JP4009151B2 - Combustion control method and apparatus for gasification melting furnace - Google Patents

Combustion control method and apparatus for gasification melting furnace Download PDF

Info

Publication number
JP4009151B2
JP4009151B2 JP2002198494A JP2002198494A JP4009151B2 JP 4009151 B2 JP4009151 B2 JP 4009151B2 JP 2002198494 A JP2002198494 A JP 2002198494A JP 2002198494 A JP2002198494 A JP 2002198494A JP 4009151 B2 JP4009151 B2 JP 4009151B2
Authority
JP
Japan
Prior art keywords
melting furnace
amount
air
temperature
gasification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002198494A
Other languages
Japanese (ja)
Other versions
JP2004037049A (en
Inventor
宏央 二階堂
正 伊藤
孝 下梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2002198494A priority Critical patent/JP4009151B2/en
Publication of JP2004037049A publication Critical patent/JP2004037049A/en
Application granted granted Critical
Publication of JP4009151B2 publication Critical patent/JP4009151B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、投入される廃棄物を熱分解ガス化するガス化炉と、それにより発生する熱分解ガスを燃焼溶融する溶融炉とを備えたガス化溶融炉の燃焼制御方法及びその装置に関するものである。
【0002】
【従来の技術】
ガス化溶融炉とは、廃棄物自身がもつ可燃分をガス化炉で熱分解ガス化させ、その熱分解ガスを溶融炉内で旋回させながら燃焼させることによって溶融炉内を高温にするとともに、廃却物のもつ灰分を旋回力を利用して溶融炉に付着させてスラグ化するものである。
【0003】
従来、このガス化溶融炉の溶融炉の操作方法としては、溶融炉に吹き込む燃焼空気量を最適量に調整するために手動操作し、炉内を高温化させるために廃棄物の供給量を変化させ、それでも炉内が高温化しない場合には、手動操作で補助燃料量を変化させる方法がとられていた。
【0004】
【発明が解決しようとする課題】
ところで、ガス化炉に投入される廃棄物のカロリー(熱量)は、時々刻々変動しており、溶融炉に吹き込むべき燃焼空気の量もこの廃棄物のカロリー等の運転状況に応じて変化させる必要がある。
【0005】
しかし、カロリーの変動等に応じて燃焼空気量を手動操作で変化させようとすると、運転操作員の負担が非常に大きくなる。また小型の溶融炉では、炉内温度が低下してスラグの出滓状況が悪化すれば、溶融炉内に補助燃料を供給する必要がある。その場合、補助燃料の供給量を手動操作で変化させようとすると、運転操作員の負担が大きいのみならず、必要以上に多くの補助燃料が使用されることとなる。
【0006】
このため、例えば特開2001−90928号公報に開示されたものでは、ガス化溶融炉の一種である直接溶融炉において、排ガスの温度から熱量を推算し、この排ガス熱量に基づいて補助燃料の供給量をフィードバック制御している。
【0007】
しかしながら、カロリーの変動等に応じて燃焼空気量を手動操作で変化させる点は変わらないため、運転操作員の負担は依然として大きく、また補助燃料量の変動はカロリーの変動等とも密接な関係があるので、このフィードバック制御だけでは補助燃料量の大幅な低減は困難である。
【0008】
本発明は以上のような従来のガス化溶融炉の燃焼制御における課題を考慮してなされたものであり、溶融炉の運転状況に応じて自動的に燃焼空気量等を変化させることにより、運転操作員の負担の低減等を図ることのできるガス化溶融炉の燃焼制御方法及びその装置を提供するものである。
【0009】
【課題を解決するための手段】
請求項1記載の発明は、投入される廃棄物を熱分解ガス化するガス化炉と、それにより発生する熱分解ガスを燃焼溶融する溶融炉とを備え、前記溶融炉は、必要に応じて供給される補助燃料を燃焼し、溶融炉内温度を高温に維持するためのバーナを有するガス化溶融炉の燃焼制御方法において、溶融炉から排出される排ガスの流量と温度とを検出し、この排ガスの流量と温度とに基づいてガス化炉に投入される廃棄物の熱量を算出すると共に前記バーナに供給される補助燃料量を検出し、少なくとも前記廃棄物の熱量と前記必要に応じて供給される補助燃料量とに基づいて熱分解ガスの燃焼溶融に必要な理論空気量を算出し、この理論空気量に、設定された空気比を乗じることにより前記熱分解ガスを前記溶融炉内で完全に燃焼させるのに必要な空気量を算出し、この算出した必要な空気量に基づいて前記バーナに供給される空気量を増減することによって溶融炉に供給される燃焼空気量を制御することを特徴とするものである。
【0010】
一般に、ガス化溶融炉では、補助燃料を使用しないで廃棄物の熱分解ガスを燃焼させる場合、理論空気量に対する燃焼空気量の比率である空気比が1.0〜1.2の範囲で最適な運転状態となる。すなわち、空気比が1.0よりも小さい場合には、廃棄物の保有エネルギーをすべて使い切ることができず、溶融炉内の温度が所望温度まで上がらない。一方、空気比が1.2よりも大きい場合には、燃焼空気が過剰になり、この過剰な燃焼空気により溶融炉が冷却されるので、やはり溶融炉内の温度が所望温度まで上がらない。
【0011】
ここで、上記方法によれば、溶融炉から排出される排ガスの流量と温度とが検出され、この排ガスの流量と温度とに基づいてガス化炉に投入される廃棄物の熱量が算出され、少なくとも上記廃棄物の熱量に基づいて熱分解ガスの燃焼溶融に必要な理論空気量が算出され、この理論空気量に基づいて溶融炉に供給される燃焼空気量が制御されるので、上記空気比が1.0〜1.2の範囲になるように精度よく運転される。これにより、溶融炉内の温度が高温で維持されるとともに、温度変動が抑制され、その結果スラグ出滓が安定化される。また、廃棄物の熱量変動等の運転状況に応じて燃焼空気量が制御されるので、手動操作による従来方法に比べて、運転操作員の負担が大幅に低減される。
【0012】
また、廃棄物の熱量等によっては補助燃料を使用することがあり、この補助燃料を完全に燃焼させるためには、上記空気比を1.2以上とする必要がある。そこで、溶融炉に供給される補助燃料量を検出し、この補助燃料量と上記廃棄物の熱量とに基づいて上記理論空気量を算出することとすれば、補助燃料を使用する場合には、上記空気比が1.2以上となるように精度よく運転される。これにより、溶融炉内の温度が高温で維持されるとともに、温度変動が抑制され、その結果スラグ出滓が安定化される。また、この制御によって、溶融炉内の排ガス旋回力の低下を防止できる。
【0013】
請求項2記載の発明は、溶融炉の出口温度を検出し、この出口温度に基づいて上記設定した空気比を補正することを特徴とするものである。
【0014】
また、請求項6記載の発明は、投入される廃棄物を熱分解ガス化するガス化炉と、それにより発生する熱分解ガスを燃焼溶融する溶融炉とを備え、前記溶融炉は、必要に応じて供給される補助燃料を燃焼し、溶融炉内温度を高温に維持するためのバーナを有するガス化溶融炉の燃焼制御装置において、溶融炉から排出される排ガスの流量を検出する排ガス量検出手段と、溶融炉から排出される排ガスの温度を検出する排ガス温度検出手段と、この排ガスの流量と温度とに基づいてガス化炉に投入される廃棄物の熱量を算出する廃棄物熱量算出手段と、前記バーナに供給される補助燃料量を検出する検出手段と、少なくとも前記廃棄物の熱量と前記必要に応じて供給される補助燃料量とに基づいて熱分解ガスの燃焼溶融に必要な理論空気量を算出する理論空気量算出手段と、設定する空気比が入力される空気比入力手段と、溶融炉の出口温度を検出し、この溶融炉の出口温度に基づいて前記入力された空気比を補正する補正手段と、この補正後の空気比を前記理論空気量に乗じて溶融炉内の熱分解ガスを完全に燃焼させるのに必要な空気量を算出する必要空気量算出手段と、この補正後の空気比を用いて算出した必要な空気量に基づいて溶融炉に供給される燃焼空気量を制御する燃焼空気量制御手段とを備えたことを特徴とするものである。
