JP3688644B2 - Method for estimating in-furnace waste retention distribution in incinerator and combustion control method and apparatus using the method - Google Patents
Method for estimating in-furnace waste retention distribution in incinerator and combustion control method and apparatus using the method Download PDFInfo
- Publication number
- JP3688644B2 JP3688644B2 JP2002057172A JP2002057172A JP3688644B2 JP 3688644 B2 JP3688644 B2 JP 3688644B2 JP 2002057172 A JP2002057172 A JP 2002057172A JP 2002057172 A JP2002057172 A JP 2002057172A JP 3688644 B2 JP3688644 B2 JP 3688644B2
- Authority
- JP
- Japan
- Prior art keywords
- waste
- distribution
- combustion
- amount
- furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Incineration Of Waste (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、ストーカ式焼却炉において、ごみ滞留量、ごみ投入量、ごみ発熱量を推定する線形数式モデルと、得られた推定量から炉内ごみ滞留分布・燃焼分布を詳細に推定する非線形多段数式モデルによる炉内ごみ滞留分布推定方法、及びこれを用いた燃焼制御方法及び装置に関するものである。
【0002】
【従来の技術】
都市ごみ焼却に用いられる焼却炉は流動床式とストーカ式が主流であり、従来、処理量100トン/日規模以下の小型炉では流動床式焼却炉が、処理量数百トン/日規模の大型炉ではストーカ式焼却炉が主に用いられていた。最近では、ダイオキシン発生抑制、焼却灰の有効利用を特長とするガス化溶融炉が注目されているが、依然として大型化対応、安定運転に優れたストーカ式焼却炉に対する期待は大きく、炉内燃焼状態のより精密な把握とこれを利用した燃焼制御の高度化が熱望されている。
【0003】
一般的にストーカ式焼却炉は、炉内に供給したごみが灰として排出されるまでの時間が数十分〜数時間程度と、流動床炉等に比較してごみの炉内滞留時間が長い。このことはごみ質の変化や供給量の変動などの外乱要因に対して、燃焼を安定に継続することを容易にする反面、より適切な燃焼状態を維持するためには、炉内のごみ滞留量分布や燃焼分布などの炉内燃焼状態を把握する必要がある。特に、低空気比高温燃焼を特長とする次世代型ストーカ炉では、ごみ質や供給量変動による炉内燃焼状態への影響がより大きくなることが予想されるため、より詳細な炉内燃焼分布の把握とより安定な燃焼制御が求められる。しかし、炉内は1000℃程度の還元ガス(CO等)雰囲気であることに加え、火炎やすすの影響により炉内のごみ滞留量分布及び燃焼分布を連続的に計測することは困難である。
【0004】
そこで炉内のごみ滞留状態を把握するための技術として、例えば、特開平11−22941号公報には、ストーカ炉内のガス圧力とストーカ下の空気供給圧力を計測し、この差圧からストーカ上のごみ層厚さを推定する手法が開示されている。しかし、上記差圧はストーカ下から供給する燃焼用空気流量や温度、ごみ層温度などの影響を受ける上、ごみ偏在による“吹き抜け”などにより、差圧からごみ層厚さを推定することは困難である。
また、例えば、特開2001−248819号公報には、焼却炉後端(灰出口側)上部に設置したITVカメラ(工業用テレビカメラ)の画像処理によりごみ層厚さを推定する方法が開示されている。しかし、ごみ層上部には火炎が存在することに加え、すす等の影響によりごみ層厚さをITVカメラの画像から推定することは困難である。
このように炉内の直接計測値や画像データのみにより、炉内のごみ滞留状態を把握することは困難である。これに対して、例えば、特開平11−51355号公報には、燃焼ガス温度、主蒸気流量などから動特性数式モデルにより炉内ごみ滞留量を推定する手法が開示されているが、炉内のごみ滞留分布を把握するには到っていない。
【0005】
【発明が解決しようとする課題】
本発明は上記の諸点に鑑みなされたもので、本発明の目的は、焼却炉内の複雑な燃焼挙動を把握するために、ごみ投入量やごみ発熱量等、計測困難かつ変動の大きいプロセス量を推定する線形数式モデルと、この推定値を用いて炉内ごみ移動方向に複数段に分割したエリアのごみ滞留量分布や燃焼分布を詳細に推定する非線形多段数式モデルを用いることにより、従来困難であった炉内ごみ滞留量分布や燃焼分布を運転中のプロセス量からリアルタイムに計算することができるため、炉内のごみ滞留分布や燃焼分布を考慮したより詳細な燃焼制御を行うことが可能となる炉内ごみ滞留分布推定方法並びに該方法を用いた燃焼制御方法及び装置を提供することにある。
【0006】
【課題を解決するための手段】
上記の目的を達成するために、本発明の焼却炉における炉内ごみ滞留分布推定方法は、ストーカ式焼却炉でごみを燃焼させるに際し、空気の流量・温度、ボイラ出口のガス温度、ボイラの圧力・蒸気流量、排ガス酸素濃度を含む計測プロセス量を用いて、下記Aの線形数式モデルを数値計算で解くことによりごみ投入量及びごみ発熱量を推定し、この線形数式モデルにより推定したごみ投入量及びごみ発熱量を入力して、炉内のごみ移動方向に複数段に分割したエリアのごみ滞留量分布及び燃焼分布を算出する下記Eの非線形多段数式モデルを用いて、炉内のごみ滞留量分布及び燃焼分布を推定するように構成されている。ここで、
A:炉内ごみ滞留量、ごみ投入量及びごみ発熱量を未知数とする下記Bのエネルギーバランス式、下記Cのマスバランス式及び下記Dの空気比式で構成される線形数式モデル。
B:炉内ごみ滞留量、ごみ投入量及びごみ発熱量を未知数とし、給水、供給空気、供給ごみのもつ持ち込みエネルギーとごみの燃焼エネルギーの和から、蒸気流量と当該蒸気のエンタルピーの積で表される取り出し蒸気のもつ持ち出しエネルギー、ボイラ出口のガス流量・温度と当該ガスの比熱の積で表される排ガスのもつ持ち出しエネルギー、排出ごみのもつ持ち出しエネルギーを差し引いた残りのエネルギーが、ボイラドラム圧力と炉内滞留ごみの温度に蓄積されるという、エネルギーバランス式(数1の第1の式)。
C:ごみ投入量からごみ排出量とごみ燃焼量を差し引いた残りが炉内ごみ滞留量として蓄積されるという、マスバランス式(数1の第2の式)。
D:供給空気量と燃焼速度から排ガスの酸素濃度が決まるという、空気比式(数1の第3の式)。
E:ごみを揮発分、固定炭素分、水分及び灰分で表現し、ごみ移動方向に沿って炉内を複数段に分割した各段について、下記Fのエネルギーバランス式、下記Gのマスバランス式、その中に含まれる伝熱量を表す輻射・対流伝熱式、ごみの燃焼による発熱量やごみ乾燥に伴う吸熱量を表す式、熱分解速度、燃焼速度、乾燥速度を表す式を含む、非線形多段数式モデル。
F:各段の入口で持ち込まれるごみ、空気の顕熱とごみ燃焼による発熱量の和から、各段出口から出ていくごみ、空気の顕熱、ごみ乾燥に伴う吸熱量、ごみから炉壁への伝熱量を差し引いたエネルギーが、滞留ごみ温度に蓄積されていくという、エネルギーバランス式(数2の第1の式)。
G:各段において、ごみ投入量からごみ排出量とごみ燃焼量を差し引いた残りがごみ滞留量として蓄積されるという、マスバランス式(数5の第1〜4の式)。
【0007】
本発明の焼却炉における炉内ごみ滞留分布推定による燃焼制御方法は、上記の方法で数式モデルを用いて推定した炉内ごみ滞留量分布及び燃焼分布のデータのうち、燃焼発熱量分布と滞留ごみ温度分布と滞留ごみ中未燃分率分布のデータをもとに、ごみ移動速度(ストーカ動作)とごみ給じん速度とごみ発熱量の設定値を、燃焼発熱量分布、滞留ごみ温度分布及び滞留ごみ中未燃分率分布が正規の分布になるような方向に増減させて補正することを特徴としている。
【0008】
具体的には、上記数式モデルを用いて推定した炉内ごみ滞留量分布及び燃焼分布のデータのうち、例えば、燃焼発熱量分布のデータから主燃焼位置を推定し、主燃焼位置目標値との差に応じてごみ移動速度(ストーカ送り速度)の設定値を、主燃焼位置が正規の位置にくるような方向に増減させて補正し、滞留ごみ温度分布と滞留ごみ中未燃分率分布のデータから燃焼帯長さを推定し、燃焼帯長さ目標値との差に応じてごみ発熱量と給じん速度の設定値を、燃焼帯長さが正規の長さになるような方向に増減させて補正する。主燃焼位置、燃焼帯長さの定義等については後述する。
【0009】
さらに、本発明の焼却炉における炉内ごみ滞留分布推定による燃焼制御装置は、ストーカ式焼却炉の空気の流量・温度、ボイラ出口のガス温度、ボイラの圧力・蒸気流量、排ガス酸素濃度を含む計測プロセス量を入力してごみ投入量とごみ発熱量を推定する、上記のAに記載の線形数式モデルが格納されたごみ投入量・発熱量推定手段と、前記線形数式モデルで推定したごみ投入量及びごみ発熱量のデータを入力として炉内ごみ滞留量分布及び燃焼分布を推定する上記のEに記載の非線形多段数式モデルが格納されたごみ滞留分布・燃焼分布推定手段と、前記非線形多段数式モデルで推定した炉内ごみ滞留量分布及び燃焼分布のデータのうち、燃焼発熱量分布、滞留ごみ温度分布及び滞留ごみ中未燃分率分布のデータをもとに、ごみ移動速度(ストーカ動作)、ごみ給じん速度及びごみ発熱量の少なくともいずれかの設定値を、燃焼発熱量分布、滞留ごみ温度分布及び滞留ごみ中未燃分率分布が正規の分布になるような方向に増減させて補正する演算部を備えた運転監視・操作手段とを包含してなることを特徴としている。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態について説明するが、本発明は下記の実施の形態に何ら限定されるものではなく、適宜変更して実施することが可能なものである。図1は、本発明の実施の形態による炉内ごみ滞留分布推定方法の適用対象であるごみ焼却炉の一例を示している。ごみ焼却炉10は、乾燥ストーカ(乾燥段)12、燃焼ストーカ(燃焼段)14及び後燃焼ストーカ(後燃焼段)16を有するストーカ式ごみ焼却炉であり、ごみ焼却炉10の燃焼室18後流には、廃熱ボイラ20、蒸気タービン21、発電機22が設けられている。ホッパ24に投入されたごみは、給じん装置(プッシャ)26により乾燥ストーカ(乾燥段)12上に供給される。供給されたごみは、高温燃焼ガスによる輻射熱とストーカ下から供給される一次空気により乾燥された後、熱分解により可燃性ガスを発生する。可燃性ガスは炉上部より供給される二次空気により上部のガス層で炎燃焼し、熱輻射によりごみはさらに昇温される。高温となったごみは固定炭素分(チャー)が燃焼し、残った灰分が炉後端部から排出される。燃焼過程では、下方に傾斜したストーカの揺動運動によりごみは順次、乾燥ストーカ(乾燥段)12、燃焼ストーカ(燃焼段)14、後燃焼ストーカ(後燃焼段)16へと送られる。
【0011】
上記焼却炉のプロセス量のうち、直接計測できず、かつ変動が大きいプロセス量である「ごみ滞留量WR」、「ごみ投入量GRI」、「ごみ発熱量HU」は、下記の数1に示す焼却炉全体のエネルギーバランス式、マスバランス式、空気比式からなる線形数式モデルを解くことにより、算出することができる。
【0012】
【数1】
【0013】
線形数式モデルにより計測プロセス値から算出した「ごみ投入量GR」及び「ごみ発熱量HU」を入力とし、炉内のごみ滞留量分布及び燃焼分布を詳細に算出するために、炉内のごみ移動方向に複数段に分割したエリアのごみ滞留量分布及び燃焼分布を算出する非線形多段数式モデルを考える。図2に示すように、炉内をごみ移動方向に沿って複数段に分割して考え、各段について燃焼過程におけるごみ及びガスの発熱反応、吸熱反応、輻射・対流伝熱を考え、ごみは水分、揮発分、固定炭素(チャー)分、灰分からなると仮定する。i段目の非線形数式モデルを下記の数2〜数8に示す。
【0014】
【数2】
【0015】
【数3】
【0016】
【数4】
【0017】
【数5】
【0018】
【数6】
【0019】
【数7】
【0020】
【数8】
【0021】
なお、1段目数式モデルへのごみ各成分投入量Gv0、Gc0、Gw0、Gs0は、先の線形数式モデルにより算出したごみ投入量GRとごみ発熱量HUより、下記の数9に示す式で求める。
【0022】
【数9】
【0023】
上記の数2〜数9に示す数式の記号は下記の通りである。
【0024】
【0025】
以上の線形数式モデル、及びごみ移動方向に複数段分用意した非線形数式モデルにより、計測プロセス値に基づいて算出したごみ滞留量分布及び燃焼分布を得ることができる。
ここで提案したごみ滞留分布推定結果の一例として、標準ごみ投入時の炉内ごみ滞留分布・燃焼分布(図3)と、低質ごみ(ここでは、水分が多く発熱量が低いごみ)投入時の炉内ごみ滞留分布・燃焼分布(図4)を示す。
【0026】
次に、ここまで説明した数式モデルを含む焼却炉の監視・操作方法の一例、すなわち、本発明の実施の形態による炉内ごみ滞留分布推定による燃焼制御の一例を図5に示す。ごみ焼却炉10運転中のプロセス量は、センサ28で計測されて計測信号として制御装置30に入力され、制御装置30から計測信号入力処理部32に入力される。計測信号入力処理部32に入力された計測信号を用いて、ごみ投入量・発熱量推定部34では、前述した線形数式モデルによりごみ投入量とごみ発熱量が算出される。線形数式モデルが推定したごみ投入量及びごみ発熱量のデータを入力として、ごみ滞留分布・燃焼分布推定部36では、前述した非線形多段数式モデルにより炉内ごみ滞留量分布及び燃焼分布が算出される。これにより、従来困難であった炉内ごみ滞留量分布や燃焼分布が運転中のプロセス量からリアルタイムに算出できる。推定結果出力処理部38では、非線形多段数式モデルが推定した炉内ごみ滞留量分布及び燃焼分布のデータのうち、燃焼発熱量分布、滞留ごみ温度分布、滞留ごみ中未燃分率分布等のデータをもとに、一例として、後述する主燃焼位置と燃焼帯長さの推定値が導出され、運転監視・操作装置40では、主燃焼位置と燃焼帯長さをもとに、焼却炉10の操作、例えば、ごみ移動速度(ストーカ動作)、ごみ給じん速度、ごみ発熱量の設定を補正する操作が行われる。焼却炉10の操作は、制御装置30に対して操作量、設定値を変更することにより行われ、操作量は、アクチュエータ42を介して焼却炉10に伝えられる。
【0027】
ここで、先の数式モデルより推定した炉内ごみ滞留量分布及び燃焼分布データを燃焼制御に利用するために、以下の方法で定義する主燃焼位置と燃焼帯長さを導入する。
主燃焼位置は図6に示すように、ごみ移動方向を横軸(X軸)、燃焼発熱量(熱分解ガス発熱量Qhvi+チャー燃焼発熱量Qhci)を縦軸(Y軸)とした図形の重心に対する、ごみ投入側からの距離と定義する。
【0028】
燃焼帯長さは、ストーカ上のごみが着火開始する位置(着火点)とごみからの炎がほとんど消失する位置(燃切点)の距離として定義する。ここで着火点は図7に示すように、ごみ移動方向を横軸(X軸)、滞留ごみ温度(Tri)を縦軸(Y軸)としたグラフにおいて、あらかじめ設定した着火しきい値(例えば、450℃)を越えた点に対する、ごみ投入側からの距離と定義する。また、燃切点は図8に示すように、ごみ移動方向を横軸(X軸)、滞留ごみ中未燃分率(可燃分滞留量[Wvi+Wci]÷ごみ滞留量[Wvi+Wci+Wwi+Wsi]×100)を縦軸(Y軸)としたグラフにおいて、あらかじめ設定した燃切しきい値(例えば、10%)以下となった点に対する、ごみ投入側からの距離と定義する。
【0029】
以上のように定義された主燃焼位置、燃焼帯長さを導出した上で、得られた主燃焼位置と燃焼帯長さをもとに燃焼制御を行うロジックの一例を図9、図10に示す。図9では、主燃焼位置は対象炉に適した位置を目標値として入力し、推定値との偏差によりごみ移動速度(ストーカ停止タイマー等の操作)を補正する。例えば、主燃焼位置の推定値が目標値よりも大きい場合(炉出口側へ移動した場合)は、ストーカ上のごみ移動が遅くなるようにごみ移動速度を調整する。
【0030】
また、図10では、燃焼帯長さは自動燃焼制御装置(ACC)のごみ発熱量設定値とごみ焼却量設定値から求めた標準的な燃焼帯長さを目標値として入力し、推定値との偏差によりごみ発熱量設定値と給じん速度設定値(給じん停止タイマー等の操作)を補正する。例えば、燃焼帯長さの推定値が目標値よりも大きく(長く)なった場合は、炉内の滞留ごみ量及び燃焼域が減るようにごみ発熱量設定値を大きくするとともに、給じん速度設定値を小さくする。
【0031】
図11には推定した炉内ごみ滞留分布・燃焼分布に基づいて、前述の図4に示した低質ごみ投入時の炉内燃焼改善を図った場合の動的挙動の計算機シミュレーション例を示し、図12には改善後の炉内ごみ滞留分布・燃焼分布を示す。このように、本発明では、炉内ごみ滞留量分布や燃焼分布を運転中のプロセス量からリアルタイムに計算することができるため、炉内のごみ滞留分布や燃焼分布を考慮したより詳細な燃焼制御を行うことができる。
【0032】
【発明の効果】
本発明は上記のように構成されているので、つぎのような効果を奏する。
(1) ごみ投入量とごみ発熱量を推定する線形数式モデルと、炉内ごみ滞留量分布、燃焼分布を推定する非線形多段数式モデルを用いることにより、従来技術では困難であった炉内のごみ滞留量分布及びガス温度などの炉内燃焼分布を把握することができる。
(2) 得られたごみ滞留量分布や燃焼分布を、例えば、プラントオペレータの運転補助情報として利用するだけでなく、自動燃焼制御やファジー制御の入力情報として利用することにより、従来のプロセス量のみに基づく制御に比較してより優れた燃焼制御特性を実現することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態による炉内ごみ滞留分布推定方法の適用対象であるごみ焼却炉の一例を示す概略構成説明図である。
【図2】炉内のごみ滞留分布及び燃焼分布を詳細に算出するための非線形多段数式モデルを考える場合の概念を説明する概念説明図である。
【図3】標準ごみ投入時の炉内ごみ滞留分布・燃焼分布の推定結果の一例を示すグラフである。
【図4】低質ごみ投入時の炉内ごみ滞留分布・燃焼分布の推定結果の一例を示すグラフである。
【図5】本発明の実施の形態による炉内ごみ滞留分布推定による燃焼制御方法を実施する装置の一例を示す全体構成図である。
【図6】燃焼発熱量分布から主燃焼位置を求める方法を説明するグラフである。
【図7】滞留ごみ温度分布から燃焼帯長さの導出に必要な着火点を求める方法を説明するグラフである。
【図8】滞留ごみ中未燃分率分布から燃焼帯長さの導出に必要な燃切点を求める方法を説明するグラフである。
【図9】主燃焼位置をもとに燃焼制御を行うロジックの一例を示す説明図である。
【図10】燃焼帯長さをもとに燃焼制御を行うロジックの一例を示す説明図である。
【図11】推定した炉内ごみ滞留分布・燃焼分布に基づいて図4に示した低質ごみ投入時の炉内燃焼改善を図った場合の動的挙動の計算機シミュレーションの一例を示すグラフである。
【図12】図11における改善後の炉内ごみ滞留分布・燃焼分布を示すグラフである。
【符号の説明】
10 ごみ焼却炉
12 乾燥ストーカ(乾燥段)
14 燃焼ストーカ(燃焼段)
16 後燃焼ストーカ(後燃焼段)
18 燃焼室
20 廃熱ボイラ
21 蒸気タービン
22 発電機
24 ホッパ
26 給じん装置
28 センサ
30 制御装置
32 計測信号入力処理部
34 ごみ投入量・発熱量推定部
36 ごみ滞留分布・燃焼分布推定部
38 推定結果出力処理部
40 運転監視・操作装置
42 アクチュエータ[0001]
BACKGROUND OF THE INVENTION
In the stoker type incinerator, the present invention provides a linear mathematical model for estimating the amount of waste accumulated, the amount of waste charged, and the amount of heat generated from the waste, and a non-linear multi-stage that estimates the in-furnace waste retention and combustion distribution in detail from the obtained estimated amount. The present invention relates to a method for estimating in-furnace waste retention distribution using a mathematical model, and a combustion control method and apparatus using the method.
[0002]
[Prior art]
Incinerators used for municipal waste incineration are mainly fluidized bed type and stoker type. Conventionally, in small-sized furnaces with a throughput of 100 tons / day or less, fluidized bed incinerators have a throughput of several hundred tons / day. For large furnaces, stoker-type incinerators were mainly used. Recently, gasification and melting furnaces that feature dioxin generation suppression and effective use of incineration ash are attracting attention. However, there is still great expectation for stoker-type incinerators that are capable of increasing the size and have excellent stable operation. There is an aspiration for a more precise understanding of the above and the advancement of combustion control using this.
[0003]
In general, the stoker-type incinerator has several tens of minutes to several hours until the waste supplied to the furnace is discharged as ash, and the residence time of the waste in the furnace is longer than that in a fluidized bed furnace. . This makes it easy to continue combustion stably against disturbance factors such as changes in waste quality and fluctuations in the supply amount, but in order to maintain a more appropriate combustion state, it is necessary to retain the waste in the furnace. It is necessary to grasp the combustion state in the furnace such as quantity distribution and combustion distribution. In particular, in the next-generation stoker furnace, which features high-temperature combustion with a low air ratio, it is expected that the impact on the in-furnace combustion state will be greater due to changes in waste quality and supply amount. And more stable combustion control are required. However, in addition to a reducing gas (CO or the like) atmosphere in the furnace at about 1000 ° C., it is difficult to continuously measure the dust retention amount distribution and the combustion distribution in the furnace due to the influence of flame soot.
[0004]
Therefore, as a technique for grasping the state of waste in the furnace, for example, in Japanese Patent Application Laid-Open No. 11-22941, the gas pressure in the stalker furnace and the air supply pressure under the stalker are measured, and from the differential pressure, A method for estimating the dust layer thickness is disclosed. However, the above differential pressure is affected by the flow rate of combustion air supplied from under the stoker, temperature, dust layer temperature, etc., and it is difficult to estimate the dust layer thickness from the differential pressure due to “blow-off” due to uneven distribution of dust. It is.
Also, for example, Japanese Patent Application Laid-Open No. 2001-248819 discloses a method for estimating the dust layer thickness by image processing of an ITV camera (industrial TV camera) installed at the upper end of the incinerator rear end (ash outlet side). ing. However, it is difficult to estimate the thickness of the dust layer from the image of the ITV camera due to the influence of soot and the like in addition to the presence of a flame in the upper part of the dust layer.
As described above, it is difficult to grasp the waste residence state in the furnace only by the direct measurement value and image data in the furnace. On the other hand, for example, Japanese Patent Application Laid-Open No. 11-51355 discloses a method for estimating the amount of waste in the furnace using a dynamic characteristic mathematical model from the combustion gas temperature, the main steam flow rate, etc. It has not yet been possible to grasp the waste retention distribution.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the above points. The purpose of the present invention is to grasp the complicated combustion behavior in an incinerator, such as the amount of waste input and the amount of heat generated, and the amount of process that is difficult to measure and has large fluctuations. It is difficult to achieve this by using a linear mathematical model that estimates the amount of waste and a non-linear multi-stage mathematical model that estimates in detail the waste retention and combustion distributions in areas divided into multiple stages in the direction of waste movement in the furnace using this estimated value. Because it is possible to calculate in-furnace waste retention and combustion distribution in real time from the process volume during operation, it is possible to perform more detailed combustion control considering the waste retention distribution and combustion distribution in the furnace. It is an object of the present invention to provide a method for estimating in-furnace stagnation distribution and a combustion control method and apparatus using the method.
[0006]
[Means for Solving the Problems]
To achieve the above Symbol object, furnace dust residence distribution estimation method in the incinerator of the present invention, upon burning the refuse in stoker incinerator, the air flow rate and temperature, the boiler outlet gas temperature, the boiler Using the measured process volume including pressure, steam flow rate, and exhaust gas oxygen concentration, the linear formula model of A below is solved by numerical calculation to estimate the amount of waste input and waste heat, and the waste input estimated using this linear formula model The amount of waste and the amount of waste generated are input, and the waste residence in the furnace is calculated using the nonlinear multi-stage mathematical model of E below, which calculates the waste residence distribution and combustion distribution in the area divided into multiple stages in the direction of waste movement in the furnace. It is configured to estimate the quantity distribution and the combustion distribution. here,
A: Linear equation model composed of the following energy balance equation (B), mass balance equation (C) below, and air ratio equation (D) below, where the amount of waste in the furnace, the amount of waste input, and the amount of heat generated from the waste are unknown.
B: The amount of waste in the furnace, the amount of waste input, and the amount of heat generated from the waste is unknown, and is expressed as the product of the steam flow rate and the enthalpy of the steam from the sum of the feed water, supply air, the carry-on energy of the supply waste and the combustion energy of the waste. The boiler drum pressure is the remaining energy after subtracting the carry-out energy of the exhaust gas, the take-out energy of the exhaust gas represented by the product of the gas flow rate / temperature at the boiler outlet and the specific heat of the gas, and the carry-out energy of the discharged waste. Energy balance formula (the first formula of Equation 1) that is accumulated at the temperature of the waste in the furnace.
C: Mass balance formula (the second formula of Formula 1) in which the remainder obtained by subtracting the waste discharge amount and the waste combustion amount from the waste input amount is accumulated as the waste residence amount in the furnace.
D: An air ratio formula (third formula of Formula 1) in which the oxygen concentration of the exhaust gas is determined from the supply air amount and the combustion speed.
E: Representing waste as volatile matter, fixed carbon content, moisture and ash, and dividing the furnace into a plurality of stages along the waste movement direction, the following energy balance formula of F, mass balance formula of G below, Non-linear multi-stage including radiation and convection heat transfer formulas representing the amount of heat transfer contained therein, formulas representing the amount of heat generated by the combustion of garbage and the amount of heat absorbed due to waste drying, thermal decomposition rate, combustion rate and drying rate Formula model.
F: Garbage brought in at the entrance of each stage, the sum of sensible heat of air and the amount of heat generated by combustion of garbage, waste coming out of each stage exit, sensible heat of air, endothermic amount due to garbage drying, waste to furnace wall The energy balance formula (the first formula in Formula 2) in which the energy obtained by subtracting the amount of heat transfer to is accumulated at the accumulated waste temperature.
G: Mass balance formula (
[0007]
In the incinerator of the present invention, the combustion control method based on the estimation of the in-furnace waste retention distribution is based on the in-furnace waste retention distribution and the combustion distribution data estimated using the mathematical model in the above method. Based on the data of temperature distribution and unburned fraction distribution in stagnant waste, set values of waste moving speed (stoker operation), dust feed speed and waste heat generation amount , combustion heat generation distribution, stagnant waste temperature distribution and stay It is characterized by correcting by increasing or decreasing in the direction that the unburned fraction distribution in the garbage becomes a normal distribution .
[0008]
Specifically, for example, the main combustion position is estimated from the combustion calorific value distribution data among the data of the in-furnace waste retention distribution and the combustion distribution estimated using the above mathematical model, and the main combustion position target value is calculated. Depending on the difference, the set value of the waste movement speed (stoker feed speed) is corrected by increasing or decreasing it in the direction where the main combustion position is at the normal position, and the accumulated waste temperature distribution and the unburned fraction distribution in the accumulated waste Estimate the combustion zone length from the data, and increase / decrease the setting value of the waste heat generation rate and the feed rate according to the difference from the target combustion zone length so that the combustion zone length becomes the normal length. To correct. The definition of the main combustion position and the combustion zone length will be described later.
[0009]
Further, the combustion control apparatus according to the incinerator waste distribution estimation in the incinerator of the present invention is a measurement including the air flow rate / temperature of the stoker type incinerator, the gas temperature at the boiler outlet, the pressure / steam flow rate of the boiler, and the exhaust gas oxygen concentration. Waste input amount / heat generation amount estimation means storing the linear mathematical model described in A above, in which a process amount is input to estimate waste input amount and waste heat generation amount, and waste input amount estimated by the linear mathematical model And a waste residence distribution / combustion distribution estimation means in which the nonlinear multi-stage mathematical model described in E above is estimated, and the nonlinear multi-stage mathematical model is stored. Based on the data of the combustion heat generation distribution, the temperature of the stagnant waste, and the distribution of the unburned fraction in the stagnant waste among the data on the furnace waste stagnant distribution and combustion distribution estimated in
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications. FIG. 1 shows an example of a waste incinerator to which the method for estimating in-furnace waste retention distribution according to the embodiment of the present invention is applied. The
[0011]
Among the above incinerator process quantities, the "garbage retention amount W R ", "garbage input amount G RI ", and "garbage heat generation amount H U ", which cannot be directly measured and have large fluctuations, are as follows: It can be calculated by solving a linear equation model consisting of the energy balance equation, mass balance equation, and air ratio equation for the entire incinerator shown in FIG.
[0012]
[Expression 1]
[0013]
In order to calculate in detail the waste retention amount distribution and the combustion distribution in the furnace, using the “garbage input amount G R ” and the “waste heat generation amount H U ” calculated from the measurement process values by a linear mathematical model as inputs. Consider a non-linear multi-stage mathematical model that calculates the waste accumulation distribution and combustion distribution in an area divided into multiple stages in the direction of waste movement. As shown in Fig. 2, the inside of the furnace is divided into multiple stages along the direction of waste movement, and the waste and gas exothermic reaction, endothermic reaction, radiation and convection heat transfer in the combustion process are considered for each stage. It is assumed that it consists of moisture, volatile matter, fixed carbon (char), and ash. The i-th stage nonlinear mathematical model is shown in the following
[0014]
[Expression 2]
[0015]
[Equation 3]
[0016]
[Expression 4]
[0017]
[Equation 5]
[0018]
[Formula 6]
[0019]
[Expression 7]
[0020]
[Equation 8]
[0021]
Incidentally, dust components input of the first stage mathematical model G v0, G c0, G w0 , G s0 , from waste input amount was calculated by the preceding linear mathematical model G R and waste heating value H U, the following Obtained by the equation shown in Equation 9.
[0022]
[Equation 9]
[0023]
The symbols of the mathematical formulas shown in the
[0024]
[0025]
With the above-described linear mathematical model and the nonlinear mathematical model prepared for a plurality of stages in the direction of dust movement, it is possible to obtain the dust retention amount distribution and the combustion distribution calculated based on the measurement process value.
As an example of the estimation result of the waste retention distribution proposed here, waste retention and combustion distribution in the furnace (Fig. 3) at the time of standard waste input and low-quality waste (in this case, waste with high moisture and low calorific value) are input. The in-furnace waste retention distribution and combustion distribution (Fig. 4) are shown.
[0026]
Next, FIG. 5 shows an example of an incinerator monitoring / operation method including the mathematical model described so far, that is, an example of combustion control based on in-furnace waste retention distribution estimation according to the embodiment of the present invention. The process amount during operation of the
[0027]
Here, in order to use the in-furnace refuse retention distribution and combustion distribution data estimated from the previous mathematical model for combustion control, the main combustion position and the combustion zone length defined by the following method are introduced.
As shown in FIG. 6, the main combustion position has the horizontal axis (X axis) as the dust movement direction and the vertical axis (Y axis) as the combustion calorific value (pyrolysis gas calorific value Q hvi + char combustion calorific value Q hci ). It is defined as the distance from the waste input side with respect to the center of gravity of the figure.
[0028]
The combustion zone length is defined as the distance between the position where the garbage on the stoker starts to ignite (ignition point) and the position where the flame from the garbage almost disappears (burnout point). Here, as shown in FIG. 7, the ignition point is a preset ignition threshold value (for example, in a graph in which the waste movement direction is the horizontal axis (X axis) and the staying waste temperature (T ri ) is the vertical axis (Y axis). , 450 ° C) is defined as the distance from the waste input side. Also, as shown in FIG. 8, the burnout point is the horizontal axis (X-axis), the unburned fraction in the accumulated waste (combustible fraction retention amount [W vi + W ci ] ÷ dust retention amount [W vi + W ci + W wi + W si ] × 100) In the graph with the vertical axis (Y axis) defined as the distance from the waste input side to the point that is below the preset fuel cut-off threshold (for example, 10%) To do.
[0029]
FIG. 9 and FIG. 10 show an example of logic for performing combustion control based on the obtained main combustion position and combustion zone length after deriving the main combustion position and combustion zone length defined as above. Show. In FIG. 9, a position suitable for the target furnace is input as a target value for the main combustion position, and the garbage moving speed (operation of a stalker stop timer or the like) is corrected based on a deviation from the estimated value. For example, when the estimated value of the main combustion position is larger than the target value (when moving to the furnace outlet side), the garbage movement speed is adjusted so that the garbage movement on the stalker becomes slow.
[0030]
In FIG. 10, the combustion zone length is obtained by inputting a standard combustion zone length obtained from the waste heat generation amount setting value and the waste incineration amount setting value of the automatic combustion controller (ACC) as a target value, The waste heat generation amount setting value and the feed rate setting value (operation of the feed stop timer, etc.) are corrected by the deviation of. For example, if the estimated value of the combustion zone length is larger (longer) than the target value, the waste heat generation amount setting value will be increased so that the amount of accumulated waste and the combustion zone in the furnace will decrease, and the feed rate setting Decrease the value.
[0031]
FIG. 11 shows an example of a computer simulation of dynamic behavior in the case of improving the combustion in the furnace when the low quality waste shown in FIG. 4 is introduced based on the estimated in-furnace waste retention distribution / combustion distribution. 12 shows the in-furnace waste retention distribution and combustion distribution after improvement. As described above, in the present invention, since the in-furnace waste retention distribution and combustion distribution can be calculated in real time from the operating process amount, more detailed combustion control in consideration of the waste retention distribution and combustion distribution in the furnace. It can be performed.
[0032]
【The invention's effect】
Since this invention is comprised as mentioned above, there exist the following effects.
(1) By using a linear mathematical model that estimates waste input and waste heat generation, and a non-linear multi-stage mathematical model that estimates waste residence distribution and combustion distribution in the furnace, waste in the furnace, which was difficult in the prior art It is possible to grasp the combustion distribution in the furnace such as the residence amount distribution and the gas temperature.
(2) By using the obtained waste accumulation distribution and combustion distribution as input information for automatic combustion control and fuzzy control as well as, for example, operation assistance information for plant operators, only conventional process amounts can be used. Compared with control based on the above, it is possible to realize a combustion control characteristic that is superior.
[Brief description of the drawings]
FIG. 1 is a schematic configuration explanatory diagram showing an example of a waste incinerator to which a method for estimating in-furnace waste retention distribution according to an embodiment of the present invention is applied.
FIG. 2 is a conceptual explanatory diagram for explaining the concept when considering a nonlinear multi-stage mathematical model for calculating in detail the waste retention distribution and combustion distribution in a furnace.
FIG. 3 is a graph showing an example of estimation results of in-furnace waste retention distribution / combustion distribution when standard waste is charged.
FIG. 4 is a graph showing an example of estimation results of in-furnace waste retention distribution / combustion distribution when low-quality waste is charged.
FIG. 5 is an overall configuration diagram showing an example of an apparatus that implements a combustion control method based on in-furnace waste retention distribution estimation according to an embodiment of the present invention.
FIG. 6 is a graph illustrating a method for obtaining a main combustion position from a combustion heat generation amount distribution.
FIG. 7 is a graph for explaining a method for obtaining an ignition point necessary for deriving the combustion zone length from the accumulated waste temperature distribution.
FIG. 8 is a graph for explaining a method for obtaining a fuel cutoff point necessary for deriving a combustion zone length from a distribution of unburned fraction in accumulated waste.
FIG. 9 is an explanatory diagram showing an example of logic for performing combustion control based on the main combustion position.
FIG. 10 is an explanatory diagram showing an example of logic for performing combustion control based on the combustion zone length.
11 is a graph showing an example of a computer simulation of dynamic behavior when improvement in combustion in the furnace at the time of introduction of low-quality waste shown in FIG. 4 is attempted based on the estimated in-furnace waste retention distribution / combustion distribution.
12 is a graph showing the in-furnace waste retention distribution / combustion distribution after the improvement in FIG. 11;
[Explanation of symbols]
10
14 Combustion stoker (combustion stage)
16 Post-combustion stoker (post-combustion stage)
18
Claims (4)
A:炉内ごみ滞留量、ごみ投入量及びごみ発熱量を未知数とする下記Bのエネルギーバランス式、下記Cのマスバランス式及び下記Dの空気比式で構成される線形数式モデル。
B:炉内ごみ滞留量、ごみ投入量及びごみ発熱量を未知数とし、給水、供給空気、供給ごみのもつ持ち込みエネルギーとごみの燃焼エネルギーの和から、蒸気流量と当該蒸気のエンタルピーの積で表される取り出し蒸気のもつ持ち出しエネルギー、ボイラ出口のガス流量・温度と当該ガスの比熱の積で表される排ガスのもつ持ち出しエネルギー、排出ごみのもつ持ち出しエネルギーを差し引いた残りのエネルギーが、ボイラドラム圧力と炉内滞留ごみの温度に蓄積されるという、エネルギーバランス式。
C:ごみ投入量からごみ排出量とごみ燃焼量を差し引いた残りが炉内ごみ滞留量として蓄積されるという、マスバランス式。
D:供給空気量と燃焼速度から排ガスの酸素濃度が決まるという、空気比式。
E:ごみを揮発分、固定炭素分、水分及び灰分で表現し、ごみ移動方向に沿って炉内を複数段に分割した各段について、下記Fのエネルギーバランス式、下記Gのマスバランス式、その中に含まれる伝熱量を表す輻射・対流伝熱式、ごみの燃焼による発熱量やごみ乾燥に伴う吸熱量を表す式、熱分解速度、燃焼速度、乾燥速度を表す式を含む、非線形多段数式モデル。
F:各段の入口で持ち込まれるごみ、空気の顕熱とごみ燃焼による発熱量の和から、各段出口から出ていくごみ、空気の顕熱、ごみ乾燥に伴う吸熱量、ごみから炉壁への伝熱量を差し引いたエネルギーが、滞留ごみ温度に蓄積されていくという、エネルギーバランス式。
G:各段において、ごみ投入量からごみ排出量とごみ燃焼量を差し引いた残りがごみ滞留量として蓄積されるという、マスバランス式。 When burning waste in a stoker-type incinerator, the numerical formula of the following linear equation model is used using the measurement process quantity including the air flow rate / temperature, boiler outlet gas temperature, boiler pressure / steam flow rate, and exhaust gas oxygen concentration. The waste input amount and waste heat generation amount are estimated by solving the calculation, and the waste input amount and waste heat generation amount estimated by this linear mathematical model are input, and the waste in the area divided into multiple stages in the waste movement direction in the furnace A method for estimating in-furnace waste retention distribution in an incinerator, wherein the in-furnace waste retention distribution and combustion distribution are estimated using a nonlinear multi-stage mathematical model E described below for calculating the residence amount distribution and combustion distribution.
A: Linear equation model composed of the following energy balance equation (B), mass balance equation (C) below, and air ratio equation (D) below, where the amount of waste in the furnace, the amount of waste input, and the amount of heat generated from the waste are unknown.
B: The amount of waste in the furnace, the amount of waste input, and the amount of heat generated from the waste is unknown. The boiler drum pressure is the remaining energy after subtracting the carry-out energy of the exhaust gas, the take-out energy of the exhaust gas represented by the product of the gas flow rate / temperature at the boiler outlet and the specific heat of the gas, and the carry-out energy of the discharged waste. Energy balance type that is accumulated at the temperature of the waste in the furnace.
C: Mass balance type in which the remainder obtained by subtracting the waste discharge amount and the waste combustion amount from the waste input amount is accumulated as the waste residence amount in the furnace.
D: An air ratio formula in which the oxygen concentration of the exhaust gas is determined from the supply air amount and the combustion speed.
E: Representing waste as volatile matter, fixed carbon content, moisture and ash, and dividing the furnace into a plurality of stages along the waste movement direction, the following energy balance formula of F, mass balance formula of G below, Non-linear multi-stage including radiation and convection heat transfer formulas representing the amount of heat transfer contained therein, formulas representing the amount of heat generated by the combustion of garbage and the amount of heat absorbed due to waste drying, thermal decomposition rate, combustion rate and drying rate Formula model.
F: Garbage brought in at the entrance of each stage, the sum of sensible heat of air and the amount of heat generated by combustion of garbage, waste coming out of each stage exit, sensible heat of air, endothermic amount due to garbage drying, waste to furnace wall Energy balance formula, where energy deducted from heat transfer to is accumulated at the temperature of stagnant waste.
G: Mass balance type in which the remainder obtained by subtracting the waste discharge amount and the waste combustion amount from the waste input amount is accumulated as the waste residence amount in each stage.
前記線形数式モデルで推定したごみ投入量及びごみ発熱量のデータを入力として炉内ごみ滞留量分布及び燃焼分布を推定する請求項1のEに記載の非線形多段数式モデルが格納されたごみ滞留分布・燃焼分布推定手段と、
前記非線形多段数式モデルで推定した炉内ごみ滞留量分布及び燃焼分布のデータのうち、燃焼発熱量分布、滞留ごみ温度分布及び滞留ごみ中未燃分率分布のデータをもとに、ストーカ動作によるごみ移動速度、ごみ給じん速度及びごみ発熱量の少なくともいずれかの設定値を、燃焼発熱量分布、滞留ごみ温度分布及び滞留ごみ中未燃分率分布が正規の分布になるような方向に増減させて補正する演算部を備えた運転監視・操作手段とを包含してなることを特徴とする焼却炉における炉内ごみ滞留分布推定による燃焼制御装置。 Air flow rate and temperature of the stoker incinerator, boiler outlet gas temperature, pressure and steam flow of the boiler, type measurement process variable comprising an exhaust gas oxygen concentration to estimate the waste input amount and waste heating value, claim 1 Waste input amount / heat generation amount estimation means in which the linear mathematical model described in A is stored;
The waste residence distribution in which the nonlinear multi-stage mathematical model according to claim 1 is stored, wherein the waste residence amount distribution and the combustion distribution in the furnace are estimated by inputting the data of the waste input amount and the waste heat generation amount estimated by the linear mathematical model.・ Combustion distribution estimation means,
Based on the stoker operation based on the data of combustion calorific value distribution, stagnant waste temperature distribution, and unburned fraction distribution in stagnant waste among the data of waste stagnant distribution and combustion distribution in the furnace estimated by the nonlinear multi-stage mathematical model Increase / decrease the set value of at least one of the waste movement speed, waste feed rate, and waste heat generation value in such a direction that the combustion heat generation amount distribution, stagnant waste temperature distribution, and unburned fraction distribution in stagnant waste become a normal distribution. combustion control device according to the furnace waste residence distribution estimation in incinerator characterized by comprising encompass and operation monitoring and operation unit having an arithmetic unit for correcting by.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002057172A JP3688644B2 (en) | 2002-03-04 | 2002-03-04 | Method for estimating in-furnace waste retention distribution in incinerator and combustion control method and apparatus using the method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002057172A JP3688644B2 (en) | 2002-03-04 | 2002-03-04 | Method for estimating in-furnace waste retention distribution in incinerator and combustion control method and apparatus using the method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003254523A JP2003254523A (en) | 2003-09-10 |
JP3688644B2 true JP3688644B2 (en) | 2005-08-31 |
Family
ID=28667504
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002057172A Expired - Fee Related JP3688644B2 (en) | 2002-03-04 | 2002-03-04 | Method for estimating in-furnace waste retention distribution in incinerator and combustion control method and apparatus using the method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3688644B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6100994B2 (en) * | 2011-12-26 | 2017-03-22 | 川崎重工業株式会社 | Combustion promotion method for incinerator in complex facility and complex facility |
JP6696816B2 (en) * | 2016-04-06 | 2020-05-20 | 日立造船株式会社 | Stoker incinerator |
JP7015103B2 (en) * | 2016-06-28 | 2022-02-02 | 川崎重工業株式会社 | Waste incinerator and control method of waste incinerator |
CN107763634B (en) * | 2016-08-22 | 2020-12-01 | 庄维健 | Solid waste drying method and silo |
CN107975805B (en) * | 2017-12-26 | 2023-12-26 | 江苏利百川环保科技有限公司 | Uniform distribution system for garbage heat treatment |
CN107987855A (en) * | 2018-01-04 | 2018-05-04 | 利百川环保科技有限公司 | Box-like pyrolysis gasification furnace in one kind |
JP6779255B2 (en) * | 2018-05-28 | 2020-11-04 | 株式会社タクマ | Waste incinerator |
CN110006047B (en) * | 2019-03-27 | 2024-05-28 | 湖南人文科技学院 | Garbage incinerator and garbage gasification incinerator |
JP6970250B1 (en) * | 2020-07-16 | 2021-11-24 | 博志 西村 | Incinerator |
-
2002
- 2002-03-04 JP JP2002057172A patent/JP3688644B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003254523A (en) | 2003-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100852507B1 (en) | Treatment method and treatment apparatus for combustible gas in waste melting furnace | |
CN107543174B (en) | The control method of garbage incinerating system and garbage incinerating system | |
JP3688644B2 (en) | Method for estimating in-furnace waste retention distribution in incinerator and combustion control method and apparatus using the method | |
WO2019235377A1 (en) | Method for estimating state quantity of combustion facility, combustion control method, and combustion control device | |
CN117529628A (en) | Control device for incinerator equipment | |
JPH1068514A (en) | Combustion controlling method for refuse incinerating furnace | |
JP7548109B2 (en) | Waste quality prediction device, incinerator combustion control device, waste quality prediction method, waste quality prediction model learning method, and waste quality prediction model program | |
JP4099195B2 (en) | Combustion control system for waste incinerator without boiler equipment | |
JP5767486B2 (en) | Heat recovery plant and operation control method thereof | |
JP3466555B2 (en) | Combustion control method and device for refuse incineration plant | |
CN115479276A (en) | Control device, waste incineration facility, control method, and program | |
Lee et al. | Co-firing of paper sludge with high-calorific industrial wastes in a pilot-scale nozzle-grate incinerator | |
JPH0240410A (en) | Automatic combustion control of municipal waste incinerating furnace | |
JPH0470528B2 (en) | ||
JP3902454B2 (en) | Combustion control method and waste treatment apparatus | |
JP3556078B2 (en) | Dust supply speed control method for refuse incinerator and refuse incinerator | |
JP4009151B2 (en) | Combustion control method and apparatus for gasification melting furnace | |
JP5255509B2 (en) | Waste melting treatment method and waste melting treatment apparatus | |
JP3553483B2 (en) | Melting furnace combustion control method and apparatus in waste gasification melting furnace | |
JP4156575B2 (en) | Control method and apparatus for pyrolysis gasification melting treatment plant, and program | |
JPH09273732A (en) | Control method of combustion in incinerating furnace | |
JP4097999B2 (en) | Control method and apparatus for pyrolysis gasification melting treatment plant, and program | |
JPS6136611A (en) | Combustion control of refuse incinerator | |
JP2002122317A (en) | Combustion control system of refuse incinerator | |
JP2004353944A (en) | Combustion control method in refuse disposal facility and refuse disposal facility |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040329 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040525 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040721 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050222 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050422 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20050422 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050607 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050608 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080617 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090617 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100617 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |