover, you may use the well-known sensor which detects the component density | concentration of each gas. The composition of the burned waste W can be calculated from the concentration of each component in the exhaust gas, and the calorific value of the waste W can be calculated from the relationship with the supply amount of combustion air. Hereinafter, for each component concentration, the oxygen component concentration may be referred to as oxygen concentration, the nitrogen component concentration may be referred to as nitrogen concentration, and the like.

<本方法の実証実験>
廃棄物を供給した上記本処理装置について、推算発熱量Aを用いて、本方法の燃焼制御機能およびその技術効果を検証した。
〔検証結果〕
(i)図3(A)は、本処理装置を12時間の連続運転した時の、ボイラ蒸発量実測値およびそのときの排気ガス中の酸素濃度および水分濃度から推算発熱量Aを用いて、算出したボイラ蒸発量の算出値を示す。
(ii)図3(B)は、その一部を拡大表示したものである。ボイラ蒸発量の算出値がボイラ蒸発量実測値に先行していることが分かる。その差は約240secであった。
(iii)また、図3(C)は、両者の相関を求めたものである。非常に良い相関を有する結果が得られた。
<Demonstration experiment of this method>
Using the estimated calorific value A, the combustion control function of the method and its technical effect were verified for the treatment apparatus supplied with waste.
〔inspection result〕
(I) 3 (A) is, the processing apparatus when the continuous operation of 12 hours, measured values of boiler evaporation amount and the oxygen concentration and the water concentration in the exhaust gas at that time by using the estimated calorific value A shows the calculated value of the calculated boiler evaporation amount.
(Ii) FIG. 3B is an enlarged view of a part thereof. It can be seen that the calculated value of the boiler evaporation amount precedes the actual measurement value of the boiler evaporation amount. The difference was about 240 seconds.
(Iii) FIG. 3C shows the correlation between the two. Results with very good correlation were obtained.

以上のように、本発明に係る廃棄物の燃焼制御方法およびこれを適用した燃焼制御装置によって、以下のような優れた技術的効果を得ることが可能となった。
(i)廃棄物の発熱量を遅滞なく連続して測定することにより、最適な燃焼制御が実現できる。
(ii)発電設備を有する施設では、ボイラ蒸発量推算値を実測値より先行して(実証実験では約240秒先行した)演算することで、蒸発量の安定と排ガス量の最小化により発電効率のアップを実現できる。
(iii)現在燃焼している廃棄物の発熱量が判るため、異常燃焼などの過渡応答にも自動運転のまま対応できる。
(iv)既存の自動燃焼制御を大幅な変更が不要なため、既設施設にも安価で容易に適用でき、適用範囲が広い。
(v)廃棄物処理施設の運転が容易になるため、運転員の資質に依存する必要がなく、また人員の削減による省力化を図ることが可能となった。
As described above, the following excellent technical effects can be obtained by the waste combustion control method according to the present invention and the combustion control device to which the waste combustion control method is applied.
(I) Optimal combustion control can be realized by continuously measuring the calorific value of waste without delay.
(Ii) In a facility with power generation facilities, power generation efficiency can be improved by stabilizing the evaporation amount and minimizing the amount of exhaust gas by calculating the estimated amount of boiler evaporation before the actual measurement (about 240 seconds in the demonstration experiment). Can be improved.
(Iii) Since the calorific value of the currently burning waste is known, it is possible to cope with a transient response such as abnormal combustion with automatic operation.
(Iv) Since the existing automatic combustion control does not require a significant change, it can be easily applied to existing facilities at a low cost and has a wide range of applications.
(V) Since it becomes easier to operate the waste treatment facility, it is not necessary to depend on the qualities of the operators, and it is possible to save labor by reducing the number of personnel.