【0015】
このような方法、装置の構成によれば、ゴミ質によって、求めたガス化炉に投入される単位時間当たりのゴミの供給量G(kg / h)に誤差が生じたとしても、設定した空気比が補正されることで燃焼が安定して溶融炉内の温度変動を抑制できる。
【0016】
請求項3記載の発明のように、溶融炉内の温度を検出し、この検出温度に基づいて補助燃料量を制御することとすれば、運転状況に応じて補助燃料量が制御されるので、運転操作員の負担が低減されるのみならず、この場合には上記燃焼空気量の制御とあいまって、補助燃料の使用量が大幅に低減される。
【0017】
請求項4記載の発明のように、検出温度は、溶融炉内の温度の瞬時値を検出し、この瞬時値をスムージング処理したものであることとすれば、温度変動による影響がなくなるので、より安定した制御が可能となり、その結果、補助燃料の使用量が手動操作による従来方法に比べて約10%程度も低減される。なお、スムージング処理には移動平均法や指数平滑法等を含む。
【0018】
請求項5記載の発明のように、集塵後の排ガス量を検出することとすれば、例えば流量計等の一般工業計器を用いることができるようになる。
【0019】
【発明の実施の形態】
以下、図面に示した実施形態に基づいて本発明を詳細に説明する。
【0020】
図1は、本発明のガス化溶融炉を含む廃棄物処理設備の全体構成をその燃焼制御装置を構成する計装部品とともに示したものであり、図2は燃焼制御装置の上記図1に含む計装部品以外の構成を示している。なお、本発明のガス化溶融炉は、投入される廃棄物を熱分解ガス化するガス化炉と、それにより発生する熱分解ガスを燃焼溶融する溶融炉とを備えている。
【0021】
図1及び図2において、廃棄物としてのゴミは一旦、図示しないゴミピットに貯留され、図示しないクレーンによって給塵装置1に投入される。給塵装置1は、例えばスクリューコンベヤ式のものであって、ゴミを定量的にガス化炉としての流動床炉2に供給する。この供給量は、給塵装置1のスクリュー回転数に基づいて検出される。
【0022】
流動床炉2では、空気比0.2〜0.4の条件で部分燃焼が行われ、砂層温度を500〜600℃に維持した低温熱分解ガス化が行われる。そして投入されたゴミのうち炉床最下部2aからは不燃物が抜き出され、この不燃物以外はすべて流動床炉2に直結(下流側に)された溶融炉3に導かれる。流動床炉2の炉床下部2bには、一次送風機4からの一次空気(押込空気)が供給されるが、この一次空気量は押込空気流量計F1により検出される。流動床炉2の砂層の温度は流動床炉温度計T1により検出される。
【0023】
流動床炉2で発生した灰分を含む熱分解ガスは溶融炉3に導かれ、後述する空気比の条件下でさらに燃焼される。この溶融炉3では約1300℃の高温燃焼が行われ、灰分を溶融してスラグとして分離して溶融炉下部3aから排出するとともにダイオキシン等のガス中の有害物質が分解される。また溶融炉3には、上記一次空気送風機4からの一次空気が供給されるとともに、二次送風機5からの二次空気が供給されるが、この二次空気量は二次空気流量計F2により検出される。溶融炉3のバーナ3bには必要に応じて補助燃料が供給されるが、この補助燃料量は補助燃料流量計F3により検出される。溶融炉3から排出される溶融スラグの温度は溶融炉温度計T2により検出され、溶融炉3から排出される溶融排ガスの温度は溶融炉出口温度計T3により検出される。
【0024】
この溶融炉排ガスは、廃熱ボイラ6で熱回収された後、さらにガス冷却室7で温度が下げられ、バグフィルタ8で除塵される。浄化された排ガスは次いで誘引送風機9を経て、煙突10から排出される。廃熱ボイラ6の蒸気ドラム6aからの蒸気は蒸気流量計F4により検出され、ガス冷却室7に供給される噴射水量は噴射水流量計F5により検出され、バグフィルタ8で浄化された排ガスの温度は排ガス温度計(排ガス温度検出手段に相当する。)T4により検出され、その排ガスの流量は排ガス流量計(排ガス量検出手段に相当する。)F6により検出される。11はゴミカロリー演算器(廃棄物熱量算出手段に相当する)、12は燃焼空気制御器、13は温度制御器であり、これらと上記各流量計と上記各温度計とで本発明の温度制御装置が構成されている。
【0025】
以下、ゴミカロリー演算器11の動作について説明する。
【0026】
このゴミカロリー演算器11は、クレーンの掴みによって流動床炉2に投入される単位時間当りのゴミのカロリー(廃棄物の熱量に相当する。)Q1(kcal/h)を算出する(図3のステップ♯6)。このゴミのカロリーQ1は、基本的には、排ガス流量計F6で検出される排ガスの流量f6(Nm3/h)と、排ガス温度計T4で検出される排ガスの温度t4(℃)とに基づいて算出される排ガス持出熱量Q2と等しいものとすればよい。具体的に、この排ガス持出熱量Q2(kcal/h)は、排ガスの比熱をcEとすると次式で表される。
Q2=cE×f6×t4
【0027】
ただし、より精度の高いカロリー算出を行うには、当該排ガス持出熱量Q2に加え、空気、水、(使用する場合には)補助燃料の持込熱量Q3(kcal/h)と、空気、水、及び(使用する場合には)補助燃料の持出熱量Q4(kcal/h)とを、前記ゴミカロリーQ1の算出に加味するのが好ましい。例えば、空気・水・蒸気の各流量計F1,F2,F3,F4,F5の指示値f1(Nm3/h),f2(Nm3/h),f3(l/h),f4(kg/h),f5(kg/h)や、各温度計T1,T2,T3の指示値t1(℃),t2(℃),t3(℃)、並びに、空気・補助燃料・水の物性値を用いることにより、前記熱量Q3,Q4を次式に基づいてリアルタイムで算出することができる。
Q3=cA×tA×(f1+f2+fL)+Qfu×f3
Q4=Qfn+cV×f4+Qw×f5+Qe
【0028】
ここでfLはリーク空気量(Nm3/h)、cAは空気の比熱(kcal/Nm3℃)、tAは空気温度(℃)、Qfuは1lあたりの補助燃料の発熱量(kcal/l)、Qfnは単位時間当りの炉の放熱量(kcal/h)、cVは蒸気のエンタルピー(kcal/kg)、Qwは水の蒸発潜熱(kcal/kg)、Qeは灰その他の持出熱量(kcal/h)を示す。
【0029】
そして、この場合、ゴミのカロリーQ1は、
Q1=Q2+Q4−Q3
で表すことができ、単位重量当りのゴミのカロリーq1はq1=Q1/(クレーンによるゴミ掴み量)で表すことができる。
【0030】
なお、このゴミのカロリーq1は、溶融炉3の放熱量等を事前に測定した値と、ゴミの投入量(クレーンの掴み量)とを加味することにより、さらに高精度で算出することも可能である。
【0031】
上記のように、本実施形態では、ゴミのカロリーを算出する上での支配的な変量である排ガスの流量と温度とを検出するために、バグフィルタ8の下流側にピトー管等の一般工業計器である排ガス流量計F6と温度計T4とを設置しており、これらによりリアルタイムで排ガスの流量と温度とを測定し、予め測定している排ガスの物性値を用いて排ガス持出熱量を計算することができる。なお、従来は、熱線流速計を使用して排ガス流速をバッチで測定していたため、排ガス持出熱量をリアルタイムで計算できなかった。
【0032】
しかし、排ガス流量計F6等の瞬時の指示値を用いて熱収支計算をしたのでは、ゴミのカロリーの計算値も変動し、燃焼空気量の制御が不安定化する。そこで本実施形態では、これらの測定値をスムージング処理している。具体的には、各測定値につき10〜60分の移動平均値を使用して熱収支計算をしている。これにより、測定値の変動を吸収して、正確な熱収支計算ができ、かつ、ゴミのカロリーの長周期変動を捉えることができる。なお、本実施形態では、スムージング処理が必要な場合には、一律に単純移動平均法による移動平均値を用いている(以下、同様である。)が、指数平滑法等他のスムージング処理を用いてもよい。
【0033】
次に、燃焼空気制御器12の演算及び制御動作について説明する。図3は燃焼空気量の制御方法を示す図、図4はスクリュー回転数と給塵量との関係を示す図である。
【0034】
図3において、まず、単位時間当りのゴミ供給量G(kg/h)を求める(ステップ#1〜#4)。例えば図4の関係を使用し、給塵装置1のスクリューの回転数xからゴミの供給量G(x)=Ax+Bを求める。ここで、A,Bは係数であり、スクリュー回転数xは、瞬時値を使用してもよいし、10〜60秒の移動平均値を使用してもよい。また、このようにして求めたゴミの供給量Gにさらに適当な補正係数を乗じてもよい。補正係数は設定値であり、これを運転実績等により適宜変更して用いる。
【0035】
一方、上記ゴミカロリー演算器11で求めた単位重量当たりのゴミのカロリーq1から、ゴミ1kg中における炭素成分、水素成分、硫黄成分、酸素成分の重量C,H,S,Oを推測することが可能であり、これらの値と、前記ゴミ供給量Gとから、例えば次式に基づいてゴミ燃焼のための理論空気量Asg(Nm3/h)を求めることができる。
【0036】
【数1】

