JP2002106821A - Method and device for controlling combustion in refuse incineration plant - Google Patents

Method and device for controlling combustion in refuse incineration plant

Info

Publication number
JP2002106821A
JP2002106821A JP2000297770A JP2000297770A JP2002106821A JP 2002106821 A JP2002106821 A JP 2002106821A JP 2000297770 A JP2000297770 A JP 2000297770A JP 2000297770 A JP2000297770 A JP 2000297770A JP 2002106821 A JP2002106821 A JP 2002106821A
Authority
JP
Japan
Prior art keywords
combustion
waste
flow rate
amount
incineration plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000297770A
Other languages
Japanese (ja)
Other versions
JP3466555B2 (en
Inventor
Yuichi Miyamoto
裕一 宮本
Shoji Murakami
昭二 村上
Mikihiko Kataoka
幹彦 片岡
Tadao Shimada
忠雄 島田
Kaoru Koyano
薫 小谷野
Eiichi Kuribayashi
榮一 栗林
Shizuo Fujita
志津男 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2000297770A priority Critical patent/JP3466555B2/en
Publication of JP2002106821A publication Critical patent/JP2002106821A/en
Application granted granted Critical
Publication of JP3466555B2 publication Critical patent/JP3466555B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Incineration Of Waste (AREA)

Abstract

PROBLEM TO BE SOLVED: To stabilize the combustion and the flow rate of steam. SOLUTION: In the combustion control in a refuse incineration plant, the quantity of garbage staying in a furnace is estimated based on a refuse combustion dynamic characteristic model, and the stop time of a refuse feeder, the set value of the calorific value of refuse, and the distribution of air flow on combustion stage are computed as correction by fuzzy control, with the estimate of the quantity of resident refuse and the measured degree of combustion (deviation of steam flow) as input signals, and automatic combustion control is compensated, using the obtained correction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発電装置付ストー
カ式ごみ焼却プラント等のごみ焼却プラントにおける燃
焼安定化のための燃焼制御方法及び装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion control method and apparatus for stabilizing combustion in a waste incineration plant such as a stoker type waste incineration plant with a power generator.

【0002】[0002]

【従来の技術】近年の環境問題への関心の高まりによ
り、ごみ焼却プラントには、ダイオキシン類など有害物
質の排出低減や効率の良い廃熱回収が求められている。
これには、燃焼制御改善によるごみ燃焼安定化を図る制
御面からの取組みが不可欠である。また、最近では発電
装置付ごみ焼却プラントが増加してきており、より一層
の燃焼安定化が求められている。
2. Description of the Related Art In recent years, interest in environmental issues has been increasing, and waste incineration plants are required to reduce emissions of harmful substances such as dioxins and to efficiently recover waste heat.
To this end, it is essential to take control measures to stabilize refuse combustion by improving combustion control. In recent years, the number of refuse incineration plants with a power generator has been increasing, and further stabilization of combustion is required.

【0003】一方、ごみ焼却プラントの特徴として、燃
料としてのごみの物理的・化学的性状が不均一であるこ
とにより、次のようなプロセス量の変動が見られる。 (1) 炉内へ供給されたごみの低位発熱量が変動する
ため、燃焼時の発生熱量が変動する。 (2) 炉内に供給されたごみ中の水分量変動により、
炉内投入から着火までの乾燥時間が変動する。 (3) 給じん装置速度を一定としても、ごみの形状、
比容積などが不均一なため、炉内に供給されるごみの重
量流量が変動する。 これらの変動がごみの安定燃焼を阻害する外乱要因とな
る。
On the other hand, as a feature of the refuse incineration plant, the following fluctuations in the process amount are observed due to the non-uniform physical and chemical properties of refuse as fuel. (1) Since the lower heating value of the refuse supplied to the furnace fluctuates, the amount of heat generated during combustion fluctuates. (2) Due to fluctuations in the amount of water in the refuse supplied to the furnace,
The drying time from charging in the furnace to ignition varies. (3) Even if the dust feeder speed is constant,
Since the specific volume and the like are not uniform, the weight flow rate of the refuse supplied to the furnace varies. These fluctuations become disturbance factors that hinder stable combustion of the refuse.

【0004】ストーカ式ごみ焼却プラントの燃焼安定化
を図る従来技術としては、例えば、特開平5−8732
0号公報に、過去のごみ投入量と現在の燃焼帯温度か
ら、知識ベースに基づきごみ投入速度を補正して、ごみ
の過剰投入等を回避し、燃焼帯温度を適正に保つように
した焼却炉の燃焼制御装置が開示されている。また、特
開平9−273731号公報には、廃熱回収ボイラを備
えたストーカ式ごみ焼却プラントの燃焼制御方法とし
て、計測したボイラの蒸発量とごみ量から、ファジィ制
御により乾燥火格子速度を制御して、蒸発量を一定に保
ち、このとき、蒸発量の差分や状態量から判断したごみ
質を考慮して制御することにより、時間遅れによる燃焼
の不安定化を防止する方法が記載されている。
A conventional technique for stabilizing the combustion of a stoker-type waste incineration plant is disclosed in, for example, Japanese Patent Laid-Open No. 5-8732.
No. 0, Incineration, based on the knowledge base, based on the past waste input amount and the current combustion zone temperature, corrects the waste input speed, avoids excessive input of waste, etc., and maintains the combustion zone temperature appropriately. A furnace combustion control device is disclosed. Japanese Patent Application Laid-Open No. 9-273731 discloses a method for controlling the combustion of a stoker-type incineration plant equipped with a waste heat recovery boiler by controlling the dry grate speed by fuzzy control based on the measured boiler evaporation and waste. Then, a method for preventing the combustion from becoming unstable due to a time delay by controlling the evaporation amount at a constant level and controlling at this time taking into consideration the waste quality determined from the difference in the evaporation amount and the state amount is described. I have.

【0005】[0005]

【発明が解決しようとする課題】ストーカ式ごみ焼却プ
ラント等のごみ焼却プラントでは、上述したように、ご
みの物理的・化学的性状が不均一であることに起因する
種々のプロセス量の変動により、安定燃焼が阻害されて
いる。このため、ごみ焼却プラントの制御においては、
ごみ性状の不確かさを吸収して燃焼安定化を図る必要が
ある。そして、特に廃熱回収ボイラ、蒸気タービンを備
えたごみ焼却プラントでは、燃焼の安定化に加えて、発
生蒸気流量の変動を抑制する必要がある。
In a waste incineration plant such as a stoker-type waste incineration plant, as described above, various kinds of process amounts caused by non-uniform physical and chemical properties of the waste are required. , Stable combustion is hindered. For this reason, in controlling a refuse incineration plant,
It is necessary to stabilize combustion by absorbing the uncertainties of the waste properties. In particular, in a refuse incineration plant equipped with a waste heat recovery boiler and a steam turbine, it is necessary to suppress fluctuations in the generated steam flow rate in addition to stabilizing combustion.

【0006】また、従来技術の問題点として、上記の特
開平5−87320号公報に記載されたごみ投入量から
ごみ滞留量を推定する方法は、燃焼するまでの遅れやご
み質の変化が原因で、燃焼帯のごみ量を正確に把握する
のは困難である。また、上記の特開平9−273731
号公報に記載された方法では、燃焼火格子上のごみ量を
計測する手段としてテレビカメラの映像を用いている
が、画像からでは2次元情報しか得られず、正確な体積
(ごみ量)を把握するのは困難である。また、乾燥火格
子速度によるごみ供給量の制御だけでは、燃焼の安定化
(燃え切り点制御)と蒸発量の制御を同時に実現するの
は困難である。
Further, as a problem of the prior art, the method of estimating the amount of waste stored from the amount of waste input described in Japanese Patent Application Laid-Open No. 5-87320 is caused by delay until combustion and changes in waste quality. Therefore, it is difficult to accurately determine the amount of waste in the combustion zone. Further, the above-mentioned Japanese Patent Application Laid-Open No.
In the method described in Japanese Patent Application Laid-Open Publication No. H10-209, the image of a television camera is used as a means for measuring the amount of waste on the combustion grate, but only two-dimensional information can be obtained from the image, and the accurate volume (the amount of waste) can be measured It is difficult to figure out. Further, it is difficult to simultaneously achieve stabilization of combustion (burn-out point control) and control of the amount of evaporation only by controlling the amount of waste supplied by the drying grate speed.

【0007】本発明は上記の諸点に鑑みなされたもの
で、本発明の目的は、ごみ焼却プラント、特に発電装置
付ストーカ式ごみ焼却プラントを対象として、ごみ燃焼
動特性モデルに基づく炉内ごみ滞留量推定とこの推定結
果によるファジィ燃焼制御により、ごみ性状の不確かさ
を吸収して燃焼安定化を図るとともに、発生蒸気流量変
動を抑制することができる燃焼制御方法及び装置を提供
することにある。なお、ごみ燃焼動特性モデルに基づく
炉内ごみ滞留量推定については、本出願人が既に特許を
受けている(特許第3023080号)。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and an object of the present invention is to target a refuse incineration plant, particularly a stoker-type refuse incineration plant with a power generator, based on a refuse combustion dynamic characteristic model. An object of the present invention is to provide a combustion control method and apparatus capable of absorbing the uncertainty of the refuse property to stabilize combustion and suppressing fluctuations in generated steam flow rate by fuzzy combustion control based on the amount estimation and the estimation result. Note that the present applicant has already obtained a patent for estimating the amount of retained dust in the furnace based on the refuse combustion dynamic characteristic model (Japanese Patent No. 3023080).

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明のごみ焼却プラントの燃焼制御方法は、ご
み焼却プラントでごみを燃焼させるに際し、ごみ滞留量
と燃焼度(蒸気流量の偏差/蒸気流量設定値)を入力信
号として、補正演算により給じん装置停止時間、ごみ発
熱量設定値、燃焼段空気流量配分を算出し、得られた補
正量を用いて自動燃焼制御を補正することにより、ある
いは得られた値を用いて直接制御することにより、燃焼
と蒸気流量の安定化を図るように構成されている。上記
のように、燃焼度とは、(蒸気流量計測値−蒸気流量設
定値)/(蒸気流量設定値)で定義される値である。ま
た、本発明の方法は、ごみ焼却プラントでごみを燃焼さ
せるに際し、燃焼用空気(1次空気)流量、2次空気流
量、燃焼用空気(1次空気)温度、2次空気温度、燃焼
室出口ガス温度、ボイラ出口ガス温度、ボイラドラム圧
力、主蒸気流量及び排ガス酸素濃度等の計測値を用い
て、焼却プラントの動特性数式モデルを構成するマスバ
ランス式、エネルギーバランス式、空気比式、排ガス算
出式及び燃焼効率式等により推計したごみ滞留量と、計
測した燃焼度(蒸気流量の偏差/蒸気流量設定値)を入
力信号として、ファジィ制御により給じん装置停止時
間、ごみ発熱量設定値、燃焼段空気流量配分を補正量と
して算出し、得られた補正量を用いて自動燃焼制御を補
正することにより、あるいは得られた値を用いて直接制
御することにより、燃焼と蒸気流量の安定化を図ること
を特徴としている。
In order to achieve the above object, a method for controlling combustion in a refuse incineration plant according to the present invention provides a method for controlling the amount of refuse accumulated and the degree of combustion (vapor flow rate) when burning refuse in a refuse incineration plant. Using the deviation / steam flow set value) as an input signal, the feeder stop time, waste heat generation set value, and combustion stage air flow distribution are calculated by correction calculation, and automatic combustion control is corrected using the obtained correction amount. Thus, the combustion and the steam flow rate are stabilized by directly controlling using the obtained values. As described above, the burnup is a value defined by (steam flow rate measurement value-steam flow rate setting value) / (steam flow rate setting value). In addition, the method of the present invention, when burning refuse in a refuse incineration plant, uses a combustion air (primary air) flow rate, a secondary air flow rate, a combustion air (primary air) temperature, a secondary air temperature, a combustion chamber. Using the measured values of outlet gas temperature, boiler outlet gas temperature, boiler drum pressure, main steam flow rate, exhaust gas oxygen concentration, etc., mass balance, energy balance, air ratio, Using the exhaust gas calculation formula and the combustion efficiency formula to estimate the amount of waste accumulated and the measured burnup (deviation of steam flow rate / steam flow set value) as input signals, the fuzzy control of the dust supply device stop time and the set value of waste heat generation By calculating the combustion stage air flow rate distribution as a correction amount and correcting the automatic combustion control using the obtained correction amount, or by directly controlling using the obtained value, It is characterized in that stabilization of the baked and steam flow.

【0009】本発明のごみ焼却プラントの燃焼制御装置
は、ごみ焼却プラントの燃焼制御操作を行う自動燃焼制
御手段を備えた燃焼制御装置であって、燃焼用空気(1
次空気)流量、2次空気流量、燃焼用空気(1次空気)
温度、2次空気温度、燃焼室出口ガス温度、ボイラ出口
ガス温度、ボイラドラム圧力、主蒸気流量及び排ガス酸
素濃度等の計測値を用いて、焼却プラントの動特性数式
モデルを構成するマスバランス式、エネルギーバランス
式、空気比式、排ガス算出式及び燃焼効率式等によりご
み滞留量の推定値を算出するごみ滞留量推定手段と、ご
み滞留量の推定値と燃焼度(蒸気流量の偏差/蒸気流量
設定値)の計測値とを入力信号として、ファジィ制御に
より給じん装置停止時間、ごみ発熱量設定値、燃焼段空
気流量配分を補正量として算出するファジィ燃焼制御手
段とを設け、ファジィ燃焼制御手段から出力された各補
正量を用いて自動燃焼制御手段の操作量出力を補正し、
あるいは出力された値を用いて操作量を直接制御し、燃
焼と蒸気流量の安定化を図るようにしたことを特徴とし
ている(図2参照)。
A combustion control device for a refuse incineration plant according to the present invention is a combustion control device provided with automatic combustion control means for performing a combustion control operation for a refuse incineration plant, and includes a combustion air (1).
Secondary air flow, secondary air flow, combustion air (primary air)
Mass balance equation that constructs a mathematical model of the dynamic characteristics of an incineration plant using measured values of temperature, secondary air temperature, combustion chamber outlet gas temperature, boiler outlet gas temperature, boiler drum pressure, main steam flow rate, and exhaust gas oxygen concentration. Refuse amount estimating means for calculating the refuse retention amount based on the energy balance formula, air ratio formula, exhaust gas calculation formula, combustion efficiency formula, etc., and the refuse retention amount estimate and the burnup (deviation of steam flow rate / steam Fuzzy combustion control means for calculating the feeder stop time, waste heat generation amount setting value, and combustion stage air flow distribution as correction amounts by fuzzy control using the measured value of the flow rate setting value as an input signal, and fuzzy combustion control Correcting the manipulated variable output of the automatic combustion control means using each correction amount output from the means,
Alternatively, the operation amount is directly controlled using the output value to stabilize the combustion and the steam flow rate (see FIG. 2).

【0010】[0010]

【発明の実施の形態】以下、発電装置付ストーカ式ごみ
焼却プラントを対象として、本発明の実施の形態につい
て詳細に説明するが、本発明は下記の実施の形態に何ら
限定されるものではなく、適宜変更して実施することが
可能なものである。図1は、発電装置付ストーカ式ごみ
焼却プラントの概略構成を示している。図1において、
ごみ焼却炉10は、乾燥ストーカ12、燃焼ストーカ1
4及び後燃焼ストーカ16を有するストーカ式ごみ焼却
炉であり、ごみ焼却炉10の燃焼室17後流には、廃熱
ボイラ18、蒸気タービン発電機20が設けられてい
る。図1に示すように、ごみクレーン22によりごみが
ごみホッパ24に投入される。ごみホッパ24に投入さ
れたごみは、給じん装置26により乾燥ストーカ12上
に供給される。乾燥ストーカ12上のごみは、高温燃焼
ガスによる輻射熱とストーカ下の燃焼用空気供給管28
から供給される燃焼用空気(1次空気)により乾燥着火
する。乾燥ストーカ12、燃焼ストーカ14、後燃焼ス
トーカ16は傾斜しており、その揺動運動によりごみは
順次後方のストーカに送られ燃焼を完結する。ごみの燃
焼で生じた焼却灰は、後燃焼ストーカ16後端の焼却灰
抜出口30から抜き出される。一方、ごみの燃焼により
発生した排ガスは、廃熱ボイラ18に導入されて、廃熱
ボイラ18で廃熱が回収され、廃熱ボイラ18で発生し
た蒸気は、高圧蒸気溜め34を介して蒸気タービン発電
機20等に使用される。19はボイラドラムである。ま
た、燃焼室17の温度を一定範囲に制御するために、2
次空気供給管36から燃焼室17内に2次空気を供給し
ている。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail for a stoker type waste incineration plant with a power generator, but the present invention is not limited to the following embodiments. , Can be changed as appropriate. FIG. 1 shows a schematic configuration of a stoker-type incineration plant with a power generator. In FIG.
The waste incinerator 10 includes a drying stoker 12 and a burning stoker 1
This is a stoker-type waste incinerator having a waste combustion incinerator 4 and a post-burning stoker 16. A waste heat boiler 18 and a steam turbine generator 20 are provided downstream of a combustion chamber 17 of the waste incinerator 10. As shown in FIG. 1, dust is thrown into a dust hopper 24 by a dust crane 22. The refuse input to the refuse hopper 24 is supplied onto the drying stoker 12 by a dust supply device 26. The refuse on the drying stoker 12 is radiated by the high-temperature combustion gas and the combustion air supply pipe 28 under the stoker.
Dry ignition with combustion air (primary air) supplied from the The drying stoker 12, the burning stoker 14, and the post-burning stoker 16 are inclined, and the rocking motion of the stoker sequentially sends the waste to the rear stoker to complete the combustion. The incineration ash generated by the combustion of the refuse is extracted from the incineration ash outlet 30 at the rear end of the post-combustion stoker 16. On the other hand, the exhaust gas generated by the combustion of the refuse is introduced into the waste heat boiler 18, the waste heat is recovered by the waste heat boiler 18, and the steam generated by the waste heat boiler 18 is sent to the steam turbine via the high-pressure steam reservoir 34. Used for the generator 20 and the like. 19 is a boiler drum. Further, in order to control the temperature of the combustion chamber 17 within a certain range, 2
The secondary air is supplied from the secondary air supply pipe 36 into the combustion chamber 17.

【0011】図1に示すような発電装置付ストーカ式ご
み焼却プラントについて、ごみ燃焼動特性モデルに基づ
く炉内ごみ滞留量推定を実施する。燃焼安定化の重要指
標である炉内ごみ滞留量は、直接センサ等で検出するこ
とが困難であり、従来はITVカメラ等による炉内画像
から熟練運転員が監視して視覚的に判断する必要があっ
た。また、画像処理によって燃切点を検出することで、
ごみ滞留量の増減を推定していた。本発明では、燃焼用
空気(1次空気)流量、2次空気流量、燃焼用空気(1
次空気)温度、2次空気温度、燃焼室出口ガス温度、ボ
イラ出口ガス温度、ボイラドラム圧力、主蒸気流量及び
排ガス酸素濃度等の計測値を用いて、焼却プラントの動
特性数式モデル(マスバランス式、エネルギーバランス
式、空気比式、排ガス算出式及び燃焼効率式)によりご
み滞留量を推定する。ごみ滞留量推定に用いた動特性モ
デル代表数式例を下記の数1〜数5に示す。数1はマス
バランス式、数2はエネルギーバランス式、数3は空気
比式、数4は排ガス算出式、数5は燃焼効率式である。
For the stoker-type waste incineration plant with a power generator as shown in FIG. 1, the estimation of the amount of waste in the furnace based on the waste combustion dynamic characteristic model is performed. It is difficult to directly detect the amount of debris in the furnace, which is an important indicator of combustion stabilization, using a sensor or the like. was there. Also, by detecting the burn-off point by image processing,
Estimated increase and decrease of waste accumulation amount. In the present invention, the combustion air (primary air) flow rate, the secondary air flow rate, and the combustion air (1
Using the measured values of secondary air temperature, secondary air temperature, combustion chamber outlet gas temperature, boiler outlet gas temperature, boiler drum pressure, main steam flow rate, exhaust gas oxygen concentration, etc., a mathematical model of the dynamic characteristics of an incineration plant (mass balance) Equation, energy balance equation, air ratio equation, exhaust gas calculation equation, and combustion efficiency equation) are used to estimate the amount of accumulated dust. The following mathematical formulas 1 to 5 show typical examples of dynamic characteristic models used for estimating the amount of accumulated dust. Equation 1 is a mass balance equation, Equation 2 is an energy balance equation, Equation 3 is an air ratio equation, Equation 4 is an exhaust gas calculation equation, and Equation 5 is a combustion efficiency equation.

【0012】[0012]

【数1】 (Equation 1)

【0013】[0013]

【数2】 (Equation 2)

【0014】[0014]

【数3】 (Equation 3)

【0015】[0015]

【数4】 (Equation 4)

【0016】[0016]

【数5】 (Equation 5)

【0017】なお、上記の式における記号の説明は次の
通りである。 WR :ごみ滞留量[kg] GRI :ごみ投入重量速度[kg/h] ηc :ごみ燃焼速度[-] GRO :ごみ排出重量速度[kg/h] CR :ごみ比熱[kcal/Nm3℃] Tg :燃焼室出口ガス温度[℃] I's :ボイラ保有水エンタルピ[kcal/kg] I"s :ボイラ保有蒸気エンタルピ[kcal/kg] W' B :ボイラ保有水重量[kg] W" B :ボイラ保有蒸気重量[kg] Cm :ボイラ鋼材比熱[kcal/kg℃] Wm :ボイラ鋼材重量[kg] TB :ボイラ蒸気温度[℃] HuR :ごみ発熱量推定値[kcal/kg] Cpa :空気比熱[kcal/Nm3℃] Ga :燃焼用(1次+2次)空気流量[Nm3/h] Ta :燃焼用(1次+2次)空気温度[℃] TR :投入ごみ温度[℃] Gs :主蒸気流量[kg/h] Cpg :燃焼ガス比熱[kcal/Nm3℃] Gg :排ガス流量[Nm3/h] TE :ボイラ出口ガス温度[℃] Ql :損失熱量[kcal/h] Ao :理論空気量[Nm3/kg] O2 :炉出口排ガス酸素濃度[%] Vo :理論ガス量[Nm3/kg] λc :空気比[-] H2O :ごみ水分含有率[kg/kg] An :アレニウス式係数[-] En :アレニウス式活性化エネルギー[-] PB :ボイラドラム圧力[MPa] GE :ボイラ給水流量[kg/h] IE :ボイラ給水エンタルピ[kcal/kg]
The description of the symbols in the above equation is as follows. W R: waste holdup [kg] G RI: refuse-on weight rate [kg / h] ηc: garbage burning rate [-] G RO: dust discharge weight rate [kg / h] C R: Garbage specific heat [kcal / Nm 3 ° C] T g : Combustion chamber outlet gas temperature [° C] I ' s: Boiler water enthalpy [kcal / kg] I " s: Boiler water enthalpy [kcal / kg] W ' B : Boiler water weight [kg] ] W "B: boiler possess vapor weight [kg] Cm: boiler steel Specific heat [kcal / kg ℃] Wm: boiler steel weight [kg] T B: boiler steam temperature [℃] H uR: waste heating value estimate [kcal / Kg] Cpa: Specific heat of air [kcal / Nm 3 ° C] Ga: Combustion (primary + secondary) air flow rate [Nm 3 / h] Ta: Combustion (primary + secondary) air temperature [° C] T R : charged dust temperature [° C.] Gs: main steam flow rate [kg / h] Cpg: combustion gas specific heat [kcal / Nm 3 ℃] Gg : exhaust gas flow rate [Nm 3 / h] T E : boiler outlet gas Degree [℃] Q l: heat loss [kcal / h] Ao: stoichiometric air amount [Nm 3 / kg] O 2 : furnace exit exhaust gas oxygen concentration [%] Vo: theoretical amount of gas [Nm 3 / kg] λc: air ratio [-] H 2 O: waste water content [kg / kg] An: Arrhenius equation coefficient [-] En: Arrhenius equation activation energy [-] P B: boiler drum pressure [MPa] G E: boiler feed water flow [Kg / h] IE : Boiler feedwater enthalpy [kcal / kg]

【0018】上記の数1〜数5に示す数式群(計6式)
をごみ滞留量WRを未知数の1つとする連立微分方程式
として実時間で解く。ごみ滞留量WR以外で未知数とし
て扱うプロセス量は、ごみ燃焼速度ηc、ごみ投入重量
速度GRI、排ガス流量Gg、ごみ発熱量推定値HuR、空
気比λcである。上記の数1〜数5において、計測量
は、燃焼用(1次+2次)空気流量Ga、燃焼用(1次
+2次)空気温度Ta、燃焼室出口ガス温度Tg、ボイラ
出口ガス温度TE、ボイラドラム圧力PB、主蒸気流量G
s、炉出口排ガス酸素濃度O2であり、その他は、ほぼ一
定値であるので係数として扱うことができる。ごみ滞留
量WRの詳細な算出方法、すなわち、数1〜数5に示す
数式群からなる連立微分方程式の具体的な解法について
は説明を省略するが、これらの連立微分方程式を連立差
分方程式の初期値問題に近似して解くことができる。例
えば、差分法の1つであるEuler(オイラー)法を
用いて解くことができる。このように、ごみ焼却プラン
トの動特性数式モデルを、ごみ滞留量を未知数の1つと
する連立微分方程式として把握し、これらの連立微分方
程式の微分項を差分で近似することにより現在のごみ滞
留量を求める計算式を導き出し、この計算式から、焼却
炉の静特性を表わす式から静特性計算により算出したご
み滞留量の初期値を用いて、順次現在のごみ滞留量を計
算することができる。現在のごみ滞留量をリアルタイム
で算出できるので、従来の燃切点制御より早期に燃焼制
御操作が可能となる。
Formulas shown in the above equations 1 to 5 (6 equations in total)
Solved in real time as the simultaneous differential equations with one unknown garbage holdup W R. Process variables to be treated as unknowns outside waste holdup W R is garbage burning rate [eta] c, dust charged weight rate G RI, exhaust gas flow rate Gg, waste heat value estimate H uR, an air ratio [lambda] c. In the above equations 1 to 5, the measured quantities are the combustion (primary + secondary) air flow rate Ga, the combustion (primary + secondary) air temperature Ta, the combustion chamber outlet gas temperature T g , and the boiler outlet gas temperature T E , boiler drum pressure P B , main steam flow rate G
s, the oxygen concentration of the exhaust gas from the furnace outlet O 2 , and the others are almost constant values, and can be treated as coefficients. A detailed calculation method of the garbage retention amount W R , that is, a specific solution method of the simultaneous differential equations composed of the mathematical formulas shown in Expressions 1 to 5, will not be described. It can be solved by approximating the initial value problem. For example, it can be solved using the Euler (Euler) method, which is one of the difference methods. As described above, the dynamic characteristic formula model of the refuse incineration plant is grasped as a simultaneous differential equation in which the garbage retention amount is one of the unknowns, and the differential terms of these simultaneous differential equations are approximated by a difference to thereby obtain the current garbage retention amount. Is derived, and the current waste accumulation amount can be sequentially calculated from the expression using the initial value of the waste accumulation amount calculated by the static characteristic calculation from the expression representing the static characteristics of the incinerator. Since the current waste accumulation amount can be calculated in real time, the combustion control operation can be performed earlier than the conventional burn-off point control.

【0019】上述の方法で算出したごみ滞留量推定値と
蒸気流量偏差を入力とするファジィ制御系を構築し、給
じん装置停止時間、ごみ発熱量設定値、燃焼段空気流量
配分を補正量として算出し、自動燃焼制御系(ACC)
からの出力を補正する。図2は、本発明の実施の第1形
態によるごみ焼却プラントの燃焼制御方法を実施する装
置を概念的に示している。ごみ焼却プラント38は、従
来から自動燃焼制御(ACC)が行われており、ごみ焼
却プラント38には自動燃焼制御部40から操作量が出
力されている。しかし、前述したように、ごみの物理的
・化学的性状が不均一であることに起因して種々のプロ
セス量の変動があるので、燃焼安定化のためには自動燃
焼制御部40の操作量出力を補正する必要がある。本発
明では、ごみ滞留量推定部42において、上述したよう
に、ごみ燃焼動特性モデルに基づき炉内ごみ滞留量を推
定し、このごみ滞留量推定値WRと計測した蒸気流量偏
差(燃焼度Dc)をファジィ燃焼制御部44に入力し
て、給じん装置停止時間FT、ごみ発熱量設定値Huc、
燃焼段空気流量配分GACの各補正値(FT_f,Huc_f,
AC_f)を算出し、これらの補正値を自動燃焼制御部4
0の操作量出力に加えている。
A fuzzy control system is constructed in which the waste accumulation amount estimated value calculated by the above-described method and the steam flow rate deviation are input, and the feeder stop time, the waste heat generation amount setting value, and the combustion stage air flow distribution are used as correction amounts. Calculated and automatic combustion control system (ACC)
Correct the output from. FIG. 2 conceptually shows an apparatus for implementing a combustion control method for a refuse incineration plant according to the first embodiment of the present invention. The automatic combustion control (ACC) is conventionally performed in the refuse incineration plant 38, and an operation amount is output from the automatic combustion control unit 40 to the refuse incineration plant 38. However, as described above, since the physical and chemical properties of the refuse are not uniform, there is a variation in various process amounts. Therefore, in order to stabilize the combustion, the operation amount of the automatic combustion control unit 40 is controlled. The output needs to be corrected. In the present invention, the dust retention amount estimation unit 42, as described above, estimates the furnace waste holdup based on waste combustion dynamics model, the waste holdup estimate W R and the measured vapor flow rate difference (burnup Dc) is input to the fuzzy combustion control unit 44, and the dust supply device stop time FT, the waste heat generation amount set value Huc,
Each correction value of the combustion stage air flow distribution G AC (FT_f, Huc_f,
G AC _f) and calculates these correction values in the automatic combustion control unit 4.
0 is added to the manipulated variable output.

【0020】つぎに、ファジィ燃焼制御について説明す
る。熟練運転員が実施している燃焼安定化のための制御
操作を自動燃焼制御系(ACC)に組み込む方法として
ファジィ制御を採用することができる。すなわち、熟練
運転員の運転操作経験知識は、ファジィ制御ルールとし
て記述することができる。本実施の形態におけるファジ
ィ制御ルールの一例を下記の表1に示す。ルール前件部
(「もし〜が〜ならば」の部分)は、ごみ滞留量、燃焼
度(蒸気流量の偏差/蒸気流量設定値)の状態とし、ル
ール後件部(「ならば〜を〜する」の部分)は、給じん
装置停止時間、ごみ発熱量設定値、燃焼段空気流量配分
の補正操作とする。各ルールの演算はメンバーシップ関
数に基づいて行われる。なお、本発明で用いるファジィ
制御ルールは下記に示す9ルールのものに限定されるも
のではない。
Next, the fuzzy combustion control will be described. Fuzzy control can be adopted as a method for incorporating a control operation for stabilizing combustion performed by a skilled operator into an automatic combustion control system (ACC). That is, the knowledge of the driving operation experience of the skilled operator can be described as a fuzzy control rule. An example of a fuzzy control rule according to the present embodiment is shown in Table 1 below. The rule antecedent ("if-is-if") is the state of the garbage retention and burnup (steam flow rate deviation / steam flow set value), and the rule consequent ("if-is ... The part “to do”) is a correction operation of the dust supply device stop time, the waste heat generation set value, and the combustion stage air flow distribution. The operation of each rule is performed based on a membership function. The fuzzy control rules used in the present invention are not limited to the following nine rules.

【0021】[0021]

【表1】 [Table 1]

【0022】上記のようなファジィ制御ルールに基づき
各時点でリアルタイムにファジィ演算を実行し、給じん
装置停止時間、ごみ発熱量設定値、燃焼段空気流量配分
の各補正量を算出し、これらを自動燃焼制御系の操作量
出力に加える。
Based on the fuzzy control rules as described above, fuzzy calculations are executed in real time at each point in time to calculate respective correction amounts of the dust supply device stop time, the waste heat generation amount setting value, and the combustion stage air flow distribution, and calculate these. In addition to the manipulated variable output of the automatic combustion control system.

【0023】図3は、ごみ燃焼動特性モデルに基づく炉
内ごみ滞留量推定とこの推定結果によるファジィ燃焼制
御を実機に適用した結果を示している。図3中における
時刻t=300分にファジィ制御をオンからオフとして
いる。図3に示されるように、ファジィ制御をオンとし
た場合のほうが、オフの場合(各補正量が0)よりも、
安定燃焼の指標である主蒸気流量制御偏差、炉出口ガス
温度等の標準偏差が有意に小さくなっており、本発明の
方法が燃焼安定化に有用であることがわかる。なお、図
3において、Gssは主蒸気流量設定値であり、他の記号
は明細書中で使用しているものと同様である。
FIG. 3 shows a result of applying a waste accumulation amount in a furnace based on a waste combustion dynamic characteristic model and fuzzy combustion control based on the estimation result to an actual machine. At time t = 300 minutes in FIG. 3, the fuzzy control is turned off from on. As shown in FIG. 3, the case where the fuzzy control is turned on is more than the case where the fuzzy control is turned off (each correction amount is 0).
Standard deviations such as the main steam flow control deviation and the furnace outlet gas temperature, which are indicators of stable combustion, are significantly smaller, indicating that the method of the present invention is useful for combustion stabilization. In FIG. 3, Gss is a set value of the main steam flow rate, and other symbols are the same as those used in the specification.

【0024】[0024]

【発明の効果】本発明は上記のように構成されているの
で、つぎのような効果を奏する。 (1) ごみ質(カロリー、かさ密度等)の変化に対応
しながら、ごみ滞留量と主蒸気流量を適正値に保つこと
ができる。 (2) 熟練運転員の運転操作を取り入れることができ
るため、燃焼制御改善効果が高い。 (3) 燃焼の安定化には、ごみ滞留量と蒸気量(本発
明では、燃焼度)を制御する必要があるが、ファジィ制
御により干渉系にあるごみ滞留量制御と燃焼度(蒸気
量)制御を最適に調整できる。 (4) ごみ滞留量を計測するために、ITVカメラな
どのハードウェアを設置する必要がない。 (5) ごみ滞留量を精度よく推計することができるの
で、安定した制御が可能である。
As described above, the present invention has the following effects. (1) The waste retention amount and the main steam flow rate can be maintained at appropriate values while responding to changes in waste quality (calories, bulk density, etc.). (2) Since the operation of a skilled operator can be incorporated, the effect of improving the combustion control is high. (3) To stabilize the combustion, it is necessary to control the amount of waste and the amount of steam (in the present invention, the burnup). However, the control of the amount of waste and the burnup (the amount of steam) in the interference system are performed by fuzzy control. Control can be adjusted optimally. (4) There is no need to install hardware such as an ITV camera to measure the amount of waste accumulated. (5) Since the amount of waste accumulated can be accurately estimated, stable control is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】発電装置付ストーカ式ごみ焼却プラントの一例
を示す概略構成説明図である。
FIG. 1 is a schematic configuration explanatory view showing an example of a stoker type waste incineration plant with a power generation device.

【図2】本発明の実施の第1形態によるごみ焼却プラン
トの燃焼制御方法を実施する装置を概念的に示す概略構
成説明図である。
FIG. 2 is a schematic configuration explanatory view conceptually showing an apparatus for implementing a combustion control method for a refuse incineration plant according to the first embodiment of the present invention.

【図3】ごみ燃焼動特性モデルに基づく炉内ごみ滞留量
推定とこの推定結果によるファジィ燃焼制御を実機に適
用した結果を示すグラフである。
FIG. 3 is a graph showing a result of estimating waste accumulation amount in a furnace based on a waste combustion dynamic characteristic model and applying fuzzy combustion control based on the estimation result to an actual machine.

【符号の説明】[Explanation of symbols]

10 ごみ焼却炉 12 乾燥ストーカ 14 燃焼ストーカ 16 後燃焼ストーカ 17 燃焼室 18 廃熱ボイラ 19 ボイラドラム 20 蒸気タービン発電機 22 ごみクレーン 24 ごみホッパ 26 給じん装置 28 燃焼用空気供給管 30 焼却灰抜出口 34 高圧蒸気溜め 36 2次空気供給管 38 ごみ焼却プラント 40 自動燃焼制御部 42 ごみ滞留量推定部 44 ファジィ燃焼制御部 Reference Signs List 10 refuse incinerator 12 drying stoker 14 combustion stoker 16 post-combustion stoker 17 combustion chamber 18 waste heat boiler 19 boiler drum 20 steam turbine generator 22 refuse crane 24 refuse hopper 26 dust supply device 28 combustion air supply pipe 30 incineration ash extraction outlet 34 High-pressure steam reservoir 36 Secondary air supply pipe 38 Waste incineration plant 40 Automatic combustion control unit 42 Waste retention amount estimation unit 44 Fuzzy combustion control unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 片岡 幹彦 兵庫県明石市川崎町1番1号 川崎重工業 株式会社明石工場内 (72)発明者 島田 忠雄 千葉県野田市二ツ塚118番地 川崎重工業 株式会社野田工場内 (72)発明者 小谷野 薫 千葉県野田市二ツ塚118番地 川崎重工業 株式会社野田工場内 (72)発明者 栗林 榮一 神戸市中央区東川崎町1丁目1番3号 川 崎重工業株式会社神戸本社内 (72)発明者 藤田 志津男 神戸市中央区東川崎町1丁目1番3号 川 崎重工業株式会社神戸本社内 Fターム(参考) 3K062 AA01 AB01 AC01 BA02 DA01 DA07 DA16 DA22 DA32 DA36 DB08 DB30  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Mikihiko Kataoka 1-1, Kawasaki-cho, Akashi-shi, Hyogo Kawasaki Heavy Industries, Ltd. Inside Akashi Plant (72) Inventor Tadao Shimada 118, Futatsuka, Noda-shi, Chiba Pref. In the factory (72) Inventor Kaoru Koyano 118 Futatsuka, Noda-shi, Chiba Prefecture Kawasaki Heavy Industries Noda Factory (72) Inventor Eiichi Kuribayashi 1-3-1 Higashikawasaki-cho, Chuo-ku, Kobe Kawasaki Heavy Industries, Ltd. (72) Inventor Shizuo Fujita 1-3-1 Higashikawasakicho, Chuo-ku, Kobe Kawasaki Heavy Industries, Ltd. Kobe Head Office F-term (reference) 3K062 AA01 AB01 AC01 BA02 DA01 DA07 DA16 DA22 DA32 DA36 DB08 DB30

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ごみ焼却プラントでごみを燃焼させるに
際し、ごみ滞留量と蒸気流量偏差を入力信号として、補
正演算により給じん装置停止時間、ごみ発熱量設定値、
燃焼段空気流量配分を算出し、得られた補正量を用いて
自動燃焼制御を補正することにより、あるいは得られた
値を用いて直接制御することにより、燃焼と蒸気流量の
安定化を図ることを特徴とするごみ焼却プラントの燃焼
制御方法。
When a waste is burned in a waste incineration plant, the amount of accumulated waste and the deviation of the steam flow rate are used as input signals, and a correction operation is performed to stop the supply of the dust, set a waste heat generation value,
Calculate the combustion stage air flow distribution and stabilize the combustion and steam flow rate by correcting the automatic combustion control using the obtained correction amount or by directly controlling using the obtained value. A combustion control method for a refuse incineration plant, comprising:
【請求項2】 ごみ焼却プラントでごみを燃焼させるに
際し、燃焼用空気流量、2次空気流量、燃焼用空気温
度、2次空気温度、燃焼室出口ガス温度、ボイラ出口ガ
ス温度、ボイラドラム圧力、主蒸気流量及び排ガス酸素
濃度の計測値を用いて、焼却プラントの動特性数式モデ
ルを構成するマスバランス式、エネルギーバランス式、
空気比式、排ガス算出式及び燃焼効率式により推計した
ごみ滞留量と、蒸気流量偏差を入力信号として、ファジ
ィ制御により給じん装置停止時間、ごみ発熱量設定値、
燃焼段空気流量配分を補正量として算出し、得られた補
正量を用いて自動燃焼制御を補正することにより、ある
いは得られた値を用いて直接制御することにより、燃焼
と蒸気流量の安定化を図ることを特徴とするごみ焼却プ
ラントの燃焼制御方法。
2. When burning waste in a waste incineration plant, a combustion air flow rate, a secondary air flow rate, a combustion air temperature, a secondary air temperature, a combustion chamber outlet gas temperature, a boiler outlet gas temperature, a boiler drum pressure, Using the measured values of the main steam flow rate and exhaust gas oxygen concentration, the mass balance equation, energy balance equation,
Using the air ratio formula, the exhaust gas calculation formula and the combustion efficiency formula as the input signals, the waste retention amount and the steam flow rate deviation as input signals, the fouling control of the dust supply device stop time, the waste heat generation set value,
Stabilization of combustion and steam flow rate by calculating the combustion stage air flow distribution as a correction amount and correcting the automatic combustion control using the obtained correction amount or directly controlling using the obtained value A combustion control method for a refuse incineration plant.
【請求項3】 ごみ焼却プラントの燃焼制御操作を行う
自動燃焼制御手段を備えた燃焼制御装置であって、 燃焼用空気流量、2次空気流量、燃焼用空気温度、2次
空気温度、燃焼室出口ガス温度、ボイラ出口ガス温度、
ボイラドラム圧力、主蒸気流量及び排ガス酸素濃度の計
測値を用いて、焼却プラントの動特性数式モデルを構成
するマスバランス式、エネルギーバランス式、空気比
式、排ガス算出式及び燃焼効率式によりごみ滞留量の推
定値を算出するごみ滞留量推定手段と、 ごみ滞留量の推定値と蒸気流量偏差とを入力信号とし
て、ファジィ制御により給じん装置停止時間、ごみ発熱
量設定値、燃焼段空気流量配分を補正量として算出する
ファジィ燃焼制御手段とを設け、 ファジィ燃焼制御手段から出力された各補正量を用いて
自動燃焼制御手段の操作量出力を補正し、あるいは出力
された値を用いて操作量を直接制御し、燃焼と蒸気流量
の安定化を図るようにしたことを特徴とするごみ焼却プ
ラントの燃焼制御装置。
3. A combustion control device provided with automatic combustion control means for performing a combustion control operation of a refuse incineration plant, comprising: a combustion air flow rate, a secondary air flow rate, a combustion air temperature, a secondary air temperature, a combustion chamber. Outlet gas temperature, boiler outlet gas temperature,
Using the measured values of boiler drum pressure, main steam flow rate, and exhaust gas oxygen concentration, garbage is retained by the mass balance, energy balance, air ratio, exhaust gas calculation, and combustion efficiency formulas that constitute the dynamic characteristic formula model of the incineration plant. Waste retention amount estimating means for calculating the estimated value of the amount of waste, the dust supply device stop time, waste heat generation amount setting value, and combustion stage air flow distribution by fuzzy control using the waste retention amount estimation value and the steam flow rate deviation as input signals. Fuzzy combustion control means for calculating the correction amount as a correction amount, and correcting the operation amount output of the automatic combustion control means using each correction amount output from the fuzzy combustion control means, or using the output value for the control amount. A combustion control device for a refuse incineration plant characterized by direct control of combustion and stabilization of combustion and steam flow.
JP2000297770A 2000-09-29 2000-09-29 Combustion control method and device for refuse incineration plant Expired - Lifetime JP3466555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000297770A JP3466555B2 (en) 2000-09-29 2000-09-29 Combustion control method and device for refuse incineration plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000297770A JP3466555B2 (en) 2000-09-29 2000-09-29 Combustion control method and device for refuse incineration plant

Publications (2)

Publication Number Publication Date
JP2002106821A true JP2002106821A (en) 2002-04-10
JP3466555B2 JP3466555B2 (en) 2003-11-10

Family

ID=18779845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000297770A Expired - Lifetime JP3466555B2 (en) 2000-09-29 2000-09-29 Combustion control method and device for refuse incineration plant

Country Status (1)

Country Link
JP (1) JP3466555B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103900092A (en) * 2014-03-26 2014-07-02 广州环投技术设备有限公司 Automatic combustion control system for municipal solid waste incinerator
WO2018003223A1 (en) * 2016-06-28 2018-01-04 川崎重工業株式会社 Refuse incineration facility and control method for refuse incineration facility
WO2020045520A1 (en) * 2018-08-31 2020-03-05 日立造船株式会社 Crane control device, control method for crane control device, control program, and recording medium
CN111059548A (en) * 2018-10-17 2020-04-24 武汉深能环保新沟垃圾发电有限公司 Automatic control method, system, equipment and storage medium for air quantity of incinerator
CN113310057A (en) * 2020-02-26 2021-08-27 三菱重工业株式会社 Control device, control method, and recording medium having program recorded thereon
CN113834072A (en) * 2020-06-08 2021-12-24 三菱重工业株式会社 Control device, control method, and program
CN113946789A (en) * 2021-11-17 2022-01-18 西安热工研究院有限公司 Method for calculating waste incineration amount of four-furnace three-machine waste incineration power plant in real time

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61143617A (en) * 1984-12-14 1986-07-01 Kawasaki Heavy Ind Ltd Method of controlling combustion in refuse incinerator
JPH07301413A (en) * 1994-04-29 1995-11-14 Kawasaki Heavy Ind Ltd Refuse characteristic estimating method and device of refuse incinerator
JPH1054531A (en) * 1996-08-08 1998-02-24 Sumitomo Heavy Ind Ltd Estimation method of refuse layer thickness index and combustion control system of refuse incinerator using the same
JPH1137436A (en) * 1997-07-16 1999-02-12 Sumitomo Heavy Ind Ltd Refuse feed control system for horizontal stoker type refuse incinerator
JP3023080B2 (en) * 1997-07-28 2000-03-21 川崎重工業株式会社 Method and apparatus for estimating stagnation amount in incinerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61143617A (en) * 1984-12-14 1986-07-01 Kawasaki Heavy Ind Ltd Method of controlling combustion in refuse incinerator
JPH07301413A (en) * 1994-04-29 1995-11-14 Kawasaki Heavy Ind Ltd Refuse characteristic estimating method and device of refuse incinerator
JPH1054531A (en) * 1996-08-08 1998-02-24 Sumitomo Heavy Ind Ltd Estimation method of refuse layer thickness index and combustion control system of refuse incinerator using the same
JPH1137436A (en) * 1997-07-16 1999-02-12 Sumitomo Heavy Ind Ltd Refuse feed control system for horizontal stoker type refuse incinerator
JP3023080B2 (en) * 1997-07-28 2000-03-21 川崎重工業株式会社 Method and apparatus for estimating stagnation amount in incinerator

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103900092A (en) * 2014-03-26 2014-07-02 广州环投技术设备有限公司 Automatic combustion control system for municipal solid waste incinerator
JP7015103B2 (en) 2016-06-28 2022-02-02 川崎重工業株式会社 Waste incinerator and control method of waste incinerator
WO2018003223A1 (en) * 2016-06-28 2018-01-04 川崎重工業株式会社 Refuse incineration facility and control method for refuse incineration facility
JP2018004113A (en) * 2016-06-28 2018-01-11 川崎重工業株式会社 Refuse incineration facility and method for controlling the same
CN112639362B (en) * 2018-08-31 2023-09-26 日立造船株式会社 Crane control device, control method for crane control device, control program, and recording medium
CN112639362A (en) * 2018-08-31 2021-04-09 日立造船株式会社 Crane control device, control method for crane control device, control program, and recording medium
JP2020038012A (en) * 2018-08-31 2020-03-12 日立造船株式会社 Crane controller, method of controlling crane controller, control program, and recording medium
JP7148327B2 (en) 2018-08-31 2022-10-05 日立造船株式会社 CRANE CONTROL DEVICE, CONTROL METHOD OF CRANE CONTROL DEVICE, CONTROL PROGRAM, AND RECORDING MEDIUM
WO2020045520A1 (en) * 2018-08-31 2020-03-05 日立造船株式会社 Crane control device, control method for crane control device, control program, and recording medium
CN111059548A (en) * 2018-10-17 2020-04-24 武汉深能环保新沟垃圾发电有限公司 Automatic control method, system, equipment and storage medium for air quantity of incinerator
CN113310057A (en) * 2020-02-26 2021-08-27 三菱重工业株式会社 Control device, control method, and recording medium having program recorded thereon
CN113310057B (en) * 2020-02-26 2024-04-30 三菱重工业株式会社 Control device, control method, and recording medium having program recorded thereon
CN113834072A (en) * 2020-06-08 2021-12-24 三菱重工业株式会社 Control device, control method, and program
CN113834072B (en) * 2020-06-08 2024-02-23 三菱重工业株式会社 Control device, control method, and computer-readable medium
CN113946789A (en) * 2021-11-17 2022-01-18 西安热工研究院有限公司 Method for calculating waste incineration amount of four-furnace three-machine waste incineration power plant in real time
CN113946789B (en) * 2021-11-17 2024-03-12 西安热工研究院有限公司 Method for calculating garbage incineration amount of four-furnace three-machine garbage incineration power plant in real time

Also Published As

Publication number Publication date
JP3466555B2 (en) 2003-11-10

Similar Documents

Publication Publication Date Title
JP7015103B2 (en) Waste incinerator and control method of waste incinerator
JP5996762B1 (en) Waste combustion control method and combustion control apparatus to which the method is applied
US20080163803A1 (en) Method and systems to control municipal solid waste density and higher heating value for improved waste-to-energy boiler operation
JPH10267245A (en) Combustion control method of refuse incinerator and apparatus therefor
JPH04309714A (en) Device for estimating unburnt substance in ash of coal combustion furnace
JP6153090B2 (en) Waste incinerator and waste incineration method
JP3822328B2 (en) Method for estimating the lower heating value of combustion waste in refuse incinerators
JP3466555B2 (en) Combustion control method and device for refuse incineration plant
WO2019235377A1 (en) Method for estimating state quantity of combustion facility, combustion control method, and combustion control device
JPH1068514A (en) Combustion controlling method for refuse incinerating furnace
JP2000314516A (en) Automatic combustion regulating method for refuse incineration plant
JP2019178848A (en) Waste incinerator and waste incineration method
JP3688644B2 (en) Method for estimating in-furnace waste retention distribution in incinerator and combustion control method and apparatus using the method
JP4099195B2 (en) Combustion control system for waste incinerator without boiler equipment
JP5767486B2 (en) Heat recovery plant and operation control method thereof
JP7028844B2 (en) Waste combustion equipment and waste combustion method
JPH09324907A (en) Predetermined amount supply method of garbage in garbage incinerator
JPH0468533B2 (en)
JP3844333B2 (en) Combustion control system for waste incinerator without boiler equipment
JPH04208306A (en) Method for controlling combustion in solid item combustion device
JP3556078B2 (en) Dust supply speed control method for refuse incinerator and refuse incinerator
JP3570881B2 (en) Supply control device for high calorific value waste in incineration system
JPH09273732A (en) Control method of combustion in incinerating furnace
JPH09273731A (en) Control method of combustion in incinerating furnace
JP3023080B2 (en) Method and apparatus for estimating stagnation amount in incinerator

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3466555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 10