Claims (3)

所定量の廃棄物を燃焼処理するプロセスにおいて、以下の手順に基づき算出された廃棄物の発熱量を基にボイラ蒸発量を算出し、該ボイラ蒸発量を基に焼却炉に投入される廃棄物,燃焼空気および助燃材の供給量を制御し、焼却炉の燃焼制御を行うことを特徴とする廃棄物の燃焼制御方法。
(R1)排ガス中の酸素および水分の成分濃度を測定する。
(R2)測定された前記酸素および水分の成分濃度から、下式1を基に排ガス中の二酸化炭素濃度を推算する。
[CO]=Ro×(100−[HO])/100−[O] …式1
ここで、[ ]内は百分率表示濃度を示し、Roは大気中の酸素濃度から灰分に取り込まれる酸素成分量を減じて設定された係数を示す。
(R3)前記酸素濃度,水分濃度および二酸化炭素濃度を用い、排ガス中の窒素濃度を算出する。
(R4)算出された窒素濃度を基に燃焼空気中の窒素濃度に対する換算係数を算出し、該換算係数を乗じた前記酸素,二酸化炭素および水分の換算成分濃度を算出する。
(R5)換算された前記酸素,二酸化炭素および水分の成分濃度から、燃焼処理に用いられた燃焼空気の単位供給量当りの酸素消費量を算出する。
(R6)算出された前記酸素消費量から、燃焼空気の単位供給量当りの、該燃焼処理において生成した二酸化炭素および水分に係る発熱量、該生成水分量と前記廃棄物中に含まれていた水分量の総量からの潜熱量を算出する。
(R7)燃焼処理された廃棄物の供給量から、燃焼空気の単位供給量当りの処理された廃棄物量を算出する。
(R8)算出された前記発熱量,前記潜熱量および廃棄物量から、処理された廃棄物量当りの推算発熱量Aを算出する。
In the process of burning a predetermined amount of waste, the amount of boiler evaporation is calculated based on the calorific value of the waste calculated based on the following procedure, and the waste is put into the incinerator based on the amount of boiler evaporation , A waste combustion control method characterized by controlling the supply amount of combustion air and auxiliary combustion material to control combustion of an incinerator.
(R1) The component concentrations of oxygen and moisture in the exhaust gas are measured.
(R2) From the measured oxygen and moisture component concentrations, the carbon dioxide concentration in the exhaust gas is estimated based on the following formula 1.
[CO 2 ] = Ro × (100− [H 2 O]) / 100− [O 2 ] Formula 1
Here, the value in [] indicates the percentage display concentration, and Ro indicates a coefficient set by subtracting the amount of oxygen component taken into the ash from the oxygen concentration in the atmosphere.
(R3) The nitrogen concentration in the exhaust gas is calculated using the oxygen concentration, water concentration, and carbon dioxide concentration.
(R4) A conversion factor for the nitrogen concentration in the combustion air is calculated based on the calculated nitrogen concentration, and the converted component concentrations of oxygen, carbon dioxide, and moisture are calculated by multiplying the conversion factor.
(R5) The oxygen consumption per unit supply amount of the combustion air used for the combustion process is calculated from the converted component concentrations of oxygen, carbon dioxide and moisture.
(R6) From the calculated oxygen consumption amount, the calorific value related to carbon dioxide and moisture generated in the combustion process per unit supply amount of combustion air, the generated moisture amount and the waste contained in the waste Calculate the amount of latent heat from the total amount of moisture.
(R7) The amount of waste processed per unit supply amount of combustion air is calculated from the supply amount of waste treated by combustion.
(R8) An estimated calorific value A per treated waste amount is calculated from the calculated calorific value, latent heat amount and waste amount.
所定量の廃棄物を燃焼処理するプロセスにおいて、以下の手順に基づき算出された廃棄物の発熱量を基にボイラ蒸発量を算出し、該ボイラ蒸発量を基に焼却炉に投入される廃棄物,燃焼空気および助燃材の供給量を制御し、焼却炉の燃焼制御を行うことを特徴とする廃棄物の燃焼制御方法。
(S1)排ガス中の酸素,二酸化炭素および水分の成分濃度を測定する。
(S2)測定された前記各成分濃度から、排ガス中の窒素濃度を算出する。
(S3)算出された窒素濃度を基に燃焼空気中の窒素濃度に対する換算係数を算出し、該換算係数を乗じた前記酸素,二酸化炭素および水分の換算成分濃度を算出する。
(S4)換算された前記酸素,二酸化炭素および水分の成分濃度から、燃焼処理に用いられた燃焼空気の単位供給量当りの酸素消費量を算出する。
(S5)算出された前記酸素消費量から、燃焼空気の単位供給量当りの、該燃焼処理において生成した二酸化炭素および水分に係る発熱量、該生成水分量と前記廃棄物中に含まれていた水分量の総量からの潜熱量を算出する。
(S6)燃焼処理された廃棄物の供給量から、燃焼空気の単位供給量当りの処理された廃棄物量を算出する。
(S7)算出された前記発熱量,前記潜熱量および廃棄物量から、処理された廃棄物量当りの推算発熱量Bを算出する。
In the process of burning a predetermined amount of waste, the amount of boiler evaporation is calculated based on the calorific value of the waste calculated based on the following procedure, and the waste is put into the incinerator based on the amount of boiler evaporation , A waste combustion control method characterized by controlling the supply amount of combustion air and auxiliary combustion material to control combustion of an incinerator.
(S1) The component concentrations of oxygen, carbon dioxide and moisture in the exhaust gas are measured.
(S2) The nitrogen concentration in the exhaust gas is calculated from the measured component concentrations.
(S3) A conversion factor for the nitrogen concentration in the combustion air is calculated based on the calculated nitrogen concentration, and the converted component concentrations of the oxygen, carbon dioxide, and moisture are calculated by multiplying the conversion factor.
(S4) The oxygen consumption per unit supply amount of the combustion air used for the combustion process is calculated from the converted component concentrations of oxygen, carbon dioxide and moisture.
(S5) From the calculated oxygen consumption amount, the calorific value related to carbon dioxide and moisture generated in the combustion process per unit supply amount of combustion air, the generated moisture amount and the waste contained in the waste Calculate the amount of latent heat from the total amount of moisture.
(S6) The amount of waste treated per unit supply amount of combustion air is calculated from the amount of waste treated after combustion.
(S7) From the calculated calorific value, latent heat quantity and waste quantity, an estimated calorific value B per treated waste quantity is calculated.
請求項1または2に記載の廃棄物の燃焼制御方法を適用した燃焼制御装置であって、少なくとも、廃棄物の供給量測定部,燃焼空気の供給量測定部および排ガス中の酸素および水分または酸素,水分および二酸化炭素濃度の成分濃度測定部を有し、前記算出された推算発熱量Aまたは推算発熱量Bを用いて、焼却炉に投入される廃棄物,燃焼空気および助燃材の供給量を制御することを特徴とする燃焼制御装置。
A combustion control apparatus to which the waste combustion control method according to claim 1 or 2 is applied, wherein at least the supply amount measurement unit of waste, the supply amount measurement unit of combustion air, and oxygen and moisture in exhaust gas , or Supply amount of waste, combustion air, and auxiliary combustible materials to be put into the incinerator using the calculated calorific value A or the calorific value B calculated as described above. The combustion control device characterized by controlling.
JP2015226211A 2015-11-19 2015-11-19 Waste combustion control method and combustion control apparatus to which the method is applied Active JP5996762B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015226211A JP5996762B1 (en) 2015-11-19 2015-11-19 Waste combustion control method and combustion control apparatus to which the method is applied
PCT/JP2016/060199 WO2017085941A1 (en) 2015-11-19 2016-03-29 Waste incineration control method, and incineration control apparatus using same
EP16865945.6A EP3379147B1 (en) 2015-11-19 2016-03-29 Waste incineration control method, and incineration control apparatus using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015226211A JP5996762B1 (en) 2015-11-19 2015-11-19 Waste combustion control method and combustion control apparatus to which the method is applied

Publications (2)

Publication Number Publication Date
JP5996762B1 true JP5996762B1 (en) 2016-09-21
JP2017096517A JP2017096517A (en) 2017-06-01

Family

ID=56960944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015226211A Active JP5996762B1 (en) 2015-11-19 2015-11-19 Waste combustion control method and combustion control apparatus to which the method is applied

Country Status (3)

Country Link
EP (1) EP3379147B1 (en)
JP (1) JP5996762B1 (en)
WO (1) WO2017085941A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018124010A (en) * 2017-01-31 2018-08-09 株式会社タクマ Measurement method of amount of heat generation of burned object, combustion control method of combustion furnace using measured amount of heat generation, and combustion control device
US11867391B2 (en) 2017-09-11 2024-01-09 Enero Inventions Inc. Dynamic heat release calculation for improved feedback control of solid-fuel-based combustion processes

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017008123A1 (en) * 2017-08-30 2019-02-28 Martin GmbH für Umwelt- und Energietechnik Furnace and method for operating a furnace
JP2019211193A (en) * 2018-06-08 2019-12-12 荏原環境プラント株式会社 State quantity estimation method of combustion facility, combustion control method, and combustion control device
JP7199305B2 (en) * 2019-05-23 2023-01-05 日立造船株式会社 Incinerator and incinerator control method
JP7064643B1 (en) * 2021-09-10 2022-05-10 三菱重工環境・化学エンジニアリング株式会社 Incinerator equipment control device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561522B2 (en) * 1974-03-22 1981-01-14
JPH0240410A (en) * 1988-07-29 1990-02-09 Kubota Ltd Automatic combustion control of municipal waste incinerating furnace
JPH06331123A (en) * 1993-05-21 1994-11-29 Unitika Ltd Control of amount of combustion air for incinerator for waste
JPH1194227A (en) * 1997-09-26 1999-04-09 Sumitomo Heavy Ind Ltd Method of presuming low heating value of combustible waste and presuming heating value of combustible part of garbage of garbage incinerator
JP2002162014A (en) * 2000-11-21 2002-06-07 Nkk Corp Method and device of controlling operation for incinerating wastes
JP2003501609A (en) * 1999-06-04 2003-01-14 ネイダーランゼ、オルガニザティー、ボー、トゥーゲパストナトゥールウェテンシャッペルーク、オンダーツォーク、ティーエヌオー For example, a system for determining process parameters for thermal processes such as refuse incineration
JP2005024126A (en) * 2003-06-30 2005-01-27 Takuma Co Ltd Combustion control method
JP2006064300A (en) * 2004-08-27 2006-03-09 Takuma Co Ltd Combustion information monitoring controlling device for stoker type refuse incinerator
JP2011027349A (en) * 2009-07-27 2011-02-10 Takuma Co Ltd Treatment system and treatment method for combustion target supplied to combustion furnace and combustion control system for the combustion furnace using the treatment system and the treatment method
JP2012087977A (en) * 2010-10-19 2012-05-10 Takuma Co Ltd Incineration equipment and operation method of the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19917572A1 (en) * 1999-04-19 2000-10-26 Abb Alstom Power Ch Ag Method for automatically setting the combustion of a waste incineration plant
CH694823A5 (en) * 2000-12-08 2005-07-29 Von Roll Umwelttechnik Ag A method for operating an incinerator.
JP3844333B2 (en) * 2001-03-13 2006-11-08 住友重機械工業株式会社 Combustion control system for waste incinerator without boiler equipment
JP4184291B2 (en) 2004-01-29 2008-11-19 株式会社タクマ Combustion method of garbage by stoker type incinerator

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561522B2 (en) * 1974-03-22 1981-01-14
JPH0240410A (en) * 1988-07-29 1990-02-09 Kubota Ltd Automatic combustion control of municipal waste incinerating furnace
JPH06331123A (en) * 1993-05-21 1994-11-29 Unitika Ltd Control of amount of combustion air for incinerator for waste
JPH1194227A (en) * 1997-09-26 1999-04-09 Sumitomo Heavy Ind Ltd Method of presuming low heating value of combustible waste and presuming heating value of combustible part of garbage of garbage incinerator
JP2003501609A (en) * 1999-06-04 2003-01-14 ネイダーランゼ、オルガニザティー、ボー、トゥーゲパストナトゥールウェテンシャッペルーク、オンダーツォーク、ティーエヌオー For example, a system for determining process parameters for thermal processes such as refuse incineration
JP2002162014A (en) * 2000-11-21 2002-06-07 Nkk Corp Method and device of controlling operation for incinerating wastes
JP2005024126A (en) * 2003-06-30 2005-01-27 Takuma Co Ltd Combustion control method
JP2006064300A (en) * 2004-08-27 2006-03-09 Takuma Co Ltd Combustion information monitoring controlling device for stoker type refuse incinerator
JP2011027349A (en) * 2009-07-27 2011-02-10 Takuma Co Ltd Treatment system and treatment method for combustion target supplied to combustion furnace and combustion control system for the combustion furnace using the treatment system and the treatment method
JP2012087977A (en) * 2010-10-19 2012-05-10 Takuma Co Ltd Incineration equipment and operation method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018124010A (en) * 2017-01-31 2018-08-09 株式会社タクマ Measurement method of amount of heat generation of burned object, combustion control method of combustion furnace using measured amount of heat generation, and combustion control device
US11867391B2 (en) 2017-09-11 2024-01-09 Enero Inventions Inc. Dynamic heat release calculation for improved feedback control of solid-fuel-based combustion processes

Also Published As

Publication number Publication date
JP2017096517A (en) 2017-06-01
EP3379147A1 (en) 2018-09-26
EP3379147B1 (en) 2020-10-07
WO2017085941A1 (en) 2017-05-26
EP3379147A4 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
JP5996762B1 (en) Waste combustion control method and combustion control apparatus to which the method is applied
JP6342367B2 (en) Method for estimating heat generation amount of waste and waste treatment apparatus using the same
JP3319327B2 (en) Combustion control method and device for refuse incinerator
JP6927127B2 (en) Waste incinerator method
KR102236283B1 (en) Garbage incineration facility and control method of waste incineration facility
CA2673629A1 (en) Method and systems to control municipal solid waste density and higher heating value for improved waste-to-energy boiler operation
JP3822328B2 (en) Method for estimating the lower heating value of combustion waste in refuse incinerators
WO2019235377A1 (en) Method for estimating state quantity of combustion facility, combustion control method, and combustion control device
JP2010216990A (en) Device and method for measurement of moisture percentage in waste
JP6429911B2 (en) Method for measuring calorific value of combustion object, combustion control method and combustion control apparatus for combustion furnace using measured calorific value
JP5452906B2 (en) Combustion control system for combustion furnace and combustion control method thereof
JP2019178848A (en) Waste incinerator and waste incineration method
Bujak Experimental study of the energy efficiency of an incinerator for medical waste
JP4099195B2 (en) Combustion control system for waste incinerator without boiler equipment
JP6624451B2 (en) Waste treatment furnace equipment
JP2000314516A (en) Automatic combustion regulating method for refuse incineration plant
WO2019116652A1 (en) Combustion furnace combustion condition determination device, combustion condition determination method, and combustion system
JP5179163B2 (en) Combustion control system for combustion furnace and combustion control method thereof
Razmjoo et al. Study of the transient release of water vapor from a fuel bed of wet biomass in a reciprocating-grate furnace
Bujak et al. Reduction of NOx and CO emissions through the optimization of incineration parameters in a rotary kiln
JP7237654B2 (en) Automatic combustion control method for garbage incinerator
JP2014219113A (en) System for measuring internal temperature of combustion furnace and system for controlling combustion in combustion furnace
JP2002106821A (en) Method and device for controlling combustion in refuse incineration plant
JP6973246B2 (en) Waste incinerator method
JP4970859B2 (en) Combustion control method and combustion control system for combustion furnace

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160824

R150 Certificate of patent or registration of utility model

Ref document number: 5996762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250