Figure 0004009151
【0037】
この式において「22.4」は1kmolあたりのガス体積(Nm3/kcal)、「0.21」は空気中の酸素含有率である。
【0038】
さらに、補助燃料を用いる場合には、前記補助燃料流量計F3で検出された補助燃料量f3(l/h)より、この補助燃料を燃焼させるのに必要な理論空気量Asf(Nm3/h)を求める。この理論空気量Asfは、補助燃料の種類と補助燃料量より簡単に求めることができる。
【0039】
以上の理論空気量Asg,Asfを足し合わせることにより、流動床炉2からの熱分解ガスを溶融炉3内で燃焼させるための理論空気量As(Nm3/h)を算出することができる(ステップ#5〜#7)。そして、以上のステップ#1〜#7の実行によって、理論空気量算出手段が具現化される。
【0040】
ただし、この理論空気量をそのまま溶融炉3へ供給しても、熱分解ガスを完全に燃焼させることはできないことがある。そこで、ゴミ等を燃焼させるために、理論空気量よりも多くの空気を供給する必要がある。その割合は空気比と呼ばれるが、ガス化溶融炉における溶融炉3の場合、1.0〜1.2の空気比を設定するのが好ましい(ステップ#8)。この設定値は、必要に応じて溶融炉2の出口温度に基づいて補正され(ステップ#8a)、その値が上記ステップ#7で算出した理論空気量Asに乗じられることにより、燃焼に必要な空気量Anが算出される(ステップ#9,#10)。
【0041】
溶融炉3までの空気比は、1.0〜1.2であるから、溶融炉3までに吹き込んでいる燃焼空気量(溶融炉3の一次空気量(一定量)・流動床炉2の押込空気量(押込空気流量計F1の指示値)・リーク空気量(一定値))を差し引き、過剰空気量を補正した後の空気量を、補助燃料を完全に燃焼させるために空気比1.2以上を確保できる空気量(以下、補助燃料の必要空気量という。)と比較する(ステップ#11〜#15)。
【0042】
そして、過剰空気量を補正した後の空気量が、上記補助燃料の必要空気量よりも多い場合には、その過剰空気量を補正した後の空気量が投入されるように、溶融炉3のバーナ3bの燃焼空気ライン上に設けられた流量制御弁CV1の開度を制御する。この制御によって、溶融炉3内の排ガス旋回力の低下を防止できる。なお、上記燃焼空気ラインには、図1の二次送風機5からの二次空気が供給されるようになっている。
【0043】
一方、過剰空気量を補正した後の空気量が、上記補助燃料の必要空気量よりも少ない場合には、その必要空気量が投入されるように、上記流量制御弁CV1の開度を制御する(ステップ#16)。その理由は、空気比1.2よりも低くした場合には、バーナ3bの燃焼状態が悪くなり、CO濃度が増加するからである。なお、ステップ#8〜#16の実行によって燃焼空気量制御手段が具現化される。
【0044】
ただし、ゴミ質によっては、図4で求めた給塵量に誤差が生じやすい。この誤差は、溶融炉3の出口温度となって現われる。すなわち、吹き込んでいる空気が多いと、溶融炉3の出口温度は低くなり、空気が少ないと溶融炉3の出口温度が高くなる。そこで、本実施形態では、上記ステップ#8aにおいて、溶融炉出口温度計T3の指示値に応じて、設定した空気比を補正できるようになっている。例えば、溶融炉出口温度計T3の指示値が900℃以下ならば、空気比を0.1だけ設定値から引き算し、同温度計T3の支持値が1200℃以上ならば、空気比を0.1〜0.2程度、設定値に加算する。
【0045】
ついで、ゴミが多く供給されて、一時的に過負荷状態となった場合、流動床炉2でのゴミの熱分解が緩慢なため、過負荷状態が長く続くことになる。流動床炉2で発生した熱分解ガスが、過負荷状態のときに、溶融炉3ですべて燃焼されないために、CO濃度のピークが発生し、この状態が数十秒間継続される。
【0046】
そこで、過負荷状態を検出した場合には、上記ステップ#14において、上記計算した空気量にさらに空気比0.1程度の空気量を20〜90秒程度加えることによって、速やかにかつ安定した燃焼状態を回復することができ、CO濃度を低減させることができる。
【0047】
引き続き、温度制御器13について説明する。
【0048】
図2のように、溶融炉3の絞り部に放射温度計T5を設置しており、温度制御器13はこの温度指示値が溶融炉温度設定値になるように、溶融炉3のバーナ3bの補助燃料ライン上に設けられた流量制御弁CV2の開度を制御する。放射温度計T5は、熱電対のように焼損することはないが、応答性が速いので、瞬時値をそのまま用いると、補助燃料量が大きく変動し、補助燃料量の削減が困難となる。そこで、10〜60秒の温度の移動平均値を計算し、この移動平均値が溶融炉温度設定値となるように、補助燃料量をPID制御する。これにより、その制御性が向上し、補助燃料量を10%程度まで低減することができた。
【0049】
上記構成によると、運転状況に応じて空気量を調整することができるので、空気供給量の過大・過小による溶融炉3内温度の低下を防ぐことができる。したがって、計画値よりも多くの補助燃料量を供給することがなくなった。また、溶融炉3内温度が高温で維持することが可能となり、また温度変動も抑えることができるので、安定した操業が可能となった。また、これらの操作を自動で行うことから、運転操作員が燃焼空気量や補助燃料量を操作する必要がなくなり、その負荷を軽減することができた。
【0050】
なお、上記実施形態では、溶融炉出口温度計T3を使用して空気比の設定値を補正しているが、本来は溶融炉3の出口に酸素濃度計を設置するのが好ましい。しかし、溶融炉3の出口温度は高いため、酸素濃度計は高価な仕様のものが必要となる。そこで、上記実施形態では、安価な溶融炉出口温度計T3を用いて、コストの低減を図っている。
【0051】
また、上記実施形態では、ガス化溶融炉のガス化炉としては、流動床炉2を用いているが、ストーカ炉、キルン炉等を用いてもよい。
【0052】
【発明の効果】
以上説明したことから明らかなように、請求項1記載の発明によれば、溶融炉内温度が高温で維持できるとともに、温度変動が抑制され、その結果スラグ出滓を安定化することができる。また、廃棄物の熱量変動等の運転状況に応じて燃焼空気量が制御されるので、手動操作による従来方法に比べて、運転操作員の負担を大幅に低減することができる。また、補助燃料を使用する場合には、溶融炉内の温度が高温で維持されるとともに、温度変動が抑制され、その結果スラグ出滓を安定化することができる。
【0053】
請求項2及び6記載の発明によれば、ゴミ質によって、求めたガス化炉に投入される単位時間当たりのゴミの供給量G(kg / h)に誤差が生じたとしても、設定した空気比が補正されることで燃焼が安定して溶融炉内の温度変動を抑制できる。
【0054】
請求項3記載の発明によれば、運転状況に応じて補助燃料量が制御されるので、運転操作員の負担を低減できるのみならず、この場合には上記燃焼空気量の制御とあいまって、補助燃料の使用量を大幅に低減することができる。
【0055】
請求項4記載の発明によれば、温度変動による影響がなくなるので、より安定した制御が可能となり、その結果補助燃料の使用量を、手動操作による従来方法に比べて約10%程度も低減することができる。
【0056】
請求項5記載の発明によれば、例えば流量計等の一般工業計器を用いることができる。
【図面の簡単な説明】
【図1】 本発明のガス化溶融炉を含む廃棄物処理設備の全体構成をその燃焼制御装置を構成する計装部品とともに示した図である
【図2】 燃焼制御装置の上記図1に含む計装部品以外の構成を示す図である。
【図3】 燃焼空気量の制御方法を示す図である。
【図4】 給塵装置のスクリュー回転数と給塵量との関係を示す図である。
【符号の説明】
1 給塵装置
2 流動床炉(ガス化炉に相当する。)
3 溶融炉
4 一次送風機
5 二次送風機
6 廃熱ボイラ
7 ガス冷却室
8 バグフィルタ
9 誘引送風機
10 煙突
11 ゴミカロリー演算器(廃棄物熱量算出手段に相当する。)
12 燃焼空気制御器(理論空気量算出手段、燃焼空気量制御手段に相当する。)
13 温度制御器
F6 排ガス流量計(排ガス量検出手段に相当する。)
T4 排ガス温度計(排ガス温度検出手段に相当する。)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a combustion control method and apparatus for a gasification melting furnace comprising a gasification furnace for pyrolyzing and gasifying waste to be input and a melting furnace for burning and melting the pyrolysis gas generated thereby. It is.
[0002]
[Prior art]
The gasification melting furnace is to pyrolyze and combust the combustible matter of the waste itself in the gasification furnace, and to burn the pyrolysis gas while swirling in the melting furnace, and to raise the temperature in the melting furnace, The ash content of the waste is attached to the melting furnace using the swirl force to make slag.
[0003]
Conventionally, the operation method of the melting furnace of this gasification melting furnace is manually operated to adjust the amount of combustion air blown into the melting furnace to the optimum amount, and the amount of waste supplied is changed to increase the temperature inside the furnace. However, if the temperature inside the furnace does not rise, a method of changing the amount of auxiliary fuel by manual operation has been taken.
[0004]
[Problems to be solved by the invention]
By the way, the calorie (calorie) of the waste thrown into the gasification furnace varies from time to time, and the amount of combustion air to be blown into the melting furnace needs to be changed according to the operating conditions such as the calorie of the waste. There is.
[0005]
However, if an attempt is made to manually change the amount of combustion air in accordance with changes in calories or the like, the burden on the operator becomes very large. Further, in a small melting furnace, if the temperature in the furnace decreases and the slag output situation deteriorates, it is necessary to supply auxiliary fuel into the melting furnace. In that case, if the supply amount of the auxiliary fuel is changed by manual operation, not only the burden on the operator is great, but also more auxiliary fuel is used than necessary.
[0006]
For this reason, for example, in the one disclosed in Japanese Patent Laid-Open No. 2001-90928, in a direct melting furnace which is a kind of gasification melting furnace, the amount of heat is estimated from the temperature of the exhaust gas, and the auxiliary fuel is supplied based on the amount of heat of the exhaust gas. The amount is feedback controlled.
[0007]
However, since the point of changing the combustion air amount by manual operation according to the calorie fluctuation, etc. does not change, the burden on the operator is still large, and the fluctuation of the auxiliary fuel amount is closely related to the calorie fluctuation, etc. Therefore, it is difficult to significantly reduce the amount of auxiliary fuel only by this feedback control.
[0008]
The present invention has been made in consideration of the problems in the combustion control of the conventional gasification melting furnace as described above, and is operated by automatically changing the amount of combustion air etc. according to the operation status of the melting furnace. A combustion control method and apparatus for a gasification melting furnace capable of reducing the burden on an operator and the like are provided.
[0009]
[Means for Solving the Problems]
Invention of claim 1, further comprising a gasification furnace for pyrolysis gasifying the waste is turned on, and a melting furnace for burning melting pyrolysis gas generated thereby, the melting furnace, if necessary In a combustion control method of a gasification melting furnace having a burner for burning the supplied auxiliary fuel and maintaining the temperature in the melting furnace at a high temperature, the flow rate and temperature of exhaust gas discharged from the melting furnace are detected, and this detecting the auxiliary fuel amount supplied to the burner to calculate the heat quantity of waste to be introduced into the gasification furnace based on the exhaust gas flow and temperature, supplied if necessary the the heat of at least the waste The amount of theoretical air necessary for the combustion and melting of the pyrolysis gas is calculated based on the amount of auxiliary fuel that is produced, and the pyrolysis gas is multiplied in the melting furnace by multiplying the theoretical air amount by a set air ratio. Necessary for complete combustion An air volume to calculate, is characterized in that to control the combustion air amount supplied to the melting furnace by increasing or decreasing the amount of air supplied to the burner based on the amount of air required was the calculated .
[0010]
Generally, in a gasification melting furnace, when burning pyrolysis gas of waste without using auxiliary fuel, the air ratio, which is the ratio of the combustion air amount to the theoretical air amount, is optimal in the range of 1.0 to 1.2. It becomes a driving state. That is, when the air ratio is smaller than 1.0, the waste energy cannot be used up, and the temperature in the melting furnace does not rise to a desired temperature. On the other hand, when the air ratio is greater than 1.2, the combustion air becomes excessive, and the melting furnace is cooled by this excessive combustion air, so that the temperature in the melting furnace does not rise to the desired temperature.
[0011]
Here, according to the above how, are detected and the flow rate and temperature of the exhaust gas discharged from the solvent Toruro, heat waste to be introduced into the gasification furnace on the basis of the exhaust gas flow and temperature are calculated The amount of theoretical air necessary for combustion and melting of the pyrolysis gas is calculated based on at least the amount of heat of the waste, and the amount of combustion air supplied to the melting furnace is controlled based on the amount of theoretical air. It is operated with high accuracy so that the air ratio is in the range of 1.0 to 1.2. Thereby, while the temperature in a melting furnace is maintained at high temperature, a temperature fluctuation is suppressed and, as a result, slag tapping is stabilized. In addition, since the amount of combustion air is controlled in accordance with the operation status such as the heat amount fluctuation of the waste, the burden on the operator is greatly reduced compared to the conventional method by manual operation.
[0012]
In addition, auxiliary fuel may be used depending on the amount of heat of the waste, and the air ratio needs to be 1.2 or more in order to completely burn this auxiliary fuel. Therefore, to detect the auxiliary fuel amount supplied to the solvent Toruro, if it calculates the theoretical air amount based on the amount of heat of the auxiliary fuel amount and the waste, in the case of using an auxiliary fuel The operation is performed with high accuracy so that the air ratio is 1.2 or more. Thereby, while the temperature in a melting furnace is maintained at high temperature, a temperature fluctuation is suppressed and, as a result, slag tapping is stabilized. Further, this control can prevent the exhaust gas turning force in the melting furnace from decreasing.
[0013]
The invention according to claim 2 is characterized in that the outlet temperature of the melting furnace is detected, and the set air ratio is corrected based on the outlet temperature.
[0014]
The invention described in claim 6 comprises a gasification furnace for pyrolyzing and gasifying waste to be input, and a melting furnace for burning and melting the pyrolysis gas generated thereby. The amount of exhaust gas detected to detect the flow rate of the exhaust gas discharged from the melting furnace in the combustion control device of the gasification melting furnace having a burner for burning the auxiliary fuel supplied accordingly and maintaining the temperature inside the melting furnace at a high temperature Means, exhaust gas temperature detecting means for detecting the temperature of the exhaust gas discharged from the melting furnace, and waste heat quantity calculating means for calculating the amount of heat of the waste put into the gasifier based on the flow rate and temperature of the exhaust gas And a detection means for detecting the amount of auxiliary fuel supplied to the burner, and a theory necessary for combustion and melting of pyrolysis gas based on at least the amount of heat of the waste and the amount of auxiliary fuel supplied as necessary Calculate air volume Correction means for detecting a theoretical air amount calculating means, an air ratio input means for inputting a set air ratio, and detecting an outlet temperature of the melting furnace and correcting the input air ratio based on the outlet temperature of the melting furnace Means, and the corrected air ratio is multiplied by the theoretical air amount to calculate the amount of air required to completely burn the pyrolysis gas in the melting furnace, and the corrected air amount Combustion air amount control means for controlling the amount of combustion air supplied to the melting furnace based on the required air amount calculated using the ratio is provided.
[0015]
According to such a method and the configuration of the apparatus, even if there is an error in the amount of waste supply G (kg / h) per unit time input to the gasification furnace due to the waste quality , the set air By correcting the ratio, combustion is stabilized and temperature fluctuations in the melting furnace can be suppressed.
[0016]
If the temperature in the melting furnace is detected and the amount of auxiliary fuel is controlled based on this detected temperature as in the invention of claim 3, the amount of auxiliary fuel is controlled according to the operating situation. Not only is the burden on the operator reduced, but in this case, together with the control of the combustion air amount, the amount of auxiliary fuel used is greatly reduced.
[0017]
As in the invention according to claim 4, if the detected temperature is a value obtained by detecting an instantaneous value of the temperature in the melting furnace and smoothing the instantaneous value, the influence due to the temperature fluctuation is eliminated. Stable control is possible, and as a result, the amount of auxiliary fuel used is reduced by about 10% compared to the conventional method by manual operation. The smoothing process includes a moving average method and an exponential smoothing method.
[0018]
If the amount of exhaust gas after dust collection is detected as in the fifth aspect of the invention, a general industrial instrument such as a flow meter can be used.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on the embodiments shown in the drawings.
[0020]
FIG. 1 shows the overall configuration of a waste treatment facility including a gasification melting furnace according to the present invention together with instrument parts constituting the combustion control device, and FIG. 2 is included in FIG. 1 of the combustion control device. A configuration other than instrumentation parts is shown. The gasification and melting furnace of the present invention includes a gasification furnace that thermally decomposes and gasifies waste to be introduced, and a melting furnace that burns and melts the pyrolysis gas generated thereby.
[0021]
In FIGS. 1 and 2, garbage as waste is temporarily stored in a garbage pit (not shown) and is put into the dust supply device 1 by a crane (not shown). The dust supply device 1 is, for example, a screw conveyor type, and quantitatively supplies dust to a fluidized bed furnace 2 as a gasification furnace. This supply amount is detected based on the screw rotation speed of the dust supply device 1.
[0022]
In the fluidized bed furnace 2, partial combustion is performed under the condition of an air ratio of 0.2 to 0.4, and low temperature pyrolysis gasification is performed with the sand layer temperature maintained at 500 to 600 ° C. Then, incombustible material is extracted from the bottom 2a of the hearth of the input waste, and all other than this incombustible material is led to the melting furnace 3 directly connected (downstream) to the fluidized bed furnace 2. The primary air (pressed air) from the primary blower 4 is supplied to the hearth lower part 2b of the fluidized bed furnace 2, and this primary air amount is detected by the forced air flow meter F1. The temperature of the sand layer of the fluidized bed furnace 2 is detected by a fluidized bed furnace thermometer T1.
[0023]
The pyrolysis gas containing ash generated in the fluidized bed furnace 2 is guided to the melting furnace 3 and further combusted under the air ratio condition described later. In this melting furnace 3, high-temperature combustion at about 1300 ° C. is performed, ash is melted and separated as slag and discharged from the lower part 3 a of the melting furnace, and harmful substances in gas such as dioxin are decomposed. In addition, the primary air from the primary air blower 4 and the secondary air from the secondary blower 5 are supplied to the melting furnace 3, and this secondary air amount is measured by a secondary air flow meter F2. Detected. Auxiliary fuel is supplied to the burner 3b of the melting furnace 3 as necessary, and this amount of auxiliary fuel is detected by an auxiliary fuel flow meter F3. The temperature of the molten slag discharged from the melting furnace 3 is detected by a melting furnace thermometer T2, and the temperature of the molten exhaust gas discharged from the melting furnace 3 is detected by a melting furnace outlet thermometer T3.
[0024]
After the heat of the melting furnace exhaust gas is recovered by the waste heat boiler 6, the temperature is further lowered in the gas cooling chamber 7 and dust is removed by the bag filter 8. The purified exhaust gas is then discharged from the chimney 10 through the induction fan 9. The steam from the steam drum 6a of the waste heat boiler 6 is detected by the steam flow meter F4, the amount of jet water supplied to the gas cooling chamber 7 is detected by the jet water flow meter F5, and the temperature of the exhaust gas purified by the bag filter 8 Is detected by an exhaust gas thermometer (corresponding to exhaust gas temperature detecting means) T4, and the flow rate of the exhaust gas is detected by an exhaust gas flow meter (corresponding to exhaust gas amount detecting means) F6. 11 is a waste calorie calculator (corresponding to waste heat quantity calculation means), 12 is a combustion air controller, 13 is a temperature controller, and these, the above-mentioned each flow meter and each above-mentioned thermometer, the temperature control of the present invention. The device is configured.
[0025]
Hereinafter, the operation of the garbage calorie calculator 11 will be described.
[0026]
The waste calorie calculator 11 calculates the waste calorie (corresponding to the amount of heat of waste) Q1 (kcal / h) per unit time input to the fluidized bed furnace 2 by gripping the crane (FIG. 3). Step # 6). The waste calorie Q1 is basically based on the exhaust gas flow rate f6 (Nm 3 / h) detected by the exhaust gas flow meter F6 and the exhaust gas temperature t4 (° C.) detected by the exhaust gas thermometer T4. What is necessary is just to be equal to the exhaust gas carry-out heat amount Q2 calculated as follows. Specifically, the exhaust gas heat release Q2 (kcal / h) is expressed by the following equation, where cE is the specific heat of the exhaust gas.
Q2 = cE × f6 × t4
[0027]
However, in order to calculate calories with higher accuracy, in addition to the exhaust gas heat output Q2, air, water, (if used) auxiliary fuel heat input Q3 (kcal / h), air, water , And (when used) the heat output Q4 (kcal / h) of the auxiliary fuel is preferably added to the calculation of the waste calorie Q1. For example, indicated values f1 (Nm 3 / h), f2 (Nm 3 / h), f3 (l / h), f4 (kg / kg) of air, water, and steam flow meters F1, F2, F3, F4, and F5 h), f5 (kg / h), indicated values t1 (° C), t2 (° C), t3 (° C) of each thermometer T1, T2, T3, and physical properties of air, auxiliary fuel, and water Thus, the heat quantities Q3 and Q4 can be calculated in real time based on the following equation.
Q3 = cA × tA × (f1 + f2 + fL) + Qfu × f3
Q4 = Qfn + cV × f4 + Qw × f5 + Qe
[0028]
Where fL is the amount of leaked air (Nm 3 / h), cA is the specific heat of air (kcal / Nm 3 ° C), tA is the air temperature (° C), Qfu is the calorific value of auxiliary fuel per liter (kcal / l) , Qfn is the amount of heat released from the furnace per unit time (kcal / h), cV is the enthalpy of steam (kcal / kg), Qw is the latent heat of vaporization of water (kcal / kg), Qe is the amount of heat removed from ash and others (kcal / h).
[0029]
In this case, the waste calorie Q1 is
Q1 = Q2 + Q4-Q3
The calorie q1 of garbage per unit weight can be represented by q1 = Q1 / (the amount of garbage grasped by the crane).
[0030]
Note that the waste calorie q1 can be calculated with higher accuracy by taking into account the amount of heat released from the melting furnace 3 in advance and the amount of waste input (crane gripping amount). It is.
[0031]
As described above, in this embodiment, in order to detect the flow rate and temperature of exhaust gas, which are the dominant variables in calculating the calorie of garbage, a general industry such as a Pitot tube is provided downstream of the bag filter 8. An exhaust gas flow meter F6 and a thermometer T4 are installed, and the flow rate and temperature of the exhaust gas are measured in real time with these, and the exhaust gas heat output is calculated using the physical property values of the exhaust gas measured in advance. can do. Conventionally, since the exhaust gas flow rate was measured in batches using a hot-wire anemometer, it was impossible to calculate the exhaust gas heat output in real time.
[0032]
However, if the heat balance calculation is performed using the instantaneous indicated value of the exhaust gas flow meter F6 or the like, the calculated value of the waste calories also fluctuates and the control of the combustion air amount becomes unstable. Therefore, in the present embodiment, these measured values are smoothed. Specifically, the heat balance is calculated using a moving average value of 10 to 60 minutes for each measured value. As a result, it is possible to absorb the fluctuation of the measured value, perform an accurate heat balance calculation, and capture the long-period fluctuation of the waste calorie. In the present embodiment, when smoothing processing is required, a moving average value by the simple moving average method is uniformly used (hereinafter the same applies), but other smoothing processing such as exponential smoothing is used. May be.
[0033]
Next, calculation and control operations of the combustion air controller 12 will be described. FIG. 3 is a diagram illustrating a method for controlling the combustion air amount, and FIG. 4 is a diagram illustrating a relationship between the screw rotation speed and the dust supply amount.
[0034]
In FIG. 3, first, a dust supply amount G (kg / h) per unit time is obtained (steps # 1 to # 4). For example, using the relationship shown in FIG. 4, the amount of dust supply G (x) = Ax + B is obtained from the rotational speed x of the screw of the dust supply device 1. Here, A and B are coefficients, and the screw rotation speed x may be an instantaneous value or a moving average value of 10 to 60 seconds. Further, the dust supply amount G obtained in this way may be further multiplied by an appropriate correction coefficient. The correction coefficient is a set value, and is used by appropriately changing it according to the operation results.
[0035]
On the other hand, the weights C, H, S, and O of carbon, hydrogen, sulfur, and oxygen in 1 kg of garbage can be estimated from the waste calorie q1 per unit weight obtained by the garbage calorie calculator 11. The theoretical air amount Asg (Nm 3 / h) for dust combustion can be obtained from these values and the dust supply amount G based on the following equation, for example.
[0036]
[Expression 1]
Figure 0004009151
[0037]
In this equation, “22.4” is the gas volume per kmol (Nm 3 / kcal), and “0.21” is the oxygen content in the air.
[0038]
Further, when auxiliary fuel is used, the theoretical air amount Asf (Nm 3 / h) required to burn this auxiliary fuel from the auxiliary fuel amount f3 (l / h) detected by the auxiliary fuel flow meter F3. ) The theoretical air amount Asf can be easily obtained from the type of auxiliary fuel and the amount of auxiliary fuel.
[0039]
By adding the above theoretical air amounts Asg and Asf, the theoretical air amount As (Nm 3 / h) for burning the pyrolysis gas from the fluidized bed furnace 2 in the melting furnace 3 can be calculated ( Steps # 5 to # 7). And theoretical air quantity calculation means is embodied by execution of the above steps # 1 to # 7.
[0040]
However, even if this theoretical air amount is supplied to the melting furnace 3 as it is, the pyrolysis gas may not be burned completely. Therefore, in order to burn dust and the like, it is necessary to supply more air than the theoretical air amount. The ratio is called the air ratio, but in the case of the melting furnace 3 in the gasification melting furnace, it is preferable to set an air ratio of 1.0 to 1.2 (step # 8). This set value is corrected based on the outlet temperature of the melting furnace 2 as necessary (step # 8a), and this value is multiplied by the theoretical air amount As calculated in step # 7, so that it is necessary for combustion. An air amount An is calculated (steps # 9 and # 10).
[0041]
Since the air ratio to the melting furnace 3 is 1.0 to 1.2, the amount of combustion air blown up to the melting furnace 3 (primary air amount (constant amount) of the melting furnace 3 / indentation of the fluidized bed furnace 2) After subtracting the air amount (indicated value of the push-in air flow meter F1) / leak air amount (constant value) and correcting the excess air amount, the air amount is 1.2 in order to completely burn the auxiliary fuel. This is compared with the amount of air that can secure the above (hereinafter referred to as the required amount of auxiliary fuel) (steps # 11 to # 15).
[0042]
Then, when the air amount after correcting the excess air amount is larger than the required air amount of the auxiliary fuel, the air amount of the melting furnace 3 is set so that the air amount after correcting the excess air amount is input. The opening degree of the flow control valve CV1 provided on the combustion air line of the burner 3b is controlled. By this control, it is possible to prevent a decrease in the exhaust gas turning force in the melting furnace 3. The combustion air line is supplied with secondary air from the secondary blower 5 in FIG.
[0043]
On the other hand, when the air amount after correcting the excess air amount is smaller than the required air amount of the auxiliary fuel, the opening degree of the flow control valve CV1 is controlled so that the required air amount is input. (Step # 16). The reason is that when the air ratio is lower than 1.2, the combustion state of the burner 3b becomes worse and the CO concentration increases. The combustion air amount control means is realized by executing steps # 8 to # 16.
[0044]
However, depending on the quality of dust, an error is likely to occur in the amount of dust supplied in FIG. This error appears as the outlet temperature of the melting furnace 3. That is, when there is much air blown in, the exit temperature of the melting furnace 3 will become low, and when there is little air, the exit temperature of the melting furnace 3 will become high. Therefore, in the present embodiment, in step # 8a, the set air ratio can be corrected according to the instruction value of the melting furnace outlet thermometer T3. For example, if the indicated value of the melting furnace outlet thermometer T3 is 900 ° C. or lower, the air ratio is subtracted from the set value by 0.1, and if the supporting value of the thermometer T3 is 1200 ° C. or higher, the air ratio is set to 0. Add about 1 to 0.2 to the set value.
[0045]
Next, when a large amount of dust is supplied and the load is temporarily overloaded, the overload state continues for a long time because the pyrolysis of the dust in the fluidized bed furnace 2 is slow. Since the pyrolysis gas generated in the fluidized bed furnace 2 is not completely burned in the melting furnace 3 when it is in an overload state, a peak of CO concentration occurs, and this state is continued for several tens of seconds.
[0046]
Therefore, when an overload state is detected, in step # 14, an air amount having an air ratio of about 0.1 is further added to the calculated air amount for about 20 to 90 seconds, thereby promptly and stably combusting. The state can be recovered and the CO concentration can be reduced.
[0047]
Next, the temperature controller 13 will be described.
[0048]
As shown in FIG. 2, a radiation thermometer T5 is installed at the throttle portion of the melting furnace 3, and the temperature controller 13 sets the temperature of the burner 3b of the melting furnace 3 so that this temperature indication value becomes the melting furnace temperature set value. The opening degree of the flow control valve CV2 provided on the auxiliary fuel line is controlled. The radiation thermometer T5 does not burn out like a thermocouple, but has a quick response. Therefore, if the instantaneous value is used as it is, the amount of auxiliary fuel greatly fluctuates and it becomes difficult to reduce the amount of auxiliary fuel. Accordingly, the moving average value of the temperature for 10 to 60 seconds is calculated, and the auxiliary fuel amount is PID controlled so that the moving average value becomes the melting furnace temperature set value. Thereby, the controllability was improved and the amount of auxiliary fuel could be reduced to about 10%.
[0049]
According to the above configuration, since the amount of air can be adjusted according to the operating conditions, it is possible to prevent a decrease in the temperature in the melting furnace 3 due to an excessive or small amount of air supply. Therefore, it is no longer necessary to supply more auxiliary fuel than planned. In addition, the temperature in the melting furnace 3 can be maintained at a high temperature, and temperature fluctuations can be suppressed, so that stable operation is possible. Moreover, since these operations are automatically performed, it is not necessary for the operator to operate the combustion air amount and the auxiliary fuel amount, and the load can be reduced.
[0050]
In the above-described embodiment, the set value of the air ratio is corrected using the melting furnace outlet thermometer T3, but it is originally preferable to install an oxygen concentration meter at the outlet of the melting furnace 3. However, since the outlet temperature of the melting furnace 3 is high, an expensive oxygen analyzer is required. Therefore, in the above embodiment, the cost is reduced by using an inexpensive melting furnace outlet thermometer T3.
[0051]
Moreover, in the said embodiment, although the fluidized bed furnace 2 is used as a gasification furnace of a gasification melting furnace, a stoker furnace, a kiln furnace, etc. may be used.
[0052]
【The invention's effect】
As apparent from the above description, according to the invention of claim 1 Symbol placement, together with the melting furnace temperature can be maintained at a high temperature, temperature fluctuation is suppressed, it is possible to stabilize the result slag tapping . Further, since the amount of combustion air is controlled according to the operation state such as the heat amount fluctuation of the waste, the burden on the operator can be greatly reduced as compared with the conventional method by manual operation. Moreover, when using auxiliary fuel, while the temperature in a melting furnace is maintained at high temperature, a temperature fluctuation is suppressed and, as a result, slag tapping can be stabilized.
[0053]
According to the second and sixth aspects of the invention, even if an error occurs in the amount of waste G supplied per unit time (kg / h) to be introduced into the gasification furnace due to the quality of waste , the set air By correcting the ratio, combustion is stabilized and temperature fluctuations in the melting furnace can be suppressed.
[0054]
According to the invention described in claim 3, since the amount of auxiliary fuel is controlled according to the driving situation, not only can the burden on the operator be reduced, but in this case, combined with the control of the combustion air amount, The amount of auxiliary fuel used can be greatly reduced.
[0055]
According to the invention described in claim 4, since there is no influence due to temperature fluctuation, more stable control is possible, and as a result, the amount of auxiliary fuel used is reduced by about 10% compared to the conventional method by manual operation. be able to.
[0056]
According to the invention described in claim 5, a general industrial instrument such as a flow meter can be used.
[Brief description of the drawings]
FIG. 1 is a diagram showing the overall configuration of a waste treatment facility including a gasification melting furnace according to the present invention together with instrumentation parts constituting a combustion control device thereof .
FIG. 2 is a diagram showing a configuration of the combustion control device other than the instrumentation parts included in FIG.
FIG. 3 is a diagram showing a method for controlling the amount of combustion air.
FIG. 4 is a diagram showing the relationship between screw rotation speed and dust supply amount of a dust supply device.
[Explanation of symbols]
1 Dust supply device 2 Fluidized bed furnace (corresponding to a gasifier)
3 Melting furnace 4 Primary blower 5 Secondary blower 6 Waste heat boiler 7 Gas cooling chamber 8 Bag filter 9 Induction blower 10 Chimney 11 Garbage calorie calculator (corresponds to waste heat quantity calculation means)
12 Combustion air controller (corresponding to theoretical air amount calculation means and combustion air amount control means)
13 Temperature controller F6 Exhaust gas flow meter (corresponding to exhaust gas amount detection means)
T4 exhaust gas thermometer (corresponding to exhaust gas temperature detection means)

Claims (6)

投入される廃棄物を熱分解ガス化するガス化炉と、それにより発生する熱分解ガスを燃焼溶融する溶融炉とを備え、前記溶融炉は、必要に応じて供給される補助燃料を燃焼し、溶融炉内温度を高温に維持するためのバーナを有するガス化溶融炉の燃焼制御方法において、
溶融炉から排出される排ガスの流量と温度とを検出し、
この排ガスの流量と温度とに基づいてガス化炉に投入される廃棄物の熱量を算出すると共に前記バーナに供給される補助燃料量を検出し、
少なくとも前記廃棄物の熱量と前記必要に応じて供給される補助燃料量とに基づいて熱分解ガスの燃焼溶融に必要な理論空気量を算出し、
この理論空気量に、設定された空気比を乗じることにより前記熱分解ガスを前記溶融炉内で完全に燃焼させるのに必要な空気量を算出し、
この算出した必要な空気量に基づいて前記バーナに供給される空気量を増減することによって溶融炉に供給される燃焼空気量を制御することを特徴とするガス化溶融炉の燃焼制御方法。
It comprises a gasification furnace for pyrolyzing and gasifying waste to be input and a melting furnace for burning and melting the pyrolysis gas generated thereby, and the melting furnace combusts auxiliary fuel supplied as necessary. In the combustion control method of a gasification melting furnace having a burner for maintaining the temperature in the melting furnace at a high temperature ,
Detect the flow rate and temperature of the exhaust gas discharged from the melting furnace,
Based on the flow rate and temperature of the exhaust gas, calculate the amount of heat of waste to be input to the gasification furnace and detect the amount of auxiliary fuel supplied to the burner,
Calculating a theoretical amount of air required for combustion melting of the pyrolysis gases on the basis of at least the amount of heat and the auxiliary fuel amount which the supplied according to the needs of the waste,
Multiplying this theoretical air amount by a set air ratio to calculate the amount of air required to completely burn the pyrolysis gas in the melting furnace,
A combustion control method for a gasification melting furnace, wherein the combustion air quantity supplied to the melting furnace is controlled by increasing or decreasing the air quantity supplied to the burner based on the calculated necessary air quantity .
溶融炉の出口温度を検出し、この出口温度に基づいて上記設定した空気比を補正することを特徴とする請求項1記載のガス化溶融炉の燃焼制御方法。The combustion control method for a gasification melting furnace according to claim 1 , wherein the outlet temperature of the melting furnace is detected and the set air ratio is corrected based on the outlet temperature . 溶融炉内の温度を検出し、この検出温度に基づいて補助燃料量を制御することを特徴とする請求項2記載のガス化溶融炉の燃焼制御方法。  3. A combustion control method for a gasification melting furnace according to claim 2, wherein the temperature in the melting furnace is detected and the amount of auxiliary fuel is controlled based on the detected temperature. 検出温度は、溶融炉内の温度の瞬時値を検出し、この瞬時値をスムージング処理したものであることを特徴とする請求項3記載のガス化溶融炉の燃焼制御方法。  4. The combustion control method for a gasification melting furnace according to claim 3, wherein the detected temperature is obtained by detecting an instantaneous value of the temperature in the melting furnace and smoothing the instantaneous value. 集塵後の排ガス量を検出することを特徴とする請求項1〜4のいずれかに記載のガス化溶融炉の燃焼制御方法。  The combustion control method for a gasification melting furnace according to any one of claims 1 to 4, wherein the amount of exhaust gas after dust collection is detected. 投入される廃棄物を熱分解ガス化するガス化炉と、それにより発生する熱分解ガスを燃焼溶融する溶融炉とを備え、前記溶融炉は、必要に応じて供給される補助燃料を燃焼し、溶融炉内温度を高温に維持するためのバーナを有するガス化溶融炉の燃焼制御装置において、
溶融炉から排出される排ガスの流量を検出する排ガス量検出手段と、
溶融炉から排出される排ガスの温度を検出する排ガス温度検出手段と、
この排ガスの流量と温度とに基づいてガス化炉に投入される廃棄物の熱量を算出する廃棄物熱量算出手段と、
前記バーナに供給される補助燃料量を検出する検出手段と、
少なくとも記廃棄物の熱量と前記必要に応じて供給される補助燃料量とに基づいて熱分解ガスの燃焼溶融に必要な理論空気量を算出する理論空気量算出手段と、
設定する空気比が入力される空気比入力手段と、
溶融炉の出口温度を検出し、この溶融炉の出口温度に基づいて前記入力された空気比を補正する補正手段と、
この補正後の空気比を前記理論空気量に乗じて溶融炉内の熱分解ガスを完全に燃焼させるのに必要な空気量を算出する必要空気量算出手段と、
この補正後の空気比を用いて算出した必要な空気量に基づいて溶融炉に供給される燃焼空気量を制御する燃焼空気量制御手段とを備えたことを特徴とするガス化溶融炉の燃焼制御装置。
It comprises a gasification furnace for pyrolyzing and gasifying waste to be input and a melting furnace for burning and melting the pyrolysis gas generated thereby, and the melting furnace combusts auxiliary fuel supplied as necessary. In the combustion control device for a gasification melting furnace having a burner for maintaining the melting furnace temperature at a high temperature ,
Exhaust gas amount detection means for detecting the flow rate of exhaust gas discharged from the melting furnace;
Exhaust gas temperature detection means for detecting the temperature of the exhaust gas discharged from the melting furnace;
Waste heat quantity calculating means for calculating the heat quantity of waste to be input to the gasification furnace based on the flow rate and temperature of the exhaust gas;
Detecting means for detecting the amount of auxiliary fuel supplied to the burner;
The theoretical air amount calculating means for calculating a theoretical amount of air required for combustion melting of the pyrolysis gases on the basis of at least before Symbol heat the auxiliary fuel amount which the supplied when necessary waste,
An air ratio input means for inputting an air ratio to be set;
Correcting means for detecting the outlet temperature of the melting furnace and correcting the input air ratio based on the outlet temperature of the melting furnace;
A required air amount calculating means for calculating the amount of air necessary to completely burn the pyrolysis gas in the melting furnace by multiplying the corrected air ratio by the theoretical air amount;
Combustion in a gasification melting furnace characterized by comprising combustion air amount control means for controlling the amount of combustion air supplied to the melting furnace based on the required air amount calculated using the corrected air ratio Control device.
JP2002198494A 2002-07-08 2002-07-08 Combustion control method and apparatus for gasification melting furnace Expired - Fee Related JP4009151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002198494A JP4009151B2 (en) 2002-07-08 2002-07-08 Combustion control method and apparatus for gasification melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002198494A JP4009151B2 (en) 2002-07-08 2002-07-08 Combustion control method and apparatus for gasification melting furnace

Publications (2)

Publication Number Publication Date
JP2004037049A JP2004037049A (en) 2004-02-05
JP4009151B2 true JP4009151B2 (en) 2007-11-14

Family

ID=31705926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002198494A Expired - Fee Related JP4009151B2 (en) 2002-07-08 2002-07-08 Combustion control method and apparatus for gasification melting furnace

Country Status (1)

Country Link
JP (1) JP4009151B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100487311C (en) * 2004-10-28 2009-05-13 日立造船株式会社 Refuse incineration facility
EP2322855B1 (en) 2006-09-26 2016-04-13 Kobelco Eco-Solutions Co., Ltd. Operating method and operation control apparatus for gasification-melting furnace
JP2008215665A (en) * 2007-03-01 2008-09-18 Kobelco Eco-Solutions Co Ltd Method and device for adjusting basicity of slag in gasification melting furnace
JP4966743B2 (en) * 2006-09-26 2012-07-04 株式会社神鋼環境ソリューション Operation method and operation control apparatus for gasification melting furnace
EP2100078A1 (en) * 2006-12-07 2009-09-16 Technologies International Limited Waste2Energy Batch waste gasification process

Also Published As

Publication number Publication date
JP2004037049A (en) 2004-02-05

Similar Documents

Publication Publication Date Title
EP1816396B1 (en) Treatment method for combustible gas in waste melting furnace
JP4009151B2 (en) Combustion control method and apparatus for gasification melting furnace
JP5611418B2 (en) Combustion control method for gasification melting system and system
JP5154094B2 (en) Combustion control method for gasification melting system and system
JP3688644B2 (en) Method for estimating in-furnace waste retention distribution in incinerator and combustion control method and apparatus using the method
JP5728361B2 (en) Combustion control method of combustion chamber in waste melting treatment facility
JP3868315B2 (en) Combustion control device and combustion control method for pyrolysis gasification melting furnace
JP2010065932A (en) Device and method for controlling combustion in secondary combustion furnace for pyrolysis gas
CZ289075B6 (en) Procedure for operating industrial furnaces
JP2011149658A (en) Operation control method for circulating fluidized bed boiler
JP3902454B2 (en) Combustion control method and waste treatment apparatus
JP2006226674A (en) Combustion control system of refuse incinerator without boiler facility
JP4243764B2 (en) Pyrolysis gasification melting system and its heating method
JP5472847B2 (en) Steam volume control device for waste melting furnace equipment
JP3944389B2 (en) Combustion air volume control system in pyrolysis gasification melting furnace
JP5255509B2 (en) Waste melting treatment method and waste melting treatment apparatus
JP4230925B2 (en) Calorific value estimation device, calorific value estimation method, and combustion control device
JP3553483B2 (en) Melting furnace combustion control method and apparatus in waste gasification melting furnace
JP4097999B2 (en) Control method and apparatus for pyrolysis gasification melting treatment plant, and program
JP3621792B2 (en) Combustion control method for waste melting furnace generated gas combustion furnace
JP2000304234A (en) Ash melting furnace and combustion control method therefor
JP3902123B2 (en) Melting furnace temperature compensation apparatus and melting furnace temperature compensation method for gasification melting apparatus
JP2004353944A (en) Combustion control method in refuse disposal facility and refuse disposal facility
JP5945945B2 (en) Waste treatment apparatus and waste treatment method
JP2004132648A (en) Combustion control method and combustion control device for gasification melting furnace

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031212

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4009151

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees